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ABSTRACT

We analyze the expected difference between the solutions
to the integer and linear versions of the 0-1 Knapsack Problem.
This difference is of interest since it may help understand
the efficiency of a fast backtracking algorithm for the integer
0-1 Knapsack Problem. We show that, under a fairly reasonable
input distribution, the expected difference is O(logzn/n) and

2(1/n).
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1. INTRODUCTION

The following optimization problem is known as the 0-1

knapsack problem:

N

maximize E Z. a.
y i “i
i=1

N

subject to Eé; z; bi < B,
where aj bi’ and B are given and the z; are to be either 0 or
l. This problem is known to be NP-complete [K72]. Sometimes
we will refer to a version in which each z, may be any real in
the interval [0,1]; this will be called the relaxed version,
as opposed to the integer version above, and may easily be
solved exactly in O(n log n) time by a greedy algorithm. See,
for example, [HS78]. Because of the importance and simple
structure of the 0-1 integer knapsack problem, it has been the
subject of extensive investigation. For example, it is known
[IK75] that it admits a fully polynomial time approximation
scheme [GJ79]; that is, we may obtain a worst-case relative
error of ¢ , for any €>0, by an algorithm whose time is bounded
by a polynomial in N and E_l. See [A78] for an analysis of an
algorithm which works well on the average under certain assump-
tions about the input distribution. The problem also lends
itself readily to solution by a backtracking approach; the
search tree can be pruned whenever the solution obtained by

using the items not yet considered according to the relaxed
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constraint is not as good as the best ihteger solution seen
previously. See [HS78] for a detailed discussion of this
appreach. When applied to randomly geﬁefatedbdata, this
approach, which always yielas the exact optimum, seems to run
very rapidly even for large values of N; in fact, it seems .
possible that its expected time is polynomial in N. A proof
of this would be very interesting, but probably difficult.

A first step towards such a proof might be to obtain a better
understanding of the difference between the optimum solutions
to the integer and relaxed versions of the problem. (In
general, determining the quality of the heuristics that guide
a search is useful for understanding the quality of the search
algorithm; see, for example, [G77].) This is the goal of this

paper.

We will assume that the a; and bi are chosen uniformly
from the interval [0,1]. Thus the selection of the parameters
of the N items can be viewed as the placement of N points at
random in the unit square. In order to simplify the analysis,
we will assume that N is drawn from a Poisson distribution
with parameter n; this will cause the number of points in dis-
joint parts of the square to be completely independent. (For
large n, N will tend to be nearly equal to n.) We will assume
that the items are numbered so that the profit density.(ai/bi)
is decreasing. In order to try to cause a constant fraction
of the items to be used in the solution as n becomes large,

we will assume that for some fixed B, B=Bn. For later con-
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venience, we aséume that B lies in the open interval (1/6,1/2);
it is not hard to show that this means that the relaxed solu-
tion will, almost surely as n+®, use more thén half but less
than all of the items. For a given n, the random problem
created this way will be referred to as Pn’ The'greedy method

can be visualized by imagining a ray, which we shall call the

profit density ray, which passes through the origin and rotates
clockwise; as this ray rotates from pointing ﬁp to pointing

to the right, it intersects the points in the order in which
they are considered. Let m be the limit as n+~ of the average
slope of this ray at the point when the greedy method for the

relaxed version fills the knapsack. It is not difficult to

-show that

R =~/)g X dx dy,

where A is the area shown in Figure 1. Then if we let

o =Jﬁ/; y dx dy,

it can be shown that the average optimum, to the integer or

relaxed version; is asymptotic to an. By our assumption on B,
'm is in the open interval (0,1); this means that m is such that

- the profit density ray intersects the right edge of the square.

Since the linear and integer solutions are asymptotic to
each other, it might not seem interesting to compare them.

To obtain an interesting problem, we will look not at the
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ratios of the results, but rather at their differences. 1In

[BZ77] it is observed e@pirically that for certain data this

difference decreasés as N increases; this is attributed to
_the_factﬁthat as N decreases, more variables tend to lie in

a regidn of small prbfit density change, which increases the

chances of finding an integer solution with-a value close to
thelrelaxed dptimum.‘ The results presented in this paper

formally establish that the average differénce is O((log n)2/n),

‘and Q(1/n), under our input distribution.
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2. A THEOREM ABOUT SUMS OF - SUBSETS

Before 1nvestlgat1ng the knapsack problem further, it~ 1s
useful to conS1der the follow1ng problem about sums of subsets

of random varlables We are given 2k random varlables, and

‘we wish to find- a subset whose sum is as close as- pos51ble to
- some target xk How close can we hope to come? (See [AP8O] -

7,for an analy51s of an algorlthm for a related subset sum pro-

blem. .The method.to be used below is nonconstructive, and

'gives'an exponentially tighter bound.)

The following theorem provides a partial answer to this
question. Since it appears to be of interest in its own right,

we state it in a more general form than is needed for section‘?.

- Theorem 1. TLet g be the probability density function-of
a variable which assumes values in [-a,al. Suppose g is bounded

and ‘has mean 0 and variance 1. Let Xy be a real sequenoe with

Xy o(kl/z). Suppose we draw 2k variables Xl,.‘..,X2k according

to g. Then for large enough k, the probability that some subset

of k of the 2k variables has a sun in [xk—s,xk+e] iS'at least
K ; .

_l/2) provided e=7k.4_ .

Proof. A bit of notation is useful._ Let G be the cumulative

}dlstrlbutlon function correspondlng to g. Let'G (resp In ) be

the cumulatlve dlstrlbutlon (resp dens1ty) functlon for the

sum of n varlables drawn accordlng to g. Let F (resp f ) be

the'cumulatlve dlstrlbutlon (resp density) functlon for the’;

sum of n unit normal'varlables. -Hence
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f =C_ e ?n = : o : E : (2.1a)
.n n oo ' I o : -
where
c =1 . ' . ’  (2.1B)
n .
_2ﬂn : .

Let Y, be the random variable which tells the number of distinct

~k
subsets of size k whose sums .lie in'[xk—e,x
k

k+e]. We seek to

- First note that the expectation of Yk is

EIYkJ_=»(]{) 16, (x, +e) - Gk(xk—é)]

(k) fk(x ) 2e

e

?

2(%5) c, €

2( ) €/V2ﬂ ’

‘where'we have employed [F66, Theorem 1, page 506] and the fact

that xk//E+0} A simple aéymptotic analysis of the right ‘hand
term shows that it is about 3 for € as in the lemma. This in
1tse1f however, glves us no proof that the probablllty that Y

is zero is small.

Fortunately, a clever method knoanas_the "second-momént
method" (see, for .example, [ES74, ER60, BE76, M70]1) is useful?
here; we use the following well-known cdrollary of Chebyshev's

inequality} which holds for arbitrary random variables Y:
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The computation of E[Yi] is a bit messy, and is deferred to
Lemma Al in the appendix; there it is shown that as k+» and
. : . ,

€'=>Ob(k:—. ), | .
L (Zkk)2€ (Zkk) 1c2
E[v.] ~ S _
2tk 'ﬁﬂk
Hence
E[Y‘kz] 42 (2kk)e + 2/37K
2 2K

Some asymptotic analysis shows that if & grows as,ak4_k, this

ratio approaches

2v/2a + V37w (2.3)
v6o -
| ' ,
Letting a=7 causes this expreésion to achieve a value just
under 1.5, which, in view of (2.2), establishes the resulf._ ]

It is'interésting to notg that letting o become very ;arge
does nét éause (2.3) to approach 1; rather, it approaéhes ‘ |
/Z7§.. Thus, to show that a lérge € gives a very small proba-
bility 6f fai1ure, some different argument would be needed.
ﬁote, on the other haﬁd, that'if.e=o(k4_k), one easily showé
tha£ E[Yk] approaches 0, so the probability of finding the

desired subset of cardinality k approaches 0.

A similar theorem could be obtained for a more general1class.

 of‘density fuhctions, but we will not pursue that further here.
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3. ° BN UPPER BOUND ON THE AVERAGE DIFFERENCE‘

Let P denoted a random problem generated as explalned in

.the,lntroductlon, let INTEGER(P ) and RELAXED(P ) denoted the
value ofvthe optimum solutions to the integer and relaxed ver—

sions of this problem. In order to bound the difference between‘

these solutlons, we w1ll employ a procedure, named APPROX,.
whlch constructs a feas1ble solution to the 1nteger ver51on,

it appears below. For comparlson, we have also presented the

. greedy procedure‘wh;chnsolves the relaxed problem exactly.

- Theorem 2. E[RELAXED(Pn)—INTEGER(Pn)]=0(logzn/n).

Proof. A'Since:APPROX gives a lower bound on the true
optlmum, we may bound the difference between INTEGER and RELAXED
by that between APPROX and RELAXEDﬂ Now the dev1at10n between‘
APPROX and RELAXED is attributable to two causes:

a) we. do not completely £fill the knapsack durlng APPROX,

and

b). the‘part‘we do £ill may be filied with items of a

» lower profit density.

For part (a), note that if the branch to OUT is taken in APPROX,

'the unused part of the knapsack has size at most 2g, whlch is

0(log n/n), ‘the probability that the branch to OUT ;s'never
taken can be shown to be O(n_e) for any positive integer e.
Now consider part (b). By Theorem 1, the probability'of
success on a single iteration of the second.ghiigélooplis at -

least 1/2. (Note that in this application of that Theorem, the

random variables being summed have mean 1/2 and variance 1/12,




Page
Rrocedure APPROX;
BB := B; i = 1; A := 0;
k := [log4nj; £ := (7//T§)k4_k;
while BB 2 k/2 and i < N do
-~ © BB := BB - bi;
A :=A + bif
i::=1i+ l;'
endi N
comment at this pdint,k/z—l < BB s‘k/2;
while i + 2k < N do
 for all subsets S of {i+l,i+2,...,i+2k} do
"~ if the sum of the_bj’values over all j in S8
lies in [BB~2¢,BB] then go to OUT;
end;
1 oi= 1+ 2k;
end;
S := the empty set; _
OUT: A := A + the sum of the aj values‘over all j in S;
return A; -

end;

rOPoes

procedure RELAXED;
begin ‘ o
BB := B; i := 1; A := 0;
while BB > bi and 1 < N do
' begin 4
BB := BB - b.;
‘ i
A :=A + a,;
i
i:=1i+ 1;
end
‘A := A + a, * max(l,BB/bi);
return A;

end;
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so some scaling is required.)

Since successive iterations are independeﬁt,lthé expected'
number of iféfatiéﬁs is O(i). Now the -extent to which‘thé
profiﬁkdensity ray advances at each iteration is indepehdent'
_bf the values of the b., and can readily'bevseen to have an
'expectatiqn of 0(16g n/n); this’chanée in density applies to

a portion of;the knapsack whose capacity is at.most'k/2=0(log n)

so ‘the expect"ed con_tributibn due to part (b) above is .0‘(log2n/n) . N
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4. A LOWER BOUND ON THE AVERAGE DIFFERENCE

7{An'interéstin§ §uestion_is_whéther the bound on the
ﬁlékpectéd difféﬁence bétween the integér and relaxed solutioné '
stated ithheérem 2 is tight.‘.AlthougH we have not béen.able
to:answep Ehat question,'ﬁé have.establiéhed the foilowing

lower bound.
Theorem 3. E[RELAXED(P ) - INTEGER(Pn)] = Q(1/n).

Proof Sketch. We will describe a boolean proceduré with

fhe\félldWing ﬁwo properties:
a) It returns true with probability»of at least 1/4 for
| large n, and | |
b) if it returns true, then for this problem insfance
the relaxed and integer solutions differ by Q(1/n).

From this the Theorem follows readily.

TEST pfoceeds;as follows. First it fills the knapsack.as
in RELAXED until the remaining capacity BB satiéfieS'

| »lA< BB < 2. E .. ' (4.1)
Henceforth in the proof we fix BB at this Value; -1et ﬁo be
the profit dehsity of the'last item used. The prdcedure rejects
(i.é;,'returns false) if the condition (4.1) cannot be met;
Since,ail bi are in [O0,1], fejéétion’occurs here Qniy if we
rﬁh_out of items to use in the knapsack, and this occurs with
exponentially. small piobability. TEST also rejects if the |

profit density ray has not yet advanced past}the‘upper:right
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corner of the square, which again.can be»seen'to.have<exponen-
tiallyismall probability under our model of input distribution. -

Next we look at the next four points as:the profit denéity C

ray‘adyances. (The probability that fewer than this'number

‘remain ‘is agaih exponentially small.) Call their profits,

~costs, and densities ai’.Bi’ and pi, respectiveiyr for

i=l,,.a,4{ ‘Reject unless

S 1 C \ '

- Pp7P1 % .20n < - 4.2a)
PP, > s ' o ' (4.2b)
'P37P4 = 20n B | 12
§4 > m/2 : R ’_ A S - (4.3)

'Note'that_the movement of. the profit density ray between these

items has an exponential distribution with mean 2/n; hence

the probability of rejection in (4.2a) or (4.2b) is less than

-{(1/20) each, for a'total of 1/10. The probability of rejection

'in (4.3) can be seen to be exponentially small, since'it‘means

that we have gone far beyond the m of Figure 1.

Next we impose. some restrictions on the Bi values. (Note

" that each has,.independéntly,.avdensity fﬁnction'of 2x for

‘xe[0,1].) Reject if any subset.of these fournvalues has a sum

in the range BBig%ﬁ. Note that the sum of any fixed nonempty

subset of the bi'has a density function uniformiy bounded‘by 2;

hence, for any such subset, the probability that its sum lies
in the indicated range in at most I%E; On the other hand,

there are only 15 nonempty subsets, so the probability of

rejection here is at most fﬁ. Finally, reject unless
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A

bi < BB { bl+b2+p3. | | o o : (4.4}

.The left inequality~is always true since.1<BB. The right in-

'éqﬁality has probability greater than 1/2; this can be seen by

noting that BB<2, and performing a tedious but straightforwardl
computation involving‘convolution of the'densities of the bi.'

At this poiﬁt the description of TEST is complete.

Now since the probability of the union of several events
is bounded by the sum of their probabilities, we see that
1,1

0t 7 ol

P{TEST(Pn) = false} < i5 +
which is smaller than 0.75 for large énough n, so dondition (a)'
holds.

Next we establish condition (b). Assume that TEST returns

true. Then we know from (4.4) that the procedure RELAXED fills

the knapsack when the profit density ray is lying in the area
labeled 82 in Figure 2. Let Ba( BB, and BY be the toﬁal knapsack -
capacity used in‘the relaxed solution by items lying in regions
a,‘61U82UB3,.and Y (respectively). Note that BB=BB, and By=0.

Now consider the optimum solution to the integer problem; de-

" fine ga’ EB' and ﬁY for this solution analogouslyvto_Ba, BB' and

BY. Now by the restriction TEST imposed on sums of subsets of

1
o |2 550

at least one of the following three conditions must hold:

the-gi, we know that IBB—§ Hence it can be seen that

o e _1/3 | |

Ba+BB+BY < BOL+_BB+BY Z50 . (4.5)

5 _1/3 ‘

Ba = Ba ” %00 < | (4.6)
B s B o+ 13 | ' (4.7)

y = By * %00
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Figure 2. TIllustration for the lower bound on the difference.
Regions are to include the segment bounding them
from below, but not that bounding them above.



Page 16

If (4.5) holdSr at least Tgﬁﬁ units of the knapsack is being

wasted, from which it is not hard to see that the difference

A'between the two sblutions is Q(1). If (4.6) holds, thenmsince

in the relaxed solution all_items in'ausl were used, at least

»IgﬁﬁAunits of capacityrhés been shifted by the intégér solution

from o to 82u83uy,'and hence by (4.2a) experienced a decrease .

of 5%5 in_profit:density; thus the intéger‘solution.is-worse

by @(1/n). '.A similé,r‘ argument holds for case (4.7). ' u
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APPENDIX. ‘Analysis of 'E"[le{] .

Lemma Al. If‘Y

k-is defined‘as in the proofvof'Theorem 1,

‘then if k»® and e=o(1l/k),

2 e (%f)zé 2
E[Y,] ~ £ 4 2
' /21k Y31k

"Proof. Our computation, which is similar to an analogous

~comPUtation‘in [BE76], will be facilitatéd by some further

notation. Let S be the set of all (%?) choices of k elements

of {1,2,...,2k}. If S is a set in S, let %(S) be the random

‘'variable which is one if

Z X'i € ‘[xk—s, xk+€] '
ieS :

and 0 otherwise. Then
o2 : ‘ g o § e
E[YS]l = Y, 2 E[Z(S,) z(s,)l. . (A1)
k 1 "2
S,eS S.,e8 _ S
1 2 '
It is convenient to reorganize the sum according to the number
1 and S2 share. Let Ikm

assuming that Sl and Sé have m elements in common. ‘If we now

of elements which S bevE[Z(Sl)Z(SZ)]/(Ze)Z,

consider the number of ways in which S, and then SzAmay be.

chosén, we see that (A.l) becomes

k.

ev?)=(2 202 & Fon, 0 @2

‘We shall break the sum into three parts, as follows,
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la) ~m=k.: Then SiAand S, are ldentical;mso
1. —LX & [z(s,) Z(S f]»=- L E.[Z(S )]
Kk (26)2 1 2 (2e)2
ei__l_i-(Gk(xk+€)>—.Gk(xk;e)f
(2¢) |
‘ _ 2ev2rk

(2¢)

The cases where mzk will.be‘handled next. Note that if

mzk, we have

I

km - (2€)

ThlS follows by con51der1ng all possible values for the sum

of the m variables common to Sl_and Sz,

probablllty that both of the sets of k-m remalnlng elements

and con51der1ng the

in"Sl and S, bring the sum to x, te.

2 k™

b)  m<k, and m>3k/4 or m<k/4. Let M be the set of m that
. satlsfy these 1nequallt1es Since we know that g is bounded

say by B, we know that gn is also bounded by B and hence

Gn(x+e)—Gn(x—e).is bounded by 2eB. Since gm-has unit mass,

we see that

I, < 1 (2¢B)2 = B

km '(28)2

Thus the contribution to the summation in (A.2) from these

terms - is bounded by

f I %) 16, (x+e) =G, (x-€)1%dx.
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c) k/4 < m s‘3k/4;; (Thus m=e(k).) We begin by noticing .-

that for m in this_range,

I, = _—_3

o nm?

(The proéf of this is somewhat messy and is separated out as

+~o(k—l). | r' (A.3)

Lemma A.2.) Now in the sum

: k.2 : . o .
R S | | - A.4
m=lk7a1 ™ | o | b

‘(ﬁ)_is sharply peaked about m=k/2 as k becomes large, while

Tiem is much more slowly varying. Using this observation (as

in [P77]), and using (A.3), one may establish that (A.4) is

k.2 1 -1
2. (5 ) ( + o(k >)
(é;; " 2nvk2-(k/2)2

2k 1

1
= () |
-k v3nk -

+ o(k 7))

Adding the contributions from parts (a), (b), and (c), and’

noting that

: 2 '
ok B 2k :
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we see that (A.2) beéqmes

TS IRV GO WO 1S L S Ty S
| ST ez " V3nk
2K 42k 2
Gz G e
V2TK . V/37k

Lemma A.2. Assuming k/4sm<3k/4,

1 -1
R P -y ,
. where -
1. = L © g (x,-x)[G,  _ (x+e)=G (x—E)]deI
" 5ey2 J oo In T e () g B

Proof. .We shall use the fact that under our hypotheses

(in fact under weaker hypotheses),

_ % _ oX -1 ) . .
gn(X) = (l+C(;§ 3n)) fn(x) + q(n ). o ‘ (A.5)
for some ¢ which depends only on the distribution g. (This

is Theorem 1 on page 506 in [Fe66] . Our notation is different,

and we have scaled the axes>by factors of vn relative to ‘that

Theorem.)

. For convenience let

= (X - 3% : '
Pn(x) = c{ 5 3n17 : (A.S)
. n : . . ‘
Note that Pn(x) of x has the form of n_l/z times a polynomial
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in (£//A), i.e..
P (x) = B/ - 306//m) (3.7)
. n-—.. .- /o :
this fact will be useful latér.
By (A.5) and (A.6), and since m=0(k),
gm( %) = (1+p_(x,-x)) f_(x,=x) + o(k™ D). = (A.8)

It is not hard to see ﬁhat, since e is o(l/k) and thé right

side of (A.5) does not vary too rapidly,

g, (xte) = g (x) + o(n™"), forn = B(K),

n
SO
Gyp (XTE) f'Gk_m(x-e)
= 2¢ (g, __(x) + o(k ™))
= 2e [(L+P__(x) £, (x) +o(kDH]l. (a9

Now by (A.8) and (A.9) we obtain

(x)dx+o k1),  (a.10)

;km=J[_: (L+R, Geye=)) £ Gy ) (L4 () fk -

where the movement of the o(k_l) out from the factors is jﬁsti—

fied using the fact that the area under gm(xk—x) and the area

under (l+P (x)) ‘(x) are both 0(1).

Since Pn has the form given in (A.7), and since m=@(k)'

' and'xk//E=o(l), we may write (A.10) as

-1y, | (A.11)

o «© 1 X ) ‘ 2
Ikm_f_oo (1+— Qg () ) £ (5, 7%) £5C_p, () o (k
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‘where'Q f is a polynomlal of degree 9 whose coefflclents are

unlformly bounded as m and k vary. The magnitude of the con-

tribution to the integral due,tonkm is

X 2 |
1/ _:/_Eka( ) £ 370 £_p ()% |
o ' (_X_)z'
' o0 l . 2 X - ‘/Zn— ) .
Sf_oo /K l Uem (= /— |Cm‘ck—_me - dx, | (A.12)

where webhave expanded fm and fk;m (see (2.1)), ignering the

negative expohential in the iatter. Now since for any poly-

nomially bounded function p(x),

© 2
f_ p(x/c)e (x/€) dx=0(c),

[oo]

.one may establish that (A.12) is

cc?  o(/E) = 0(k
m - .

1 -3/2
/E mkm

) .

Thus.(A.li) reduces to

. _ oo _ 2 ‘ _l
Ikm_f_w £ (6 mx) £2_(x)dx + o(k D).

"At this point the’integral may readily be computed in closed

form, and since xk//E_approaches zero it can be shown to be

k+m
e -1 1 -1
im = ———+ok ) = —— + o(k ). B

2n/k2—m2 2ﬂ¢k2—m2
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