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Breakthroughs and Remaining Challenges 
The last few years have witnessed amazing breakthroughs 

in machine intelligence. Google’s Neural Machine 
Translation System, DeepMind’s AlphaGo, and current 
‘Transformer’ based Language Models (BERT and GPT-3) 
have amazed many with their success in addressing abilities 
humans possess but were previously hard to capture with 
machines.   These models rely on neural networks of the 
kind we advocated in Parallel Distributed Processing 
(Rumelhart, McClelland et al, 1986).  In these volumes, we 
argued that people were smarter than machines, and that 
human-like abilities would be easier to capture using neural 
networks rather than the discrete symbolic approaches in 
vogue at the time, and in some ways, this recent progress 
bears this out.   Yet in this talk, I will argue, in agreement 
with other commentators (e.g. Lake et al., 2017) that we still 
have a long way to go before we can say any machine has 
truly captured human like cognitive and learning abilities.   

Unlike Lake et al. and some other commentators, 
however, I will argue that we should seek the reasons for 
many of the amazing achievements of human intelligence 
not so much in built in biases toward systematicity or 
special purpose start-up software, but more in a fuller 
appreciation of the roles of culture and experience.  Within 
culture and experience, I will argue for a central role for 
culturally constructed formal systems as powerful tools that 
extend human abilities beyond what can be achieved 
without these resources.  These systems may be as 
elementary as the counting numbers or as advanced as 
quantum theory.  Between these extremes lie principled 
systems for logical reasoning and theorem proving, the 
formal structures of linguistic theory, and the powerful tools 
of modern computing languages.  I will also argue for a 
central role of language-based instruction and explanation. 

Starting Places 
A starting place for this is the idea that we should view 

language as a system for transmitting information about 
construals of situations between naturally and culturally 
grounded learners, whether human or artificial.  A situation 
is a set of relationships between objects and their properties, 
such as the one conveyed by the sentence ‘the cat is on the 
mat’ or the one conveyed by the formal statement ‘for all θ, 

cos(-θ) = cos(θ)’.  Both sentences implicate construals of 
objects and relationships that are shaped by convention and 
experience, though the first arose more naturalistically while 
the second arose from efforts to predict the locations of 
celestial bodies and to guide ships safely to their 
destinations, efforts that gradually became the foci of 
academic and scientific investigation.  In recent work on 
natural language processing, we (Rabovsky et al., 2018) 
showed how a neural network model that maps language to 
representations of situations could capture a wise range of 
experimental data on the N400, a signal we argued reflected 
the extent to which new incoming language input results in 
an update in the listener’s internal representation of a 
situation.  In McClelland et al. (2020), we laid out a 
characterization of the understanding system in the brain, 
construed as a widely distributed collection of brain 
structures that together allow information from multiple 
sensory modalities as well as spoken or written language to 
constrain the construction of situation representations.   

In Mickey and McClelland (2017), we turned to a 
consideration of trigonometry, construing it as the 
codification (among other things) of facts about the 
relationship between positions on a circle and ratios of 
distances in orthogonal directions in space.  Specifically, we 
considered trigonometric expressions like cos(-θ) = cos(θ), 
and demonstrated that when students are shown how to treat 
such expressions as describing relationships between the 
horizontal or vertical positions of points on a unit circle they 
acquire a productive understanding of the expression that 
generalizes to other trigonometric relationships, but when 
they treat them as arbitrary rules, no generalization to other 
relationships occurs. 

Natural Numbers 
Cognitive developmentalists once frequently proposed 

that children possessed an understanding of the principles 
underlying the natural or counting numbers, until the paper 
by Gordon (2004) showed that indigenous Amazonians 
whose language lacked number words displayed an 
understanding of approximate but not exact number.  
Number systems vary extensively across cultures, 
suggesting that these systems may be culturally constructed 
and thus must be acquired.  In pursuit of an effort to 
understand the learning processes that might lead to this, I 
have worked with several others to develop neural network 
learning systems that can learn to count and that display 
behaviors reminiscent of the counting behavior of young 
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children.  In both of the relevant efforts (Fang et al, 2018; 
Sabatiel et al., 2020) we have envisioned the child as an 
embodied learner, capable of learning to imitate the actions 
of a skilled counter.  In both studies, the skilled counter has 
‘announced’ the task they are about to perform, allowing the 
network to learn cue-able task specific procedures such as 
counting all of the objects in an array, or ‘giving’ (picking 
up and placing) a specified number of objects to a target 
location.  The first paper showed interesting hints that the 
ability to count or produce numbers in the range 5-9 
emerged at the same time, so that a network that could count 
to 5 reliably could also count these larger numbers.  In both 
papers, the networks exhibited knowledge sharing across 
task contexts, so that in general, the more number-related 
tasks the network already knew, the more quickly it could 
learn others.  This work does not yet account for all aspects 
of children’s early number behavior, but it points to the 
possibility that a cultural-specific, experience-dependent 
approach will provide a useful basis for understanding many 
aspects of children’s performance as they learn to count. 

Systematic Cognition 
The final line of work takes up the role of instruction and 

explanation in human learning.   One way in which we as 
humans exceed all non-human species is that we can use 
direct instruction and explanation to guide our learning and 
behavior.  Some (Fodor & Pylyshyn, 1988; Lake et al., 
2017) have argued that the ability to think systematically is 
a hallmark of human cognition.  I agree that the special 
powers that humans in advanced societies have exhibited 
through the construction of advanced reasoning systems 
require systematicity, but I argue that the ability to think 
systematically is acquired, and the ability to do so in an 
abstract and general way is only acquired by those with 
advanced education or other experience thinking in a 
formally structured way. Studies by both psycholinguists 
(Gleitman & Gleitman, 1970) and mathematics educators 
(Burger & Shaughnessy, 1986) support this view.  These 
works and recent work of ours (Nam & McClelland, in 
preparation) support the view that the ability to rapidly 
acquire a new systematic reasoning skill is associated with 
more advanced educational achievement and with the ability 
to provide an explanation of the basis of one’s correct 
performance.  I will also mention approaches to interfacing 
language instruction and task performance (Abrahamson et 
al., 2020; Lampinen & McClelland, 2020). 

 
In sum, I hope to argue that one of the important reasons 

why humans are still smarter than machines is that they rely 
on language and culturally constructed systems of thought 
to leverage their intuitive and more basic cognitive abilities.  
Future work should seek ways to incorporate these features 
into general purpose computational models that capture 
these intuitive and more basic abilities. 
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