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ABSTRACT

We analyze the expected difference between the solutions

to the integer and linear versions of the 0-1 Knapsack Problem.

This difference is of interest since it may help understand

the efficiency of a fast backtracking algorithm for the integer

0-1 Knapsack Problem. We show that, under a fairly reasonable

input distribution, the expected difference is O(log n/n) and

(1/n) .
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1. INTRODUCTION

The following optimization problem is known as the 0-1

knapsack problem;

N

maximize 7^ z. a.
^ 1 1
1=1

N

subject to ^ z. b. < B,
i=l ^ ^

where a^, b^, and B are given and the z^ are to be either 0 or

1. This problem is known to be NP-complete [K72]. Sometimes

we will refer to a version in which each z^ may be any real in

the interval [0,1]; this will be called the relaxed version,

as opposed to the integer version above, and may easily be

solved exactly in 0(n log n) time by a greedy algorithm. See,

for example, [HS78]. Because of the importance and simple

structure of the 0-1 integer knapsack problem, it has been the

subject of extensive investigation. For example, it is known

[IK75] that it admits a fully polynomial time approximation

scheme [GJ79]; that is, we may obtain a worst-case relative

error of e , for any e>0, by an algorithm whose time is bounded

by a polynomial in N and e See [A78] for an analysis of an

algorithm which works well on the average under certain assump

tions about the input distribution. The problem also lends

itself readily to solution by a backtracking approach; the

search tree can be pruned whenever the solution obtained by

using the items not yet considered according to the relaxed
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constraint is not as good as the best integer solution seen

previously. See [HS78] for a detailed discussion of this

approach. When applied to randomly generated data, this

approach, which always yields the exact optimum, seems to run

very rapidly even for large values of N; in fact, it seems

possible that its expected time is polynomial in N. A proof

of this would be very interesting, but probably difficult.

A first step towards such a proof might be to obtain a better

understanding of the difference between the optimum solutions

to the integer and relaxed versions of the problem. (In

general, determining the quality of the heuristics that guide

a search is useful for understanding the quality of the search

algorithm; see, for example, [G77].) This is the goal of this

paper.

We will assume that the a^ and b^ are chosen uniformly

from the interval [0,1]. Thus the selection of the parameters

of the N items can be viewed as the placement of N points at

random in the unit square. In order to simplify the analysis,

we will assume that N is drawn from a Poisson distribution

with parameter n; this will cause the number of points in dis

joint parts of the square to be completely independent. (For

large n, N will tend to be nearly equal to n.) We will assume

that the items are numbered so that the profit density (a^/b^^)

is decreasing. In order to try to cause a constant fraction

of the items to be used in the solution as n becomes large,

we will assume that for some fixed B, B=3n. For later con-
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venience, we assume that 3 lies in the open interval (1/6,1/2);

it is not hard to show that this means that the relaxed solu

tion will, almost surely as n-x®, use more than half but less

than all of the items. For a given n, the random problem

created this way will be referred to as P^. The greedy method

can be visualized by imagining a ray, which we shall call the

profit density ray, which passes through the origin and rotates

clockwise; as this ray rotates from pointing up to pointing

to the right, it intersects the points in the order in which

they are considered. Let m be the limit as n-^o° of the average

slope of this ray at the point when the greedy method for the

relaxed version fills the knapsack. It is not difficult to

show that

3=ffp, ^ '

it can be shown that the average optimum, to the integer or

relaxed version, is asymptotic to an. By our assumption on 3/

in is in the open interval (0,1); this means that m is such that

the profit density ray intersects the right edge of the square.

Since the linear and integer solutions are asymptotic to

each other, it might not seem interesting to compare them.

To obtain an interesting problem, we will look not at the
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Figure 1. The profit density ray.
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ratios of the results, but rather at their differences. In

[BZ77] it is observed empirically that for certain data this

difference decreases as N increases; this is attributed to

the fact, that as N decreases, more variables tend to lie in

a region of small profit density change,.which increases the

chances of finding an integer solution with a value close to

the relaxed optimum. The results presented in this paper

2formally establish that the average difference is O((log n) /n),

and f2(l/n), under our input distribution.
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2. A THEOREM ABOUT SUMS OF SUBSETS

Before investigating the knapsack problem further, it is

useful to consider the following problem about sums of subsets

of random variables. We are given 2k random variables, and

we wish to find a subset, whose sum is as close as possible, to

some target How close can we hope to come? (See [AP8 0]

for an analysis of an algorithm for a related subset sum pro

blem. The method, to be used below is nonconstructive, and

gives an exponentially tighter bound.)

The following theorem provides a partial answer to this

question. Since it appears to be of interest in its own right,

we state it in a more general form than is needed for section '3.

Theorem 1. Let g be the probability density function.of

a variable which assumes values in [-a,a]. Suppose g is bounded

and has mean 0 and variance 1. Let x^^ be a real sequence with
1/2Xj^ = o(k ^ ). Suppose we draw 2k variables according

to g. Then for large enough k, the probability that some subset

of k of the 2k variables has a sum in [Xj^-e,x^+e] is at least

1/2, provided e=7k 4

Proof. A bit of notation is useful. Let G be the cumulative

distribution function corresponding to g. Let (resp. g^) be

the cumulative distribution (resp. density) function for the

sum of n variables drawn according to g. Let F^ (resp. f^) be

the cumulative distribution (resp. density) function for the :

sum of n unit normal variables. Hence
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' •• _x!
f = C e (2,1a)

n n '

C = —(2.1b)
/2in

Let Y, be the random variable which tells the number of distinct
. k •

subsets of size k whose sums lie in [Xj^-e,Xj^+e] . We seek to
_ ^

show P{Y^> 0} > 1/2, provided e=7k4

First note that the expectation of Y, is

2<?' S ^
,2k.= 2r^) e//2^,

where we have employed [F66, Theorem 1, page 506] and the fact

that x,//k->:0. A simple asymptotic analysis of the right hand
JC

term shows that it is about 3 for e as in the lemma. This in

itself, however, gives us no proof that the probability that Y

is zero is small. ~

Fortunately, a clever method known as the "second-moment

method" (see, for example, [ES74, ER60, BE76, M70]) is useful

here; we use the following well-known corollary of Chebyshev's

inequality, which holds for arbitrary random variables Y;
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E[Y^]
P{Y=0} < ^ o -1- (2.2)

(E[Y] )^ .

2The computation of E[Yj^] is a bit messy, and is deferred to

Lemma A1 in the appendix; there it is shown that as k^<» and

e=o(k~^),

Hence

,2k..2k,^ . 2
E[Yn ^

-k'
/2'n"k /SfTk

E[Yj^^] 4/2 + 2/3¥k
E[Yj^]^ 2/6 (^^)e

Some asymptotic analysis shows that if e grows as ak4~^, this

ratio approaches

2/2a + /Jit
(2.3)

/6a

iLetting a=7 causes this expression to achieve a value just

under 1.5, which, in view of (2.2), establishes the result. |

It is interesting to note that letting a become very large

does not cause (2.3) to approach 1; rather, it approaches

/4/3. Thus, to show that a large e gives a very small proba

bility of failure, some different argument would be needed.
__^

Note, on the other hand, that if £=o(k4 ), one easily shows

that E[Yj^] approaches 0, so the probability of finding the

desired subset of cardinality k approaches 0.

A similar theorem could be obtained for a more general.class

of density functions, but we will not pursue that further here.
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3. M UPPER BOUND ON THE AVERAGE DIFFERENCE

Let P^ denoted a random problem generated as explained in

the introduction; let INTEGER(P ) and RELAXED(P ) denoted the
n n

value of the optimum solutions to the integer and relaxed ver

sions of this problem. In order to bound the difference between

these solutions, we will employ a procedure, named APPROX,

which constructs a feasible solution to the integer version;

it appears below. For comparison, we have also presented the

greedy procedure which solves the relaxed problem exactly.

. Theorem 2. E[RELAXED(P^)-INTEGER(P^)]=0(log^n/n).

Proof. Since APPROX gives a lower bound on the true

optimum, we may bound the difference between INTEGER and RELAXED

by that between APPROX and RELAXED. Now the deviation between

APPROX and RELAXED is attributable to two causes:

a) we do not completely fill the knapsack during. APPROX,

and

b). the part we do fill may be filled with items of a

lower profit density.

For part (a), note that if the branch to OUT is taken in APPROX,

the unused part of the knapsack has size at most 2e, which is

O'(log n/n); the probability that the branch to OUT is never

taken can be shown to be 0'(n for any positive integer e.

Now consider part (b). By Theorem 1, the probability of

success on a single iteration of the second while-loop is at

least 1/2. (Note that in this application of that Theorem, the

random variables being summed have mean 1/2 and variance 1/12,
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procedure APPROX;

begin

BB : = B; i : = 1; A : = 0;

k := [log^nj ; e := (V/ZH) k4"^;
while BB > k/2 ffld i < N do

begin

BB := BB - b.;
.1

A ;= A + b^;
. i :=. i + 1;

end;

comment at this point k/2-1 < BB < k/2;

while i + 2k < N do

Page 10

begin

for all subsets S of {i+1,i+2,...,i+2k} do

begin

if the sum of the b. values over all i in SI 1
lies in lBB-2e,BB] then go to OUT;

end;

i := i + 2k;

end;

S := the empty set;

OUT: A := A + the sum of the a. values over all j in S;
1

return A;

end ;

procedure RELAXED;

begin

BB := B; i := 1; A := 0;

while BB > b. and i < N do
1

begin

BB := BB - b.;
1

A : = A + a. ;
l'

i ,: = i + 1;

end

A := A + a^ * max(l,BB/b^);
return A;

end;
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so some scaling is required.)

I

I

I Since successive iterations are independent, the expected

I number of iterations is 0(1). Now the extent to which the
profit density ray advances at each iteration is independent

I of the values of the b^, and can readily be seen to have an
expectation of O(log n/n); this change in density applies to

a portion of the knapsack whose capacity is at most k/2=0(log n)I

I

I
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2so the expected contribution due to part (b) above is O(log n/n)
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4. A LOWER BOUND ON THE AVERAGE DIFFERENCE

An interesting question is whether the bound on the

expected difference between the integer and relaxed solutions

stated in Theorem 2 is tight. Although we have not been able

to answer that question, we have established the following

lower bound.

Theorem 3. E[RELAXED (P^) - INTEGER(P^)] = f^(l/n).

Proof Sketch. We will describe a boolean procedure with

the following two properties:

a) It returns true with probability of at least 1/4 for

large n, and

b) if it returns true, then for this problem instance

the relaxed and integer solutions differ by f^(l/n).

From this the Theorem follows readily.

TEST proceeds as follows. First it fills the knapsack as

in RELAXED until the remaining capacity BE satisfies

1 < BB < 2. (4.1)

Henceforth in the proof we fix BB at this value; let be

the profit density of the last item used. The procedure rejects

(i.e., returns false) if the condition (4.1) cannot be met;

since all b^ are in [0,1], rejection occurs here only if we

run out of items to use in the knapsack, and this occurs with

exponentially.small probability. TEST also rejects if the

profit density ray has not yet advanced past the upper right
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corner of the square, which again can be seen to have exponen

tially small probability under our model of input distribution.

Next we look at the next four points as the profit density

ray advances. (The probability that fewer than this number

remain.is again exponentially small.) Call their profits,

costs, and densities 6^, and respectively, for

i=l,...,4. Reject unless

P ~Pt - oo (4.2a)^0.1 20n

D -p > (4.2b)
P3 P4 - 20n

p^ >. m/2 (4.3)

Note that the movement of. the profit density ray between these

items has an exponenti.al distribution with mean 2/n; hence

the probability of rejection in (4.2a) or (4.2b) is less than

(1/20) each, for a total of 1/10. The probability of rejection

in (4.3) can be seen to be exponentially small, since it means

that we have gone far beyond the in of Figure 1.

X

Next we impose some restrictions on the b^ values. (Note

that each has, independently, a density function of 2x for

xe[0,l].) Reject if any subset.of these four values has a sum

in the range BB±g^. Note that the sum of. any fixed nonempty
subset of the b^ has a density function uniformly bounded by 2;

hence, for any such subset, the probability that its sum lies

in the indicated range in at most . On the other hand,

there are only 15 nonempty subsets, so the probability of

rejection here is at most Finally, reject unless
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< BB < b^+b2+b2. (4.4)

The left inequality is always true since 1<BB. The right in

equality has probability greater than 1/2; this can be seen by

noting that BB<2, and performing a tedious but straightforward

computation involving convolution of the densities of the b^.

At this point the description of TEST is complete.

Now since the probability of the union of several events

is bounded by the sum of their probabilities, we see that

P{TEST(P^) = false} ^ ^ '

which is smaller than 0.75 for large enough n, so condition (a)

holds.

Next we establish condition (b). Assume that TEST returns

true. Then we know from (4.4) that the procedure RELAXED fills

the knapsack when the profit density ray is lying in the area

labeled 3^ in Figure 2. Let B , B., and B be the total knapsack
z ot p* y

capacity used in the relaxed solution by items lying in regions

a, y (respectively). Note that Bg=BB, and B^=0.

Now consider the optimum solution to the integer problem; de

fine B , B_, and B for this solution analogously to B„, B„, and
,a' 3 Y ^ a' 3

B^. Now by the restriction TEST imposed on sums of subsets of

the b. , we know that IBq-BoIs . Hence it can be seen that
1 '33600

at least one of the following three conditions must hold:

B +B.+B < B +B„+B - (4.5)
a 3 Y a 3 Y 600

B < B - (4.6)
a a 600

B > B + ^ (4.7)
Y Y 600
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i

Figure 2. Illustration for the lower bound on the difference.
Regions are to include the segment bounding them
from below, but not that bounding them above.
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If (4.5) hoids, at least ^^lits of the knapsack is being

wasted, from which.it is not hard to see that the difference

between the two solutions is fi(l). If (4.6) holds, then since

in the relaxed solution all items in auwere used, at least

Ig^QO units of capacity has been shifted by the integer solution
from a to and hence by (4.2a) experienced a decrease

1 . 'of 2"^ in profit density; thus the integer solution is worse

by f2(l/n). A similar argument holds for case (4.7).
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Lemma Al. If is defined as in the proof of Theorem 1,

then if k-^<» and e=o(l/k),

(2k) 2
E[y2] ~

^ /Wk /3-nk

Proof. Our computation, which is similar to an analogous

computation in [BE76], will be facilitated by some further
2k

notation. Let S be the set of all ( ) choices of k elements

of {1,2,,..,2k}. If S is a set in S, let Z(S) be the random

variable which is one if

ieS

and 0 otherwise. Then

,2E[Yr] =53 E E[Z(S ) Z(S )]. (A.l)
^ S^eS 82^5

It is convenient to reorganize the sum according to the number
2

of elements which and S2 share. Let Ij^^ be E[Z (S^^) Z(S2) ]/ (2e) ,

assuming that and S2 have m elements in common. If we now

consider the number of ways in which and then S2 may be

chosen> we see that (A.l) becomes

k

ElYh'if)i2e)^ iS, 0'k-m'̂ lan

We shall break the sum into three parts, as follows.



.Page 18

a) m=k. Then S. and S„ are identical, so

^ o E [Z(S ) Z.(S )] = —Le. lzcs^)]
(2e) ^ ^ (2e) ^ ^

^ (G, (x,+e) - G, (x,-e))
(2e)2 k-k - -k-k

^ C, 2e = ^
(2e)^ ^ 2e/27rk

The cases where iti^sk will be handled next. Note that if

m?:k, we have

V =7;^ /"
(2e) J ~<x>

This follows by considering all possible values for the sum

of the m variables common to and S2, and considering the

probability that both of the sets of k-m remaining elements

in and S2 bring the sum to Xj^±e.

b) m<k, and ra>3k/4 or m<k/4. Let M be the set of m that

satisfy these inequalities. Since we know that g is bounded,

say by B, we know that g^ is also bounded by B and hence

G (x+e)-G (x-e) is bounded by 2eB. Since g has unit mass,
n n -* -"m

we see that

^km - —^ ^2eB)2 = b2™ (2e)^

Thus the contribution to the. summation in (A.2) from these

terms is bounded by
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c) k/4 < m < 3k/4. (Thus m=0(k).) We begin by noticing

that for m in this range,

(The proof of this is somewhat messy and is separated out as

Lemma A.2.) Now in the sum

I3k/4J

S ^ ^km' (A,4)
im=rk/4l ^ km

k(^) is sharply peaked about m=k/2 as k becomes large, while

is much more slowly varying. Using this observation (as

in [P77]), and using (A.3), one may establish that (A.4) is

2irA2- (k/2) 2
+ o(k~^)

= (l^) (^^ + o(k ^) )
/3TTk

Adding the contributions from parts (a), O), and (c), and

noting that

k ? ,,2k.
^rk/41^ ~ o( ( )/k)
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we see that (A.2) becomes

„ r„ 2, ,2k. 2 r 1 /2k, 1 ,
E[Y, ] ~ ( , ) (2e) [ + (, ) ]

2 e/2iTk /JiTk

/2TTk /Jirk

Lemma A.2. Assuming k/4^m<3k/4,

27rA;2-m2

where

+ o (k ^) ,

Proof. . We shall use the fact that under our hypotheses

(in fact under weaker hypotheses), '

g^(x) = (l+c(^ - 3^)) f^(x) + o(n •^), (A.5)
n . .

for some c which depends only on the distribution g, (.This

is Theorem 1 on page 506 in [Fe66]. Our notation is different,

and we have scaled the axes by factors of /n relative to that

Theorem.)

For convenience let

3

P (X) = c(^ - 3^).. (A. 6)
n^ ^

-1/2Note that Pj^(x) of x has the form of n times a polynomial

Page 20

2
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in (x//n) , i.e. , .

t -v / ,r^^^ "3 yV / ^
(A.7)

this fact will be useful later.

By (A.5) and (A.6), and since m=0(k),

gjjj(Xj^-x) = (l+P^(Xj^-x) ) f^(Xj^-x) + o(k~^) . (A.8)

It is not hard to see that, since e is o(l/k) and the right

side of (A.5) does not vary too rapidly,

g^(x±e) = o(n~^) , for n 0(_k) ,

so

G. (x+e) ^ G, (x-e)
k-m k-m .

= 2e + o(k ^))

= 2e [(1 + Pj^_^(x)) fj^_jn(x) +o(k"^)]. (A.9)

Now by (A.8) and (A.9) we obtain

P (x) = - 3(x/Zn) ,

where the movement of the o(k out from the factors is justi

fied using the fact that the area under g (x, -x) and the area

under . (1+P, (x) )^f^ (x) are both .0 (1) .
jc in. Jc~m

since P^ has the form given in (A.7), and since m=0(k)

and Xj^//k=o (1) , we may write (A.10) as
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I ; : ;
/k /k

I where we have expanded f and f, (see (2.1)), ignoring the
in Jc*"in

negative exponential in the latter. Now since for any poly-

nomially bounded function p(x),I

I f
J -c

I

I

I

I J-

I

I

I

I

I

I
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where is a polynomial of degree 9 whose coefficients are

uniformly bounded as m and k vary. The magnitude of the con

tribution to the integral due to is

(—) f (x^-x).f^ (x)dx
-co Vk ™ /k I" ^

Vk-m= dx, (A. 12)

p(x/c)e dx=0(c).

one may establish that , (A.12) is

Thus (A.11) reduces to

^m^^k-^) + o(k 1)

At this point the integral may readily be computed in closed

form, and since x^//k approaches zero it can be shown to be

k+m

® -1 1 T
^km = ) = + o(k"^) .

2tt A^-m^*
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