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Abstract The aim of the current paper is to investigate the relation-
R twork has sh that individual diff . ship between individual differences (both differencesain-|
ecent work has shown that individual aifrerences In laiggua oH : f :
development are related to differences in procedural iegyn guage ability and genetic differences) and functional prop

as measured by the serial reaction time (SRT) task. Perfor- ties of language processing using a computational model of

mance on thiStFaSk hastm;% ggezn TShPWH tt(? btt? aSEOtCit%ted with the serial reaction time (SRT) task. The SRT task measures
common genetic variants o investigate what these - Al -
differences can tell us about the functional propertiesaof | participants’ ability to learn pattern sequences_. Va"mi_n
guage processing, we present a computational model of the performance on the SRT task has been associated with both
SRT task. We varied parameters in the model to observe their language ability (Tomblin, Mainela-Arnold, & Zhang, 20Q7b

effects on performance in the task. We found that the com- PR ; foti :
bined effect of several model parameters produced changes i and genetic differences (Tomblin, Christiansen, Bjorlerly

the learning trajectory that were similar to those obseted gar, & Murray, 2007a). Given this, and the fact that sequence
haviorally. processing is a critical component of language use, this tas

Keywords: language processing; specific language impair- provides a useful paradigm for studying these relatiorsship
ment; FOXP2 procedural learning; serial reaction time task;

computational modeling; simple recurrent networks Individual differencesin language abilities

. One area in which differences in language ability have been
Introduction extensively studied is specific language impairment (SLI).
The mechanisms that underlie language use emerge over tB1 is a relatively common developmental disorder characte
course of development through the integration of multipleized by difficulty acquiring language in the absence of gross
biological and environmental factors (Elman et al., 1997).cognitive or sensory impairments, and despite adequate ex-
Much previous research has focused on whether these mechgerience and educational opportunities (Tomblin, Regords
nisms are language-specific or domain-general (Chrigians & Zhang, 1996). Typically, research criteria for SLI classi
& Chater, 2008). Regardless of which is the case, we mudication require that the individual falls 1.15 SD below the
specify how different factors interact to give rise to langa. mean on a range of standardized assessments of language
One way to study the mechanisms involved in language isvhile falling in the normal range for non-verbal intelligen
to look at individual differences in language ability. Rettg, (Tomblin et al., 1996).
the use of molecular genetics has emerged as a tool for inves- Children with SLI have deficits in various language abil-
tigating these differences. However, the use of genetics tdgies, such as mopho-syntactic processing, phonological
study complex cognitive processes, like language, present processing, word learning, and spoken word recognition
challenge: how do we address questions regarding the role ¢feonard, 1998; McGregor, Newman, Reilly, & Capone,
genes when they are so far removed from language proces8002; McMurray, Samelson, Lee, & Tomblin, 2010). In many
ing? Similarly, how do we assess the role of individual genesvays, these children demonstrate language abilities Bssoc
when it is unlikely that there is a one-to-one correspondencated with typically developing younger peers. They have
between genes and specific characteristics of language? smaller vocabularies, use shorter, simpler syntactical co
As afirst step, we need a way to observe the effects of funcstructions, and make more morphological errors than would
tional properties of language processing on behavior. Combe expected for children their age (McGregor, Friedman,
putational models offer a tool for doing this. The units in a Reilly, & Newman, 2002).
neural network model, for instance, correspond to funetion A range of possible hypotheses for SLI have been pro-
(rather than structural) units in the system. Thus, computaposed, and include deficits in temporal-perceptual pracgss
tional models may be useful for examining how genetic fac-generalized slowing, problems with phonological proaassi
tors relate to the functional organization of cognitiveteyss.  and deficits in working memory (Bishop, North, & Donlan,
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1996). Thus, the underlying causes remain unclear, thdugh i
is likely that SLI is multiply determined.

Genetic factors and language

Genetics is now commonly employed as a tool for investi-
gating differences in language development. Initial molec
ular studies centered on the KE family, a multigenerational
pedigree that appears to show an autosomal dominant pattern
of language impairment (Hurst, Baraitser, Auger, Graham,
& Norell, 1990). Affected individuals have been character-
ized as having apraxia of speech, as well as expressive and 440
receptive language problems (Vargha-Khadem, Watkin, Al-
cock, Fletcher, & Passingham, 1998). They also have a rare 400 1
genetic mutation in thEOXP2(forkhead box P2) gene (Lali, :
Fisher, Hurst, Vargha-Khadem, & Monaco, 2001). More 360
recently, Mueller, Bjork, Tomblin, and Murray (in prepera-
tion) investigated the role of more common genetic variants
in FOXP2 These variants were single nucleotide polymor-
phisms (SNPs), which represent differences in a single base
pair in the genome. They examined multiple SNPs in a popu-
lation with a range of language abilities and found an associ 400 -
tion between SNPs in the promoter region and language abil-
ity as a discrete phenotype. This suggests that these common
variants ofFOXP2also play a role in language development. 360 [ (C) sNP: rs7785701
FOXP2is expressed in multiple species as well as several : : : : : ‘ :
different organs, including the lungs and brain (Shu et al., 2 4 6 8 10
2007; Fujita et al., 2008). This has led some to argue that the Pattern block
link betweerFOXP2and language is weak. However, the fact

thatFOXP2is neither species- nor domain-specific means itrigure 1: Behavioral data for pattern trials in the SRT task.
is likely to play a role in multiple cognitive processes. In (A) Data from Tomblin et al. (2007b) comparing SLI and NL
addition, sincé=OXP2is a transcription factor (i.e., encodes a groups. (B & C) Data from Tomblin et al. (2007a) for in-
regulatory protein that affects gene expression), it is{pds  dividuals with different genotypes of SNPs rs1916988 and
to identify other elements of the gene pathway (and theeeforys7785701.
the systems) in which it exists (Vernes et al., 2008).

A more general role foFOXP2fits with the hypothesis
that language itself is shaped by domain-general processesTomblin et al. (2007b) used an SRT task to examine dif-
(Christiansen & Chater, 2008). Statistical learning playsferences between children with normal language (NL) and
an important role in language acquisition (Saffran, Aséin, children with SLI. In their task, participants were shownifo
Newport, 1996), and it is closely related to proceduraldear boxes on a computer screen. On each trial, a picture of a
ing (Perruchet & Pacton, 2006FOXP2remains a candidate cartoon creature appeared in one of the boxes, and the-partic
gene involved in language because of its association with pr ipant’s task was to choose the box containing the picture as
cedural learning and the basal ganglia (Enard et al., 2009). quickly as possible.

) For the first 100 trials, stimuli were presented randomly.
Procedural learning and the SRT task Then, 200 trials were presented in which the sequence [1, 3,

Given the links between language abili§OXP2 and pro- 2, 4, 4, 2, 3, 4, 4, 2, 4] was repeated (pattern trials). Fi-
cedural learning, researchers have examined sequenpe leapally, 100 additional random trials were presented. Rartic
ing to better understand these relationships and mechanisrants were not informed which trials were random and which
associated with language. The SRT task is a sequence leafyere pattern trials during the course of the experiment. The
ing task designed to measure participants’ ab|||ty to |mpy eXperiment was divided into blocks of 20 trials each for data
learn sequences. Participants are presented with blodfis of analysis (blocks 1-5 were the first set of random trials, kdoc
als that are either random or repeat in a particular sequencg-15 were pattern trials, and 17-20 were random trials).

As sequence processing is fundamental to language and sta-Tomblin et al. found that, overall, the SLI group had longer
tistical learning provides a useful mechanism for leartémg ~ RTs than the NL group (Fig. 1A). During the pattern trials,
guage (Saffran et al., 1996), this task allows us to measurperformance of both groups improved, indicating that they
some of the key functional properties of language. learned something about the sequence. However, the learn-

Average RT (ms)

440
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ing trajectory differed for the two groups. For the NL group, units. Luce choice ratios were computed by dividing each
RT decreased rapidly after the first few blocks of pattern tri output unit’s activation by the total activation. Theseuss

als and then leveled off. In contrast, for the SLI childrei, R were then used to compute an RT for the network according
remained flat (or increased slightly) during the first few-pat to the equation

tern blocks before decreasing. The difference betweerthes 1
. . : . . RT=—- Q)
two learning trajectories can be approximated by a quadrati C— {_‘1

function (small differences between the two groups at tise fir ) L .
and last blocks; large differences in the middle blocks). ~ WhereC is the activation of the correct output units the

In another study, Tomblin et al. (2007a) examined the rela@ctivation of each of the three other output units, ans
tionship between multiple SNPs and performance in this sRrfhe number of output units (four for these simulations).sThi
task. They found that the CC genotype of SNP rs1916988ivVes an estimate thatis analogous to RT; a lower value corre
(Fig. 1B) and the CC genotype of SNP rs7785701 (Fig. 1C)spor_1c_is to a lower RT_in the SRT task. Thus,_when one unitis
were associated with slower RTs over the course of the pagidnificantly more active than all the others (i.e., the riw
tern trials. The CC genotype of SNP rs1916988) was als&® confident in a single response) the RT will be low. When

associated with a learning curve that was similar to the SLPl the units are similarly active (the network is unsure wha

children. the response is) the RT will be high.

These results suggest that both language impairment and The correct unit on each trial_is the output.unit that corre-
genetic variation iFFOXP2 have similar effects on perfor- sponds to the one that was activated at the input layer. This

mance in the SRT task. Given previous work showing a linkcorresponds to the SRT task in which participants respond by

betweenFOXP2and language, these effects may be related€/€cting the location containing the stimulus.

to common functional differences evidentin language impai 7" the first 100 trials, a random location was chosen and
ment and some variants BOXP2 presented as input. Then, for 200 trials, the sequence [1, 3,

2,4,4,2, 3,4, 4, 2, 4] was repeated. Finally, an additional
Computational model 100 random trials were presented. Only trials on which the

We used a neural network to examine whether some of th8orrect output unit had the highest activation were inctlde
in the analysis. The entire simulation run was divided irlo 2

functional properties of procedural learning are relatethe blocks of 20 trial
differences observed with human participants. In particu- 0CkS 0 trials.
lar, we would like to capture the difference in the shape of : ;
the learning trajectory observed between some of the fast RT ] . . Smmat_lon 1 S
groups (children with NL [Fig. 1A] and the CC and CT geno- In the first simulation, we varied several parameters idivi
types of SNP rs1916988 [Fig. 1B]) and slow RT groups (Suually to gauge t_heir effect on perfc_)rmance in the SRT_ task:
children and the CC genotype of that SNP). By exploring thecontext strengthinput strengthlearning rate number of hid-
parameter space of the model, we can determine which funélen unitsandtemperature _
tional properties are associated with these differencéisen Context strengtdetermines the strength of the connections

learning trajectories. from the hidden to context units (i.e., hidden unit activag
_ are multiplied by this amount when setting context unit-acti
Model architecture vations). A lower context strength may have an effect on the

The model is a simple recurrent network (SRN; Elman, 1990network’s ability to learn sequences, which could influence
c.f. Misyak, Christiansen, & Tomblin, 2009, for an adapta-!earning in the SRT task.

tion to the SRT task). The network has three layers: an input Input strengthcontrols the fidelity of the stimulus pre-
layer, an output layer, and a hidden layer with recurrent consented to the network. The input unit corresponding to the
nections. The input and output layers each have four unitshosen location is set to the value of the input strength and
(corresponding to the four possible stimulus locationd)e T the others are set to zero. A lower input strength makes the
hidden layer’s recurrent connections provide it with imiar  Stimulus location less distinct from the others.

tion about the state of the hidden units on the previous trial Learning rateis the value that the weight change term is
(context units). This allows the network to learn sequencegnultiplied by each time the weights are updated. Models with
like those in the pattern trials of the SRT task. Connectiorlower learning rates require more trials to learn the task, b
weights are updated using backpropagation (Rumelhart, Hirmay have more stable learning. This could affect the net-
ton, & Williams, 1986). Logistic activation functions aread ~ work's ability to learn over the course of the pattern trials

for the hidden and output units. Number of hidden unitaffects the amount of information
] ) the network can hold about the sequence. If the network has
Simulation procedure too few, its ability to encode the sequence will be impaired.

The network was trained on a task based on the one used by Temperaturecorresponds to the temperature parameter of
Tomblin et al. (2007b). On each trial, a stimulus was pre-the logistic activation function. This activation funaticon-

sented to the network by activating a particular inputund a strains the hidden and output units to have activations be-
setting the rest to zero, and activation flowed to the outputween zero and one. A higher temperature makes the logistic
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more nonlinear. Thus, if the correct output unit has the high 16
est activation, a high temperature parameter will make this Context strenqth
value more distinct from the values of the incorrect unigs, r - 12 | mer 04 08
sulting in a lower model RT. The temperature parameters for <
the hidden and output units were varied separately. §

Five hundred repetitions of each condition were run. = 87

(A) »

Results 4l
The network was able to learn the SRT task and showed an heserra,, Input strength
overall learning trajectory similar to the ones observethin "~.,.. —er 0.5 1.0
behavioral data. The network’s performance improved over 12 + "'~...
the course of the simulation and was faster during the patter e,
trials than the random trials.

Fig. 2 shows the performance of the model on the SRT
task for different values of each parameter. A range of \salue
for the parameters were tested to find a set that produced re-
sponses similar to those observed for the fast RT groupgin th Learning rate
behavioral data. Each parameter was then varied indiigual aee0.05 0.10
holding the others constant at those values. For example, in 12 -

Fig. 2A, context strengtlwas varied. The other parameters
were held constant for bottontext strengticonditions at the
baseline values (i.elearning rate= 0.10,hidden units= 12,
input strength= 1.0, hidden unit temperature 1.0, output
unit temperature= 1.0).

Context strengtliFig. 2A) had very little effect on on the
network’s RT. This suggests that the network can still prenfo
the task with limited information from the previous trial.

Input strength(Fig. 2B) had an effect on overall RT and
an effect on the shape of the learning trajectory. Modelb wit
a lower input strength showed a small increase in RT at the
beginning of the pattern trials, but this did not persisthe t
middle blocks.

Learning rate(Fig. 2C) also had an effect on the shape

of the learning trajectory. This was due to the fact that the beu, (hidden units)
network initially shows an increase in RT at the beginning of 12 *, ==e10.5 1.0

training. By decreasing the learning rate, this increass wa
pushed forward in time into the pattern trials. Thus, one rea
son that some groups show an increase during the pattern tri-
als in the SRT task might be that they are still in this initial
learning phase.

Number of hidden unitéig 2D) had an effect similar to
input strength Fewer hidden units resulted in longer overall
RTs and a small increase at the beginning of the patters.trial

TemperaturgFigs. 2E & 2F) had an effect on the overall
RT at the beginning of the pattern trials, but did not capture
the change in the shape of the learning curve.

Discussion

Several parameters produced changes in the network’s me-
dian RT and learning trajectory. Changesdriput strength
learning rate and number of hidden unitsan account for

Temperature

Temperature
(output units)

1.0

=au1(.6

Pattern block

some of the Changes in the Shape of the |earning trajecto&igure 2: Results of Simulation 1. For each Simulation, the
observed behaviorally. As discussed above, however,fgpeci Set of parameters producing effects similar to those settrein
SNPs and individual differences in language ability areljjk ~ fast RT groups was used as a baseline (solid lines in figures),
to have multiple functional effects. Thus, we may find a brette @nd individual parameters were varied (dashed lines).
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fit to the behavioral data by examining the combined effects 16

. ? . : X “‘---l-l....... smnnt S|ow RT
of multiple parameters. This was done in Simulation 2. po® "~-..,... FastRT
. . = L ."...
Simulation 2 = 12
(] teay
In the second set of simulations, we varied multiple parame- 3
= 8

ters in the model simultaneously, allowing us to explore the
parameter space of the network further. Five values were

tested for the number of hidden units, and four were tested 4

for each other parameter, yielding a total of 5,120 combina-

tions. The simulation procedure was the same as Simulation JUCPOTTTT P =e=='SlowRT

1, except that 50 repetitions of each combination were run. penest’ ""'~.., FastRT
12 L ........

Results

In order to determine which parameter sets reflected the fast
and slow RT groups in the behavioral data, pairwise com-
parisons were made and the difference scores were fit to

guadratic functions (the pattern of the differences in taen- 4
ing trajectories). Thus, for each comparison there was a set 2 4 6 8 10
of parameters corresponding to the slow RT groups and a set Pattern block

corresponding to the fast RT groups.

Several pre-processing criteria were used to exclude SefSgure 3: Results of Simulation 2. Af Responses of the
that did not show correct performance on the SRT task (i.eyodel wherlearning rate input strength number of hidden
better performance over the course of the pattern triald) aNynits and temperatureare varied simultaneously. (B) Re-
comparisons that would not yield a pattern consistent Witfbponses whelearning rateandtemperaturere varied simul-

the difference between groups in the behavioral data (i-etaneously. Five hundred repetitions of each condition were
quadratic). The remaining pairs were then fit to quadratiGp, to produce the figures.

functions using the least squares method, ahd/&s used to
determine the goodness of fit.

R? values greater than 0.9 were found for 0.47% of theslow RT model did not reach the same RT by the end of the
pairs. To determine which parameters drove the effect, w@attern trials). Fig. 3B shows the responses of the model
computed the mean parameter values for the slow and fast Rvhen these parameters are varied together.
groups for these pairs. The mean values for each parametgjriSC

for the two groups are shown in Table 1. Some parameters

did not differ between the groups, whereas others differed e results of this simulation show that the combined effect
) pf several parameters together can better approximatefthe d

greatly. We found that the parameters in Simulation 1 tha i . ) ) i X
produced changes in the learning trajectdeatning rate ference in learning trajectorles_. Th|§ suggest; th_at this a
number of hidden unitsandinput strength had similar ef- proach can be used to determine which combinations of pa-
fects when varied in conjunction witemperature Fig. 3A rameters mirror the behavioral data. Additional explanati
shows the responses of the model when these parameters Qfdne parameter space (i.e., testing a larger range of splue
varied simultaneously. may allow us to find a better fit.

Adjusting the parameters by hand allowed us to distill the

; General discussion
set of parameters down to twlearning rateandtemperature ) )
that accounted for the difference in learning trajectofés The results of these simulations suggest that several func-

the first half of the pattern trials, but not the second hé&lé (t tional aSPeCtS of sequence processing contribute to the dif
ferences in SRT performance observed behaviorally and that

by examining multiple factors at the same time, we can get
a better estimate of the effects of language impairment and

Table 1: Simulation 2 results. genetic variation. This fits with the notion that genetidetif

Parameter Slow RT FastRT ences are likely to have multiple functional consequences.
Context strength 0.48 053 Recently, McMurray et al. (2010) used a similar approach
Input strength 0.83 0.90 to determine which parameters in TRACE (McClelland & EI-
Hidden units 59 95 man, 1986) corresponded to differences between NL and SLI
Learning rate 0.13 0.18 children in a spoken word recognition task. They found that
Temperature (hidden)  0.39 0.52 variation in the network’s decay parameter produced differ
Temperature (output)  0.38 0.44 ences similar to those between the SLI and NL groups. This

parameter is related to competition. In the SRN used here,
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the temperaturgparameter corresponds to competition (e.g., man, R. M. (2002). Semantic representation and naming
a lower temperature parameter for the output unit actimatio in young children.J Speech Lang Hear Re$5, 332-346.
function leads to greater activation for the competitotg)ni McGregor, K. K., Newman, R. M., Reilly, R. M., & Capone,
Thus, these two sets of of simulations, modeling different N. C. (2002). Semantic representation and naming in chil-
tasks with different networks, provide converging evidenc dren with specific language impairmend. Speech Lang
that competition between internal representations may be a Hear Res45, 998-1014.
critical mechanism in language processing that produdes diMcMurray, B., Samelson, V. M., Lee, S. H., & Tomblin, J. B.
ferences between NL and SLI children. (2010). Eye-movements reveal the time-course of online
The simulations presented here provide a first step towards spoken word recognition language impaired and normal
assessing the role of genetic variation and languageyabilit adolescentsCognitive Psychgl0, 1-39.
in procedural learning, and they suggest several fundtionaMisyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2009).
properties that may be influenced by these differences. More Statistical learning of nonadjacencies predicts on-lire p
broadly, they show that exploring the parameter space of a cessing of long-distance dependencies in natural language
computational model may offer an approach to studying the In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Schomaker

effects of genetic factors on cognitive systems. (Eds.),Proceedings of the 31st Annual Conference of the
Cognitive Science Sociefy. 177-182). Austin, TX: Cog-
Acknowledgments nitive Science Society.
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