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Chapter 1
An Approximation of the Invariant Measure
for the Stochastic Navier-Stokes

Bjorn Birnir
Dept. of Math. and CNLS
UC Santa Barbara

1.1 Introduction

Kolmogorov’s statistical theory of turbulence is based loa éxistence of the in-
variant measure of the Navier-Stokes flow. Recently thetexée of the invariant
measure was established in the three-dimensional cask {#4s established for
uni-directional flow in [1] and for rivers in [3]. Below we Witliscuss how one can
try to go about approximating the invariant measure in thligeensions.

1.2 Fluid Flow and Ito Diffusion

A reasonable model for the motion of an Eulerian fluid pagtid given by the
stochastic ordinary differential equation (SODE)

dX = —u(X,t)dt+v2vdB

Hereu(x,t) is the fluid velocity and we expect the fluid particle to movetgam
with velocity u and also to move randomly. This random motion is modeled by
the second term, whem; is Brownian motion andlB; models the white noise
affecting the motion of the particle. There is noise in anydfflow and we expect
fluid particles to diffuse under influence of the noise. Thew&bequation is the
equation of Ito’s diffusior¥; with the generator

A=vVA—u(xt)-O

The backward Kolmogorov equation, correspondingt@ndA, is the dissipative
Burger’s equation, or the Navier-Stokes equation withoespure

ou
E—Fu-Du—vAu
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u(x,0) = f(x)

This initial value problem has theplicit solution
u(x,t) = E[f(X)]

where

t
X = xo—/0 U(Xe, S)ds+ V2VBy

Notice that this is not thexplicit solution of Burger’s equation that is obtained by
the Cole-Hopf transformation.

Anologously the Navier-Stokes equation for fully-deveddpurbulent flow, with
periodic boundary conditions, can be written in the form

%—i-u- Ou=vAu—Op+ ; h&/zdbr&(x) (1.1)
KZ0

u(x,0) = f(x)

In laminar flow the driving term
f(xt) = ; h/dbe(x)
K70

is absent, but in fully developed turbulence the small amthiéhite noise is mag-
nified into large turbulent noise which is modeled fysee [1, 2]. The coefficients

h&/z € R® decay ak — o, theeg(x) are Fourier components, that each come with
their independent Brownian motidsf, and we have imposed periodic boundary
conditions inx € T2. Thus the large turbulent noise is modeled by (independent)
white noise in time in all directions, in function space, the decay of the coeffi-

. 1/2 . . . . . .
C|entshk/ makes this noise colored in space. The color is charadtefosturbulent
noise in three dimensions.

1.3 The Approximation

We can proceed further if we now project onto the space ofrgarce-free vectors
eliminating the pressure gradient. [RRtlenote the projection operator, then we will
model the difference between the projection of the inetgains and the intertial
terms themselves as

Plu-Ou] —u-Ou~ z g&/zdbfek(x) -Ou
K70



1 An Approximation of the Invariant Measure for the Stoclwaltavier-Stokes 3

This expression is of course not exact, but the modeling isvated by numerical
simulations where an analogous difference the "eddy vig€oss shown to depend
on the gradientu.

Now the initial value problem (1.1) can be written in the form

%+W~DUZVAU+ ; hi/zdb{(@(x) (1.2)
K20

u(x,0) = f(x)
where
w(x,t) =u+ ; g *dife(x)
=)

and we use the same notation for the divergencekﬂrttﬂa2 = 0 vectors as for the
original hi/z. Then introducing the Ito diffusion

dX = —w(X,t)dt+ v2vdB

we can write the solution of (1.2) of the form
o) <EL0X01+ 3 1 [ Elex gtk
Now by Girsanov’'s theorem, see [4], we can rewtit@ the form
o) <Elf B+ 3 02 [[Ea@ oM da A

where . 1
My :exp{—/ W(BS,S)~st—§/ W(Bs,s)|°ds}

0 0

This implies that (1.2) has the invariant measure

di= lim Mid [ (8", v2vt) 2 (BT, Q)] (1.4)

whereB” is the evolution operator for the infininite-dimensionabBnian motion
and the varianc®. is

h
1 Kk
Qm - K 02\))\k

the coefficients beingy = |hﬁ/2|2
the invariant measure (1.4).
We can also write the approximate invariant measure in tefrdensities

. The statistical theory of (1.2) is determined by
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Ix2 g
— 2V\
(x9)-dx—1 /& w(xs)2ds} € 2 e k.

X dd
Ne kl;lo NV

whereui are the Fourier coefficients afand the approximation holds for large

In numerical simulation and fluid experiments the approxeneelocityw will
have similar statistical properties as the real velagiffhusw can be approximated
by simulated or measured values of the fluid veloaitiself.

duzme{*féw
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