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Chapter 1
An Approximation of the Invariant Measure
for the Stochastic Navier-Stokes

Björn Birnir
Dept. of Math. and CNLS
UC Santa Barbara

1.1 Introduction

Kolmogorov’s statistical theory of turbulence is based on the existence of the in-
variant measure of the Navier-Stokes flow. Recently the existence of the invariant
measure was established in the three-dimensional case [2].It was established for
uni-directional flow in [1] and for rivers in [3]. Below we will discuss how one can
try to go about approximating the invariant measure in threedimensions.

1.2 Fluid Flow and Ito Diffusion

A reasonable model for the motion of an Eulerian fluid particle is given by the
stochastic ordinary differential equation (SODE)

dXt = −u(Xt ,t)dt +
√

2νdBt

Hereu(x, t) is the fluid velocity and we expect the fluid particle to move upstream
with velocity u and also to move randomly. This random motion is modeled by
the second term, whereBt is Brownian motion anddBt models the white noise
affecting the motion of the particle. There is noise in any fluid flow and we expect
fluid particles to diffuse under influence of the noise. The above equation is the
equation of Ito’s diffusionXt with the generator

A = ν∆−u(x,t) ·∇

The backward Kolmogorov equation, corresponding toXt andA, is the dissipative
Burger’s equation, or the Navier-Stokes equation without pressure

∂u
∂t

+u ·∇u= ν∆u

1
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u(x,0) = f (x)

This initial value problem has theimplicit solution

u(x,t) = E[ f (Xt)]

where

Xt = X0−
Z t

0
u(Xs,s)ds+

√
2νBt

Notice that this is not theexplicit solution of Burger’s equation that is obtained by
the Cole-Hopf transformation.

Anologously the Navier-Stokes equation for fully-developed turbulent flow, with
periodic boundary conditions, can be written in the form

∂u
∂t

+u ·∇u= ν∆u−∇p+ ∑
k6=0

h1/2
k dbk

t ek(x) (1.1)

u(x,0) = f (x)

In laminar flow the driving term

f (x,t) = ∑
k6=0

h1/2
k dbk

t ek(x)

is absent, but in fully developed turbulence the small ambient white noise is mag-
nified into large turbulent noise which is modeled byf , see [1, 2]. The coefficients

h1/2
k ∈ R

3 decay ask → ∞, theek(x) are Fourier components, that each come with
their independent Brownian motionbk

t , and we have imposed periodic boundary
conditions inx ∈ T

3. Thus the large turbulent noise is modeled by (independent)
white noise in time in all directions, in function space, butthe decay of the coeffi-

cientsh1/2
k makes this noise colored in space. The color is characteristic for turbulent

noise in three dimensions.

1.3 The Approximation

We can proceed further if we now project onto the space of divergence-free vectors
eliminating the pressure gradient. LetP denote the projection operator, then we will
model the difference between the projection of the inertialterms and the intertial
terms themselves as

P[u ·∇u]−u ·∇u≈ ∑
k6=0

g1/2
k dbk

t ek(x) ·∇u
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This expression is of course not exact, but the modeling is motivated by numerical
simulations where an analogous difference the ”eddy viscosity”, is shown to depend
on the gradient∇u.

Now the initial value problem (1.1) can be written in the form

∂u
∂t

+w ·∇u = ν∆u+ ∑
k6=0

h1/2
k dbk

t ek(x) (1.2)

u(x,0) = f (x)

where
w(x,t) = u+ ∑

k6=0

g1/2
k dbk

t ek(x)

and we use the same notation for the divergence freek ·h1/2
k = 0 vectors as for the

originalh1/2
k . Then introducing the Ito diffusion

dXt = −w(Xt ,t)dt+
√

2νdBt

we can write the solution of (1.2) of the form

u(x, t) = E[ f (Xt )]+ ∑
k6=0

h1/2
k

Z t

0
E[ek(Xt−s)]dbk

s

Now by Girsanov’s theorem, see [4], we can rewriteu in the form

u(x, t) = E[ f (Bt)Mt ]+ ∑
k6=0

h1/2
k

Z t

0
E[ek(Bt−s)Mt−s]dbk

s (1.3)

where

Mt = exp{−
Z t

0
w(Bs,s) ·dBs−

1
2

Z t

0
|w(Bs,s)|2ds}

This implies that (1.2) has the invariant measure

dµ= lim
t→∞

Mtd [N (eν∆t ,
√

2νt)∗N (B∞
t ,Qt)] (1.4)

whereB∞
t is the evolution operator for the infininite-dimensional Brownian motion

and the varianceQ∞ is

Q−1
∞ = ∑

k6=0

hk

2νλk

the coefficients beinghk = |h1/2
k |2. The statistical theory of (1.2) is determined by

the invariant measure (1.4).
We can also write the approximate invariant measure in termsof densities
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dµ≈ lim
t→∞

e{−
R t
0 w(x,s)·dx− 1

2
R t
0 |w(x,s)|2ds} e−

|x|2
2ν

√
2ν

dx∏
k6=0

e
− hkû2

k
2νλk

√

2νλk/hk
dûk

whereûk are the Fourier coefficients ofu and the approximation holds for larget.
In numerical simulation and fluid experiments the approximate velocityw will

have similar statistical properties as the real velocityu. Thusw can be approximated
by simulated or measured values of the fluid velocityu itself.
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