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Analytic model of bunched beams for harmonic generation in the low-gain free

electron laser regime

G. Penn, M. Reinsch, and J.S. Wurtele∗

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: February 24, 2006)

One scheme for harmonic generation employs free electron lasers (FELs) with two undulators:
the first uses a seed laser to modulate the energy of the electron beam; following a dispersive
element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These
processes are currently evaluated using extensive calculations or simulation codes which can be
slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output
of a harmonic generation beamline in the low-gain FEL regime, based on trial functions for the
output radiation. Full three-dimensional effects are included. This method has been implemented
as a Mathematica R© package, named CAMPANILE, which runs rapidly and can be generalized
to include effects such as asymmetric beams and misalignments. This method is compared with
simulation results using the FEL code GENESIS, both for single stages of harmonic generation and
for the LUX project, a design concept for an ultrafast X-ray facility, where multiple stages upshift
the input laser frequency by factors of up to 200.

PACS numbers: 41.60.Cr, 29.27.-a

I. INTRODUCTION

Many proposed X-ray free electron lasers (FELs) are
designed to produce radiation starting from the shot
noise of an electron beam. This is the self-amplified spon-
taneous emission (SASE) mechanism. There is much in-
terest in developing a practical method for using seeded
electron beams to produce X-ray radiation, rather than
relying on SASE, because seeded FELs offer more control
over the timing and pulse structure. The seed can be a
laser field which is then amplified by the FEL instabil-
ity, or it can be an initial current variation (bunching)
of the electron beam. The second method has the ad-
vantages that high output power can be produced in the
low-gain regime, and that the output wavelength can be
at a harmonic of the initial perturbation [1, 2]. Through
this harmonic generation technique, interactions of an
electron beam with a visible or UV laser can be used to
generate photons at much higher energies. The possible
use of multiple stages of such harmonic generation is an
area of active study, for example in the LUX [3] concep-
tual design for ultrafast X-ray production.

Here, we present an analytic model for predicting
and optimizing the FEL output from an idealized, pre-
bunched electron beam, with emphasis on applications
towards harmonic generation. While many previous ex-
aminations of seeded electron beams in an FEL either
assume the laser field structure in advance [4, 5], or rely
on summations over single-particle radiation fields [6],
this formalism uses a trial-function approach to obtain
simple analytic prescriptions for determining the output
laser field. These expressions only apply to FELs in the
low-gain regime, but include three-dimensional dynam-
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ics and physical effects. These calculations have been
implemented using scripts in Mathematica R© [7], as a
package named CAMPANILE. This allows for the rapid
calculation of the dominant mode produced by a seeded
electron beam in a low-gain FEL; it is also a means of
optimizing the FEL and beam parameters. Under cer-
tain circumstances, this method reduces to fairly simple
algebraic expressions for the power produced by a sin-
gle stage of harmonic generation, with a straightforward
physical interpretation. The computation time for this
method of analysis is kept low by iterating over calcula-
tions where, for each iteration, only a single laser mode
is considered; this is in contrast with many numerical
computations where three-dimensional effects are mod-
eled by calculating the laser field on a grid [8]. This the-
ory is benchmarked using the GENESIS [9] simulation
code. The methodology which was implemented here for
the simplest case can be extended to more general beam
geometries and mechanisms for seeding.

II. ANALYTIC MODEL

We consider an electron beam that already has a
seeded perturbation in the beam current and thus gener-
ates a radiation field as it passes through an undulator.
A schematic is shown in Figure 1. The electric field which
exits from the undulator is taken to be a simple Gaussian
mode, but is otherwise kept arbitrary:

Ex = ℜe E0e
iΦ0G(x, y, s) exp(iks − iωt), (1)

where

G(x, y, s) ≡ ZR

ZR + i(s − s0)
exp

[

−1

2

k(x2 + y2)

ZR + i(s − s0)

]

(2)
characterizes the structure of the mode. The laser wave-
length is λ = 2π/k, the frequency ω = ck, and ZR is
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the Rayleigh length. The longitudinal coordinate s rep-
resents the position along the undulator, and at s = s0

the laser is at its waist with spot size (ZR/2k)1/2 (in
terms of laser power). It is possible to generalize Eq. (2)
to include higher-order transverse modes. The quantities
ZR and s0 are set by the parameters of the FEL and do
not vary with s. This field is intended to characterize
only the output from the undulator, and so, in general,
the mode structure must be chosen to correspond to a
vacuum field solution. The temporal variation of the ra-
diation envelope is assumed to be slow compared to other
time scales, such as the total time shift between the laser
and the electron beam through the undulator. Thus,
neither phase noise nor the longitudinal shape of the en-
velope of the laser field are considered, and the radiation
properties are taken to depend only on the local electron
beam properties.

radiator

emitted

radiation

mode

prebunched electron beam

FIG. 1: A schematic of the FEL configuration chosen here,
where a beam, which has a longitudinal distribution that is
modulated at one wavelength, then passes through an undu-
lator where it radiates into a harmonic wavelength.

Within a planar undulator, the change in energy of a
particle is given by

dγ

ds
= − e

mc2

Exvux

v̄z
, (3)

where the transverse velocity of electrons due to the un-
dulator field is

vux ≃
√

2 c

γ
au sin(kus). (4)

Here, the undulator period is λu = 2π/ku, the normalized
field strength is au = eB0/mcku, and B0 is the RMS
value of the on-axis undulator field. The field on axis is
taken to be By =

√
2 B0 cos(kus). The forward motion

of a single electron can be described as

t = t(s = 0) +
s

v̄z
− a2

u

4ckuγ2
sin(2kus), (5)

where v̄z is the forward velocity averaged over an undula-
tor period, and the last term arises from particle motion
in the planar undulator.

The simplification made here for the linear regime is
that the total energy lost by the electron beam at the end
of the undulator can be calculated properly even if only
the radiation mode of Equation (2), corresponding to the
actual output radiation, is considered. Interactions with

all orthogonal modes will result in a net cancellation by
the end of the undulator. It still remains to determine
the proper coefficients to fully characterize the output
mode; the method for accomplishing this will be shown in
Section III. The corresponding equation for the evolution
of energy is then

dγ

ds
≃ −ℜe kaLG(x, y, s)ei(ks−ωt)

√
2 au

γ
sin(kus), (6)

where the normalized (complex-valued) laser field ampli-
tude is

aL =
eE0

mc2k
eiΦ0 . (7)

Averaging over an undulator period yields [10]

dγ

ds
= −ℑm

√
2 k

2γ
auaLG(x, y, s)JJ(ξ)eiθ, (8)

where JJ(ξ) ≡ J0(ξ) − J1(ξ), ξ ≡ ka2
u/4kuγ2, and θ ≡

ks − ωt + kus is the phase of the electron relative to a
plane wave at the beat wavelength. The ponderomotive
phase is usually defined as the sum of θ and the phase of
the electric field, but in this paper we find it convenient to
keep the components separate, because we are neglecting
trapping due to self-fields. To leading order in 1/γ2, θ
evolves according to

dθ

ds
= ku + k(1 − c/v̄z) ≃ ku − k

2
(1/γ2 + v̄2

⊥
/c2), (9)

where v̄2
⊥

is the square of the transverse velocity aver-
aged over an undulator period. Assuming the betatron
period is much longer than the undulator period, the con-
tributions to v̄2

⊥
from these two types of motion add in

quadrature. While the displacements caused by the un-
dulator field, of order au/γku, are negligible, the angles
can be important for modifying the phase slippage, since
they will be compared to 1/γ2. The betatron motion
has several effects, because both the laser fields and the
undulator fields vary with transverse position, and be-
cause of the change in path length. The angles due to
betatron motion are typically smaller than those due to
the undulator, because the betatron wavelength is much
longer than the undulator period, but can also affect
phase slippage. Thus, the electron beam emittance in-
duces a spread in dθ/ds which can adversely affect the
performance of the FEL.

The undulator field increases with strength off-axis,
which generates focusing of the electron beam. Here, we
consider a planar wiggler with curved pole faces, so as
to generate equal focusing in both planes, as described
by E.T. Scharlemann [11]. The matched beta function

for the undulator is then given by βu ≡
√

2 γ/auku. The
corresponding transverse actions for particle motion in
the undulator, Jx and Jy, are given by:

Jx ≡ γ

2

[

x2

βu
+ βu

(

dx

ds

)2
]

, Jy ≡ γ

2

[

y2

βu
+ βu

(

dy

ds

)2
]

.

(10)
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In the presence of external focusing, Jx and Jy will have
a different functional form. In Reference [11], θ is shown
to evolve according to

dθ

ds
≃ ku

[

− δk

kr
+ 2

γ − γr

γr
− 2auδau

1 + a2
u

−
√

2
au

1 + a2
u

ku(Jx + Jy)
]

, (11)

where we define k = kr+δk, and the resonant wave vector
is

kr ≡ 2γ2
r

1 + a2
u

ku. (12)

The detuning can be expressed, equivalently, in terms of
δk or as a shift, δau, in undulator strength. Using the
resonance condition, the argument of the Bessel functions
in Eq. (8) is ξ = (1/2)a2

u/(1 + a2
u).

Finally, there is the expression for the intensity of the
laser field, assuming the power given up by the electron
beam goes into a single mode. For the mode defined by
Eq. (2), the power is

PL =
1

2
cǫ0E

2
0π

ZR

k
=

1

8
kZR

mc3

re
|aL|2, (13)

where re = e2/(4πǫ0mc2). By conservation of energy, the
change in power is given by

dPL

ds
= −I

e
mc2

〈

dγ

ds

〉

, (14)

where I is the electron beam current and the brack-
ets indicate an average over the particle distribution:
〈dγ/ds〉 ≡

∫

dX̄ f(X̄)(dγ/ds). The term X̄ is used as a
shorthand to represent the full set of 6D phase space vari-
ables, and the distribution function f(X̄) is normalized
so that

∫

dX̄ f(X̄) = 1. The current, I, is smoothed
out to average over perturbations on the time scale of
the laser frequency, and is taken here to be a constant.
Noting that PL scales as |aL|2, we have

d|aL|
ds

=
I

IA

2
√

2 au

γZR
JJ(ξ) ℑm

〈

eiΦ0G(x, y, s)eiθ
〉

, (15)

where IA ≡ ec/re = 4πǫ0mc3/e ≃ 17 kA. The result
in Eq. (15) is simply the electric field generated by the
net bunching of the electron beam; we wish to gener-
alize this to include the possibility of having no seed
pulse, but having, instead, a prebunched beam. Using
the identity eiΦ0 = aL/|aL|, and the relation d|aL|/ds =
ℜe[(aL/|aL|)da∗

L/ds), Eq. (15) can be expanded to

ℜe
aL

|aL|
da∗

L

ds
= ℜe − i

aL

|aL|
I

IA

2
√

2 au

γZR
JJ(ξ)

〈

G(x, y, s)eiθ
〉

.

(16)
This suggests that the two terms within the real part are
equivalent as well; taking the complex conjugate of the
resulting equation yields

daL

ds
= i

I

IA

2
√

2 au

γZR
JJ(ξ)

〈

G∗(x, y, s)e−iθ
〉

. (17)

The above average is a generalization of the usual bunch-
ing parameter, b ≡ 〈exp(−iθ)〉. The generalized bunching
parameter will be defined as

B(s) ≡
〈

G∗(x, y, s)e−iθ
〉

. (18)

The temporal variation of B(s) at fixed s is neglected,
assuming that it is small at the scale of the relative shifts
in time caused by phase slippage.

To evaluate the output radiation, it is necessary to cal-
culate the generalized bunching parameter, B(s). In the
low-gain FEL regime, the radiation field produced by the
beam overall is assumed to have a small effect on single-
particle orbits, and free-streaming particle dynamics can
be used. Thus, the initial particle distribution is suffi-
cient to perform this calculation.

As an explicit example, we consider the case of har-
monic generation, as in the LUX conceptual design. This
configuration uses a seed laser to generate an energy mod-
ulation in one undulator, which is then converted into mi-
crobunching by means of a dispersive section, typically
a chicane. The chromatic dispersion is characterized by
the parameter R56, defined by c∆t = R56(γ − γ0)/γ0.
The second undulator is tuned to a higher harmonic of
the laser seed. Because the bunching in the beam in-
cludes Fourier components at harmonics of the initial
laser seed, the beam radiates at a level well above that
due to shot noise (which will be neglected). Here, we
examine a specific case where the modulator applies an
energy modulation which depends solely on the phase
θ of the electrons. The distribution function is chosen
to be a product of longitudinal and transverse terms.
The transverse component of the distribution function
f(X̄) is a function of the transverse action and is pro-
portional to exp(−Jx/ǫx − Jy/ǫy), where ǫx is the nor-
malized emittance in the x-plane, and similarly for ǫy.
The energy component of distribution after modulation
takes the form

H[(γ − γ0 − κxJx − κyJy + γM sin θM )/∆γ ]. (19)

We will consider both Gaussian and uniform energy pro-
files for the function H, where ∆γ is equal to the RMS
energy spread and maximum deviation, respectively. The
energy modulation varies sinusoidally with θM , which
will have a length scale determined by the source of the
modulation. Generally, the length scale for the seed will
be chosen to be a subharmonic of the desired output ra-
diation wavelength, so that θ = nθM for some harmonic
number, n. Thus, if the laser seed modifies the electron
beam energy in an upstream modulator, we will want
to evaluate the quantity exp(−iθ) = exp(−inθM ), which
is the bunching at the nth harmonic of the seed modu-
lation. The energy distribution includes the possibility
for κx, κy 6= 0, where κx and κy represent a correlation
between energy and transverse amplitude. This includes
the case of “conditioned beams” [12, 13], which has been
proposed as a means of improving performance in SASE
FELs.
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After the modulator, the beam passes through a dis-
persive section with an R56 that induces a phase shift
∆θ = kR56(γ − γ0)/γ0, where k is the wave vector for
the output radiation. Within the radiating undulator,
the phase can be written as

θ ≃ nθM + kus

(

−δk

kr
+ 2

γ0 − γr

γr

)

+ (kR56 + 2kus)

×
[ 1

γr
(γ − γ0 − κxJx − κyJy + γM sin θM )

−γM

γr
sin θM − qx(s)Jx − qy(s)Jy

]

, (20)

where θM is the phase of the initial energy modulation,

qx(s) = 2kus

(√
2

2
ku

au

1 + a2
u

− κx

γr

)

− κx

γr
kR56, (21)

and similarly for qy(s). Because the chicane yields a
phase offset that is independent of transverse action,
there will always be phase slippage between particles
at different transverse amplitudes, even for ‘fully con-
ditioned’ beams where κx = κy = κ0; here, κ0 ≡
(
√

2/2)kuγrau/(1 + a2
u) = kr/(2kuβu). Any correlation

between energy and transverse amplitude results in a
phase shift that is correlated with transverse amplitude
as well. This effect reduces the bunching produced by the
chicane. For unconditioned beams, the terms qx(s) and
qy(s) grow linearly with distance along the FEL. Note
that if one is considering tuning the strength of the un-
dulator field to optimize performance, the detuning term
δk/kr can be replaced with 2auδau/(1 + a2

u).
The generalized bunching parameter can be calculated

by considering integrals over each phase space coordinate
individually. Performing the energy integral first, and
shifting by (γ0 + κxJx + κyJy − γM sin θM ), we have

∫

dγ H(γ/∆γ)e−i(kR56+2kus)γ/γr

= Fγ [(kR56 + 2kus)∆γ/γr], (22)

where the function Fγ depends on the form of the energy
distribution:

Fγ(x) =

{

exp(−x2/2),
(sinx)/x,

Gaussian
uniform

. (23)

The average over ponderomotive phase is taken over θM ,
because this is the scale length for the initial energy mod-
ulation:

1

2π

∫

dθM e−inθM+i(kR56+2kus)(γM /γr) sin θM

= Jn[(kR56 + 2kus)γM/γr]. (24)

The average over transverse coordinates includes a
combination of phases remaining from exp(−iθ) and
the mode structure defined by G∗(x, y, s). The term
ZR/[ZR − i(s− s0)] in G∗ is the same for all particles, so

the following integral over the x, px variables remains to
be calculated:

1

2πǫx

∫ 2π

0

dΦx

∫

∞

0

dJx exp
[

− Jx

ǫx
+ iqx(s)Jx

−kr

γ0

1

ZR − i(s − s0)
βuJx cos2 Φx

]

, (25)

and similarly in y, py space. Here, action coordinates

have been used so that x = (2βuJx/γ0)
1/2 cos Φx. Elec-

trons are subject to betatron motion, where Φx for a
specific particle varies with s. However, because Eq. (25)
is an average over all phases, and we assumed that the
initial energy modulation had no transverse dependence,
the value of the integral is independent of the betatron
motion. It is simplest to evaluate this by performing the
integral over Jx first; then, one is left with the average of
an expression having the form 1/(a+ b cos2 φ). The inte-
gral of this term is slightly complicated, but the average
value simplifies to

1

2π

∫ 2π

0

dφ

a + b cos2 φ
=

1
√

a(a + b)
. (26)

The integral in Eq. (25) then takes the form
Fǫ(ǫx, qx(s), s), where

Fǫ(ǫ, q, s) ≡ (1 − iqǫ)−1/2 (27)

×
(

1 − iqǫ +
krβuǫ/γ0

ZR − i(s − s0)

)−1/2

.

The final result for the generalized bunching at the higher
harmonic is

B(s) = exp

[

ikus

(

δk

kr
− 2

γ0 − γr

γr

)]

× Jn

[

(kR56 + 2kus)
γM

γr

]

× Fγ

[

(kR56 + 2kus)
∆γ

γr

]

ZR

ZR − i(s − s0)

× Fǫ(ǫx, qx(s), s)Fǫ(ǫy, qy(s), s). (28)

The laser field at the end of the undulator is determined
by

aL = i
I

IA

2
√

2 au

γZR
JJ(ξ)

∫ L

0

B(s) ds, (29)

and the laser power is given by Eq. (13).
The basic undulator equations given above can be ap-

plied to other configurations, for example, to predict
the energy modulation given to a beam by an exter-
nal laser. They can also be applied to the high-gain
regime, but here we will only check the scaling for the
gain length. The second derivative of Eq. (17) can be
reduced to an equation for the FEL instability, where aL

grows exponentially, using Eq. (8) and considering only
the energy-dependent term of Eq. (11), where dΨ/ds ≈
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2ku(γ−γr)/γr. Assuming that the radius of the radiation
field is comparable to the radius of the electron beam, we
take ZR ≃ kǫxβu/γ, and set 〈|G2|〉 ≃ 2/3, which yields
the following expression for the gain length (expressed in
terms of the power radiated):

L−3
g ≃ 256

3
k3

uρ3
FEL. (30)

Here, the “FEL parameter” is defined by

ρ3
FEL =

π

4

renea
2
u

k2
uγ3

JJ2(ξ), (31)

and ne = (I/2πec)(γ/ǫxβu) is the peak electron density.
This is in fairly good agreement with the well-known one-
dimensional approximation [14],

L−3
g ≃ 24

√
3k3

uρ3
FEL. (32)

III. TRIAL FUNCTIONS

The above results are still not fully defined, because ZR

and s0 are free parameters. In general, given a specific
choice of ZR and s0, any radiation field can be described
using a sum of normal modes, but here we are attempting
to fit the radiation field to a single, Gaussian mode. In
the low-gain regime, each normal mode evolves indepen-
dently and can be calculated individually. Because the
exact result will include the power contained within all
these modes, the above analytic result, when only a single
mode is considered, is expected to always fall below the
correct value. This suggests varying the free parameters
to maximize the output power, yielding a greatest lower
bound to the total power. The resulting values for ZR

and s0 should serve as the best fit of the output radiation
to a pure Gaussian mode.

This method is essentially a trial function approach,
and any trial function which is a valid vacuum laser field
can be used. The closer the trial function is to the ex-
act result, the more accurate this estimate for the power
will be. Furthermore, the prediction for the laser power
is expected to be second-order accurate compared to the
optimized trial function; in other words, even a poor ap-
proximation to the laser field can result in a good esti-
mate for the output power.

In this paper, only a simplified FEL configuration is
considered, where the prebunching is accomplished by a
uniform energy modulation, followed by a linear chicane.
The trial function method applies to more general cases
as well, so long as the generalized bunching parameter
B(s) can be calculated and the FEL is operating in the
low-gain regime. In the configurations being considered,
a pure Gaussian mode is expected to be a reasonable ap-
proximation to the FEL output, except in the emittance-
dominated regime, ǫ/γ0

>
∼ λ/(4π).

It is a feature of trial function methods that, even if the
trial function does not accurately represent the radiation

field produced by the FEL, the prediction for the output
power may still serve as a good estimate. For any given
set of trial functions, the analytic model predicts a lower
bound on the total output power.

The resulting integrals are simple enough to implement
as a Mathematica R© script, which allows for rapid op-
timization. Because the trial function procedure is to
maximize the output power by varying ZR and s0, any
additional design parameters – for example the undu-
lator field, R56, or energy modulation – can be opti-
mized, simultaneously, to obtain the largest possible out-
put power. The computational time required to optimize
these design parameters is greatly reduced, in this way,
relative to full scale FEL simulation codes.

IV. ANALYTIC SOLUTIONS

In certain parameter ranges, the above methodology
allows for simple analytic approximations to the radia-
tion power and mode structure produced by an undula-
tor. In the parameter range where the energy modula-
tion is much larger than the energy spread ∆γ , but not
so large that the variations in phase slippage along the
length of the undulator can compete with that caused by
the chicane, the optimal value of R56 will be close to the
value which maximizes Jn(kR56γM/γ0). The argument
which maximizes this Bessel function will be referred to
as j′n,1, which is the first non-trivial zero of J ′

n.
For a cylindrically symmetric beam, the resulting ex-

pression for the output power is:

PL = P0
ZR

2L

∣

∣

∣

∣

∣

1

L

∫ L

0

exp (iδkkus)

ZR/L − i(s − s0)/L

F 2
ǫ (ǫ, q(s), s) ds

∣

∣

∣

∣

∣

2

, (33)

where δk = δk/kr−2(γ0−γr)/γr is the relative detuning,
and

P0 = 4NuZ0I
2ξJJ2(ξ)J2

n(j′n,1)F
2
γ (j′n,1∆γ/γM ). (34)

Here, Z0 ≡ 1/(ǫ0c) ≃ 377 Ω is the vacuum impedance,
which enters through mc3/(reI

2
A) = Z0/4π. The number

Nu = kuL/2π is the number of undulator periods in the
undulator.

To continue this analytic approximation to an opti-
mized harmonic generation section, we consider three
cases. First, we neglect q(s) altogether, which implies
that the effect of emittance is limited to the spot size
of the electron beam. Secondly, we consider an ideally
conditioned beam, so that q(s) is a constant. Finally, we
consider more general cases, including the most typical
example of an unconditioned beam, where q(s) = 0 at
s = 0 and increases linearly with s.

Neglecting q(s),

F 2
ǫ (ǫ, 0, s) =

ZR/L − i(s − s0)/L

ZR/L − i(s − s0)/L + kǫβu/(γ0L)
. (35)
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The expression for the power becomes

PL = P0
ZR

2L

∣

∣

∣

∣

∣

1

L

∫ L

0

exp (iδkkus) ds

ZR/L − i(s − s0)/L + kǫβu/(γ0L)

∣

∣

∣

∣

∣

2

.

(36)
It is still necessary to find ZR and s0 by optimizing the
predicted power. The power is symmetric under s0 →
L − s0, and the optimum occurs at the central value of
s0 = L/2.

The integral becomes simple to calculate if δk = 0, in
which case the power is

PL = P0
2ZR

L
arctan2

[

1

2

(

ZR

L
+ 0.5

βu

L

ǫ/γ0

λ/4π

)−1
]

.

(37)
The emittance-related term has been rewritten in terms
of the ratio between the geometric emittance, ǫ/γ0, and
the minimum effective emittance of the laser field, λ/4π.
When the emittance term is small (a line charge beam),
the maximum power occurs for ZR ≃ 0.36 L with a value
of 0.65 P0. The power only scales linearly with Nu, in
this case, because the distance along the undulator over
which electrons can induce stimulated emission is limited
by diffraction.

If the detuning is allowed to vary, on the other hand,
this allows for further optimization of the FEL. Using
Eq. (36), the expected bandwidth of the FEL, in terms
of the relative detuning, δk, is 2π/(kuL) = 1/Nu. In
general, the value of the detuning parameter which max-
imizes the output power is negative, and must satisfy the
following condition:

sin δk/2

δk/2
=

√
2

(

ZR

L
+ 0.5

βu

L

ǫ/γ0

λ/4π

)(

PL

P0

L

ZR

)1/2

.

(38)
In the limit of very small ǫ, the power goes to 1.07 P0

and ZR ≃ 0.18 L. At large values of (βu/L)(4πǫ/γ0λ),
the power is roughly P0L/8ZR, and ZR ≃ kǫβu/γ0. Note
that (ǫβu/γ0)

1/2 is the spot size of the electron beam and,
in this limit, the Rayleigh length is determined by the fact
that this is also the spot size of the outgoing radiation.
As a fit between these two limits, a good approximation
for the Rayleigh length is ZR ≃ 0.18 L + kǫβu/γ0. The
power can be approximated as

PL ≃ P0

(

1

1.07
+ 4

βu

L

ǫ/γ0

λ/4π

)−1

. (39)

Thus, by optimizing the detuning parameter, rather than
using the exact resonance condition, the output power
can be significantly increased, by over 60% in the limit
of small emittance. Also, in the small emittance limit,
the Rayleigh length of the output radiation is reduced
by a factor of two. When the emittance term is large, on
the other hand, the optimal detuning is close to nominal
resonance, in comparison with the bandwidth of the FEL.

The expression for q(s) in Eq. (21) can be rewritten in

terms of the conditioning parameter for a “fully condi-
tioned” beam, κ0 ≡ k/(2kuβu), as

q(s) = 2kus
κ0 − κ

γ0
− κ

γ0
kR56. (40)

When the conditioning parameter κ = κ0, q(s) = qκ ≡
−κ0kR56/γ0 is a constant. In this case, the expression
for the output power is almost identical to the case where
q(s) is neglected, but with ǫ → ǫ/(1 + q2

κǫ2). Addi-
tionally, however, the power is reduced by a factor of
(1 + q2

κǫ2), and the beam waist is shifted from L/2 to
L/2 − (kǫβu/γ0) × qκǫ/(1 + q2

κǫ2). Because qκ < 0, this
implies that the beam waist is shifted towards the end of
the undulator. The Rayleigh length is unchanged. Thus,
the effect of the constant, non-zero q(s), is to strongly
reduce the output power, although this is partly com-
pensated for by reducing the effective spot size of the
electron beam.

Now we consider more general conditioning parame-
ters and optimize the output power. This is achieved by
adjusting the conditioning parameter so that q(s) sweeps
from negative to positive values, which keeps the mag-
nitude of q(s) as small as possible throughout the un-
dulator. The optimum condition is, thus, q(L/2) ≃ 0,
implying that

κ = κ0
kuL

kuL + kR56
. (41)

This optimum can be much smaller than κ0 when 1 ≪
kR56/kuL = j′n,1γ0/(2πNuγM ). The parameter q(s)
then varies within the range ±(κ0/γ0)kR56/(kuL+kR56).
For this value, the result is, again, symmetric under
the transformation s0 → L − s0, and the trial function
method yields s0 = L/2. An approximate fit for the
resulting output power is

PL ≃ P0

{

1

1.07
+ 4

βu

L

ǫ/γ0

λ/4π
+

3

10

kR56

kuL + kR56

L

βu

ǫ/γ0

λ/4π

×
[

1 +
5

9

kR56

kuL + kR56

(

ǫ/γ0

λ/4π

)2
]}−1

. (42)

A key parameter affecting FEL performance is the ratio
of the geometric electron beam emittance, ǫ/γ0, to the
nominal laser emittance, λ/4π. The two main corrections
take the form of this ratio multiplied by either βu/L, or
by L/βu. These terms are related to the electron beam
spot size and phase slippage rate, respectively. There
is an additional, higher order correction, which is only
significant when the emittance ratio is of order unity or
higher. Note that this additional term arises from the
product of (2kǫ/γ0)(βu/L) and (2kǫ/γ0)(L/βu).

For an unconditioned beam, the final output power can
be very similar to the optimized conditioning parameter
given above. However, when the term q(s) has a signif-
icant effect, the output power is determined mainly by
the range of values of q(s) for 0 < s < L. An uncondi-
tioned beam, with q(s) varying from 0 to 2kuLκ0/γ0, will
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perform similarly to the optimized case above, with pa-
rameters chosen so that q(s) varies between ±2kuLκ0/γ0.
The output power for an unconditioned beam satisfies a
similar approximate fit, but the sensitivity to phase slip-
page is effectively doubled:

PL ≃ P0

{

1

1.07
+ 4

βu

L

ǫ/γ0

λ/4π
+ 0.64

L

βu

ǫ/γ0

λ/4π

×
[

1 +

(

ǫ/γ0

λ/4π

)2
]}−1

. (43)

However, in contrast to the case where the conditioning
parameter is made too large, for an unconditioned beam,
the beam waist is shifted towards the beginning of the
undulator. For large emittances, when ǫ/γ0

>
∼ λ/4π, it

is even possible to have s0 < 0. Note that even when
kR56 ≫ kuL, appropriate beam conditioning can in-
crease output power by up to a factor of 4 if the undulator
performance is limited by emittance. The improvement is
constrained by the mismatch between chicanes and con-
ditioned beams, and also results from the fact that we
are only considering radiation in the low-gain regime.

In summary, the trial function method leads to a sim-
plified numerical solution for certain examples, including
the usual case of an unconditioned beam. The electron
beam emittance is seen to affect the output power for
an optimized system in two ways, related to the electron
beam size and the relative phase slip of electrons having
different transverse amplitude. These two terms imply
that the undulator performs best when βu ≃ 0.4 L: for
larger beta functions, the spot size is too large; for very
small beta functions or for long undulator lengths, phase
slippage reduces the output power. Constraints with sim-
ilar underlying physics have been obtained as numerical
fits [15] to analytic calculations of FEL radiation in the
high-gain regime [16]. One important difference is that,
in the high-gain regime, the most significant length scale
is the gain length, rather than the total length of the
undulator.

V. SIMULATION RESULTS

For the simplified description of a seeded electron
beam, FEL simulations using the GENESIS code [9] have
been compared with the analytic theory above. Two
cases are considered: the first stage of a cascade which
converts 200 nm wavelength to 50 nm, and the final stage,
which converts 3.13 nm wavelength to 1.04 nm. All sec-
tions are assumed to use planar undulators. The electron
beam is assumed to have equal emittances and equal fo-
cusing in both transverse planes. The results are sum-
marized in Table I.

The electron beam parameters are: γ0 = 6067, ǫx =
ǫy = 2 µm, I = 500 A. The transverse mode structure
of the output radiation is characterized by the parame-
ter M2, which is the ratio of the emittance of the FEL

TABLE I: Comparison between analytic model and simula-
tions using GENESIS for two case studies.

Analytic GENESIS:
Case Results Theory M2 ≡ 1 fit M2

50 nm PL (MW) 130.3 134.2 134.2
ZR (m) 1.12 0.94 0.97
s0 (m) 1.20 1.19 1.21
M2 ≡ 1 ≡ 1 1.04

1.04 nm PL (MW) 35.1 39.0 39.0
ZR (m) 52.7 49.0 33.0
s0 (m) -10.4 -14.6 0.73
M2 ≡ 1 ≡ 1 1.72

output to the minimum possible value, λ/4π. This pa-
rameter can also be described as the ratio of the idealized
Rayleigh length for the given waist diameter to the ob-
served Rayleigh length. In terms of power flux, the RMS
width of the laser at the waist is (λM2ZR/4π)1/2.

For the first stage, producing radiation at 50 nm by
going to the fourth harmonic, the energy modulation is
γM = 2.68, and the idealized chicane uses R56 = 92 µm.
The undulator has an 8 cm period and is 2.4 m long.
The electron beam is taken to be matched to the un-
dulator, with β = 16.28 m. The resonant undulator
strength is au = 6.709, but optimal performance oc-
curs at au = 6.686. At this optimum, the theory pre-
dicts a total output power of 130.3 MW, characterized by
ZR = 1.12 m and s0 = 1.20 m. Numerical simulations for
the simplified case yield an output power of 134.2 MW,
characterized by ZR = 0.94 m and s0 = 1.19 m, under
the assumption that M2 ≡ 1. On the other hand, a more
general fit to the output radiation yields M2 = 1.04,
ZR = 0.97 m, and s0 = 1.21 m. A detailed analysis re-
veals that 126.4 MW, or 94%, of the output radiation, lies
within the predicted Gaussian mode. The analytic the-
ory underestimates the total power by 3.9 MW, a relative
error of 3%, which is of similar order to the power which
resides in higher order modes. As a rough check, we note
that, when M2 is close to unity, an estimate for the frac-
tion of power in higher-order modes is (M2−1)/2, or 2%,
in this case. For this example, neglecting the effect of the
FEL radiation field on the electrons themselves does not
alter the simulation results.

For the final stage, producing radiation at 1.04 nm, by
going to the third harmonic, the energy modulation is
γM = 1.10, and the idealized chicane uses R56 = 3.2 µm.
In this stage, (ǫ/γ0)/(λ/4π) ≃ 4. The undulator has a
2.8 cm period and is 8.4 m long. The electron beam is
taken to be matched to the undulator, with β = 29.00 m.
The resonant undulator strength is au = 1.3186, but op-
timal performance occurs at au = 1.3181. At this opti-
mum, the theory predicts a total output power of 35.1
MW, characterized by ZR = 52.7 m and s0 = −10.4
m. Numerical simulations for the simplified case yield an
output power of 39.0 MW, characterized by ZR = 49.0 m
and s0 = −14.6 m, under the assumption that M2 ≡ 1.
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On the other hand, a more general fit to the output ra-
diation yields M2 = 1.72, ZR = 33.0 m, and s0 = 0.73
m. The analytic prediction is too low by 10%. By tak-
ing into account the reduced transverse coherence of the
laser output, the waist position is shown to be located
within the undulator, close to the upstream end. The
prediction that the virtual waist of the radiation would
be far away from the undulator itself is an artifact of
the attempt to characterize the radiation in terms of a
single, Gaussian mode. The Rayleigh lengths are also
very different, reflecting the importance of higher-order
modes. A detailed analysis reveals that 32.8 MW, or
93%, of the output radiation lies within the predicted
Gaussian mode. The analytic theory underestimates the
total power by 3.9 MW, a relative error of 10%, which
is of similar order to the power which resides in higher
order modes. Note that by selecting the values of ZR

and s0 in the “best fit” for the laser output, the analytic
prediction may partially account for higher order trans-
verse modes. A generalization to trial functions having
two or more transverse modes would be desirable to ob-
tain a more complete description of the output radiation.
However, for typical parameters, even when performance
is strongly impacted by emittance, the errors are compa-
rable to other effects, such as statistical noise within the
electron beam.
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FIG. 2: Comparison of analytic theory with simulations using
GENESIS. Results are shown for harmonic generation at 50
nm and 1.04 nm, as the energy modulation γM is varied.

The dependence of the output radiation power on the
energy modulation, γM , is shown in Figure 2, and also
shows good agreement between the analytic model and
numerical simulations. The value of R56 is re-optimized
for each value of γM . For short wavelengths, FEL perfor-
mance is more sensitive to the energy spread, as phase
slippage along the length of the undulator leads to de-
bunching of the electron beam. The optimal power of 60
MW can only be increased by using a longer undulator,
by lowering the harmonic number, or by changing the
electron beam parameters.
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FIG. 3: Comparison of analytic theory with simulations using
GENESIS. Results are shown for harmonic generation at 50
nm and 1.04 nm, as the energy spread ∆γ is varied.
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FIG. 4: Comparison of analytic theory with simulations using
GENESIS. Results are shown for harmonic generation at 50
nm and 1.04 nm, as the conditioning parameter κ is varied.
The “matched” values indicated refer to the ideal conditioning
parameters for a different geometry, where the FEL output
grows from noise, with no chicane.

The dependence of the output radiation on the energy
spread is shown in Figure 3. Other FEL parameters are
kept constant. The resulting variation in FEL power is
consistent with Eq. (34). In particular, for a uniform
energy distribution, the power falls off to nearly zero at
kR56∆γ/γ0 = π, because the energy spread appears in
the term Fγ(x) = sin(x)/x.

The dependence of the output radiation on the beam
conditioning parameter is shown in Figure 4. Other
FEL parameters are kept constant. The resulting FEL
power is consistent with the analytic theory, with the
optimum value for the conditioning parameter given by
Eq. (41). Typically, the ideal conditioning parameter is
much smaller for this geometry than for the case of a
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long amplifying undulator with no chicane, labelled here
as the “matched” value of κ. In the 50 nm example, the
optimum is, essentially, an unconditioned beam. Even
in the 1.04 nm example, optimizing the conditioning pa-
rameter yields only an 8% improvement in output power,
as compared with the unconditioned case.
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FIG. 5: Comparison of analytic theory with simulations using
GENESIS. Results are shown for harmonic generation at 50
nm, as the undulator field strength (au) is varied.
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FIG. 6: Comparison of analytic theory with simulations using
GENESIS. Results are shown for harmonic generation at 1.04
nm, as the undulator field strength (au) is varied.

Figures 5 and 6 show the dependence of FEL output on
the strength of the undulator magnets, which determines
the detuning. The agreement between theory and simu-
lations only falters for the 1.04 nm case, when the mag-
netic fields are tuned below the resonant value, as shown
in Figure 6. In this case, the simulations yield about 5
MW more power than the analytic theory predicts. In
the optimally tuned case, this is a reasonable value for the
power that is emitted into higher-order transverse modes.
Far from resonance, the analytic theory predicts very lit-

tle power while, in the simulations using GENESIS, there
is still roughly 5 MW of power. However, this power is
in the form of higher-order transverse modes, with val-
ues of M2 ∼ 10. This radiation is generated by particles
having large transverse amplitude, which also move for-
ward more slowly. When the magnetic field is too high,
these higher-order modes do not appear, because there
are no particles moving fast enough to be in resonance.
For earlier stages which are not emittance-limited, the
analytic calculations are in much closer agreement with
numerical simulations.

Another source of error is the nonlinearity of the in-
teraction, where the FEL instability, or trapping, may
lead to an underestimate of the output power. The im-
portance of the FEL instability can be checked by per-
forming simulations with reduced electron beam current,
thus assuring that the total length of the system is much
less than an FEL gain length. For example, in the 1.04
nm case, simulations at low current would scale to a to-
tal output power of 38.9 MW at 500 A, demonstrating
that the FEL gain is not a significant effect. However, for
larger values of the applied energy modulation, nonlin-
ear effects are very important for reducing phase slippage
and maintaining a large bunching parameter.
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FIG. 7: Longitudinal phase space of a prebunched electron
beam after harmonic generation at 50 nm. The low-current
limit (left) is compared with the nominal case where the beam
is modulated by its own radiation (right).

The low-gain approximation does not require that the
electron beam be unaffected by the FEL interaction.
Rather, there are three steps to the FEL instability: the
radiation field modulates the electron beam, which then
generates bunching as the energy modulation causes a
variation in phase slippage, which, in turn, enhances the
power channeled into the radiation field. Thus, even
if the energy modulation of the electron beam at the
end of the undulator is much larger than, for example,
the original energy spread, these calculations can still
be essentially valid. The energy modulation only need
be taken into account when the phase slippage induced
by the modulation alters the bunching parameter from
what it would be in the free-streaming case; this can be
a slow process, and the relevant scale is the gain length.
For example, in Figure 7, plots of the longitudinal phase
space of the beam are shown for the end of the 50 nm
FEL example, both for the low-current limit and for the
nominal current of 500 A. The energy modulation due to
self-interactions drastically alters the phase space distri-
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bution, but, because this modulation yields only a small
change in phase over the 2.4 m of the undulator, the radi-
ation produced is not altered substantially by this effect.

It should also be noted that the geometry considered
here for each stage of harmonic generation is an oversim-
plification. A more typical geometry will alter the pre-
dicted output radiation in complex ways. For example,
the modulation of the electron beam was assumed to be
independent of transverse coordinates, while, in practice,
the energy modulation will be less effective for particles
that are located off-axis.

VI. CONCLUSIONS

In this paper, we have proposed and provided strong
support for a trial function method which predicts the
FEL radiation output in the low-gain regime. This
method has been used to approximate the radiation out-
put of a harmonic generation FEL system as a coherent
Gaussian mode. Various assumptions have been made
in order to perform the specific calculations presented in
this paper. We approximate the laser seed and output
as monochromatic beams. The electron beam has been
taken to be matched to the undulator without external
focusing, where the undulator is designed for equal focus-
ing in both planes. The transverse emittances have also
been taken to be equal. Shot noise in the current density
has been neglected. The undulator is assumed to operate
in the low-gain regime, specifically, the total length of the
undulator must be smaller than a gain length; as long as
this assumption is true, the method considered here is
valid, even if the energy modulation generated through
self-interactions is, itself, large.

The power transferred to a given spatial mode is de-
termined by Eq. (17), with G(x, y, s) being the structure
of the expected laser output mode. This leads to the

definition of a generalized bunching parameter. We find
that, for expected parameter ranges, so long as the FEL
is not operating far beyond the emittance limit, the out-
put power can be described reasonably well as a single
Gaussian mode, after optimizing the mode parameters
for maximum output power.

Analytic calculations show detailed quantitative agree-
ment with time-independent simulations using GENE-
SIS. Errors are related to the presence of higher-order
modes and the corresponding reduction in transverse co-
herence. The apparent location of the laser waist for
emittance-limited beams tends to lie outside of the be-
ginning of the undulator, and this is shown to be due to
the typical beam property that κx = κy = 0. Optimiza-
tion of this energy-amplitude correlation would set the
beam waist at the midpoint of undulator; however, gen-
erating such correlations would be challenging and the
total output power is only slightly improved for typical
parameters. When higher-order modes are taken into ac-
count, simulation results place the laser waist just inside
of the undulator.

We plan to extend this formalism to more general elec-
tron beam parameters including external focusing and el-
liptical beams, and to a more realistic model for the elec-
tron beam modulation process. This method can also be
extended to calculate higher-order modes of the output
radiation.
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