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Health Monitoring via Heart, Breath, and Korotkoff Sounds
by Wearable Piezoelectret Patches

Liuyang Han, Weijin Liang, Qisen Xie, JingJing Zhao, Ying Dong,* Xiaohao Wang,*
and Liwei Lin*

Real-time monitoring of vital sounds from cardiovascular and respiratory
systems via wearable devices together with modern data analysis schemes
have the potential to reveal a variety of health conditions. Here, a flexible
piezoelectret sensing system is developed to examine audio physiological
signals in an unobtrusive manner, including heart, Korotkoff, and breath
sounds. A customized electromagnetic shielding structure is designed for
precision and high-fidelity measurements and several unique physiological
sound patterns related to clinical applications are collected and analyzed. At
the left chest location for the heart sounds, the S1 and S2 segments related to
cardiac systole and diastole conditions, respectively, are successfully extracted
and analyzed with good consistency from those of a commercial medical
device. At the upper arm location, recorded Korotkoff sounds are used to
characterize the systolic and diastolic blood pressure without a doctor or prior
calibration. An Omron blood pressure monitor is used to validate these
results. The breath sound detections from the lung/ trachea region are
achieved a signal-to-noise ration comparable to those of a medical recorder,
BIOPAC, with pattern classification capabilities for the diagnosis of viable
respiratory diseases. Finally, a 6×6 sensor array is used to record heart sounds
at different locations of the chest area simultaneously, including the Aortic,
Pulmonic, Erb’s point, Tricuspid, and Mitral regions in the form of mixed data
resulting from the physiological activities of four heart valves. These signals
are then separated by the independent component analysis algorithm and
individual heart sound components from specific heart valves can reveal their
instantaneous behaviors for the accurate diagnosis of heart diseases. The
combination of these demonstrations illustrate a new class of wearable
healthcare detection system for potentially advanced diagnostic schemes.
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1. Introduction

A wearable mobile platform to continuously
monitor a variety of body vital signs is attrac-
tive for next-generation diagnostic and ther-
apeutic applications. For example, recent
advances in skin electronics have shown
various cutting-edge detection schemes to
gather results in the forms of sound, tem-
perature, pressure, impedance, and chem-
istry. [1–4] Specifically, acoustic signals are
generated during different physiological ac-
tivities, including breathing, swallowing,
heart beating, and talking [5–7] and these
signals contain important pathological data
from the cardiovascular and respiratory sys-
tems. Previously, heart sounds or phono-
cardiography (PCG) have been used for the
diagnosis of congestive heart failure and
myocardial ischemia by analyzing the sys-
tolic and diastolic interval or amplitude.[8–10]

The detection of pulse waves at different
body locations has been used to estimate
the artery stiffness and blood pressure.[11–13]

Abnormal breath sounds, such as wheezes,
rhonchi, and crackles, usually indicate pul-
monary disorder[14] while regional varieties
in the breath sound intensity are related
to patients with chronic obstructive pul-
monary diseases.[15] Some researchers have
also demonstrated fascinating applications
by detecting heart and breath sounds in the
recognition of emotion, identity and physi-
ological conditions.[16–18]
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In general, it is very challenging to accurately record acous-
tic signals from human body due to complex frequency bands,
rhythms, and subtle intensities. Sensors for pulse detections
have been widely investigated by means of piezoresistive, ca-
pacitive, piezoelectric, and triboelectric mechanisms.[19–23] For
audio physiological signals, Gupta et al. have utilized a high-
precision fabrication technique for capacitive sensors with a lin-
ear response range of from 0 to 12 kHz.[24] Rogers et al. have
leveraged the commercial MEMS accelerometer with stretch-
able circuits to monitor PCG, seismocardiography (SCG), and
pulses.[5,25] Cotur et al. have demonstrated vital sign measure-
ments using a commercial microphone with flexible packages.[26]

These MEMS-based systems require rather complex fabrication
processes to construct sensors of limited conformability or flex-
ibility. On the other hand, Nayeem et al. and Yan et al. have uti-
lized fiber-based flexible structures to achieve a wide working fre-
quency range (hundreds of Hertz) for epidermal sensors.[6,27] Ha
et al. have employed a 28 μm thick piezoelectric polymer system
to detect SCG signals.[17] These flexible sensors have excellent
conformability but limited sensitivity and often focus on a single
vital sign instead of a combination of physiological signals from
both the cardiovascular and respiratory system.

This paper presents a flexible sensing system to comprehen-
sively detect both cardiovascular and respiratory signals based on
a folded double-layer piezoelectret sensor to record a wide range
of vital signs, including pulses, heart sounds, Korotkoff sounds,
breath sounds, and human voices. Piezoelectric and piezoelec-
tret sensors take the advantages of simple construction and high
sensitivity and have been extensively studied.[28–29] The FEP-Air-
FEP sandwich structure with a symmetrical design exhibits an
excellent dynamic sensitivity of 591 pC kPa−1 in the range of 0–
8 kPa; a minimum pressure resolution of less than 5 Pa; a wide
frequency bandwidth of 0–600 Hz with a frequency resolution
<0.1 Hz; and a long stable operation period of more than 1.1 mil-
lion cycles. A protection layer is utilized for the excellent electro-
magnetism shielding by suppressing key 50 Hz electromagnetic
power noises in the human body. Several experimental demos
have been conducted. First, heart sounds are measured and used
to analyze the S2 physiological split phenomenon during the in-
spiration process. Instantaneous cardiac activities are found to be
consistent with those from ECG references and medical physio-
logical records. Second, quantified Korotkoff sounds are recorded
at the upper arm area and analyzed to demonstrate the nonin-
vasive blood pressure assessment. Third, breath sounds are de-
tected and examined at the lung/trachea region for the recogni-
tion of both breath pattern and human identity. Forth, a large-
area, 6×6 sensing system is utilized at the chest region to record
heart sounds from the operation of four heart valves and the ICA
(independent component analysis) algorithm is developed to ex-
tract data related to individual heart valves for advanced diagnosis
of heart diseases.

2. Results and Discussion

2.1. Performance Characterizations and Physiological Signal
Measurements

Figure 1a illustrates the piezoelectret sensor patches placed at
different body locations for breath, Korotkoff, voice, and heart

sounds and the typical recording patterns. The fabrication pro-
cess is schematically depicted in Figure S1, Supporting Infor-
mation. Specifically, parallel grooves on the surfaces of two FEP
films are constructed by a laser cutting process in Figure 1b-i. A
hot-pressing process is followed to bond the two FEP films to-
gether with the two groove surfaces facing each other perpen-
dicularly to form the crisscross air cavity (Figure S2, Supporting
Information). A copper tape is then attached as the external elec-
trode on one side and a Corona charging process with a high-
electric field is used to generate electric dipoles. Subsequently,
two separated copper tapes (internal electrodes) are attached on
the other side. The FEP strip is folded with a polyimide tape as
the spacer layer to insulate the two internal electrodes as shown in
Figure 1b-ii. The process is completed as shown in Figure 1b-iii,
in which the external copper tape is used as the ground electrode
to wrap around the entire sensor as well as the electrical shielding
structure to ensure the accurate detection of physiological signals
(Figures S3 and S4, Supporting Information).

Electric dipoles formed during the Corona charging process
ensure the piezoelectric-like behavior of the sensor. The FEP
cavity captures the positive and negative ions after the air in
the closed crisscross cavity is ionized by the high electric field,
which further induced free charges on the internal electrodes.
The amount of these free charges fluctuates periodically in re-
sponse to the applied pressure, resulting in alternating current
outputs in the external circuit (Figure S5, Supporting Informa-
tion). The piezoelectret sensor can achieve a high sensitivity be-
cause of the large porosity of the FEP electret with crisscross
cavities.[29] A pressure test is designed (Figure S6, Supporting
Information) for the sensitivity characterization, in which the
modal shaker and force sensor are used to apply controlled pres-
sure on the device under test (DUT) and the outputs are am-
plified by a current preamplifier (Stanford SR570). The sensor
exhibits a dynamic sensitivity with two distinct linear regions,
which is consistent with previous works based on piezoelectric
materials.[30–31] The dynamic sensitivity is measured under exter-
nal pressure inputs with a constant frequency of 220 Hz. Results
show an linear relationship of 591 pC kPa−1 in the low-pressure
region (<8 kPa), and 290 pC kPa−1 in the high-pressure region of
>8 kPa (Figure 1c; Figure S7, Supporting Information). Specif-
ically, under a high pressure, the upper FEP diaphragm expe-
riences a large deformation to physically touch the lower FEP
film and reduce the possible further deformation resulting in the
slightly lower sensitivity as described in our previous work.[29] By
comparison, the prototype sensor in this paper expands the lin-
ear operation range to 8 kPa due to the thicker folded double-layer
structure. The corresponding transferred charges under different
applied pressures are found in Figure S8 (Supporting Informa-
tion). Furthermore, the prototype sensor exhibits a sensitive res-
olution for the dynamic pressure changes of about 5 Pa as shown
in the inset of Figure 1c. In this test, an arbitrary pressure P0 is
applied as the reference and the influence of the relative pressure
change (∆P) on the output charge (∆Q) is evaluated. Experimen-
tal results show that slight fluctuations in the applied pressure
can cause significant variations on the transferred charges with
good repeatability and linearity (Figure S9, Supporting Informa-
tion). In addition, a portable customized amplification and fil-
ter circuit is used to characterize the dynamic sensitivity of the
sensor (Figure S10, Supporting Information). This circuit setup
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Figure 1. Performance characterizations and physiological signal measurements of a prototype piezoelectret sensor. a) Illustration of the piezoelectret
sensor patches at different body locations. b) The schematic diagram of a prototype sensor, showing key aspects such as i) laser processing for FEP
grooves; ii) internal electrodes for electromechanical conversion; iii) external electrode for guarding and shielding structure. c) Result of transferred
charges versus applied pressure showing the dynamic sensitivity variations between the applied pressure of 0–18 kPa at a constant frequency of 220 Hz.
Inset (top): experimental setup for characterizing the dynamic sensitivity of the piezoelectret sensor. Inset (bottom): measured transferred charges as
the applied pressure increases from the initial state (P0) to extra + 5 Pa, + 10 Pa, and + 15 Pa, and decreases from extra + 15 Pa, + 7 Pa to the initial
state (P0), where P0 is the initial reference pressure chosen arbitrarily in the low linearity region. d) Recorded data from the neck position of a volunteer
including: (top) the original data; (bottom) the respiratory wave (0–0.4 Hz), the pulse wave (0–10 Hz), and the audio wave (> 20 Hz) by processing the
original data with filters of various frequency ranges. The volunteer is asked to perform activities sequentially to record the normal heart beating, talking,
deep breathing, snoring, coughing, and swallowing. e) Enlarged time series (top) and STFT (short-time Fourier transform) spectrograms (bottom)
corresponding to different physiological activities.

contains a 50 Hz notch filter and a 2000 Hz low-pass filter with
an amplitude gain of about 6 V nC−1 (Figure S11, Supporting
Information) to replace the expensive and bulky current pream-
plifier SR570 in a wearable manner for the following human ex-
periments. Two linear regions have been obtained under applied

pressures with the dynamic sensitivity of 3.33 V kPa−1 for pres-
sure <8 kPa and 0.24 V kPa−1 for pressure >8 kPa (Figure S12,
Supporting Information).

Frequency resolution is also an important parameter. Mixed
signals with a frequency difference of 0.1 Hz have been used
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to drive the modal shaker and signals with a beat frequency
period of 10 s can be observed obviously from the sensor’s
transferred charges (Figure S13, Supporting Information). Fast
Fourier transform (FFT) results of the transferred charges show
two peaks at 220 Hz and 220.1 Hz, which are consistent with
driving signals. Furthermore, the amplitude-frequency response
from a prototype sensor (size: 2 × 2 cm2) shows a first-order res-
onant frequency of about 740 Hz and a wide working range of
600 Hz (Note S1, Supporting Information) to cover key physio-
logical signals such as voice, heart sound, breath sound, etc.[27,32]

In this case, three different sensors with the same structure
are involved in the characterization of amplitude-frequency re-
sponse: FEP (piezoelectret) sensor with Corona charging, FEP
sensor without Corona charging, and PET (nonpiezoelectret) sen-
sor without Corona charging, to exclude the influence of electro-
magnetic interference, triboelectric effect and circuit noise, etc.
For the mechanical stability, a repeatability test under a same ap-
plied pressure at 220 Hz is conducted for 1.1 million cycles over
5000 s and results show stable transferred charges within ± 2.5%
of the mean value during the test (Figure S19, Supporting Infor-
mation). In this work, the external copper electrode protects the
internal FEP film from damages for long-term stable operations
and it also acts as an electrical shielding layer [33–34] to reduce
power frequency noises (50 Hz and harmonic frequencies). In
actual human experiments, the external shielding layer, the hu-
man skin, and the ground electrode of the measuring instrument
(or customized circuit) are connected together, forming a guard
ring to protect the internal electrodes from the electromagnetic
noises, especially the power frequency noises. A comparative ex-
periment has been conducted to show that the device with the
external shielding electrode and electrical ground can record dis-
tinct pulse waveforms with the lowest noise level (Figure S20,
Supporting Information) while other setups fail to obtain clean
pulse waveforms.

The good flexibility of the piezoelectret sensor ensures the
high-fidelity acquisition of physiological signals at different
curved skin positions (Figure S21, Supporting Information). In
the first experiment at the neck position, several physiological sig-
nals have been recorded during the nearly four-minute test. The
volunteer is asked to conduct a series of physiological activities,
including normal heart beating, talking, deep breathing, snor-
ing, coughing and swallowing. Measured signals are processed
by filters of different frequency ranges as shown in Figure 1d.
The “original signal” shows the nonfiltered data; the “respiratory
waves” is the baseline after applying a low-pass filter of 0–0.4 Hz;
the “pulse waves” is the low-frequency result after applying a 0–
10 Hz low-pass filter and the deduction of the baseline; the “audio
waves” is the high-frequency result after applying bandpass fil-
ters for audio frequency signals, such as: a 20–200 Hz bandpass
filter from 0 to 89 s for normal heart sounds; a 100–400 Hz band-
pass filter from 89 to 116 s for voices; and a 100–600 Hz band-
pass filter from 116 s to the end for the deep breathing, snoring,
coughing, and swallowing motions. It is observed that this vol-
unteer has about 9 breaths per minute from the respiration wave
results and 90 pulses per minute from the pulse wave results.
There is no recorded breath during the breath holding period
and the intensity of breaths increases during the deep breath-
ing period as expected. Recorded magnitudes do change during
different physiological activities and the coughing action gener-

ates the largest magnitude in the respiration waves. The pulse
waves are generally consistent throughout the experimental pe-
riod with occasional larger magnitudes during different actions
as those motions can increase the movements of neck tissues.
The results of the audio wave in the time domain are further an-
alyzed in the frequency domain in Figure 1e to show patterns
for talking at around 120 Hz, heartbeats between 20 and 200 Hz,
and breathing, snoring, swallowing patterns from 100 to 600 Hz.
In another test on the neck region, experimental data collected
before and after exercises are compared in Figure S23, Support-
ing Information. Results show the amplitude and frequency of
respiration, pulse and heart sound waves increase after exercise
and gradually reduce during the recovery state. The heart can re-
spond to the body needs with increased blood ejection and oxygen
consumption during exercise by adjusting the intensity (cardiac
contractile reserve) and frequency (heart rate reserve) of myocar-
dial contractions. Previous works have shown that the first heart
sound is closely related to the cardiac contractility [35] and our re-
sults show the amplitude of the first heart sound (S1) changes
significantly from 2.8 mV to 11 mV before and after the exercise
while the second heart sound (S2) is about the same (Figure S24,
Supporting Information). Exercise also results in an increase of
the heart rate of the volunteer from 90 to 130 bpm, which implies
that the cardiac regulation during the workout depends more on
the cardiac contractile reserve rather than the heart rate reserve.

2.2. The Heart Sound and Korotkoff Sound

In the second experiment, heat sounds are further characterized
by placing the sensor patch close to the heart position. Heart
sound (HS) is an important mechano-acoustic parameter which
has been widely utilized in application such as disease diagno-
sis and emotion recognition. [16,36–37] In a normal heartbeat cycle,
two sound components, S1 and S2, are observed due to the clos-
ing of the atrioventricular valves and the closing of the semilunar
valves, respectively. Figure 2a is the original recorded signal from
the heart location with normal breathing, hold breath, and rapid
breathing conditions as well as filtered physiological signals of
different frequency ranges to reveal the respiratory wave, pulse
wave, and heart sound. Figure 2b-i shows the enlarged view from
70 to 77 s for the respiration, pulse, and heart sound results. The
physiological splitting of S2 during the inspiration process can
be observed in the enlarged view containing two parts, the aortic
component (A2) and the pulmonic component (P2), which are
related to the closure of the aortic valve and pulmonary valve, re-
spectively. Inspiration increases the blood returning to the right-
heart and decreases the blood returning to the left-heart, which
leads to the extended systole of the right heart and the delayed
closure of the pulmonary valve.[38] The delay between A2 and P2
is found to be around 90 ms in the rapid deep breathing motion
(Figure 2b-ii). In the frequency domain, the short-time Fourier
transform (STFT) result of the original signal below 4 Hz is plot-
ted in Figure 2c. It is found that the intensities of the respiration
wave at 0.18 and 0.27 Hz are significantly stronger than those
of the pulse waves at 1.45 Hz, and the three different breathing
patterns (normal, hold and rapid) are clearly distinguishable. In
the high frequency region, the Hilbert spectrum is used to ana-
lyze the instantaneous frequency of heart sounds in view of the
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Figure 2. Measurement and analysis of heart sounds by placing the sensor patch at the heart location. a) Original signal and filtered signals acquired at
the heart location. The respiratory wave is the baseline of the original signal without high frequency noises; the pulse wave and heart sound are obtained
by using the 10 Hz low-pass filter and the 20–200 Hz band-pass filter after removing the baseline drift, respectively. b-i) Enlarged view of the dotted
box in a, showing the S2 split during the inspiration process. ii) Enlarged view of the dotted box in i), highlighting the aortic (A2) and pulmonic (P2)
components during the S2 split. c) The STFT spectrum of the original signal (Figure 2a) within 0–4 Hz, showing the fluctuations of heart rate (HR) and
respiration rate (RR). d) The Hilbert spectrum corresponding to the heart sound in b (ii). e) The comparison of the recorded heart sounds from the
piezoelectret sensor (HS Sensor) and a medical physiological recorder (HS BIOPAC). The timing of the cardiac cycles is verified by the ECG reference.
f) Comparison of the instantaneous cardiac cycles between the piezoelectret sensor (P-PSensor) and i) ECG (R-RECG), and ii) BIOPAC (P-PBIOPAC). g)
Calculation of the i) systolic period and ii) diastolic period length based on the data recorded by the ECG, piezoelectret sensor, and BIOPAC.

small-time difference between A2 and P2. The Hilbert–Huang
transform can calculate the instantaneous amplitude/frequency
of a signal with higher time-frequency resolution than that of
STFT[39] as shown in Figure 2d, where the S2 split is clearly found
in the Hilbert spectrum and the frequency of S2 is slightly higher
than that of S1.[40] Sounds generated by heart beats have also been
detected on other locations, such as the carotid artery and brachial
artery (Videos S1–S3, Supporting Information) with correspond-
ing time-frequency domain results summarized in Figures S25–
S27 (Supporting Information).

A cycling test has been conducted to verify the stability and
reliability of the piezoelectret sensor for the long-term monitor-
ing of heart sounds. The piezoelectret sensor (HS Sensor) and
a medical-grade physiological recorder (HS BIOPAC) are used
to record heart sounds for 400 s simultaneously with the syn-
chronized ECG signal as the reference (Figure 2e). First, the in-

stantaneous cardiac cycles are calculated based on the R peaks
of ECG signals (R-RECG) and the S1 peaks of heart sounds (P-
PSensor, P-PBIOPAC). It is found that the cardiac cycle results from
the piezoelectret sensor are consistent with those from ECG and
BIOPAC, with high Pearson correlation coefficient (PCC) values
of 0.9074 and 0.8995, respectively in Figure 2f-i,ii. Moreover, the
length of the systolic period and diastolic period can be estimated
and compared. The QRS complex in ECG represents the depolar-
ization of ventricles and the beginning of cardiac systole, while
the T wave corresponds to the physiological activities of ventricu-
lar repolarization and diastole.[41] Therefore, S1 follows the Q-
point immediately and S2 occurs near the T-end (Figure 2e),
since S1 and S2 are generally considered to be related to car-
diac systole and diastole, respectively. The systolic and diastolic
lengths are expressed by Q-T intervals and T-Q intervals in the
ECG, whereas the heart sound signal is divided into the S1 and
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S2 segment to calculate these two durations (Figure S28, Support-
ing Information). Similar results from the three signals are plot-
ted in Figure 2g-i,ii, which validates that the piezoelectret sensor
can detect heart sounds accurately. Further analysis revealed that
a high consistency has been achieved between the cardiac cycle
and diastolic period with PCC (Pearson correlation coefficient)
of 0.9404 rather than the systolic period with PCC of 0.1415 for
a volunteer at the resting state, indicating that the fluctuation of
the heart rate is mainly caused by the fluctuation of the diastolic
period (Figure S29, Supporting Information).

In the third experiment, the focus is the heart sounds detected
on the brachial artery, or the “Korotkoff sounds.” Prior studies
have attributed Korotkoff sounds to the blood turbulence and
vascular wall instability while a unified view has not been estab-
lished. Here, physiological signals on the aorta (aortic pulses and
heart sounds) and the brachial artery (brachial artery pulses and
Korotkoff sounds) are collected simultaneously (Figure S30, Sup-
porting Information), with a measured distance of 0.82 m be-
tween the two locations in our experiment. The pulse wave ve-
locity (PWV) is calculated based on the time delay between the
aortic pulses and brachial artery pulses (Δt1). The heart sound
wave velocity (HSWV) is calculated by the time difference of heart
sounds (S1 is used in this calculation) and Korotkoff sounds (Δt2)
in Figure 3a. Korotkoff sounds can only be generated under spe-
cific static pressures and the pressure level of 75–105 mmHg is
applied on the brachial artery using an inflatable bladder attached
to a mercury meter. The average propagation velocity of 4.2 and
4.3 m s−1 is calculated for PWV and HSWV, respectively with an
intraclass correlation coefficient of 0.789 (p < 0.001, Figure 3b),
which is consistent with previously published values.[38,42–43] The
propagation velocities of PWV and HSWV under different static
pressures are plotted in Figure S31 (Supporting Information)
with a similar trend. These results imply that Korotkoff sounds
and heart sounds (S1) share the temporal consistency indicating
they propagate sequentially to cause vibrations at the body sur-
face. The general understanding is that Korotkoff sounds are also
generated from the blood ejection and turbulence process to the
blood vessel as the origin of S1 is the cardiac ejection and closure
of the atrioventricular valve induced by the ventricular systole.

The Korotkoff sound method is the gold standard of non-
invasive blood pressure (BP) measurements in the medical
community.[44] In general, there will be no audible sound when
a pressure above the systolic pressure is applied on the brachial
artery by the cuff since the blood flow has been completely oc-
cluded. Subsequently, five phases of the Korotkoff sounds appear
sequentially as the cuff pressure decreases: the systolic pressure
when the first loud Korotkoff sound appears (phase I); a slight
muffling and soft pulsating sound (phase II); the increase of the
sound volume (phase III); the abrupt fall of the sound intensity
(phase IV); and the diastolic pressure for the last audible sound
(phase V). However, the appearance/disappearance of Korotkoff
sounds is difficult to be characterized as it largely depends on the
experience of the doctor and the white coat effect of some patients
can also lead to wrong BP results when doctors are around.

An accurate wearable electronic stethoscope could help fre-
quent BP detections without doctors. Here, the piezoelectret sen-
sor is used to record the mechanical vibrations over the antecu-
bital fossa, and a parameter, SNR_K, is proposed to character-
ize Korotkoff sounds for blood pressure measurements. As the

static pressure applied by the bladder cuff attached to a mer-
cury manometer gradually decreases from 150 to 40 mmHg
(Figure S32, Supporting Information), both Korotkoff sounds
and brachial artery pulses are measured simultaneously for
each 30-s static pressure (Figure 3c). Korotkoff sounds under
110 mmHg (close to the systolic pressure) are drawn in Figure 3d
and analyzed as an example. Results from other pressure levels
are shown in Figure S33 (Supporting Information). It is difficult
to identify the Korotkoff sounds manually due to the poor signal-
to-noise ratio around the systolic/diastolic pressure. In this work,
a parameter, SNR_K, is proposed as the ratio of the mean of Shan-
non energy envelope peaks to the mean of overall Shannon en-
ergy envelope by using the 2-order Shannon energy envelope as
the estimation

SNR_K=
∑i=number of peaks

i= 1 peaks (i) ∕number of peaks
∑j = length of envelope

j = 1 envelope
(
j
)
∕ length of envelope

(1)

Experimentally, a threshold of 2 is chosen to define the appear-
ance/disappearance of Korotkoff sounds since it means that the
Korotkoff sounds have an approximate intensity level similar to
that of the background noises and can barely be distinguishable.
When the cuff pressure is near the systolic pressure, the ampli-
tude of Korotkoff sounds might fluctuate greatly since the blood
flow is in the critical state of complete blockage and partial ejec-
tion (Figure S33a,b, Supporting Information). On the other hand,
the SNR of Korotkoff sounds reduces rapidly as the blood flow be-
comes less turbulent near the diastolic pressure (Figure S33e,f,
Supporting Information). The Korotkoff sounds appear obviously
between these two pressures and can be clearly distinguished
by SNR_K (Figure S33c,d, Supporting Information). Overall, the
SNR_K and a threshold of 2 are found to be adequate for these
complex situations to accurately identify the systolic and diastolic
pressures, as shown in Figure 3e-i. The estimated BP results are
112/62 mmHg, which are close to those from the reference BP
monitor (insets of Figure S32 in the Supporting Information with
the BP reference result of 109.5/65.5 mmHg). The traditional os-
cillometric method can also evaluate BP values by measuring the
brachial artery pulses concurrently. In this case, a prior calibra-
tion process based on different users is necessary similar to those
used in the commercial BP monitors. When using the fixed ra-
tio (0.55 for the systolic pressure, 0.85 for the diastolic pressure)
from the literature, [45–46] large systematic errors of BP measure-
ments are found as shown in Figure 3e-ii.

Compared with the blood pressure estimation models
based on pulse wave transit time and machine learning
algorithms,[17,47] the Korotkoff sound method based on the
SNR_K parameter takes the advantages of reliable accuracy and
prior dataset-free and is easier to be transplanted into wear-
able medical devices. Blood pressure measurement results from
seven volunteers are shown in Table 1 by using the prototype sen-
sor and a medically certified Omron system. In this case, volun-
teer #7 has the condition of slight hypotension, which has been
diagnosed by both methods. In a second test, BP measurements
are performed by the Korotkoff sounds obtained at the radial
artery for two volunteers (#8, #9) as summarized in Table S1 and
Figure S35 (Supporting Information). The weak sound intensity
at the radial artery (Figure S36, Supporting Information) results
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Figure 3. Measurements of Korotkoff sounds by placing the sensor patch at the upper arm brachial artery location for blood pressure estimation
applications. a) Simultaneous measurements of the aorta (sensor 1) and brachial artery (sensor 2). The pulse wave velocity (PWV) is calculated based
on aortic pulses and brachial artery pulses while the heart sound wave velocity (HSWV) is obtained according to heart sounds (S1 is used in this work)
and Korotkoff sounds. b) Consistency between PWV and HSWV, with an intraclass correlation coefficient of 0.789 (***p < 0.001). Error bars correspond
to the maximum and minimum values of the propagation velocity among the pressures from 75 to 105 mmHg, with corresponding center values
shown. c) Recorded Korotkoff sounds and brachial artery pulses under corresponding static pressures. d) The analysis of the Korotkoff sounds such as
the Shannon energy envelope and the calculation of the parameter SNR_K. e) BP estimation using the i) Korotkoff sound method, and ii) oscillometric
method. f) Effects of caffeine stimulus on BP and HR. BP/HR measurement results by the Korotkoff sound method i) before and ii) after the intake of
the caffeine drink, and iii) validation from the Omron system.

Table 1. Comparison of the BP results measured by the commercial blood pressure monitor (Omron BP7211) and the Korotkoff sound method.

SBP/DBP [mmHg]a) #1 #2 #3 #4 #5 #6 #7

Omronb) 109/64.5 110/71.5 111/76 123.5/78.5 102.5/65 109.5/65.5 105/57

Korotkoff sound 113/62.5 107/72.5 108/71.5 127/77.5 97.5/62 112/62 105/54.5

Differences 4/−2 −3/1 −3/−4.5 3.5/−1 −5/−3 2.5/−3.5 0/−2.5
a)

The detailed results of the two methods are shown in Figure S34 (Supporting Information);
b)

BP measurement is performed twice for each volunteer using the Omron
monitor and the mean is taken as the BP reference result.
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www.advancedsciencenews.com www.advancedscience.com

in slightly higher errors (within ± 10 mmHg). The capability of
using the Korotkoff sound method to track the fluctuation of the
dynamic BP is also demonstrated by taking BP measurements
for a volunteer before and after consuming caffeine-based drink.
Caffeine is a common chemical stimulus to affect BP and heart
rate (HR) by regulating the release of stress hormones. For the
volunteer without the caffeine habit (#6), BP and HR are eval-
uated before and 30 minutes after the consumption of the caf-
feine drink. Significant increases in both physiological parame-
ters (112/62 mmHg → 117.5/80.5 mmHg for BP and 78 bpm
→ 104 bpm for HR) have been observed after the caffeine in-
take (Figures 3f-i,ii), which is consistent with results disclosed in
previous works.[48] In this test, the Omron system has also been
used as the reference for simultaneous detections with results of
109.5/65.5 mmHg → 117/75.5 mmHg for BP and 77.5 bpm →
99.5 bpm for HR (Figure 3f-iii; Figure S37, Supporting Informa-
tion).

2.3. Breath Sound

In the fourth experiment, breath sounds are detected and ana-
lyzed. In practice, doctor often uses a stethoscope to check breath
sounds by asking the patient to breathe deeply to examine the
crucial aspects of the respiratory system and diagnose respira-
tory diseases (such as asthma). In this work, a piezoelectret sen-
sor is placed on the left chest location to examine the physiolog-
ical information of deep breathing conditions for the respiratory
wave, pulse wave, heart sound, and breath sound as shown in
Figure 4a. It is found that the prototype sensor has achieved a
SNR comparable to those of a medical recorder BIOPAC (10.4 dB
vs 11.8 dB) and the corresponding STFT results suggest that
the energy of normal breathing is mainly concentrated between
100 and 400 Hz (Figure 4b).[49] The frequency bands of heart
sounds (especially S2) and breath sounds can partially overlap
to interfere results with each other (Figure S38, Supporting In-
formation). Researchers have tried to separate heart sounds and
breath sounds by using complex algorithms (such as the inde-
pendent component analysis, ICA).[50] To reduce the interference
of heart sounds, the breath sounds in following experiments are
collected from the right side of the human body for reduced heart
sounds. Generally, breath sounds are clearly audible in several po-
sitions along the trachea and lung (such as the neck, Figure S39,
Supporting Information). In this section, three special positions
are selected for breath sounds in the front and back of a volun-
teer for morphology and frequency characterizations (bronchial
sounds of #1, #4; bronchovesicular sounds of #2, #5; and vesicu-
lar sounds of #3, #6) with results shown in Figure 4c. Bronchial
sounds appear as air moves through the trachea and they have
the strongest intensity and highest pitch in both inspiration and
exhalation processes to be heard best over the trachea on the ante-
rior and posterior portion of the neck. Bronchovesicular sounds
occur when air moves through the large airways of the lungs
with medium pitched sounds to be heard best over the 1st and
2nd intercostal space beside the sternum on the anterior side
of the chest and between the shoulder blades on the posterior
chest. Vesicular sounds are produced as air moves through the
smaller airways in the lungs with the characteristics of low pitch
to best heard over the entirety of the lung fields. Similar results

can be found on another volunteer (Figure S40, Supporting In-
formation). In the frequency domain, the frequency components
of breath sounds gradually move to the low-frequency region
with the transmission of air flow along the respiratory system
(Figure 4d), which is attributed to the absorption of the high fre-
quency components when sounds pass through the lung.[49]

Accurate classification of breath sounds is vital for the diagno-
sis of respiratory diseases. In hospitals, trained doctors charac-
terize the classification by their own experiences with the help of
stethoscopes. However, most respiratory diseases may not hap-
pen all the time. A simplified and accurate classification method
is required to meet the increasing needs for home diagnosis.
Specifically, Mel-frequency cepstral coefficients (MFCCs) have
been successfully applied in speech recognitions [51] and pro-
posed to classify breath sounds in this work (Note S2, Supporting
Information) due to the similar time-frequency characteristics
between the breath sound and speech. MFCCs are coefficients
that collectively make up the mel-frequency cepstrum (MFC),
which is the representation of the short-term power spectrum of
a sound by conducting a linear cosine transform of a log power
spectrum on a nonlinear mel scale of frequency.[51] In this work,
no complex algorithms (such as hidden Markov model, artificial
neural networks [52]) are involved since the category and varia-
tion of breath sounds are far lower than those of speech, which
greatly reduces the computational requirements. In the proto-
type demonstration, three kinds of breath sounds are used in
the classification process: normal breath, panting after strenu-
ous exercise, and snoring. From the MFCCs results in Figure 4e,
it is found that breath sounds are similar in the amplitude versus
time plots but vary greatly in the frequency versus time analy-
ses by means of MFCCs. Specifically, results show visual peri-
odic changes in the MFCCs plot from the time series of “normal
breathing (n1) – panting (p1) – normal breathing (n2) – pant-
ing (p2)” as an example for the qualitative characterization. For
quantitative analyses of the variations, a parameter, 𝜎h

2/𝜎v
2, is in-

troduced after mapping the MFCCs results of two breath sounds
into a scatter plot, where 𝜎h

2 and 𝜎v
2 are the variances of results

along the parallel and perpendicular direction to the diagonal axis
(y = x), respectively (Figure 4f). MFCCs of the breath sound sam-
ple from the normal breathing (n1) are compared to those of
breath sounds from all three categories (n2 for normal breath-
ing, p1 for panting and s1 for snoring) respectively, and results
indicate that breath sounds from the same category achieve the
largest 𝜎h

2/𝜎v
2 value. A large 𝜎h

2/𝜎v
2 value indicates high simi-

larity, while a small value means high dissimilarity since points
from two sets of identical values would be mapped to the diago-
nal axis (y = x) to result in the 𝜎h

2/𝜎v
2 value of infinite. Therefore,

𝜎h
2/𝜎v

2 results between each collected breath sounds and the pre-
pared templates corresponding to each breath patterns are calcu-
lated for the classification to the right category with the highest
𝜎h

2/𝜎v
2 value (Figure S45, Supporting Information). The model

realizes a high accuracy of 92.9% as shown in Figure 4g in this ex-
ample with the F1 score of normal breath, panting and snoring
of 0.9634, 0.9254, and 0.8235, respectively. Another commonly
used method, dynamic time warping,[51] is used to measure the
similarity between two time series to quantify the similarity of
MFCCs and achieves a classification accuracy of 87.2% (Figure
S46, Supporting Information). In addition, different volunteers
could also be recognized by this algorithm (accuracy: 84.3%) for
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Figure 4. Acquisition and classification of breath sounds. a) The typical sound record from the left chest location during the deep breath is separated
to various physiological signals of different frequency bands, including respiratory wave, pulse wave, heart sound, and breath sound. b) Comparison
of the breath sounds and STFT spectrum obtained from: a piezoelectret sensor, and a medical recorder BIOPAC. c) Time-series morphologies, and d)
frequency components of the bronchial, bronchovesicular, and vesicular sounds. The original breath sound data is processed by a digital comb filter to
suppress the power frequency (50 Hz) component and the high-order harmonic components. e) Similar breath patterns (n1, n2 for normal breathing
and p1, p2 for panting) in the magnitude versus time plot (top) can be distinguished in the MFCCs plot qualitatively (bottom). f) Quantitative analyses by
using a parameter (𝜎h

2/𝜎v
2) to quantify the MFCCs similarity between two breath sounds, respectively. g) Confusion matrix of the classification results

for three breathing patterns (normal breathing, panting, and snoring).

the potential application of using breath sounds in the human
identity recognition process (Figure S47, Supporting Informa-
tion).

2.4. Heart Sounds Sensor Array

In the fifth experiment, a sensor array is used to characterize
heart sounds of a large area around the chest simultaneously.
This is like the practice for doctors to change auscultation po-

sitions in order to determine the location of lesion because the
audible heart sounds are the mixture of different valve closures.
A 6×6 sensor array (a single sensor unit of 2×2 cm2, spacing
of 1 cm, and whole array of 17 × 17 cm2) is fabricated to ex-
amine the location dependency of amplitude and morphology
of the heart sounds in Figure 5a-i. The sensor array has low
crosstalk below −20 dB with the help of independent mechanical
structures and good consistency with output amplitudes within
± 10% of the average value under the same mechanical stimu-
lus (Figures S48 and S49 Supporting Information). Mechanical
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Figure 5. A 6×6 sensor array on the left chest to detect the heart sounds. a-i) Mapping the heart sounds and pulses with the 6×6 sensor array. Scale bar:
2 cm. ii) Heart sounds measurement results simultaneously from 36 sensors. iii) S1, and iv) S2 intensity map from the sensing results by using the cubic
spline interpolation scheme. b) Heart sounds from the Aortic area (1a), Pulmonic area (2d), Tricuspid area (6c) and Mitral area (5f). c) Morphological
variability of the pulses at different locations, exhibiting pressure waveforms in the right atrium (2a), right ventricle (5c), and pulmonary artery (4d).
d) Illustration of the four heart valve components and: i) mixing of heart sounds as the detected signals; ii) unmixing of detected signals by the ICA
(independent component analysis) algorithm. e) Demonstration of heart sounds separation by the ICA. i) Original heart sounds from the four valve
areas. ii) Corresponding four valve components after applying the ICA separation algorithm.

vibrations on the body surface are mapped by the sensing ma-
trix, where intensified colors indicate stronger heart sounds in
Figure 5a-ii. Results show heart sounds can be detected in al-
most all units, while some units have weak sound signals due
to the obstruction and absorption of the sternum, costal bones,
and fat near the chest. The amplitudes of S1 and S2 are extracted
for each sensor location and the mapping result after interpola-
tions is exhibited in Figure 5a-iii,iv, respectively. Five traditional
auscultation areas of Aortic, Pulmonic, Erb’s point, Tricuspid and
Mitral regions are distinguished in the intensity map of S1, while
the S2 map appears to have weaker signals. In general, S1 is au-
dible in all auscultation areas because of the stronger loudness,
while S2 has a weaker loudness and could only be perceived near
the semilunar valves.[17] The 36-positions of 6×6 sensor array
from the same volunteer is further examined using a medical
physiological recorder BIOPAC and results show similar char-

acteristics (Figure S50, Supporting Information). Detailed heart
sounds from the four valves areas further illustrate the ampli-
tude differences between S1 and S2 (Figure 5b). Pulses in var-
ious shapes from 36 positions are acquired concurrently to ex-
hibit comprehensive cardiac information (Figure S51, Support-
ing Information). For example, the pulse waveforms reflecting
the pressure of the right atrium, right ventricle and pulmonary
artery are captured by the sensor units above the correlated posi-
tions, similar to the possible implanted pressure catheters in hos-
pitals (Figure 5c). Pulses from unit 2a have the typical biphasic
waveform and the five identifiable components (a, c, v, X, Y) cor-
responding to the physiological activities of right atrial contrac-
tion/relaxation, tricuspid valve closing/opening, respectively.[29]

The right ventricular pulses (from unit 5c) contain a small “a”
wave, representing right atrial systole, and a swift upstroke (P1
wave) representing right ventricular systole.[53] In the pulmonary
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artery pulses (from unit 4d), the dicrotic peak (P2) and dicrotic
notch (d) are observed due to the closure of the pulmonary
valve.[53]

In general, S1 and S2 are composed of two components
corresponding to the closure of mitral valve (M1), tricuspid valve
(T1), aortic valve (A2), and pulmonary valve (P2), respectively
and all audible heart sounds are the mixture of these four valve
components for a healthy volunteer (Figure 5d-i). It is important
to separate the four independent components from the mixed
heart sounds for doctors to accurately analyze patient’s symp-
toms with specific lesions (such as mitral stenosis, aortic valve
insufficiency, etc.), rather than changing the auscultation areas
frequently to compare the differences in volume and frequency
at different positions. This work separates these components
using the data from the sensor array and the independent
component analysis (ICA) algorithm (Figure 5d-ii). ICA is a
separation algorithm which has been widely used in the sepa-
ration of physiological signals. [50] The heart sounds data with
the best SNR are selected from each of the four valves areas
(Figure 5e-i), and the separation results processed by ICA are
shown in Figure 5e-ii. The time differences between M1 and
T1, A2 and P2 during normal breaths are about 31 and 22 ms,
which is consistent with values found in the previous literature.
[38,54] Furthermore, the ICA algorithm is successfully used on
the heart sounds data collected from another volunteer, with the
time difference of about 35 and 27 ms (Figure S52, Supporting
Information). These separated heart sounds components reflect
the instantaneous behaviors of four heart valves, which can po-
tentially provide accurate diagnoses for indistinguishable heart
diseases.

3. Conclusion

Audio physiological signals, including heart sounds, Korotkoff
sounds, and breath sounds, provide important physiological
information. However, poor signal-to-noise ratio, weak intensity
level, and mixed frequency responses are often challenging
factors to block the detection of high-quality audio physiological
data by flexible electronic devices. This paper introduces the
combination of innovative hardware designs and advanced
software analyses to demonstrate the feasibility of reliably mon-
itoring heart sounds, Korotkoff sounds, and breath sounds. In
particular, high-fidelity physiological signals is recorded using
the folded double-layer piezoelectret sensor and sensor array
with the shielding and protecting packaging layer for potential
clinical applications in various scenarios. The outstanding
piezoelectret sensors can accurately acquire subtle vibration
signals for the real-time monitoring of a variety of physiological
activities, such as respiratory waves, pulse waves, heart sounds,
breath sounds, snoring, talking, coughing and swallowing.
Experimental results show detected signals are well matched
with the current state-of-art medical recorder BIOPAC for heart
sounds and the successfully extracted ventricular systolic and
diastolic periods are consistent with ECG references. The 6×6
sensor array placed on the left chest can map the morphology and
amplitude distributions of heart sounds, as well as the associated
pulses. Furthermore, heart sound components separated by the
ICA algorithm correspond well to the instantaneous mechano-
acoustic behavior of four heart valves as a new approach for heart

diseases diagnoses. In another application, Korotkoff sounds
and the proposed resulting parameter, SNR_K, are capable of BP
measurements without the involvement of real doctors and prior
calibration. As a practical demonstration example, BP increases
caused by the intake of caffeine stimulation are captured by the
Korotkoff sound measurements and characterizations. A range
of analyses for breath sounds, including the comparison of the
morphology and frequency at different positions, and the classi-
fication of breath sounds from different patterns and volunteers,
indicate their potential applications in family diagnosis and iden-
tity recognition. While clinical validations involving more partici-
pants will be of interest in the future research, the current results
exhibit key proof-of-concept validations toward self-monitoring
of cardiovascular and respiratory devices for next generation
systems.

4. Experimental Section
Fabrication of the Folded Double-Layer Piezoelectret Sensor: Detailed

preparation of the bonded double-layer FEP film with crisscross cavities
can be found in the previous work.[29] After adhering a copper tape (exter-
nal electrode, with a thickness of 20 μm and an area of 4×2 cm2) on one
side of the FEP film, a negative power supply (DW-N303-1ACH2, Dong-
wen High Voltage Power Supply (TianJin) Co., Ltd) was used to perform
the corona charging process. The FEP film (3 cm below the corona nee-
dle) was exposed to the electric field of −20 kV for 5 minutes when the ex-
ternal electrode was grounded. Subsequently, two identical copper tapes
(slightly smaller than 2 × 2 cm2) were placed on the other side as the
internal electrodes, and one of the copper tapes was glued with a poly-
imide tape (20 μm) to prevent short circuit between these two internal
electrodes. Finally, the whole structure was folded in half along the cen-
tral axis to encapsulate the internal electrodes inside. In this process, the
shielding layer envelops the entire sensor since the external copper elec-
trode is slightly larger than the internal FEP films to achieve sufficient elec-
tromagnetic shielding.

Fabrication of the Heart Sounds Sensor Array: 36 piezoelectret sensors
were prepared in advance using the above method. These sensors were
glued to a customized flexible printed circuit board (fPCB) with double-
sided tape to form the 6×6 array. A single sensor unit had an area of 2×2
cm2 and a spacing of 1 cm to the neighboring unit. The internal electrodes
of each sensor were welded on the corresponding pads through copper
wires, and the fPCB was connected with the subsequent circuits using the
zero insertion force connectors. The leads among different sensor units
were electrically insulated to reduce the possible crosstalk.

Characterization of the Piezoelectret Sensor: The morphology of FEP
grooves was examined by the surface profilometer (AlphaStep P-7, KLA-
Tencor Corp.) and the optical microscope (OLYMPUS BX53MTRF-S). The
surface potential of FEP films and PET films was measured using an elec-
trostatic voltmeter (Model 347, TREK INC.). The modal shaker (SA-JZ002,
Wuxi Shiao Technology Co., Ltd.) and force sensor (AT8601-20N, Suzhou
Autoda Automation Equipment Co., Ltd.) were used by applying pressure
with controlled amplitude and frequency to the DUT (Figure S6, Support-
ing Information). The output of the DUT was acquired by a current pream-
plifier (SR570, Stanford Research Systems), and was further integrated as
the transfer charge. All data were sampled by NI USB-6009 and NI Lab-
VIEW 2017.

Human Experiments: For the heart sound experiments, both the piezo-
electret sensor and a physiological recorder (MP36, SS17L, BIOPAC Sys-
tems, INC.) were used to record the heart sounds simultaneously. The
ECG reference was acquired by the AD8232 module.

For the Korotkoff sound experiments, seven volunteers (#1–#7) partic-
ipated in the BP assessment at the brachial artery position and two other
volunteers (#8, #9) participated at the radial artery position. Volunteer
#6 was also tested for the effects of caffeine stimulants. Furthermore, BP
measurements were performed using the commercial monitor (Omron
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BP7211) before and after each Korotkoff sound detection, and the average
of the two measurements was considered as the BP reference value.

For the breath sound study, signals from the piezoelectret sensor were
compared with those from BIOPAC (MP36, SS17L). A volunteer (v#1) was
asked to breathe in normal, panting, and snoring patterns respectively as
the classification templates. Afterward, 84 cases of normal breathing, 32
cases of panting, and 25 cases of snoring were collected to demonstrate
the classification process. The 84 normal breathing cases of volunteer v#1
were also used along with the normal breathing from two other volunteers
(42 cases for v#2, 14 cases for v#3) to demonstrate potential applications
in human identity recognition. All breath sounds were collected in the neck
to avoid the influence of the acquisition location on frequency and inten-
sity.

For all the human experiments, the output of the piezoelectret sensor
(or sensor array) was processed by a customized circuit (Figure S10, Sup-
porting Information) and sampled by the NI USB-6255.

Statistical Analysis: For all the human experiments, the output of the
piezoelectret sensor (or sensor array) was processed by the customized
circuit (Figure S10, Supporting Information) and sampled by the NI USB-
6255. About 500 cardiac cycles within 400 s were recorded simultaneously
by the piezoelectret sensor, BIOPAC and the ECG module AD8232 to com-
pare the consistency (Figure 2e). Instantaneous cardiac cycles were cal-
culated based on R1R intervals for the ECG and S1–S1 intervals for the
piezoelectret sensor and the mapping results were plotted in Figure 2f-i.
Then, Pearson correlation coefficient was calculated using instantaneous
cardiac cycles from the piezoelectret sensor and ECG as two correlational
variables. The similar processing was performed between the piezoelectret
sensor and BIOPAC and the corresponding results were summarized in
Figure 2f-ii. Moreover, the length of the systolic period and diastolic period
was extracted from the 400s data and drawn in the form of box-whisker plot
using the MATLAB, as shown in Figure 2g. The five horizontal lines from
top to bottom of each box are the maximum value, the 25th percentile, the
median, the 75th percentile, and the minimum value. Outliers, defined as
values that are more than 1.5 times the interquartile range away from the
maximum and minimum values, have been removed. Static pressure be-
tween 75 and 105 mmHg with an interval of 5 mmHg was applied on the
brachial artery successively to illustrate the consistency between the PWV
and HSWV. The corresponding results were summarized in Figure 3b and
the error bars corresponded to the maximum and minimum values of the
propagation velocity among these pressures, with corresponding center
values shown. The intraclass correlation coefficient and p value were cal-
culated using the IBM SPSS Statistics with the modal of two-way random,
the type of absolute agreement, and the confidence interval of 95%.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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