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ABSTRACT OF THE DISSERTATION

LQG Control Performance under Coding Strategies in Network Control Systems

by

Behrooz Amini

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2020

Professor Robert R. Bitmead , Chair

This thesis deals with a single feedback fixed-rate channel using some coding strategies.

We assess and compare the LQ performance of the different coding methods. The idea of

predictive coding is applied at the transmitter side to improve the efficiency of the channel usage

by transmission of the quantized innovations signal. We observe a plant stability requirement is

necessary to construct the joint density of both the plant and the predictor states at the receiver

side. The Bayesian filter is used to compute the optimal feedback control. We compare the closed-

loop control performance for three cases. In each of these competing cases, a lower complexity

receiver architecture is possible but at the expense of closed-loop control performance.

In addition to predictive coding, we examine specific low-bitrate strategies and evaluate

through their impact on LQ control performance. We consider coding the quantized output signal

x



deploying period-two codes of differing delay versus accuracy tradeoff. We treat the quantizer as

the functional composition of an infinitely-long linear staircase function and a saturation. This

permits the analysis being subdivided into estimator computations and an escape time evaluation,

which connects the control back into the choice of quantizer saturation bound. By limiting the

subject to specific strategies, we are able to identify principles underlying coding for control.
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Chapter 1

Introduction

Over recent years, networked control problems and communication have gained much

interest. In particular, the state estimation problem over a network has been widely studied.

The problem of state estimation and stabilization of a linear time invariant system has been

investigated with a number of differing communication constraints. Traditionally the areas of

control and communication systems are studied separately as both have almost distinct underlying

assumptions. For instance, in the area of control, one generally assumes perfect communication

within the closed loop and receives data without time delay. On the other hand, in communication

systems, data packets that carry the information can be delayed or dropped because of network

traffic conditions. Further, and as studied in detail here, digital communications introduces

quantization and channel noise. These different assumptions and natures create a barrier for

researchers from the two fields to collaborate with each other. However, as new applications and

technologies emerge, control and communication systems are shaping new horizons for more

entwined and closer research to study.

As we see in some applications, observation and control signals are dispatched through

a communication channel with a limited capacity or some bit-rate constraints. For instance,

advances in large scale networks including sensors and actuators make an interesting area to

explore. In sensor networks, the measurement data from various sensors are sent to the controller

through a data network where data packets might be dropped or delayed if the network has severe

traffic.

1



In this thesis, the architecture of control and communication systems under study is

simply depicted in the Figure 1.1. We consider a general single digital channel for the study in

which the physical system’s arrangement is geographically distributed, say through the physical

separation of the sensors from the plant.

encoder
<latexit sha1_base64="SV4wIEOqvz8hgIhQ0w/9nOHSWHc=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqANZTK5aYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMvc88JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+m/mdJ1SaJ/LRTFL0YzqUPOKMGit1ULIkRDWoVN2aOwdZJV5BqlCgOah89cOEZTFKwwTVuue5qfFzqgxnAqflfqYxpWxMh9izVNIYtZ/Pz52Sc6uEJEqUfdKQufp7I6ex1pM4sJMxNSO97M3E/7xeZqIbP+cyzYwNtvgoygQxCZllJyFXyIyYWEKZ4vZWwkZUUWZsQ2VbgrcceZW06zXvslZ/uKo2bos6SnAKZ3ABHlxDA+6hCS1gMIZneIU3J3VenHfnYzG65hQ7J/AHzucPc3KPpA==</latexit> decoder

<latexit sha1_base64="DpF/HcD7g3rx97c61h9DE10X7fA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0i7dbMLuRiihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+m/mdJ1SaJ/LRTFL0YzqUPOKMGit1QmRJiGpQqbo1dw6ySryCVKFAc1D56ocJy2KUhgmqdc9zU+PnVBnOBE7L/UxjStmYDrFnqaQxaj+fnzsl51YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqIbP+cyzQxKtlgUZYKYhMx+JyFXyIyYWEKZ4vZWwkZUUWZsQmUbgrf88ipp12veZa3+cFVt3BZxlOAUzuACPLiGBtxDE1rAYAzP8ApvTuq8OO/Ox6J1zSlmTuAPnM8fZBePmg==</latexit>

controller
<latexit sha1_base64="qfpZ0Yj73lCChAyhwdic/7KXgjU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPbUDbbTbt0sxt2J0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4dua3n5g2XMkHnCQsiMlQ8ohTglZ6pEqiVkIw3S9XvKo3h7tK/JxUIEejX/7qDRRNYyaRCmJM1/cSDDKikVPBpqVealhC6JgMWddSSWJmgmx+8dQ9s8rAjZS2JdGdq78nMhIbM4lD2xkTHJllbyb+53VTjK6DjMskRSbpYlGUCheVO3vfHXDNKIqJJYRqbm916YhoQtGGVLIh+Msvr5JWrepfVGv3l5X6TR5HEU7gFM7Bhyuowx00oAkUJDzDK7w5xnlx3p2PRWvByWeO4Q+czx8In5Em</latexit>

plant
<latexit sha1_base64="h+sVPYjvI4+I7xqCl9B6ZwRWZlw=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3kp5Iq7Feqbs2dg6wSryBVKNDsV756g4RlMVfIJDWm67kpBjnVKJjk03IvMzylbEyHvGupojE3QT4/dkrOrTIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6G0U2QC5VmyBVbLIoySTAhs8/JQGjOUE4soUwLeythI6opQ5tP2YbgLb+8Slr1mndZqz9cVRu3RRwlOIUzuAAPrqEB99AEHxgIeIZXeHOU8+K8Ox+L1jWnmDmBP3A+fwAAr47P</latexit>

transmitter
<latexit sha1_base64="Q6LJlCPBgWRrOAG9EEpmfZnsTbg=">AAAB83icbVBNS8NAEN34WetX1aOXYBE8laQKeix68VjBfkAbymY7aZfubsLuRCihf8OLB0W8+me8+W/ctDlo64OBx3szzMwLE8ENet63s7a+sbm1Xdop7+7tHxxWjo7bJk41gxaLRay7ITUguIIWchTQTTRQGQrohJO73O88gTY8Vo84TSCQdKR4xBlFK/VRU2UkRwRdHlSqXs2bw10lfkGqpEBzUPnqD2OWSlDIBDWm53sJBhnVyJmAWbmfGkgom9AR9CxVVIIJsvnNM/fcKkM3irUthe5c/T2RUWnMVIa2U1Icm2UvF//zeilGN0HGVZIiKLZYFKXCxdjNA3CHXANDMbWEMs3trS4bU02ZzcDkIfjLL6+Sdr3mX9bqD1fVxm0RR4mckjNyQXxyTRrknjRJizCSkGfySt6c1Hlx3p2PReuaU8yckD9wPn8AInWRvQ==</latexit>

receiver
<latexit sha1_base64="5+YKptWR4pwblgUi0/ekT8nY5+0=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8mkd9rQZGZIMkIZ+hVuXCji1s9x59+YtrPQ1gOBwzn3kntOkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSNsGm4EdhKFVAYC28H4dua3n1BpHkcPZpKgL+kw4iFn1FjpUSFDbv1Sv1xxq+4cZJV4OalAjka//NUbxCyVGBkmqNZdz02Mn1FlOBM4LfVSjQllYzrErqURlaj9bH7wlJxZZUDCWNkXGTJXf29kVGo9kYGdlNSM9LI3E//zuqkJr/2MR0lqMGKLj8JUEBOTWXoy4DaxERNLKFPc3krYiCrKjO1oVoK3HHmVtGpV76Jau7+s1G/yOopwAqdwDh5cQR3uoAFNYCDhGV7hzVHOi/PufCxGC06+cwx/4Hz+AIQ1kDc=</latexit>

digital
<latexit sha1_base64="nSyqqD5r9hcE/QSme00pek7YSEU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0y7dbMLuRCihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3A2q4FIq3UKDk3VRzGgeSd4Lx3czvPHFtRKIecZJyP6ZDJSLBKFqpE4qhQCoHlapbc+cgq8QrSBUKNAeVr36YsCzmCpmkxvQ8N0U/pxoFk3xa7meGp5SN6ZD3LFU05sbP5+dOyblVQhIl2pZCMld/T+Q0NmYSB7Yzpjgyy95M/M/rZRjd+LlQaYZcscWiKJMEEzL7nYRCc4ZyYgllWthbCRtRTRnahMo2BG/55VXSrte8y1r94arauC3iKMEpnMEFeHANDbiHJrSAwRie4RXenNR5cd6dj0XrmlPMnMAfOJ8/cGWPog==</latexit>

channel
<latexit sha1_base64="PesRHW5XXfI2n23WJtg6qZKpxF0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fipw8ZUShSDcsWtuguQdeLlpAI5moPyV38YszRCaZigWvc8NzF+RpXhTOCs1E81JpRN6Ah7lkoaofazxbkzcmGVIQljZUsaslB/T2Q00noaBbYzomasV725+J/XS01442dcJqlByZaLwlQQE5P572TIFTIjppZQpri9ldgAFGXGJlSyIXirL6+Tdq3qXVVrD/VK4zaPowhncA6X4ME1NOAemtACBhN4hld4cxLnxXl3PpatBSefOYU/cD5/AGi1j50=</latexit>ut

<latexit sha1_base64="3RhiPZrh8xxaBuecIIZFArxNZl8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7SP/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP234jeQ=</latexit>

yt
<latexit sha1_base64="xgjtjQKhDVWDjYkTYlvWpCjoy9I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9bHfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugP6EaBZN8WuqlhieUjemQdy1VNOLGn8xPnZIzqwxIGGtbCslc/T0xoZExWRTYzojiyCx7M/E/r5tieO1PhEpS5IotFoWpJBiT2d9kIDRnKDNLKNPC3krYiGrK0KZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwB0EI3o</latexit>

wt, vt
<latexit sha1_base64="sWrxcfzz7JwJcMJaFRt/xdrUPEg=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8SNiNgh6DXjxGMA9IlmV2MpsMmX040xsJS37CiwdFvPo73vwbJ8keNLGgoajqprvLT6TQaNvf1srq2vrGZmGruL2zu7dfOjhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOUPb6d+a8SVFnH0gOOEuyHtRyIQjKKR2k8enpORh16pbFfsGcgycXJShhx1r/TV7cUsDXmETFKtO46doJtRhYJJPil2U80Tyoa0zzuGRjTk2s1m907IqVF6JIiVqQjJTP09kdFQ63Hom86Q4kAvelPxP6+TYnDtZiJKUuQRmy8KUkkwJtPnSU8ozlCODaFMCXMrYQOqKEMTUdGE4Cy+vEya1YpzUaneX5ZrN3kcBTiGEzgDB66gBndQhwYwkPAMr/BmPVov1rv1MW9dsfKZI/gD6/MHmG6PrQ==</latexit>

zt
<latexit sha1_base64="aHfNUXx++jhvwymJ/SRhirLgTiA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRKihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qmHvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2anTsipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2hC8xZeXSbNa8c4r1buLcu06j6MAx3ACZ+DBJdTgFurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwB1lo3p</latexit>

s 2 {1, 2, ..., M}
<latexit sha1_base64="SEdncJEkeoI4dKucKGap3KVOdSU=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyChxKSKuix6MWLUMF+QFPKZrttl242YXcjlpC/4sWDIl79I978N27bHLT1wcDjvRlm5gUxZ0q77rdVWFvf2Nwqbpd2dvf2D+zDcktFiSS0SSIeyU6AFeVM0KZmmtNOLCkOA07bweRm5rcfqVQsEg96GtNeiEeCDRnB2kh9u6x8JpCfetVa1XGc6p2f9e2K67hzoFXi5aQCORp9+8sfRCQJqdCEY6W6nhvrXoqlZoTTrOQnisaYTPCIdg0VOKSql85vz9CpUQZoGElTQqO5+nsixaFS0zAwnSHWY7XszcT/vG6ih1e9lIk40VSQxaJhwpGO0CwINGCSEs2nhmAimbkVkTGWmGgTV8mE4C2/vEpaNcc7d2r3F5X6dR5HEY7hBM7Ag0uowy00oAkEnuAZXuHNyqwX6936WLQWrHzmCP7A+vwBMI+Slw==</latexit>

symbol
<latexit sha1_base64="DFuh/LWa3GSE6crLdb73UF6Z53k=">AAAB7XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLFSR8+iQPJhtebW3RxolXgFqUGB1rD6NRhJkkRUGMKx1n3PjY2fYmUY4XReGSSaxphM8Zj2LRU4otpP87RzdGaVEQqlsk8YlKu/N1Ic6SyXnYywmehlLxP/8/qJCa/9lIk4MVSQxUdhwpGRKDsdjZiixPCZJZgoZrMiMsEKE2MLqtgSvOWTV0mnUfcu6o37y1rzpqijDCdwCufgwRU04Q5a0AYCj/AMr/DmSOfFeXc+FqMlp9g5hj9wPn8A3GCPUA==</latexit>

Figure 1.1. The network control system studied in this thesis.

We ideally would like to extend the current arrangement to have a secure ideal channel

between the controller and plant. There is an underlying control objective of the control closed

loop. This is distinct from many reliable communications objective of the communication

subsystem, which might involve retransmission and devotion of bits to error detection and

correct. We start with a closed-loop control performance objective function and apply optimal

control concepts.

The arrangement of the control and communication systems consist of the following

components.

• Plant is a linear time-invariant system subject to exogenous additive stochastic distur-

bances.

• The encoder/transmitter is a causal mapping from the measured output signal yt . At the
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transmitter, it determines the usage of the symbols sent through the channel and makes

the efficient or robust use of the channel capacity. The process of coding is focused on

efficient channel or bitrate, largely through removing redundancy in the signals.

• The decoder/receiver is required to be a causal mapping from the received quantized signal.

It yields some reconstruction of yt or the sequence of yts.

• The codec, encoder-decoder pair, is to facilitate the reconstruction of a close approximation

of the transmitter-side signal by using the bits most effectively.

• The Quantizer (signal to symbol) is the simplest and delay free coder, which maps the

current signal into one of the M = 2b symbols, where b is the number of bits per symbol. It

is a mapping from the set of real value numbers as inputs to the finite set of outputs called

output levels. A linear, midrise, eight-levels/three-bit quantizer with saturation is depicted

in Figure 1.2. Linear here refers to the equal interval sizes assigned to each symbol.

For m-vector signals or indeed for m-tuples of signals, this figure can be replaced by a

partition of the Rm yielding one symbol per fundamental set. This latter construction is

called a vector quantizer.

input
<latexit sha1_base64="f1K7WD7cFMsi4O8WdPPNdGS0gtM=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbl3bpZhN2N0Ip/Q1ePCji1R/kzX/jNs1BWwcWhpn32DcTpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzf32EyrNE/loJikGMR1KHnFGjZV8LtPM9CtVt+bmIKvEK0gVCjT7la/eIGFZjNIwQbXuem5qgilVhjOBs3Iv05hSNqZD7FoqaYw6mObHzsi5VQYkSpR90pBc/b0xpbHWkzi0kzE1I73szcX/vG5moptgmidCyRYfRZkgJiHz5GTAFTIjJpZQpri9lbARVZQZ20/ZluAtR14lrXrNu6zVH66qjduijhKcwhlcgAfX0IB7aIIPDDg8wyu8OdJ5cd6dj8XomlPsnMAfOJ8/GoKO4A==</latexit>

output
<latexit sha1_base64="lw7CnoyNBTQIerptzIYfs4vWUSA=">AAAB7XicbVDLSgMxFL1TX7W+qi7dDBbBVZmpgi6LblxWsA9oh5JJM21sJhmSO0IZ+g9uXCji1v9x59+YtrPQ1gOBwzn3kntOmAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4dua3n5g2XMkHnCQsiMlQ8ohTglZqqRSTFPvlilf15nBXiZ+TCuRo9MtfvYGiacwkUkGM6fpegkFGNHIq2LTUSw1LCB2TIetaKknMTJDNr526Z1YZuJHS9kl05+rvjYzExkzi0E7GBEdm2ZuJ/3ndFKPrIOPSJmKSLj6KUuGicmfR3QHXjKKYWEKo5vZWl46IJhRtQSVbgr8ceZW0alX/olq7v6zUb/I6inACp3AOPlxBHe6gAU2g8AjP8ApvjnJenHfnYzFacPKdY/gD5/MHBW6Paw==</latexit>

⇣

<latexit sha1_base64="eAZSe7dqvXaAFf4wFdI48uTHfVU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkongqePFYwbSFNpTNdtMu3WzC7kSopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up35rUeujUjUA45THsR0oEQkGEUr+d0njrRXrrhVdw6ySrycVCBHo1f+6vYTlsVcIZPUmI7nphhMqEbBJJ+WupnhKWUjOuAdSxWNuQkm82On5MwqfRIl2pZCMld/T0xobMw4Dm1nTHFolr2Z+J/XyTC6DiZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+S5kXVq1Uv72uV+k0eRxFO4BTOwYMrqMMdNMAHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucP6K6OvA==</latexit>

�⇣

<latexit sha1_base64="8zHz7XeKjxpn7vAsVA9+odXchlE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgxbArEcVTwIvHCOYBSQizk9lkzOzsMtMrxCX/4MWDIl79H2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSk7nEc825IB0oEglG0UuOs88SR9oolt+zOQJaJl5ESZKj1il+dfsSSkCtkkhrT9twYuynVKJjkk0InMTymbEQHvG2poiE33XR27YScWKVPgkjbUkhm6u+JlIbGjEPfdoYUh2bRm4r/ee0Eg6tuKlScIFdsvihIJMGITF8nfaE5Qzm2hDIt7K2EDammDG1ABRuCt/jyMmmcl71K+eKuUqpeZ3Hk4QiO4RQ8uIQq3EIN6sDgAZ7hFd6cyHlx3p2PeWvOyWYO4Q+czx9Svo7z</latexit>

Figure 1.2. Graph of 3-bit/8-step staircase of a linear midrise quantizer-dequantizer pair with
saturation at ±ζ .
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Generally speaking quantization is a process to convert samples of a real value source

into a digital representation with lower resolution. During this conversion, if we have too

few bits or quantization levels, some information is lost. Loss of information maybe a

reasonable concern, hence the quantization can be done such that the loss of information

being imperceptible by proper designing and applying enough quantization levels. The

primary goal is to make sure that the quantized signal is obtained at the proper resolution

without harmful impact from the information is lost. The multi-element quantizers that we

consider quantize a vector source input signal one element at each time. A quantizer, which

resides at the transmitter, converts a real input signal into a symbol from a fixed alphabet.

Then this symbol is transmitted through the channel, detected, and converted back into

a real-values signal of the same dimension as the input vector. This latter reconstruction

occurs at the receiver through a dequantizer.

• The dequantizer (symbol to signal) is the decoder associated with quantizer coder is called

a dequantizer. Typically for a scalar quantizer the dequantized value on a receipt of symbol

would be the midpoint of the interval mapping to a symbol at the quantizer. For vector

quantization, one normally dequantizes by taking the centroid of the symbol’s pre-image.

When a quantizer and a dequantizer are combined, we have a mapping from real input

signal at the transmitters, usual a signal taking a continuum of values, to a real output

signal, which takes one of 2b distinct values, where b is the bitrate. We shall adopt to

convention to refer to the quantizer-dequantizer pair as the quantizer.

In this thesis, we emphasize subtractive dithered quantization. Dithered quantization is a

technique where we add a random signal to the input signal prior to quantization, and this

makes the quantization error possess desirable statistical features as defined in Equation

1.1 where y is an input signal to the quantizer and z is an output signal from the quantizer.

ε = Q(y)− y = z− y. (1.1)
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If the random dither signal is chosen properly, then the quantization error will be indepen-

dent from the original input signal and, under certain conditions, will also be zero mean

uniformly distributed white noise. In subtractive dither, a dither signal dt is added prior to

the quantizer input at the transmitter and subtracted from the dequantizer, output at the

receiver as shown in Equation 1.2.

zt = Q(yt +dt)−dt , (1.2)

The goal is to have the quantization error independent from the plant output signal with

favorable statistical properties as we explain in Chapter 2 in detail.

Regarding the quantization as a nonlinear memoryless measurement, Curry ’s Theorem [1]

plays a key role in our analysis. This theorem deals with the optimal feedback control of a

linear system with memoryless nonlinear measurement and quadratic criterion function:

the optimal controller is the LQ-optimal gain times the conditional state estimate.

Throughout the thesis quantizers will play a central role and in Chapter 2, we shall study

quantization in considerable detail with an emphasis on linear mid-rise quantizers. We

introduce and explore the idea of subtractive dithered quantization and establish properties

of the approximation error between the quantizer input and output signals.

In Chapter 4, we also investigate three specific periodic coding strategies as period-two bit

assignment and transmission strategies. The goal is to assess the efficacy of these coding

strategies in terms of their advantages for quadratic-cost optimal output feedback control.

For instance in Strategy I, we use a b-bit-per-channel subtractive dithered quantizer and

send the b bits of the quantizer output through channel and at the receiver, use a Kalman

filter to compute the filtered state estimate, x̂t|t , and control signal. In Strategy II, at even

times we use a 2b-bit-per-channel subtractive dithered quantizer and transmit the b most

significant bits of the quantizer output through channel and at the receiver use the Kalman

filter to calculate the filtered state estimate and control signal. At the odd times, we discard
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the measurement signal and transmit the remaining b remaining bits of the quantized signal

of even times to make the control signal by use of Kalman filter.

A major thrust of Chapter 4 will be to view the quantizer as the functional composition of

an infinite staircase and a saturation. This perspective will allow us to tame the analysis

by considering behavior prior to the first signal excursion beyond the saturation. Then

separately we study the statistics of the first time to saturation, which we label the escape

time.

• The communication digital channel (symbol-in symbol-out) is a physical system capable

of transmitting a symbol from a finite alphabet and having that symbol received at the

other end. In this thesis, we consider a fixed bitrate, error-free communications channel

between the transmitter/plant side and the receiver/controller side. The sampling rate also

will be fixed.

• The controller is based on optimal control and causally produces a control signal, ut , from

the received data. Throughout the thesis, we shall appeal to Curry’s theorem for quadratic

optimal control mentioned earlier.

In this thesis, similar to network control systems, we investigate methods such as predic-

tive coding and other related approaches to achieve more efficient use of available bitrate, and

therefore improves control performance. We focus on feedback control over a single fixed bit

rate channel where in the transmitter side and apply predictor to make innovations signal similar

to whitening filter prior to quantizer.

In Chapter 2, we present the quantization, quantization error and quantization bound

and it is shown the details of input and output to far a midrise linear quantizer. We compare the

quantization errors for infinite (unbounded) quantizer without saturation bound and the saturated

case. For subtractive dithered quantizers, necessary and sufficient conditions are explored to have

the probability density function of the quantization error being uniform. This condition has great

practical results and consequence in the subsequent theorems of the thesis. The characteristic
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function of the probability density has a crucial role in this chapter. We show that the subtractive

dithered quantization error is a white noise under certain statistical features or conditions on the

dither.

In Chapter 3 of this thesis we consider a very specific coder: linear predictive coding.

Here, the transmitted symbol is a representation of the the prediction error or innovations signal

at the plant output. This is produced with the aid of a Kalman filter running at the transmitter

side. Such a symbol stream will be white in the Gaussian case and uncorrelated in general for

linear plants. This leads to highly efficient usage of the channel bitrate. We evaluate a number

distinct decoder options at the receiver: an innovations representation of the Kalman filter, and a

Bayesian filter. Their distinction is a central contribution of the thesis. We provide a thorough

evaluation of predictive coding when used as part of a network control system. In particular,

we provide new theory on the role of predictive coding in stabilization and in performance. We

show why we to assume that the open-loop plant system is stable in order to apply predictive

coding, in particular for the linear Gaussian case.

In Chapter 3, we employ Bayesian filter to reconstruct the signal density at the receiver

and we process the signal to compute an optimal control. Bayesian filter uses the sequence of

measurements of control and innovations signal in the receiver side to compute the conditional

density of the transmitter-side state. Bayesian filter offers the possibility of the computation

which is not limit to Gaussian density and it is applicable to the general system having arbitrary

probability density function. Hence, we do not have to restrict our computation to LQG perfor-

mance index and therefore we can extend the cost function to Non-Lq optimal control due to the

prowess of employing Bayesian filter at the receiver.

Then we apply feedback to assess the closed-loop performance objective by applying

predictive coding. In addition, we consider some various simple coding strategies and compare

the LQG costs. The predictive coding is applied to remove the redundancy of measurement

signal and consequently fewer bits are required to communicate via the channel. The main

purpose is to show optimal control based on predictive coding is improving the efficiency of the

7



channel usage.

We consider three comparative optimal control methods with different control signals for

the closed-loop system in chapter four. The LQG cost functions were compared to apply control

signal based on filtered and predicted state estimate from quantized innovations and filtered state

estimate from quantized outputs. We will see the best performance pertains to the filtered state

estimate from quantized innovations. As known the innovations remove the redundancy from the

signal but it still keeps the information of the original measurement.

The role of full density reconstruction is established as central for nonlinear control

rather than moment based methods. A major contribution is the proof, at least in the linear

case, that feedback control based on transmission of the innovations sequence can not stabilize

an unstable system. The unstable mode is not detectable. A nonlinear, non-quadratic optimal

control problem is examined in detail. Advantages in closed-loop performance are demonstrated

for plant state estimation based on quantized innovations versus quantized outputs or estimator

state estimation.

In Chapter 4, regarding coding, our approach is inductive rather than deductive. This is

a contrast with earlier works which, by and large, have been inconclusive. We treat a limited

coding strategies in a way that we can make conclusions about the output signal. As we show as

long as the controlled output signal is more predictable or correlated, we benefit from coding

strategies. The range and correlation of the closed-loop output is crucial for the suitable choice

of strategy. We have shown that if the controlled output signal is less predictable, Strategy I

is more helpful and coding has less benefits, for instance those similar to minimum variance

control. So the nature of signal plays a key role in picking the right strategy. In addition we see

for the low bitrate the coding has significant impact, but its effects is diminishing by increasing

the bit. The control objective function has a role to play in the efficacy of coding. This occurs

because of its inherent effect on the predictability of the controlled output signal.

The main contribution of this chapter which differentiate from other research is treating

the issue of signal escape time from the quantizer. We compute the residence time through
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two methods and then compare the performance of coding strategies. The escape time analysis

permits the consideration of stabilization problems and performance together. The focus on

realization based behavioral descriptors admits new viewpoints compared with asymptotic

moments. The escape time analysis paves the way to stabilize the system and computing

performance simultaneously. Contribution is inductive more than deductive. This is a contrast

with earlier works which, by and large, have been inconclusive.

1.1 Contributions

Dithered quantization

1. The seminal works of Gray and Stockham [2] and Widrow and Kollar [3] on dithered

quantization are synthesized into a coherent whole with a focus on the role played by

the saturation of the quantizer. These earlier authors establish the requirements of the

subtractive dither signals and subsequent statistical properties of the quantization error.

We profit from both aspects in our later studies.

2. But focusing on the consequences of saturation, we are able later in the thesis to concentrate

on the behavior prior to the first saturation, which time we call the escape time. Further,

we evaluate the probabilistic nature of the escape time as providing a finite time during

which control performance can be evaluated using standard methods.

3. The central contribution of this chapter is to provide a thorough and consistent framework

for the subsequent work. Technically, the new results extending the earlier works are

otherwise minor.

Predictive coding and control

1. We provide a thorough evaluation of predictive coding when used as part of a network

control system. In particular, we provide new theory on the role of predictive coding in

stabilization and in performance.

9



2. The system and its predictor inhabit the transmitter side of the network. Since the predictive

coder itself has a system model, the dynamics of the transmitter side are of dimension 2n,

where n is the system dimension. This leads to a rather non-obvious separation between

the receiver-side reconstruction of the plant state versus of the predictor state. A Bayesian

filter is developed to perform this reconstruction and a core contribution of the thesis is in

demonstrating the control performance improvement from state estimation.

3. The role of the full density reconstruction is established as central for nonlinear control

rather than moment based methods.

4. A major contribution is the proof, at least in the linear case, that feedback control based on

transmission of the innovations sequence cannot stabilize an unstable system. The unstable

mode is not detectable.

5. A nonlinear, non-quadratic optimal control problem is examined in detail. Advantages in

closed-loop performance are demonstrated for plant state estimation based on quantized

innovations versus quantized outputs or estimator state estimation.

LQG control performance with low bitrate periodic coding

1. Contribution is inductive more than deductive. This is a contrast with earlier works which,

by and large, have been inconclusive.

2. The control objective function has a role to play in the efficacy of coding. This occurs

because of its inherent effect on the predictability of the controlled output signal.

3. The prowess and novelties of this study help tackle the challenges arise from the quantizer

’s saturation. We introduce the escape time first, evaluate the performance over that

time. Then we decompose the quantizer into two stages - infinite levels quantizer and

saturation - and it paves the way to consider the linear controlled covariances and escape

time assessment simultaneously.
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Chapter 2

Dithered quantization

2.1 Introduction

Waveforms are continuous-time and continuous-amplitude in nature, so analog-to-

digital conversion is required to create a discrete representation of the waveform. Quantization

is the key to analog-to-digital conversion and is inherently a non-linear mapping which may take

any value from a large set as input (often continuous) to output values in a smaller set but often

with a finite range. Before a signal can be processed by computer, its value must be sampled and

quantized.

In this chapter, we investigate the conditions under which the error between a signal and

its quantization version is uniformly distributed and we focus mostly on this quantization error.

Since the quantization error is a deterministic function of input signal to the quantizer, we study

the conditions which make the quantization error signal independent from the input signal.

First Widrow proved that if a random input signal has certain band-limited properties

of characteristic function of probability density of the input signal, then the quantization error

will be uniformly distributed. This requirement is actually a sufficient condition, but Sripad

and Snyder [4] showed that uniform distribution can be achieved under a weaker condition

which is actually necessary and sufficient. And also under this condition, they revealed [4] that

the quantization error in two dimensional quantization channel are independent. By additional

conditions, the error and input are uncorrelated but still they did not establish any conditions

which imply independence of these signals.
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In order to obtain the property that quantization error becomes independent of the input

signal, we study dithered quantizers. A dither signal is added to the input signal before entering

to the quantizer. This causes, under certain condition, the quantization error to be uniformly

distributed, white and independent of the input signal.

The non subtractive dither was studied and developed by Stockham, Brinton, Lipshitz,

Vanderkooy and Wannamaker, but subtractive dither is a clever idea suggested by Roberts (1962)

to overcome the correlation properties of the quantizer. Then Schuchman in his paper [5] derived

the conditions that a dither signal must meet such that the quantizer error is independent of the

input signal for a finite level quantizer.

In 1993, Gray and Stockham published their paper [2] which was a thorough development

of the conditions for random signals in general then they extended the results for input signals

to the quantizers by normalizing the input and dither signals according to the quantization step.

They have a clear and accurate idea by introducing two conspicuous types of quantization errors

for non subtractive and subtractive errors, ε and ε ′ respectively. And they found the necessary

and sufficient conditions for which the signal input is being independent of quantization errors

pertinent to the input signal for non subtractive and subtractive quantizers.

We eventually come across QTSD theorem [3] which is introduced by Widrow. The

theorem reveals the sufficient condition for which the quantization error is independent of the

input signal but it is still incomplete. We will introduce an enriched version of the QTSD

theorem considering other pioneers’ papers in the field and elaborate the necessary and sufficient

conditions that the quantization error being independent of input signal.

2.2 Quantizer Definition

A scalar quantizer is a map Q : R→L , where L is a finite ordered or countably infinite

ordered set, but our focus in this thesis is on finite levels with saturation bound which we explain
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shortly. Let us consider the set

L = {l1, l2, l3, ..., lM} ⊂ R,

of real numbers such that

l1 < l2 < ... < lM.

The set L is referred to as the alphabet. An M-level quantizer Q is defined by a set of 2M−1

strictly ordered real numbers: M−1 breakpoints {y1, . . . ,yM−1} defining intervals

Q1 = (−∞,y1]

Q2 = (y1,y2]

...

QM = (yM−1,+∞)

and M levels {l1, . . . , lM} jointly satisfying the interlacing property

y0 =−∞ < l1 < y1 < l2 < y2 < · · ·< yM−1 < lM < yM =+∞,

such that Q(y) = li if y ∈ Qi. If M = 2b for integer b, then the indices, i, for the lis can be stored

in b-bits. We define the bit rate to be b bits/sample, where

b = log2 M bits/sample.

This set of indices i provide an efficient method to store quantized values and is referred to as

a codebook, since the quantizer output can be produce from the table of li values. The indices

are also referred to as symbols. A uniform or linear quantizer is one where saturation bounds

are defined −ζ < l1 and lM < ζ such that the intervals [−ζ ,y1],(l1, l2], . . . ,(lM,ζ ] are of equal
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length and lis are the midpoints of the interval containing it.

In this thesis, we shall limit discussion to scalar uniform quantizers with integer bitrate;

these are defined by the two quantities ζ and b, the saturation bound and bitrate. It is possible to

treat vector quantizers, where the input is a vector signal and output is a scalar index decoded

into a vector of the original dimension. We shall not consider general vector quantizers, which

are discussed in [6], but treat quantization of vectores as a vector of scalar quantizers, one in

each dimension or channel.

A quantizer can be considered as the combined operations of an encoder and a decoder,

jointly called the coder. The encoder is a mapping Q : R→S = {1,2,3, ...,M}, where S is the

set of symbols, and the decoder is the mapping Q−1 : S →L , such that if (Q−1Q)(y) = li = z

then Q(y) = i and Q−1(i) = li. As we see the structure of coder or quantizer in the following

Figure,

Figure 2.1. Schematic of coder/quantizer.

The actual mapping z = Q(y) is a staircase function with unity slope shown in Figure 2.2

for uniform quantizer. There are several types of quantizers but we are interested in the midrize

uniform quantizer. For instance in Figure 2.2, a three-bit or eight-level quantizer is shown with
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quantizer bound [−ζ ,ζ ] where ζ = 4,

∆ =
2ζ

2b =
ζ

2b−1 .
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Figure 2.2. 8-level/3-bit midrise quantizer, step size ∆ = 1,ζ = 4.

In many applications, the number of levels M is chosen to be very large, so the quantized

output is a very close approximation to the original input. If the quantizer has infinite but

countable output levels, M is not finite number, then we call quantizer an infinite quantizer which

does not have saturation bound. We shortly explain the difference between these quantizers.

2.2.1 Quantization Error

Quantization error or round-off error is the difference between an input value and its

output (quantized value).

ε = Q(y)− y = z− y. (2.1)
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The quantization error ε is a nonlinear memoryless function of the input signal y. In case of

uniform quantizer with a bounded input, for instance

y ∈ (−ζ ,ζ ),

the quantization step size is

∆ =
2ζ

2b =
ζ

2b−1 . (2.2)

where quantization errors have the values in the range

∆/2≤ ε < ∆/2.

If we assume the probability density function of the quantization errors has distributed uniformly

in the above range,

pε(y) =





1
∆
|ε| ≤ ∆

2

0 otherwise

then the variance of quantization errors ε = Q(y)− y = li− y, can be calculated by changing

variable as follows

σ
2
ε =

∫
∞

−∞

(Q(y)− y)2 pY (y)dy,

=
∫

∞

−∞

ε
2 1

∆
dε,

=
1
∆

∫ ∆

2

−∆

2

ε
2dε,
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so the variance of the quantization error that is uniformly distributed for an interval of width ∆

from the Equation 2.2 is

σ
2
ε =

∆2

12
=

ζ 2

3×22b . (2.3)

Equation (2.3) is helpful to see the the standard deviation of the error increases by step size and

also it decreases exponentially by increasing the number of quantizer’s level.

2.3 Linear Quantizers

Depending on the type of quantizer, finite or infinite level quantizer, the quantizer errors

have different structures. For instance, we compare infinite level quantizer and a 3-bit quantizer

for the input interval [−2,2] in the following.

In Figure 2.3 an infinite quantizer is shown, as we see the quantizer error signal is a

periodic function of input signal y because it does not saturate. But in the 3-bit quantizer, Figure

2.4, the saturation happens and we see the quantization error increases once the input signal

jumps out of the quantizer saturation bound [−1,1]. Both types of error have exact quantization

error within the saturation bound [−1,1] such that the difference between finite level quantizer

and infinite quantizer level is zero within the bound [−1,1], but the quantization errors vary

outside of the saturation bound.
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Figure 2.3. Periodic quantizer error for infinite quantizer without saturation bound.

18



�

2<latexit sha1_base64="wPWaw4VKpGxvhnN5+8fiG1RhhtY=">AAAB+XicbVBNS8NAEJ34WetX1KOXYBE8laQKeizqwWMF+wFNKJvtpF262YTdTaGE/hMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvTDlT2nW/rbX1jc2t7dJOeXdv/+DQPjpuqSSTFJs04YnshEQhZwKbmmmOnVQiiUOO7XB0N/PbY5SKJeJJT1IMYjIQLGKUaCP1bNuPJKG5f49ck2lem/bsilt153BWiVeQChRo9Owvv5/QLEahKSdKdT031UFOpGaU47TsZwpTQkdkgF1DBYlRBfn88qlzbpS+EyXSlNDOXP09kZNYqUkcms6Y6KFa9mbif14309FNkDORZhoFXSyKMu7oxJnF4PSZRKr5xBBCJTO3OnRITBTahFU2IXjLL6+SVq3qXVZrj1eV+m0RRwlO4QwuwINrqMMDNKAJFMbwDK/wZuXWi/VufSxa16xi5gT+wPr8Aa1Ik68=</latexit>

��

2<latexit sha1_base64="KSm3/dW/DoLxjrV7mQd4REoJ6wk=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCF0tSBT0W9eCxgv2AppTNdtIu3WzC7kYpMT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zM82POlHacb6uwsrq2vlHcLG1t7+zu2eX9looSSaFJIx7Jjk8UcCagqZnm0IklkNDn0PbH11O//QBSsUjc60kMvZAMBQsYJdpIfbt86gWS0NS7Aa5Jltayvl1xqs4MeJm4OamgHI2+/eUNIpqEIDTlRKmu68S6lxKpGeWQlbxEQUzomAyha6ggIaheOjs9w8dGGeAgkqaExjP190RKQqUmoW86Q6JHatGbiv953UQHl72UiTjRIOh8UZBwrCM8zQEPmASq+cQQQiUzt2I6IiYKbdIqmRDcxZeXSatWdc+qtbvzSv0qj6OIDtEROkEuukB1dIsaqIkoekTP6BW9WU/Wi/VufcxbC1Y+c4D+wPr8ARl8k+Y=</latexit>

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
input signal value

-1.5

-1

-0.5

0

0.5

1

1.5

er
ro

r s
ig

na
l v

al
ue

Saturating quantizer error function

�⇣
<latexit sha1_base64="H22SRPDF0ttNeuEnRPTmceEloR8=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgxbAbBT0GvXiMYB6QLGF20knGzO4sM71CXPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYVSiOdS5kkq3AmZAigjqKFBCK9bAwkBCMxjdTP3mI2gjVHSP4xj8kA0i0RecoZUaZ50nQNYtltyyOwNdJl5GSiRDrVv86vQUT0KIkEtmTNtzY/RTplFwCZNCJzEQMz5iA2hbGrEQjJ/Orp3QE6v0aF9pWxHSmfp7ImWhMeMwsJ0hw6FZ9Kbif147wf6Vn4ooThAiPl/UTyRFRaev057QwFGOLWFcC3sr5UOmGUcbUMGG4C2+vEwalbJ3Xq7cXZSq11kceXJEjskp8cglqZJbUiN1wskDeSav5M1Rzovz7nzMW3NONnNI/sD5/AFT3I73</latexit>

⇣
<latexit sha1_base64="6LE9LLdDJW9lc7uLx2offeoc4AM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ9lsN+3SzSbsToRa+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuTaiEQ94DjlQUwHSkSCUbSS333iSHvlilt15yCrxMtJBXI0euWvbj9hWcwVMkmN6XhuisGEahRM8mmpmxmeUjaiA96xVNGYm2AyP3ZKzqzSJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3mdDKPrYCJUmiFXbLEoyiTBhMw+J32hOUM5toQyLeythA2ppgxtPiUbgrf88ipp1qreRbV2f1mp3+RxFOEETuEcPLiCOtxBA3xgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4A6cyOwA==</latexit>

Figure 2.4. Quantizer error for 3-bit quantizer with saturation input bound [−1,1].
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2.3.1 Linear Infinite Level Quantizer

Let us now consider an infinite midrize quantizer as depicted in Figure 2.3, we see the

quantizer error is a periodic function of the input signal to the quantizer, so we can formulate the

probability density function of the quantization error ε as a function of the probability density

function of input signal y.

pε(ε) =





∞

∑
n=−∞

pY (n∆+ ε), −∆/2≤ ε < ∆/2

0, otherwise.

In this section, a necessary and sufficient condition is given such that the probability density

function of the quantization error is uniform. This was proved by Sripad and Snyder [4].

Theorem 1. [4] The probability density of the quantization error of an infinite uniform is

pε(ε) =





1
∆
+ 1

∆ ∑
n6=0

ΦY (
2πn

∆
)exp(− j2πnε

∆
), −∆/2≤ ε < ∆/2

0, otherwise

(2.4)

where ΦY is the characteristic function of the random input variable Y to the quantizer.

Proof: The probability density pε(ε) can be denoted in terms of the density pY (y)

according to

pε(ε) =





∞

∑
m=−∞

pY (m∆+ ε), −∆/2≤ ε < ∆/2

0, otherwise.

By defining

g(ε) =
∞

∑
m=−∞

pY (m∆+ ε), −∆/2≤ ε < ∆/2,

and we see g(ε) is periodic with period of ∆, on [−∆/2,∆/2), but we can easily extend the
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periodicity from finite interval [−∆/2,∆/2) to (−∞,∞).

Since g(ε) is periodic with a period ∆, so it can be represented by a Fourier series

g(ε) =
∞

∑
n=−∞

g̃(n)exp
(

j2πnε

∆

)
(2.5)

where g̃(n) are the Fourier coefficients and are computed as

g̃(n) =
1
∆

∫
∆/2

−∆/2

∞

∑
m=−∞

pY (m∆+ ε)exp
(− j2πnε

∆

)
dε

= (1/∆)φY (−2πn/∆), n = 0,±1,±2, ...

by substituting the Fourier coefficients in (2.5) and use of the property ΦY (0) = 1, then obtains

g(ε) =
1
∆
+

1
∆

∑
n6=0

ΦY

(−2πn
∆

)
exp
(

j2πnε

∆

)
.�

Corollary 2. [4] The density function of the quantization error for an infinite quantizer is

uniform, i.e.,

pε(ε) =





1/∆, −∆/2≤ ε < ∆/2

0, otherwise,
(2.6)

if and only if the characteristic function of the input random variable satisfies

ΦY (2πn/∆) = 0 for all n 6= 0. (2.7)

In the case of having two random variables as the input to a two-dimension of infinite uniform

quantizer, we have the following theorem that shows the quantizer errors are independent from

each other.
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Theorem 3. [4] The joint density of the quantization error for an infinite quantizer is uniform;

i.e.,

pε1,ε2(ε1,ε2) =





1/∆2, −∆/2≤ ε1 < ∆/2,−∆/2≤ ε2 < ∆/2

0, otherwise,
(2.8)

if and only if the joint characteristic function of the input random variables satisfies

ΦX1,X2

(
2πl
∆

,
2πk
∆

)
= 0 for all l 6= 0 and k 6= 0 (2.9)

Remark: If (2.9) is satisfied, then the two quantization errors ε1 and ε2 in each channel

are independent and distributed uniformly, through (2.6) and (2.8), we obtain

pε1,ε2(ε1,ε2) = pε1(ε1)pε2(ε2).

2.3.2 Linear Finite-Level Quantizer

Now let us apply general idea of Theorem 1 to a finite level quantizer when no saturation

occurs, then we have the following theorem for M-level quantizer.

Theorem 4. Consider an M-level uniform quantizer with input signal y where no saturation

occurs. Then the probability density of the quantization error is

pε(ε) =





1
∆
+ 1

∆ ∑
n6=0

ΦY (
2πn

∆
)exp(− j2πnε

∆
), −∆/2≤ ε < ∆/2

0, otherwise

(2.10)

where ΦY is the characteristic function of the random input variable Y to the quantizer.

We can exactly apply Corollary 2 for a finite level quantizer provided that it does not

saturate.
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2.4 Examples

Quantization error behaves as function of input signal. In the following we consider

signal y = sin t as input to 3-bit and 4-bit quantizers, and we compare the quantization error

between both. Note that the structure and magnitude of the quantization error ε for input signal

y = sin t are similar in both Figures 2.5 and 2.6, but the quantization error in Figure 2.6 is with

an amplitude of one quarter the value of ε in Figure 2.5. In addition we clearly realize the

quantization errors depend on the input signal or we see deterministic relation between these.
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Figure 2.5. Quantizing sinx with 3-bit .
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Figure 2.6. Quantizing sinx with 4-bit .

The signal y = sin t which is quantized with the 3-bit previously, now is studied in the

Figures 2.7 and 2.8, we see the autocorrelation of quantization error and cross-correlation of

quantization error. Both Figures show clear correlation between the error signal and between it

and the signal y = sin t being quantized.
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Figure 2.7. Crosscorrelation (top) and autocorrelation (bottom) where sin t is the input to 3-bit
quantizer.
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Figure 2.8. Crosscorrelation (top) and autocorrelation (bottom) where sin t is the input to 4-bit
quantizer.
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In the previous examples which do not saturate, we observe these

• the quantization error ε is deterministic function of signal y

• as the number of quantizer ’s level M increases for the same ζ , the quantization error ε

decreases

• the quantization error is not a white noise signal

• ε ∈ [−∆/2,∆/2]

• the quantization error ε and input signal y are correlated.

For the rest of this chapter, the apex of our goal is to look for desired properties of the quantization

error which has the following features

1. The signal {εt} be white and zero mean.

2. The signals {yt} and εt+τ are uncorrelated and orthogonal, E(ytεt+τ) = E(yt)E(εt+τ) = 0

for all t and τ 6= 0.

3. The signal {εt} has a uniform probability density distribution.[6]

We address later the conditions under which the above properties being achieved. The output of

the quantizer can be computed as the input to the quantizer plus quantization error

Q(yt) = yt + εt .

In the next section, subtractive dither is introduced. Dither is a random signal that it is added to

the input signal prior to quantization to randomize the quantization error. By applying subtractive

dither, under several conditions, the quantization error becomes independent of the signal being

quantized and quantization error has uniform density.
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2.5 Subtractive Dithered Quantizer

As it can be seen in Figure 2.9, a dither is a random signal that is added to the quantizer

input, and subtracted it from the quantizer output. This requires the receiver to have the same

dither as transmitter.

Theorem 5. [2] Assume a dither signal d is independent of the input signal y and the quantizer

does not overload,|y+d| ≤ ζ . Then the condition

Φd(
2πn

∆
) = 0, n 6= 0, (2.11)

is necessary and sufficient for achieving the following properties

• signal input y is independent of the quantizer error

ε = Q(y+d)− (y+d).

• The quantizer error ε is distributed uniformly on [−∆/2,∆/2].

+ +Q

d −d

quantizer

y ŷ = Q(y+d)−d

Figure 2.9. [Subtractive dithered quantizer.]

In the following we see how apply the theorem for two different dithers with uniform

and triangular densities.

Characteristic function with uniform density:
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Consider dither with uniform density on [−a,a].

pd,a(x) = U [−a,a] =





1
2a , x ∈ [−a,a]

0, else.
(2.12)

Then let us find the characteristic function or Fourier transform of this density,

Φd,a(ω) = F (pd,a(x)),

=
∫

∞

−∞

pd,a(x)e jxωdx,

=
∫ a

−a

e jxw

2a
dx,

=
1

− j2aω
[e− jaω − e jaω ],

=− 1
− j2aω

×−2 j× sinaω,

=
1

aω
sin(aω) = sinc aω,

so we obtain,

Φd,a

(
l
2π

∆

)
= sinc l2π

a
∆
.

If a = ∆

2 then Φd(l 2π

∆
) = sinc lπ =





1, l = 0,

0, l =±1,±2, ...

If a = ∆ then Φd(l 2π

∆
) = sinc 2lπ =





1, l = 0,

0, l =±1,±2, ...

This suggests that we should pick the smallest support for dither which is U [−∆

2 , ∆

2 ]. In the

following examples later, we apply the uniform dither which is depicted in the Figure 2.10.
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Figure 2.10. Dither signal with uniform density

Characteristic function with triangular density:

If we sum up two identical uniform densities properly normalized and centered then we

have triangular density. The triangular density is the convolution of two uniform densities and its

Fourier transform is the product of the Fourier transforms and so satisfies the zero property as

said in above theorem.
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Consider v = u1 +u2 where u1,u2 ∼U [−a,a], then the pdfs convolve

pv(x) = pu1(x)∗ pu2(x),

=
1

4a2

∫
∞

−∞

pu1(τ)pu2(x− τ)dτ,

=
1

4a2





0, x <−2a

∫ x+a
−a dτ, −2a < x < 0,

∫ a
x−a dτ, 0 < x < 2a,

0, 2a < x,

=
1

4a2





0, x <−2a

x+2a, −2a < x < 0,

2a− x, 0 < x < 2a,

0, 2a < x,

= tr[−2a,2a].

the fourier transform relation also shows that

Φv(ω) = Φu(ω)2.

So if U [−∆

2 , ∆

2 ] dither satisfies QTSD, then so does tr[−∆,∆] dither but tr[−∆

2 , ∆

2 ] does not.
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Figure 2.11. Dither signal with triangular density

2.6 Refined Version of QTSD Theorem and Quantizing
Time Series

A subtractive b-bit dithered quantizer, Q(·), is a memoryless function which takes input

signal yt and dither signal, dt , and produces an output signal

zt = Q(yt +dt)−dt , (2.13)

(2.14)

which is shown in Figure 2.12

Q(·)
standard quantizer

dtdt

yt zt
+
+

+
−

Figure 2.12. [Subtractive dithered quantization: Q(·)]

and the quantization error is defined

εt = zt− yt = Q(yt +dt)− yt−dt , (2.15)
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where Q(·) is a standard quantizer. Such quantizers are examined in detail in, for example, [3].

The QTSD theorem (Quantizing Theorem for Subtractive Dither) shows sufficient condi-

tions to make the quantization error zero-mean white uniform distribution independent of the

signal being quantized.

Theorem 6. Consider a linear, midrise, symmetric, b-bits-per-channel, subtractive dithered

quantizer, Q(·), with saturation bounds ±ζ in each channel. Assume:

(A) dither dt is a stationary white noise process independent from yt with a probability density

possessing characteristic function Φd(·),

(B) yt +dt ∈ [−ζ ,ζ ], i.e. no saturation of the dithered quantizer occurs.

Then, the quantization error

εt ,Q(yt +dt)− (yt +dt), (2.16)

is white, independent from yt , uniformly distributed on
[
− ζ

2b ,
ζ

2b

]
= [−∆

2 ,
∆

2 ],

if and only if

Φd

(
2πl
∆

)
= Φd

(
l
π2b

ζ

)
= 0 for l =±1,±2 . . . . (2.17)

Denote the quantizer step size as

∆ =
ζ

2b−1 ,

and

εt ∼U

[
−∆

2
,
∆

2

]
, E(εt) = 0,

cov(εk) =
ζ 2

3×22b , Sb. (2.18)

33



Proof: Let us first prove that we can show the joint characteristic function satisfies

Φεn,Yk(u,v) = Φεn(u)ΦYk(v),

we apply the nested expectation

Φεn,Yk(u,v) = E
[
e juYkE

[
e jvεn|Yn,Yk

]]
, (2.19)

since dn is independent from Yn and Yk, the conditional expectation evaluated at Yn = yn and

Yk = yk is given by

E
[
e juεn|Yn = yn,Yk = yk

]
= E

[
e juεn

]
.

Now for a fixed yn, the given condition (2.17) imply εn is uniformly distributed on [−∆/2,∆/2].

Then we have

E[e juεn|Yn,Yk] =
sin(u∆/2)

u∆/2
= ΦU(u) (2.20)

and by applying the equation (2.19) we obtain

Φεn,Yk(u,v) = E
[
e juYk

]
ΦU( ju) = ΦYk(u)ΦU(u). (2.21)

Equation (2.20) also implies that

Φεn(u) = E[E[e jεn|Yn,Yk]] = ΦU(u). (2.22)

From equations (2.21) and (2.22) both imply εn is uniformly distributed on [−∆/2,∆/2] for all n

and εn and Yk are independent for all n and k.

Now let us show εn is uniformly distributed and εn and εl are independent for any l 6= n.
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We have

Φεn,εl(u,v) = E[e juεn+ jvεl ]

= E[E[e juεn+ jvεl |Yn,Yl]].

But we for given Yn = yn and Xl = xl the random variables εn and εl are conditionally independent,

since dn and dl are independent and are both uniformly distributed. Thus the conditional

expectation is

E[e juεn+ jvεl |Yn,Yl] = ΦU(u)ΦU(v) = Φεn(u)Φεl(v).

Theorem 6 is an embellishment of Theorem QTSD of [3] and theorem 5 present necessary

and sufficient conditions under which the quantization error is an additive white noise independent

from the signal being quantized. We also, note that the characteristic function condition is

satisfied by dither which is uniform U [−∆/2,∆/2] or which is triangularly distributed tr[−∆,∆]

for example.

Let us apply subtractive dither to sine wave and reevaluate auto-covariance of quantization

error in Figures 2.13 and 2.14 where these are 3-bit and 4-bit quantizers respectively. We see in

the subtractive dither the quantization error is decreased and also it is white. By increasing the

bits, we see the quantization error is decreased as well.
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<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit> 50

<latexit sha1_base64="rJu83RzuBy9M+rTI7j0fUYwtmkM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4dLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd16p3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+/UjPc=</latexit>

150
<latexit sha1_base64="kf5sY5Q8WVSYboshFnmbonTP5eo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9eJdur1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqvcX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBfb40y</latexit>

250
<latexit sha1_base64="v63+yrhWLt2Rf7TeZ8FOxFzBqlg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9VC/dXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFg9Y0z</latexit>

350
<latexit sha1_base64="uicnd9s7iKqXPQNF0W9iM7KsQ5k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZBo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9VLt1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5X7i1LtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9ie400</latexit>

450
<latexit sha1_base64="eU2dYFX2G8cZA41VIUUi2gDrCmY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1FjpoXrp9oolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmpexdlCv31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz9kAY01</latexit>

�450
<latexit sha1_base64="qhWmhaVIBtXfcx0Zxcu63KngShw=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VvRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0kX9yh2UK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeGNnzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9y2rtoV5p3OZxFOEETuEcPLiGBtxDE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHzaSNbA==</latexit> �350

<latexit sha1_base64="zNsgId0nBR74BmIxrs2jtOR5Ndo=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VfRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0kX9yh2UK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeGNnzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9erX2cFlp3OZxFOEETuEcPLiGBtxDE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHzB6Naw==</latexit>

�250
<latexit sha1_base64="xpve803XLBUSkbjMxGDQuZtDaPo=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VfRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0kXtyh2UK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeGNnzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9erX2cFlp3OZxFOEETuEcPLiGBtxDE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHypiNag==</latexit>

�150
<latexit sha1_base64="JDZM6e4YVG9aNxynFc/v4t+Z/1M=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VfRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0oV35Q7KFbfqzoFWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUokF1X46v3WGzqwyRGGkbEmD5urviRQLracisJ0Cm7Fe9jLxP6+XmPDGT5mME0MlWSwKE45MhLLH0ZApSgyfWoKJYvZWRMZYYWJsPCUbgrf88ipp16pevVp7uKw0bvM4inACp3AOHlxDA+6hCS0gMIZneIU3RzgvzrvzsWgtOPnMMfyB8/kDyRKNaQ==</latexit>

�50
<latexit sha1_base64="gWplHzKmIxEpdBVITqXGi8p5q+A=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbFT0GvXiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzThGP6QDyfucUWOlh7NLt1ssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/2Uy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwalbJ3Xq7cX5SqN1kceTiCYzgFD66gCndQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBWVeNLg==</latexit>
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Figure 2.13. E(ε(t + τ)ε(t)) without SD (top) and with SD (bottom), 3-bit quantizer.
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<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit> 50

<latexit sha1_base64="rJu83RzuBy9M+rTI7j0fUYwtmkM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4dLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd16p3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+/UjPc=</latexit>

150
<latexit sha1_base64="kf5sY5Q8WVSYboshFnmbonTP5eo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9eJdur1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqvcX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBfb40y</latexit>

250
<latexit sha1_base64="v63+yrhWLt2Rf7TeZ8FOxFzBqlg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9VC/dXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFg9Y0z</latexit>

350
<latexit sha1_base64="uicnd9s7iKqXPQNF0W9iM7KsQ5k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZBo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9VLt1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5X7i1LtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9ie400</latexit>

450
<latexit sha1_base64="eU2dYFX2G8cZA41VIUUi2gDrCmY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1FjpoXrp9oolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmpexdlCv31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz9kAY01</latexit>

�450
<latexit sha1_base64="qhWmhaVIBtXfcx0Zxcu63KngShw=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VvRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0kX9yh2UK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeGNnzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9y2rtoV5p3OZxFOEETuEcPLiGBtxDE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHzaSNbA==</latexit> �350

<latexit sha1_base64="zNsgId0nBR74BmIxrs2jtOR5Ndo=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VfRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0kX9yh2UK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeGNnzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9erX2cFlp3OZxFOEETuEcPLiGBtxDE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHzB6Naw==</latexit>

�250
<latexit sha1_base64="xpve803XLBUSkbjMxGDQuZtDaPo=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VfRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0kXtyh2UK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeGNnzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9erX2cFlp3OZxFOEETuEcPLiGBtxDE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHypiNag==</latexit> �150

<latexit sha1_base64="JDZM6e4YVG9aNxynFc/v4t+Z/1M=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3VfRY9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0oV35Q7KFbfqzoFWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUokF1X46v3WGzqwyRGGkbEmD5urviRQLracisJ0Cm7Fe9jLxP6+XmPDGT5mME0MlWSwKE45MhLLH0ZApSgyfWoKJYvZWRMZYYWJsPCUbgrf88ipp16pevVp7uKw0bvM4inACp3AOHlxDA+6hCS0gMIZneIU3RzgvzrvzsWgtOPnMMfyB8/kDyRKNaQ==</latexit>

�50
<latexit sha1_base64="gWplHzKmIxEpdBVITqXGi8p5q+A=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbFT0GvXiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzThGP6QDyfucUWOlh7NLt1ssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/2Uy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwalbJ3Xq7cX5SqN1kceTiCYzgFD66gCndQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBWVeNLg==</latexit>

Lag

Figure 2.14. E(ε(t + τ)ε(t)) without SD (top) and with SD (bottom), 4-bit quantizer.
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Now let us investigate the cross correlation between the input signal and the quantization

error and compare two cases, with subtractive dither and without subtractive dither. As we see in

Figure 2.15 the quantization error ε1 is dependent on the input signal y.
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0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit> 50

<latexit sha1_base64="rJu83RzuBy9M+rTI7j0fUYwtmkM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4dLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd16p3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+/UjPc=</latexit>

150
<latexit sha1_base64="kf5sY5Q8WVSYboshFnmbonTP5eo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9eJdur1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqvcX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBfb40y</latexit>

250
<latexit sha1_base64="v63+yrhWLt2Rf7TeZ8FOxFzBqlg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9VC/dXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFg9Y0z</latexit> 350

<latexit sha1_base64="uicnd9s7iKqXPQNF0W9iM7KsQ5k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZBo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9VLt1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5X7i1LtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9ie400</latexit>

450
<latexit sha1_base64="eU2dYFX2G8cZA41VIUUi2gDrCmY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1FjpoXrp9oolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmpexdlCv31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz9kAY01</latexit>

�450
<latexit sha1_base64="ofh7no3ocE1z95KHOxlvYs8BvZk=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBiyWpFT0WvXisYNpCG8pmu2mXbjZhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBQlnSjvOt1VaW9/Y3Cpv2zu7e/sHlcOjtopTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcjfzO09UKhaLR50l1I/wSLCQEayN5NkXjStnUKk6NWcOtErcglShQGtQ+eoPY5JGVGjCsVI910m0n2OpGeF0avdTRRNMJnhEe4YKHFHl5/Njp+jMKEMUxtKU0Giu/p7IcaRUFgWmM8J6rJa9mfif10t1eOPnTCSppoIsFoUpRzpGs8/RkElKNM8MwUQycysiYywx0SYf24TgLr+8Str1mntZqz80qs3bIo4ynMApnIML19CEe2iBBwQYPMMrvFnCerHerY9Fa8kqZo7hD6zPHwHtjYA=</latexit> �350

<latexit sha1_base64="ftlqvkXthOQGPO/MtSyURl2vM44=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBiyVpFT0WvXisYNpCG8pmu2mXbjZhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBQlnSjvOt1VaW9/Y3Cpv2zu7e/sHlcOjtopTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcjfzO09UKhaLR50l1I/wSLCQEayN5NkXjStnUKk6NWcOtErcglShQGtQ+eoPY5JGVGjCsVI910m0n2OpGeF0avdTRRNMJnhEe4YKHFHl5/Njp+jMKEMUxtKU0Giu/p7IcaRUFgWmM8J6rJa9mfif10t1eOPnTCSppoIsFoUpRzpGs8/RkElKNM8MwUQycysiYywx0SYf24TgLr+8Str1mtuo1R8uq83bIo4ynMApnIML19CEe2iBBwQYPMMrvFnCerHerY9Fa8kqZo7hD6zPHwBnjX8=</latexit>

�250
<latexit sha1_base64="AJWIiyIsRms+V6r81fchiUYEWnw=">AAAB7HicbVBNS8NAEJ31s8avqkcvi0XwYkmqoseiF48VTFtoQ9lsN+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9Riura+sbm6UtZ3tnd2+/fHDY1EmmKPNpIhLVDolmgkvmG24Ea6eKkTgUrBWO7qZ+64kpzRP5aMYpC2IykDzilBgr+c557crtlStu1Z0BLxOvIBUo0OiVv7r9hGYxk4YKonXHc1MT5EQZTgWbON1Ms5TQERmwjqWSxEwH+ezYCT61Sh9HibIlDZ6pvydyEms9jkPbGRMz1IveVPzP62QmuglyLtPMMEnni6JMYJPg6ee4zxWjRowtIVRxeyumQ6IINTYfx4bgLb68TJq1qndRrT1cVuq3RRwlOIYTOAMPrqEO99AAHyhweIZXeEMSvaB39DFvXUHFzBH8Afr8Af7SjX4=</latexit> �150

<latexit sha1_base64="/P7ZJnykIr8ASHNwHKEZTNOIyro=">AAAB7HicbVBNS8NAEJ34WeNX1aOXxSJ4sSRV0WPRi8cKpi20oWy2m3bp7ibsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KOVMG8/7dlZW19Y3Nktb7vbO7t5++eCwqZNMERqQhCeqHWFNOZM0MMxw2k4VxSLitBWN7qZ+64kqzRL5aMYpDQUeSBYzgo2VAvfcv/J65YpX9WZAy8QvSAUKNHrlr24/IZmg0hCOte74XmrCHCvDCKcTt5tpmmIywgPasVRiQXWYz46doFOr9FGcKFvSoJn6eyLHQuuxiGynwGaoF72p+J/XyUx8E+ZMppmhkswXxRlHJkHTz1GfKUoMH1uCiWL2VkSGWGFibD6uDcFffHmZNGtV/6Jae7is1G+LOEpwDCdwBj5cQx3uoQEBEGDwDK/w5kjnxXl3PuatK04xcwR/4Hz+AP1MjX0=</latexit> �50
<latexit sha1_base64="0JBASizaeFfMyIDswiQnwGuIMUU=">AAAB63icbVBNS8NAEJ34WeNX1aOXxSJ4sSRV0WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Utd3tnd2+/fHDY0nGqCG2SmMeqE2JNOZO0aZjhtJMoikXIaTsc3+V++4kqzWL5aCYJDQQeShYxgk0uuedXXr9c8areDGiZ+AWpQIFGv/zVG8QkFVQawrHWXd9LTJBhZRjhdOr2Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjcW0I/uLLy6RVq/oX1drDZaV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz+NhY1C</latexit>

lag

Figure 2.15. Autocorrelation of ε1 and cross-correlation of y and ε1.

The correlation between the quantization error and the input signal can be seen in the

Figure 2.16. But the autocorrelation of quantization error is reduced significantly as it is shown

in the Figures 2.15 and 2.16. In the Figure 2.17 we can compare two cross-correlations where

both show the quantization errors is dependent on the input signal but the subtractive case has

less cross-correlation.
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0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit>

50
<latexit sha1_base64="rJu83RzuBy9M+rTI7j0fUYwtmkM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4dLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd16p3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+/UjPc=</latexit>

150
<latexit sha1_base64="kf5sY5Q8WVSYboshFnmbonTP5eo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9eJdur1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqvcX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBfb40y</latexit>

250
<latexit sha1_base64="v63+yrhWLt2Rf7TeZ8FOxFzBqlg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9VC/dXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFg9Y0z</latexit>

350
<latexit sha1_base64="uicnd9s7iKqXPQNF0W9iM7KsQ5k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZBo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9VLt1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5X7i1LtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9ie400</latexit>

450
<latexit sha1_base64="eU2dYFX2G8cZA41VIUUi2gDrCmY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1FjpoXrp9oolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmpexdlCv31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz9kAY01</latexit>

�450
<latexit sha1_base64="ofh7no3ocE1z95KHOxlvYs8BvZk=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBiyWpFT0WvXisYNpCG8pmu2mXbjZhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBQlnSjvOt1VaW9/Y3Cpv2zu7e/sHlcOjtopTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcjfzO09UKhaLR50l1I/wSLCQEayN5NkXjStnUKk6NWcOtErcglShQGtQ+eoPY5JGVGjCsVI910m0n2OpGeF0avdTRRNMJnhEe4YKHFHl5/Njp+jMKEMUxtKU0Giu/p7IcaRUFgWmM8J6rJa9mfif10t1eOPnTCSppoIsFoUpRzpGs8/RkElKNM8MwUQycysiYywx0SYf24TgLr+8Str1mntZqz80qs3bIo4ynMApnIML19CEe2iBBwQYPMMrvFnCerHerY9Fa8kqZo7hD6zPHwHtjYA=</latexit> �350

<latexit sha1_base64="ftlqvkXthOQGPO/MtSyURl2vM44=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBiyVpFT0WvXisYNpCG8pmu2mXbjZhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBQlnSjvOt1VaW9/Y3Cpv2zu7e/sHlcOjtopTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcjfzO09UKhaLR50l1I/wSLCQEayN5NkXjStnUKk6NWcOtErcglShQGtQ+eoPY5JGVGjCsVI910m0n2OpGeF0avdTRRNMJnhEe4YKHFHl5/Njp+jMKEMUxtKU0Giu/p7IcaRUFgWmM8J6rJa9mfif10t1eOPnTCSppoIsFoUpRzpGs8/RkElKNM8MwUQycysiYywx0SYf24TgLr+8Str1mtuo1R8uq83bIo4ynMApnIML19CEe2iBBwQYPMMrvFnCerHerY9Fa8kqZo7hD6zPHwBnjX8=</latexit>

�250
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Figure 2.16. Autocorrelation of ε2 and cross-correlation of y and ε2.
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Figure 2.17. Cross-correlation of y and ε1 and cross-correlation of y and ε2.
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We need to answer that why there is still correlation for subtractive dither case between

the input signal and quantization error. In order to address this issue we should check whether

the conditions in theorem 6 are satisfied or not. We know the signal input is Yt = sin t, so the

density of the signal which is deterministic signal is fY (y) = δ (yt− sin t), hence

Φy(Y ) =
∫

∞

−∞

δ (y(t)− sin t)e juydy = e jusin t

and it is clearly does not satisfy the condition 2.7. So we can not apply Theorem 6. We saw in

the previous example a nonstationary signal y(t), where its characteristic function is a function

of time and also its being deterministic signal.

In the Figure 2.18, we can apply the result of QTSD Theorem for an example with

strongly correlated random y(t), say a very low-pass filtered white noise process, and we observe

that QTSD Theorem perfectly works.
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Figure 2.18. Autocorrelation of y, autocorrelation of ε and cross-correlation of y and ε .
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Chapter 3

Predictive coding and control

3.1 Abstract

This chapter deals with feedback control over a single fixed-rate channel using predictive

coding at the transmitter side. The central thrust is to demonstrate that optimal control based on

predictive coding plus fixed memoryless quantization at the transmitter, designed to improve

the efficiency of the channel usage and exemplified (or perhaps extremized) by the transmission

of the quantized innovations signal, in general requires the construction of the joint density of

both the plant and predictor states at the receiver side and inherits a plant stability requirement,

which is examined. The Bayesian filter is developed. This recursive filter’s state density is used

to compute the optimal feedback control. This is in contrast to the less complicated propagation

solely of the predictor state, which would suffice in the linear quadratic optimal control problem

– a feature that is elucidated. A linear non-quadratic optimal control example is provided to

illustrate the approach and its benefits over control based on the recovered predictor state density

or control without predictive coding. In each of these competing cases, a lower complexity

receiver architecture is possible but at the expense of closed-loop control performance.

3.2 Introduction

Predictive quantization [6] is used in communication systems to whiten the transmitted

digital signal and remove redundancy, thereby improving coding performance. In delay-free
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coding environments, a prediction of the source signal is computed and then subtracted from the

signal to yield a prediction error, which is then quantized. Compared with the original signal, the

prediction error is both closer to white, i.e. less correlated over time, and possesses a smaller

variance, which aids in scaling the quantizer range for improved effectiveness. Such systems

form the basis of familiar schemes such as ITU-T G.721/722/726 Adaptive Differential Pulse

Coded Modulation (ADPCM) standards [7] and Delta Modulation [6]. The ADPCM schema

is depicted in Figure 3.1. The quantizer Q is fixed and the adaptive predictor and gain serve to

whiten and limit dynamic range fluctuations of the transmitted error signal, thereby improving

distortion between transmitter and receiver. The decoder/receiver mimics the encoder/transmitter

xt+1 = f(xt, ut, wt)

yt = h(xt, vt)
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
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Figure 3.1. ITU-G.722 Adaptive Differential Pulse-Coded Modulation schema.

to undo its operations and recover an approximation, ŝt , of the signal st . ADPCM has been proven

in service in telecommunications systems since at least 1984 and has spawned a number of

variants as commercial lossy speech compressors. ADPCM has been interpreted as a disturbance

rejection feedback control system in [8]. It provides a kindred example in the paper, but without

its attendant gain adaptation, which could bring it closer to [9], nor its limitation to using the

receiver-side signal at the transmitter. It manifests similar stability requirements.

For network control systems, these methods can be applied in the link between plant

and controller to achieve more efficient use of the available link bit-rate and, thereby, improved

control performance because the more effective coding leads to more accurate reconstruction

of the transmitted signal at the receiver. It is this reconstruction and, in particular, plant state

density estimation, which is the focus of this paper. The Bayesian filter is used to calculate the

joint and marginal densities of the plant and predictor states conditioned on the received data.

The general set-up is depicted in Figure 3.2 and will be made precise shortly.
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Figure 3.2. Predictive quantization based feedback control set-up.

While the structure and analysis with the Bayesian filter pertains for general nonlinear

systems, the most edifying and best studied case concerns linear plants with Gaussian noise

paired with the Kalman filter as the state and output predictor. In this case, the innovations

sequence is Gaussian, zero mean and white. Quantized innovations state estimation has been

studied in this case in [10, 11, 12, 13], both from the perspective of state estimation and of

control, notably LQG control. We too shall specialize to the linear Gaussian case, since the

analysis is both relatively direct and most informative, because the comparator unquantized

controls are so well known. However, we shall take an immediate departure from the linear

predictive coding approach of signal processing by seeking at the receiver to compute the precise

conditional state density, p(xt |It ,π0), rather than to capture the transmitter side prediction or

output, x̌t|t−1 or y̌t|t−1. Indeed, part of the message is that the plant state density is in general the

important aspect for control; a point which we illustrate with an example.

Pertinent prior literature

Quantization in control under communications constraints is a longstanding subject

with emphases on both stabilization and performance [13, 14, 15, 9]. Studies include adaptive

quantization of the control signal and of the plant output measurement sequence and include

simultaneous coding and quantization. A subset of papers studies dynamic quantization [16, 17]

in which the coding is restricted to a finite-dimensional linear system. Almost universally, the

setting is linear systems control with a quadratic criterion function. From a signal processing and

telecommunications perspective, predictive coding [6] is familiar and involves pre-whitening

of the signal before quantization. In a Kalman filtering framework, such methods equate to
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quantization of the innovations sequence, which inherently is white, Gaussian with minimum

variance. Thus, the innovations is optimally coded and so we seek a static memoryless quantizer

as in ADPCM. This is a restriction that we make on the coder.

Beginning with Fischer [18] the connection between quantization and LQ control perfor-

mance was studied with the optimal quantizer being time-varying, although with an asymptoti-

cally time-invariant dequantizer, with level boundaries depending on the current state estimate.

For Fischer, the quantizer operates on the computed optimal control signal. Fu [19] and Yüksel

[20] extend these results to causal coding quantizers and Fu identifies some technical errors in

[18]. The focus is on fixed-rate quantizer design and the existence or otherwise of a separation

theorem in this case. The work [21] treats a related output feedback control problem with variable

bit rate coding and random channel delay, deriving bounds for the limiting average codeword

length given a specified bound on the controlled state covariance.

Papers [22, 23] consider the cost-rate tradeoff in linear quadratic control. This problem

seeks the lowest average bitrate, R(b), channel required to achieve a specified LQ performance

b. Stavrou et al. [24] treat a related Kalman filtering problem and seek the minimal data rate

required to achieve a specific distortion or mean squared error between the plant state and the

receiver-side Kalman filter. All three papers start from a vector autoregressive plant model with

fully measured state at the transmitter. They restrict attention to zero-delay coding schemes

which is appropriate for feedback control. Each of these papers arrives at a coding scheme based

on Shannon entropy coding of a quantized innovations, but a different innovations from here.

Each of [22, 23, 24] and ourselves has a single bandlimited forward channel and a high-

fidelity return channel, used in [24] for communication of the receiver state estimate and in

[22, 23] and here to communicate the control signal. Kostina and Hassibi [22] and Tanaka et al.

[23] require stabilizability of the plant system’s [A,B] pair and adjust the coding to accommodate

the plant feedback stabilization as part of their calculation. This is evident in their inherent

satisfaction of Tatikonda’s and Mitter’s [25] and Nair’s and Evans’ [9] lower bound on the bit

rate based on the unstable eigenvalues of A. Here, because we quantize directly the output

44



innovations process constructed at the transmitter, we must limit the analysis to stable plants.

This is a property proven in Corollary 10 and explained as it arises in ADPCM. Tanaka et al.

[23] and Stavrou et al. [24] incorporate the communication of the receiver’s state estimate of

the plant state to compute their state innovations, which is then quantized in the coder. We note

too that the encoding strategy in [22] also is based on quantizing then entropy coding the state

innovations between the true plant state and the receiver’s estimate and can accommodate partial

state measurements with Gaussian noise. Initial values, channel noise and quantization error

force the state estimates at the transmitter and receiver to differ. The effect of this is seen in the

additional stability condition in Corollary 10. To improve performance and simplify analysis the

quantizers can be subtractively dithered in each of these works.

Uniform subtractive dithered quantizers of finite support have been analyzed in [26, 27],

where they demonstrated that such quantizers and predictive coding arise in achieving a Gaussian

nonanticipative rate distortion function with a specified mean square filtering error overbound,

provided quantizer overload is avoided. In this context, they treat full-state transmission over

n-parallel AWGN channels with feedback of the state prediction from the decoder. They also

propose an approach to mitigate the effects of overload. This formulation differs from ours in

the full-state communication and in the feedback of the receiver prediction. The computation of

the innovations process before encoding, however, is similar and demonstrated to be close to

optimal for their constrained zero-delay coding problem. For us, we take the predictive coder

with uniform subtractive dithered quantizers in each channel as the starting point. Papers [26, 27]

provide a justification of this as a sensible starting point. The work of [28] connects some of

these coding aspects to the feedback control problem.

3.2.1 Contributions

• The results commence from the noisy plant output measurement rather than the full

state and extend to nonlinear systems with non-quadratic optimal control. The treatment

includes quantized LQG and computed examples.
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• They expose the role of the Bayesian filter and state conditional density, rather than

moment, reconstruction.

• They are based on or limited to predictive coding at the transmitter using quantized output

innovations by a memoryless, fixed-rate quantizer. This solution is necessarily zero-delay

and fixed bit rate, in comparison with the other entropy coded approaches which are

variable rate.

• Our problem focus is to optimize the plant performance given the communications structure

based on predictive coding. This is in contrast to [22, 23, 24] where the control performance

is specified and communications required to achieve this is then designed.

A number of papers are dedicated to reconstruction of the conditional density of either

the plant state or the predictor state using methods allied with Kalman filtering [10], Bayesian

filtering [11] and particle filtering [12]. These are closest in focus to the current work, although

they are limited to the consideration of linear systems. Once the transmitter-side prediction and

quantization scheme is decided, the problem that we consider is the reconstruction by Bayesian

filter at the receiver of the filtered conditional density of the plant state, as opposed to the

density of the predictor state. We do this in a fully nonlinear context and then specialize to

the linear problem. We provide theory and demonstrate by example the control performance

benefits of using: the plant state density, the filtered density versus the predicted density, and

the quantized prediction error versus quantized output signals. The contribution is to provide a

unifying nonlinear framework in which to treat the predicted and filtered state conditional density

reconstruction and to explore its connection with other approaches from the linear context based

on reconstruction of the predictor state conditional density or its mean value.

Notation

We denote probability density functions (pdfs) by p(·). Gaussian pdfs of mean µ and

covariance P are denoted N (µ,P). The initial pdf of the transmitter state will be denoted π0|−1.
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The data available at the receiver at time t is It = {π0|−1, i0, . . . , it}. By the same token, the data

available at the transmitter is Et = {π0|−1,ε0, . . . ,εt}. We presume that, at time t, the input signal,

ut , computed at the receiver/controller is available also to the transmitter side.

3.3 Nonlinear Predictive Quantization – Transmitter side

We consider separately the general case of a nonlinear plant at the transmitter side and its

specialization to a linear Gaussian system. The Bayesian filter construction applies to both but

the linear formulation allows us to draw on well understood ideas from Kalman filtering. For

comparison and brevity, we present them side by side. Although the quantized linear innovations

problem has been more widely studied.

3.3.1 Nonlinear plant & predictor

The nonlinear stochastic plant system is described by

xt+1 = ft(xt ,ut ,wt), x0, (3.1)

yt = ht(xt ,vt). (3.2)

Here, state xt ∈ Rnx , input ut ∈ Rnu, output yt ∈ Rny , process noise wt ∈ Rnw , measurement noise

vt ∈ Rnv . Noise sequences {wt} and {vt} are mutually independent, zero-mean and white with

known densities. The plant initial condition, x0, has known density, π0|−1, and is independent

from wt and vt for all t.

The measured output and control signals at the transmitter, ut and yt , are the inputs to a

finite-dimensional predictor

ξt+1 = ḡt(ξt ,ut ,yt), ξ0, (3.3)

y̌t = jt(ξt). (3.4)
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The prediction, in turn, is combined with yt to produce a prediction error or innovations signal.

εt = yt− y̌t . (3.5)

Using (3.4)-(3.5), then (3.3) becomes

ξt+1 = gt(ξt ,ut ,εt), ξ0, (3.6)

since yt can be reconstructed from εt and y̌t .

3.3.2 Linear Gaussian plant & predictor

The linear plant system is described by

xt+1 = Axt +But +wt , (3.7)

yt =Cxt + vt , (3.8)

where {wt} and {vt} are mutually independent, white noises of known densities and also zero-

mean Gaussian with covariances Q and R respectively. The state estimator and predictor is the

Kalman predictor with state x̌t and innovations

εt =

[
C −C

]



xt

x̌t


+ vt . (3.9)
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The predictor recursion is

x̌t+1 = Ax̌t +But +Ltεt , (3.10)

= (A−LtC)x̌t +But +Ltyt ,

= (A−LtC)x̌t +LtCxt +But +Ltvt , (3.11)

y̌t =Cx̌t ,

Lt = AΣt|t−1CT (CΣt|t−1CT +R)−1,

where

Σt|t−1 = E{[xt− x̌t−1][xt− x̌t−1]
T |Et−1},

Σt|t = E{[xt− x̌t ][xt− x̌t ]
T |Et−1}.

Here the covariance matrix, Σt|t−1, is given by the Riccati difference equation commencing from

Σ0|−1 [29]. The prediction error or innovations is given by (3.9).

3.3.3 Quantization

The ‘quantizer’ (or combined quantizer-dequantizer pair) in Figures 3.1 and 3.2, is a

known single-valued function of the same dimension, ny, as its input. Typically (and in our

calculations below), the quantization function, Q, maps real intervals to unique fixed digital

signal values in each channel and the dequantization function, Q−1, maps these received values

to unique points in their corresponding intervals.

it = Q(εt) = Q−1 (Q[εt ]) . (3.12)

Gersho and Gray [6] describe many quantizer designs for communication systems,

covering both scalar and vector quantization including optimization for properties such as

minimal distortion and the Lloyd-Max quantizer, which is adapted to signals with Gaussian
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distributions.

Assumption 1. The quantizer-dequantizer function, Q(·), is known, finite range and memoryless.

Our formulation makes no other specific assumptions about the quantizer. Although, our

calculations later for linear systems are based on a uniform (linear) mid-rise quantizer and its

mid-point ‘inverse’. We arbitrarily absorb the quantizer into the transmitter side, since we only

care about the quantizer-dequantizer pair in the signal domain without regard to the specifics of

the channel representation. Although, it is straightforward to incorporate other features into the

full formulation, such as channel noise or the ADPCM structure as above.

More generally, the quantizer is a codec, a coder-decoder pair. Since we focus on control,

we limit our study to delay-free coding. We consider memoryless coding for simplicity in

order not to have to incorporate the codec states and to exploit the whiteness of the innovations.

The important feature of quantized innovations signal, {it}, compared with the transmitter-side

innovations, {εt}, is that it has reduced information content, measured by entropy or other

metrics, and this therefore diminishes its utility as a means to compute the optimal control.

Understanding the cost of quantization borne by the control performance in this setting is the

aim of this paper.

The following result, a specialization of the Data Processing Inequality [30], captures

this relationship.

Lemma 7. Denote the following σ -algebras: It = σ(It) and Et = σ(Et). Then, since it = Q(εt)

for known Q(·),

It ⊆ Et . (3.13)

Subtractive dithered quantizer for the linear case

A subtractive dithered quantizer, Qd(·), consists of a fixed, finite-range quantizer function

Q(·) with a predetermined dither signal, {dt}, which is known to both transmitter and receiver.
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It is defined

Qd(εt)
4
=Q(εt +dt)−dt . (3.14)

A linear quantizer is one with equally spaced steps with the center points of the steps mapping

the input value to the same output value. A midrise quantizer has discontinuity at the origin of

the input. We have this result following [3].

Theorem 8. Suppose quantizer Q(·) is a subtractive, dithered, b-bit-per-channel, midrise, sym-

metric, linear quantizer with saturation values ±ζ . Suppose, further, that the subtractive dither

signal is white, independent in each channel, and either uniformly distributed U (−ζ/2b,ζ/2b)

or triangularly distributed, dt ∼ tr(−ζ/2b−1,ζ/2b−1), and known exactly to the transmitter and

receiver. If the signal εt +dt ∈ [−ζ ,ζ ], then the quantization noise

ψt
4
= it− εt = Qd(εt)− εt , (3.15)

is white, independent from {εt}, and uniformly distributed ψt ∼U [−ζ/2b,ζ/2b]. That is,

E(ψt) = 0, E(ψ2
t ) =

ζ 2

3×22b
4
= Ψ. (3.16)

3.3.4 Transmitter assumptions

Assumption 2. 1. xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , ξt ∈ Rnξ .

2. Control signal ut is known to both transmitter and receiver at time t +1.

3. {wt} and {vt} are mutually independent, white noises of known densities and, in the linear

case, also zero-mean Gaussian with known covariances.

4. The transmitter-side initial states, x0 and ξ0 (respectively x̌0), have known joint density,
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π0|−1, independent from {wt ,vt}. In the linear case,

π0|−1 = N







x̂0|−1

x̂0|−1


 ,




Σ0|−1 0

0 0





 .

The receiver has knowledge of these densities.

5. In the nonlinear case, if the conditional mean of the plant state is computed at the

transmitter, it is a function of ξt .

x̌t = E(xt |Yt−1) = E(xt |Et−1) = `t(ξt). (3.17)

6. The function gt(·, ·, ·) in (3.6) causes the predictor state update to be uniformly incremen-

tally input-to-state stable [31]. In the linear case, A in (3.7) and (3.10) has all eigenvalues

strictly inside the unit circle. The origin of this stability condition, at least in the linear

case, is examined in detail in Subsection 3.4.1.

3.4 Quantized Innovations Bayesian Filtering – Receiver
Side

The nonlinear signal model for the sequence, {it}, arriving at the receiver comprises:

• For the nonlinear case,

– Using (4.2), (3.4) and (3.5), εt = ht(xt ,vt)− jt(ξt). Then (3.6) and (3.7) yield the
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combined state recursion

zt+1
4
=




xt+1

ξt+1


=




ft(xt ,ut ,wt)

gt(ξt ,ut ,εt)


 ,

=




ft(xt ,ut ,wt)

gt(ξt ,ut ,ht(xt ,vt)− j(ξt))


 ,

4
= ft(zt ,ut ,wt ,vt). (3.18)

– Output equation

it = Q[ht(xt ,vt)− jt(ξt)]
4
= ht(zt ,vt). (3.19)

• Specializing to the linear Gaussian case with

Ft =




A 0

LtC A−LtC


 ,nt =




wt

Ltvt


 ,H =

[
C −C

]
,

– state equation

zt+1 =




xt+1

x̌t+1


 , (3.20)

=




A 0

LtC A−LtC







xt

x̌t


+




wt

Ltvt


 ,

= Ftzt +nt , (3.21)
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– output equation

it = Q



[
C −C

]



xt

x̌t


+ vt


 ,

= Q(Hzt + vt) . (3.22)

3.4.1 Open-Loop System Stability Condition

The linear predictive decoder immediately highlights a stability requirement on the source

system (3.7) in order that the receiver-side innovations filter also be stable. As the predictive

codec is envisaged as part of a feedback control scheme, this imposes a restriction on the class of

plants to which such a scheme might be applicable.

Lemma 9. Consider the transmitter-side linear, time-varying system (3.20), with joint state

space R2nx , together with its predictively-coded innovations output signal, {εt} from (3.9). The

subspace

Span








Inx

Inx







⊂ R2nx ,

is unobservable and is associated with the eigenvalues of A.

Proof: Evidently and no matter the value of Lt ,

[
C −C

]



Inx

Inx


= 0ny×nx ,




A 0

LtC A−LtC







Inx

Inx


=




Inx

Inx


×A.

Corollary 10. Consider the transmitter-side predictive coding system (3.7)-(3.9),(3.15) with the
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receiver calculating its state estimate using the innovations filter,

x̂t+1 = Ax̂t +But +Lt it . (3.23)

If system matrix A has any eigenvalues outside or on the open unit disk and x̌t − x̂t possesses

non-zero component in the direction of this eigenvector for some t, then the error between

estimates, x̌t at the transmitter and x̂t at the receiver, grows unbounded with time.

For stable linear systems at the transmitter, which might consist of the joint stable plant

and its stable predictor, the linear analysis of the closed-loop fails when the fixed-range quantizer

overflows or saturates. Then, the assumptions of Theorem 8 fail and the quantization error ceases

to exhibit the independence properties. Naturally, the Gaussian property of the system noises

guarantees both eventual overflow and non-infinitesimal probability of overflow at any time. The

probability of saturation of a fixed-quantized signal in these circumstances has been studied

using Markov methods by the authors in [32] for both intermittent and quantized data. The

time of first overflow is called the escape time there. A feature of that analysis is that for many

systems, the escape time can be very large, depending on system parameters including feedback

gain K and saturation level ζ .

If A has all eigenvalues in the open unit disk and escape time has yet to occur, then using

(3.10), (3.15), (3.23), we have

x̌t+1− x̂t+1 = A(x̌t− x̂t)−Ltψt ,

and, letting t grow while vainly betting on no escape,

E [x̂t ]→ E [x̌t ] = E [xt ] ,

cov [x̌t− x̂t ]→
∞

∑
j=0

{
A jLΨLT A jT

}
.

Here, L is the limiting value of the Kalman gain, Lt . These results are independent of the
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feedback control law other than central dependence of the escape time itself on K.

These results of Lemma 9 and the discussion following for the underlying linear time-

invariant system (3.7) carry over directly to linear time-varying systems by the same argument

[33]. For linear systems with nonlinear measurements, one may appeal to Curry [1], who

shows that the innovations is independent of the control signal, and Lemma 2 to argue that the

unobservability problem persists for these systems. For more general nonlinear systems, it is

less clear how instability of the plant might be manifested in the error between transmitter-side

and receiver-side estimates. Although, Assumption 2.6 would be needed to analyze the estimate

errors locally.

The clear admonition of Corollary 10 is to apply predictive coding solely to the control of

stable systems. The reconstruction of the state estimate from the receiver innovations otherwise

is unstable. This occurs because there is no output injection of x̂t into the computation of εt and

thus it . To our knowledge, this was first observed in [34].

We also note that the practically implemented G.722 ADPCM standard [7], in the

definition of the adaptive predictor in its Section 3.6, includes specific pole-parameter restrictions

to enforce stability of the prediction model at both the transmitter and receiver; it limits the

number of poles to two and projects the parameters to ensure stability. Thus, we offer four

observations.

(i) Predictive coding does not appear suited to the control of unstable systems. We believe

this to be a novel observation and a reflection of the nature of predictive coding itself.

(ii) The practical success of ADPCM indicates that predictive coding has something to offer

in control of stable plants.

(iii) The computed feedback control performance, in the example presented in Section 3.6 for a

stable linear system close to instability, is significantly improved (reduced by 56%) using

predictive coding for a finite bit-rate channel over that in which the output signal itself is

quantized.
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(iv) The nonlinear example in Section 3.6 also demonstrates significant improvement – in

this case with a maximization criterion and by a factor of 15 – of the innovations based

approach versus quantization of the output signal.

3.4.2 Bayesian filter

The Bayesian filter uses the sequence of measurements, {ut , it}, to compute recursively

the joint conditional density of the transmitter-side state

πt = p
(

zt |It)= p







xt

ξt




∣∣∣∣∣∣∣
It


 .

For the general nonlinear system (3.18)-(3.19),

zt+1 = ft(zt ,ut ,wt ,vt),

it = ht(zt ,vt),

the Bayesian filter recursion is [35]

p(zt |It) =
p(it |zt ,It−1)p(zt |It−1)∫

zt
p(it |zt ,It−1)p(zt |It−1)dzt

,

=
p(it |zt ,It−1)p(zt |It−1)

p(it |It−1)
, (3.24)

p(zt+1|It) =
∫

zt

p(zt+1|zt ,It)p(zt |It)dzt . (3.25)

We have been careful to include explicitly the conditioning on It in both integrands, since this

plays a role in the case of correlated process and measurement noises, as here.

The recursion commences from π0|−1 = p(z0) and consists of two parts:

• measurement update (3.24) with p(it |zt ,It−1) derived from the output equation (4.2) via

the function ht(·, ·) and the density of vt .
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• time update (3.25) with p(zt+1|zt ,It) reflecting ft(·, ·, ·, ·) in (3.18) and the joint densities

of wt , vt and it .

For linear Gaussian systems without quantization, the Bayesian and Kalman filters coincide,

although the Kalman filter more efficiently computes just the sufficient statistics of these condi-

tional densities: the mean and covariance.

3.4.3 Reduced-order Bayesian filter

We note that the (full-order) Bayesian filter (3.24)-(3.25) yields the joint density πt .

The marginal densities, p(xt |It) and p(ξt |It), are simply computed from πt by integration. If,

however, only the predictor state density, p(ξt |It), is desired, this can more easily be calculated

by applying the Bayesian filter to state equation (3.6) with measurement equation (3.12).

ξt+1 = gt(ξt ,ut ,εt), ξ0,

it = Q(εt).

In the quantized linear Gaussian case, this corresponds to using (3.10) and (3.12) to

compute the density p(x̌t |It) without the attendant calculation of p(xt |It). This results in a

reduced-order Bayesian filter which yields solely the conditional density of x̌t . Such receiver-side

reconstruction of the predictor state is the mainstay of predictive coding in signal processing [6].

Such ideas underpin some approaches to quantized innovations Kalman and Bayesian filtering

[10, 11, 12] and Delta Modulation.

3.4.4 Computational issues

The Bayesian filter is numerically demanding. Notably, the integration in time update

(3.25) presents a challenge to computation, since it involves performing a 2nx-dimensional

integral at each sample point in a 2nx-dimensional space, yielding an operation count of O
(
16n4

x
)
.

By contrast, the measurement update (3.24) is relatively benign at O(4n2
x). Increasing the number

of sample points per dimension rapidly causes problems. This is exacerbated by densities in
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xt and x̌t being poorly conditioned, such as can occur with singular densities for x̌t and with

very fine quantization. No special numerical ‘tricks’ were applied in the computations in this

paper. The Particle filter may be applied to implement approximately the Bayesian filter using

resampling ideas to manage calculations. This comes with its own set of problems, issues

and fixes [36]. In our examples, we compute the Bayesian filter on a fixed grid rather than by

particles.

The distinction between computation of p(xt |It) and p(x̌t |It) rests solely with the will-

ingness to devote resources to computation at the receiver. They both operate on the same data.

In a control setting, this is also connected to the admissibility of accepting greater computational

delay at the receiver, which itself might preclude any advantage versus the delay in accepting a

prediction-based control signal.

It is certainly worth remarking that the Bayesian filter calculations, notably central

recursion (3.25), lend themselves to highly parallelized implementation, which suggests using

GPUs or other processor architectures to achieve speedup [37].

3.4.5 Density properties

We have the following general results for the nonlinear and linear cases.

Theorem 11. If the conditional mean state estimate is computed at the transmitter, so that

x̌t = E(xt |Et−1),

then the two receiver-side conditional means coincide. That is,

E(xt |It−1) = E(x̌t |It−1). (3.26)

Proof: Lemma 7 shows that σ(It−1) =It−1 ⊆ Et−1 = σ(Et−1). The smoothing property
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of conditional expectation [38] then establishes that

E[x̌t |It−1] = E
[
E[xt |Et−1]|It−1]= E[xt |It−1].

Theorem 12. In the general nonlinear case, if the innovations sequence, {εt}, is white, then

p(x̌t |It) = p(x̌t |It−1).

Proof: The whiteness property of {εt} implies that the received signal, {it}, also is white

and, since x̌t is computed causally from Et−1, that x̌t is independent from εt and, therefore, it .

• Theorem 11 states that, should the objective be to calculate the conditional mean of the plant

state at the receiver, then one might use the reduced-order Bayesian filter to achieve this.

• Theorem 12 establishes that in the case where the prediction errors are white, the conditional

x̌t density at the receiver (and transmitter) will update only at the time-update stage.

•We appreciate that, while the transmitter side recursion (3.3) is driven by the innovations, εt ,

derived directly from xt , the receiver side Bayesian filter driven by the quantized innovations

requires stability of gt(·, ·, ·) as in Assumption 2.6 in order that its predictor state estimate not

diverge too greatly from that at the transmitter. This, underlying predictor stability requirement

is inherent in all works in this field and reflects the estimate convergence condition for two state

estimators both driven by the innovations of one of the estimators.

3.5 Controller

The sequence of quantized innovations, {it}, arrives at the receiver and is used to generate

the feedback control signal, ut , as depicted Figure 3.2. The Bayesian filter is applied to the

received sequence to yield conditional densities p(xt |It−1) and p(x̌t |It). We have the following

result from stochastic optimal control.

Theorem 13 (Kumar & Varaiya [39], Bertsekas [40]). For any choice of optimization criterion
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admitting a bounded value function, the optimal causal output feedback control for system

(3.18)-(3.19) is

uopt
t = kt(πt),

where πt = p(zt |It) and feedback policy kt(πt) is found by solving the stochastic dynamic

programming equation based on the associated objective function.

The result follows from the Markovian property of (3.18) and involves two computation-

ally challenging aspects; the Bayesian filter for πt and the solution of the stochastic dynamic

programming equation. Inherently, this latter piece is the harder and requires duality of the

controller. For our predictive coding setup, since the plant state xt is not dependent on ξt , we can

say more.

Corollary 14. For system (4.1)-(4.2), with objective function dependent solely on future {xt ,ut},

the optimal causal output feedback control solution is

uopt
t = kt

(
p(xt |It)

)
.

That is to say, the predictor state, ξt , and its conditional density are not explicitly part of

the optimal control solution.

The control signal computation is based on the conditional xt density from the Bayesian

filter. Our central aim is to describe the Bayesian filter for estimating the joint state,

zt =




xt

x̌t


 ,

representing the predictively coded transmitter side.

Theorem 15 (Curry [1], Section 5.4, pp. 75-78, Appendix D, pp. 114-116). For the linear state
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system (3.7) with: memoryless nonlinear measurement

yt = ϕt(xt ,vt),

independent, white but not necessarily Gaussian noise processes {wt} and {vt}, and quadratic

objective function

Jt = E

(
N+1

∑
k=t

xT
k Qkxk +uT

k Rkuk

∣∣∣∣∣Y
t ,Ut−1,π0|−1

)
, (3.27)

the optimal output feedback control is given by

u?t = Kt E(xt |Yt ,Ut−1,π0|−1),

where, Kt is the LQ optimal feedback gain computed from the control Riccati equation.

Corollary 16. For linear system (3.7) with quantized innovations measurement (3.12), quadratic

objective function (4.3), and one time-sample delay in the controller, the optimal output feedback

control is given by

u?t = Kt E(x̌t |It−1,Ut−1,π0|−1). (3.28)

Proof: Mita [41] establishes the optimality of the LQ-optimal feedback gain with

the predictive state estimate. This translates directly to Curry’s result. For linear systems,

the innovations sequence is white and one may then appeal to Theorem 11 to establish that

E(xt |It−1,Ut−1,π0|−1) = E(x̌t |It−1,Ut−1,π0|−1) and the result follows.

• Theorem 17 shows that, despite the nonlinear measurements, the optimal LQ control is to feed

back the filtered conditional mean of the state. This would suggest using the receiver to compute

this quantity and then to calculate the control.

• Appealing to the results of [41], we see that, for a single delay controller, the same calculation
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holds but with the predicted state estimate at the receiver, which is simpler to compute.

• Corollary 16 uses Theorem 11 to replace the conditional mean of xt by that of x̌t , which incurs

substantially fewer computations for its estimation.

• It is worth noting that the filtered conditional mean of xt is different from its predicted

conditional mean, even though Theorem 12 shows that they coincide for x̌t when the innovations

is white, as in the linear case.

• This theorem and corollary are specialized to linear systems with quadratic criteria. We shall

see shortly an example, where the optimal controller depends on the complete density of xt and

not just on x̌t . In this case, the feedback controller based on p(xt |It−1) outperforms that based on

p(x̌t |It−1).

3.6 Quantized Linear Innovations Filtering

We now specialize the development to the case of quantized linear Gaussian innovations,

the Bayesian filter for which is derived in the Appendix. In this section, we do not use a

subtractive dithered quantizer and compute the full Bayesian filter. In the following section, we

apply the subtractive dithered quantizer and avail ourselves of the whiteness and uniform density

of the quantization noise.

The joint state zt is defined in (3.20) and evolves according to the linear dynamics in

(3.21), which defines system matrix Ft . The quantized innovations signal, it , is described by

(3.22), which defines output matrix H. The Bayesian filter generates: the conditional density,

p(zt |It), of this 2nx-dimensional state, the marginal densities of which yield p(xt |It), to be used

for the optimal controller; and, p(x̌t |It) = p(x̌t |It−1) according to Theorem 12.

By the same token, we also consider the nx-dimensional Bayesian filter for the innovations

representation of the transmitter-side state estimator,

x̌t+1 = Ax̌t +But +Ltεt , (3.29)

it = Q(εt),
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to construct directly p(x̌t |It), without the attendant complication of producing p(xt |It), nor

indeed of performing the measurement update step. The conditional density p(x̌t |It) is identical

whether produced via the full-order Bayesian filter or it reduced-order counterpart.

Example system

We consider a scalar example quantized innovations system with: values A = 0.99, B = 1,

C = 1, Q = cov(wt) = 0.1, R = cov(vt) = 0.1; Kalman filter initialization x̂0|−1 = 0, Σ0|−1 =

1.3. Depending on the signal, εt or yt , being quantized, the corresponding steady-state

standard deviation, σε or σy, is computed and the 3-bit/8-level, linear, symmetric, midrise

quantizer is used with saturation value at ζε = 5σε or ζy = 5σy respectively, where σ refers

to the stationary variance.

The quantized innovations Bayesian filter, the quantized output Bayesian filter, and the

unquantized Kalman filter were computed for a number of steps. The resulting predicted and

filtered densities are displayed in Figures 3.3 and 3.4. The densities were propagated at 71

sample points in the range [-2, 2].

Figure 3.3. Predicted (8|7) density functions for: quantized innovations Bayesian filter p(x8|I7)
and p(x̌8|I7), quantized output Bayesian filter p(x8|Ȳ7), transmitter-side Kalman predictor
pKF(x8|E7). Actual plant state x8 depicted by a green square.
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Figure 3.4. Filtered (8|8) density functions for: quantized innovations Bayesian filter p(x8|I8)
and p(x̌8|I8), quantized output Bayesian filter p(x8|Ȳ8), transmitter-side Kalman predictor
pKF(x8|E8). Actual plant state x8 depicted by a green square. Note change of vertical scale
versus Figure 3.3.

We offer the following observations.

• The predicted densities p(x8|I7) and p(x̌8|I7) are different, although their mean values are the

same, as guaranteed by Theorem 11.

• The filtered densities p(x8|I8) and p(x̌8|I8) are different, as are their mean values.

• The filtered density p(x̌8|I8) is identical to the predicted density p(x̌8|I7), as guaranteed by

Theorem 12.

• The conditional densities of xt based on quantized innovations are different from those based

on quantized output yt .

3.7 Linear Innovations with Dithered Quantizer

We now replace the standard quantizer by a subtractive dithered quantizer, as described

in Theorem 8, where now the quantization noise is assumed white and uniformly distributed with

zero mean and covariance ζ 2

3×22b . The Kalman filter provides optimal second-order estimation in

this case.
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We have the above linear transmitter systems (3.18) and (3.10) with transmitted data

it = εt +ψt , (3.30)

= Hzt + vt +ψt . (3.31)

Immediately, one has the receiver-side Kalman filter recursion from (3.21)-(3.30) with usual

accommodation of correlated process and measurement noises. Denote

Ft = Ft P̄tHT +




0

LtR


 .

Then the recursion for the receiver’s conditional mean and conditional covariance is:

µt+1 = Ft µt +Ft(HP̄tHT +R+Ψ)−1it , (3.32)

P̄t+1 = Ft P̄tFT
t −Ft(HP̄tHT +R+Ψ)−1F T

t

+




Q 0

0 LtRLT
t


 (3.33)

with initial condition

µ0 =




x̂0|−1

x̂0|−1


 , P̄0 =




P0|−1 0

0 0


 .

The conditional joint density at the receiver has

E(zt+1|It) = µt ,

cov(zt+1|It) = P̄t .
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Observations

• The first two conditional moments of p(x̌t |It−1) are computed directly from signal model

(3.10) and (3.30).

ˆ̌xt+1 = E[x̌t+1|It ,π0|−1],

= A ˆ̌xt +But +Lt it , (3.34)

Mt+1 = cov(x̌t+1),

= AMtAT +LtΣt|t−1[I− (Σt|t−1 +Ψ)−1
Σt|t−1]L

T
t . (3.35)

The resultant conditional density is unique no matter the method of computation.

• The detailed recursion (3.34)-(3.35) for ˆ̌xt shows that the estimate only adjusts at the time-

update step of the Kalman filter, since p(x̌t |It) = p(x̌t |It−1), which in turn is due to the indepen-

dence of x̌t and it from (3.34). This is a manifestation of Theorem 12.

• The two dimension-nx components of the conditional mean are equal per Theorem 11.

E(xt |It−1) = E(x̌t |It−1).

• While the conditional means of xt and x̌t at the receiver are identical in this case, their

covariances, and thus their complete conditional densities are different.

• For the case with zero channel or quantization noise, ψt ,

P̄t = blockdiag(Σt|t−1 0).

In this case, x̌t is reconstructed perfectly at the receiver, since it is a deterministic function of the

innovations.

• The stability of matrix A is required for the convergence of conditional mean Mt in (3.35). This

follows Corollary 10.

•We have deliberately ignored the condition εt ∈ [−ζ ,ζ ] from Theorem 8, required to ensure
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that ψt be white. The saturation levels on the quantizer are presumed chosen to enforce this with

high probability.

• Additive white channel noise could be included into the analysis in a fashion identical to the

quantization noise, subject to the saturation condition.

3.8 Comparative optimal control examples

We use the scalar example system from Section 3.6 above and consider a sequence of

control problems applied to the subtractive dithered quantized system. The aim is to identify

circumstances where the control benefits accrue with the availability of the filtered state density.

3.8.1 LQG control with dithered quantizer

For the example system presented earlier and LQ cost function

J = lim
N→∞

E

{
1
N

N−1

∑
t=0

xT
t Qcxt +uT

t Rcut

}
,

with Qc = 5 and Rc = 0.7, the performance of three controllers was computed using the LQ-

optimal feedback gain and the various conditional mean state estimates.

I. filtered state estimate from quantized innovations

ut =−KE(xt |It),

[This is the optimal control by Theorem 17.]

II. predicted state estimate from quantized innovations

ut =−KE(xt |It−1) =−KE(x̌t |It−1),

III. filtered state estimate from quantized outputs

ut =−KE(xt |Ȳt).

The achieved LQG costs are given in this table.
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Control law value J

ut =−KE(xt |It) 0.9311

ut =−KE(x̌t |It−1) 1.4126

ut =−KE(xt |Ȳt), 1.6712

These quantifications indicate the following.

• The optimal control relies on the use of the filtered density and there is a substantial performance

penalty to using the predictive density for this example. This needs to be balanced against the

computational cost of operating the full-order Bayesian filter at the receiver.

• There is, for this example, a substantial performance benefit accruing the efficient use of

the communications channel through the transmission of quantized innovations signals versus

quantized outputs. Again, this comes at a complexity cost in computation at the receiver. But it

shows that a control improvement can be realized via careful signal coding. This is generally

well understood [19, 20] but is quantified by the example here.

3.8.2 Non-LQ optimal control

For the same system, define the performance function

ηt =





xt , if xt < 1,

0, else.

The one-step-ahead control objective is

ut = argmaxut
E
[
ηt+1|It] .

The solution for the optimal control, given by (3.42) in the Appendix, is

uopt = 1−E(xNF
t+1|It)−xsolv,
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where xsolv is the solution of (3.43), an algebraic equation involving solely the Bayesian filter

predicted density function pNF(xNF
t+1|It) for the unforced, ut = 0, state. That is, the optimal

control depends on the entire density of the state and not just upon its first moment. The formula

(3.45) for the optimal cost in this case indicates dependence on the covariance.

We present three examples of optimal control of ηt based on the densities: p(xt+1|It),

p(x̌t+1|It) and p(xt |Ȳt). As seen from Figure 3.3, these densities differ and each is associated

with a different value of the control parameters xsolv. Accordingly, their control performances

differ, even though their conditional means might coincide.

Density xsolv E[ηt+1|It ]

p(xt+1|It) -0.0673 0.1623

p(x̌t+1|It) 0.0587 0.1587

p(xt |Ȳt) -2.8118 0.0108

This reinforces the control performance value of the use of the filtered quantized innovations state

density. The xsolv value computed from the x̌ density is inappropriate, leading to diminished

performance. For the quantized output density, the increased variance in the density due to

inefficient coding degrades control performance.

3.9 Conclusion & extensions

We have explored the application of the Bayesian filter for control based on predictively

coded signals. The predictive coding brings efficiency in the use of the channel bits, which

leads to improved state estimation at the receiver and, in turn, to a more accurate state density

for control calculation. We have paid particular attention to the generation of the filtered state

conditional density, the information state, at the controller and identified the inherent performance

difference from the predicted state conditional density.

In addition to new theoretical results concerning the state estimation task with predictive

coding, the demonstration of computed examples illustrates the feasible but high computational

cost of these methods. We analyzed the control problem with dithered quantization which permits
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precise evaluation of control performance in several cases. Extensions of the computational

examples are possible.

• Computation with fully nonlinear and time-varying state and measurement equations, as

illustrated in Figure 3.2, requires some finesse in the following manner.

– The transmitter-side predictor yielding ξt and y̌t needs to be based itself on a nonlinear

filter, perhaps even a Bayesian filter.

– The conditional densities p(it |zt) in (3.24) need to incorporate the nonlinearity

ht(·, ·, ·) in an appropriate fashion in addition to the inclusion of the quantizer.

– The conditional densities p(zt+1|zt) in (3.25) need to include the nonlinearity ft(·, ·, ·).

– The innovations sequence no longer need be white. Even in the linear non-Gaussian

case, it is uncorrelated but not necessarily white.

These are standard issues with the application of the Bayesian filter.

• Incorporation of further channel defects such as dropped packets, additive noise, delays are

simple extensions of the Bayesian filter. We have already commented on additive channel

noise above.

• Practical issues arise when implementing the Bayesian filter. Here, because we have

chosen a stationary problem, we have been able to compute the conditional densities on a

static grid in the zt-space. More generally, the Bayesian filter is realized via the Particle

filter [36]. This requires some skill.

The authors are keen to acknowledge the technically sound and very helpful comments and

guidance from the reviewers.
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3.10 Appendix

3.10.1 Proof of Theorem 8

Theorem QTSD of [3], Section 19.8, pp. 506-512, states that, for a linear quantizer with

quantization interval q, provided the characteristic function, Φd(·), of the subtractive dither

signal satisfies

Φd

(
l
2π

q

)
= 0, for l =±1,±2, . . . , (3.36)

and

ε +d ∈ [−ζ ,ζ ], (3.37)

then the quantization error, ε−Q(ε), will be independent of the input signal, ε, and uniformly

distributed U (−q/2,q/2).

For the linear quantizer of range 2ζ and 2b levels, q= ζ/2b−1. The characteristic function

of a U [−a,a] density is Φd,unif(ω) = sincaω . Taking a = q/2, Φd,unif(ω) = sincqω/2, which

satisfies (3.36) above.

The pdf of the sum of two independent U (−q/2,q/2) random variables is the convolu-

tion of the uniform pdfs and is triangularly distributed tr(−q,q). By the properties of the Fourier

transform, Φd,tr(ω) = Φ2
d,unif(ω) and (3.36) is satisfied.

We note in passing that Theorem QTSD does not explicitly state the saturation condition

(3.37) on the additively dithered signal. Without it, the theorem fails.

3.10.2 Derivation of the Bayesian filters for quantized linear systems

In Section 3.8, we explore the optimal control performance of three candidate approaches

to state conditional density reconstruction at the receiver.

1. Full 2nth
x -order quantized innovations Bayesian filter, reconstruction of the conditional
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state density p(xt |It), and computation of the optimal control using this density.

2. Simplified nth
x -order quantized innovations Bayesian filter, reconstruction of the conditional

state estimate density p(x̌t |It), and computation of the optimal control using this density.

3. The nth
x -order Bayesian filter operating directly on the quantized output signal, φt = Q(yt),

reconstruction of the conditional density p(xt | t), and computation of the optimal control

using this density.

We now present the detailed Bayesian filter for each case.

3.10.3 Bayesian filter for quantized innovations

Measurement update

We begin the Bayesian filter recursion from the predicted density p(zt |It−1) with the

current measurement it in hand. This it corresponds to εt ∈ (εlowert ,εuppert ]. Then, from (3.21)-

(3.22),

p(it |zt ,It−1) = p(it |zt),

=
∫

εuppert

εlowert

p(vt = εt−Cxt +Cx̌t)dvt ,

= mvncdf(εlowert ,εuppert ,Hzt ,R). (3.38)

The Matlab function mvncdf computes the multivariate normal cumulative distribution function

between lower and upper limits with given mean and covariance. This is then used in (3.24) to

yield the filtered joint conditional density p(zt |It).
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Time update

For the time update step (3.25), the system equations (3.18) and (3.11) yield

wt = xt+1−Axt−But ,

Ltvt = x̌t+1−LtCxt− (A−LtC)x̌t−But .

Whence, the conditional density

p(zt+1|zt ,It) =
p(zt+1, it |zt ,It−1)

p(it |zt ,It−1)
,

=
p(zt+1, it |zt ,It−1)

p(it |zt)
, (3.39)

since the innovations and quantized innovations, it = Q(εt), are white. Denominator p(it |zt) is

given by (3.38). The numerator comprises three terms

p(zt+1, it |zt ,It−1) =W ×V ×T, (3.40)

with

W = p(wt = xt+1−Axt−But),

= mvnpdf(xt+1−Axt−But ,0,Q),

V = p(Ltvt = x̌t+1−LtCxt− (A−LtC)x̌t−But),

= mvnpdf(x̌t+1−LtCxt− (A−LtC)x̌t−But ,0,LtRLT
t ),

T = 1(Cxt−Cx̌t + vt ∈ (εlowert ,εuppert ]).

Here, Matlab function mvnpdf is the multivariate normal probability density function and 1(·) is

the set indicator function. Relations (3.38) and (3.40) comprise the parts of (3.39) of the time

update step (3.25) of the Bayesian filter.
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3.10.4 Bayesian filter for state-estimate density calculation

In place of the 2nx-dimension Bayesian filter (3.24)-(3.25) using relations (3.38)-(3.40),

we may appeal to (3.10) and (3.12) as the basis of an nx-dimensional Bayesian filter for p(x̌t |It).

The system equations are

x̌t+1 = Ax̌t +But +Ltεt ,

it = Q(εt),

x̌0 = x̂0|−1.

The driving noise process, {εt}, is white and Gaussian with the following density

εt ∼N (0,CΣt|t−1C+R).

Further, this whiteness together with the x̌t update (3.11) ensures that x̌t is independent from εt .

Thus,

p(it |x̌t) = p(it)

= mvncdf(εlowert ,εuppert ,0,CΣt|t−1CT +R). (3.41)

Also, similarly to earlier,

p(x̌t+1|x̌t ,It) =
p(x̌t+1, it |x̌t ,It−1)

p(it |x̌t ,It−1)
,

=
p(x̌t+1, it |x̌t ,It−1)

p(it)
.
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3.10.5 Bayesian filter for quantized outputs

This now proceeds directly from (4.1)-(4.2). Central quantities,

p(ȳt |xt , Ȳt−1) = p(ȳt |xt),

p(xt+1|xt , Ȳt) = p(xt+1|xt),

are fully described by, respectively: ht(·, ·) and the density of vt ; and ft(·, ·, ·) and the density of

wt .

For the linear systems case,

p(ȳt |xt) = mvncdf(εlowert ,εuppert ,Hxt ,R),

p(xt+1|xt) = mvnpdf(xt+1−Axt−But ,0,Q).

These expressions extend simply for nonlinear system equations involving solely additive noises.

3.10.6 Optimal control and value E[ηt+1|It ] for system (3.7)

The predicted state density generated by the Bayesian filter is pNF(xNF
t+1|It), the unforced,

i.e. ut = 0, state since ut has yet to be determined. Eventually, xt+1 = xNF
t+1 + ut . Denote

conditional mean µt+1 = E(xNF
t+1|It) and define the centered unforced state xc

t+1 = xNF
t+1−µt+1.

Then the forced state is decscribed by xt+1 = xc
t+1 +µt+1 +ut . Thus,

E[ηt+1|It ] =
∫ 1

−∞

xt+1 p(xt+1|It)dxt+1,

=
∫ 1−µt+1−ut

−∞

(xc
t+1 +µt+1 +ut) pc(xc

t+1|It)dxc
t+1

=
∫ 1−µt+1−ut

−∞

xc
t+1 pc(xc

t+1|It)dxc
t+1

+(µt+1 +ut)
∫ 1−µt+1−ut

−∞

pc(xc
t+1|It)dxc

t+1
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Differentiating with respect to ut ,

dE[ηt+1|It ]

dut
= (µt+1 +ut−1) pc(1−µt+1−ut |It)

− (µt+1 +ut) pc(1−µt+1−ut |It)

+
∫ 1−µt+1−ut

−∞

pc(xc
t+1|It)dxc

t+1.

Setting this derivative to zero yields the optimal control

uopt = 1−µt+1−xsolv,

= 1−E(xNF
t+1|It)−xsolv, (3.42)

Where xsolv satisfies

pNF(xsolv|Ik−1) =
∫ xsolv

−∞

pNF(xNF
t+1|It)dxNF

t+1. (3.43)

Recall that pNF(xNF
t+1|It) is the state predicted density produced by the Bayesian filter. Thus xsolv

is the point where the probability density function crosses the cumulative distribution function

for xNF
t+1.

The optimal value function or performance is given by

E(ηt+1|It) =
∫ xsolv

−∞

xc
t+1 pc(xc

t+1|It)dxc
t+1

+(1−xsolv)
∫ xsolv

−∞

pc(xc
t+1|It)dxc

t+1. (3.44)

If the Bayesian filter predicted state density, pNF(xNF
t+1|It), is Gaussian N (µt+1,σ

2) then

E(ηt+1|It) =− σ√
2π

exp
[
− 1

2σ2 (xsolv)2
]

+(1−xsolv)normcdf(xsolv,0,σ). (3.45)
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Chapter 4

LQG Control Performance with Low Bi-
trate Periodic Coding

Abstract

Specific low-bitrate coding strategies are examined through their effect on LQ control

performance. By limiting the subject to these methods, we are able to identify principles

underlying coding for control; a subject of significant recent interest but few tangible results.

In particular, we consider coding the quantized output signal deploying period-two codes of

differing delay versus accuracy tradeoff. The quantification of coding performance is via the

LQ control cost. The feedback control system comprises the coder-decoder in the path between

the output and the state estimator, which is followed by linear state-variable feedback, as is

optimal in this case. The quantizer is treated as the functional composition of an infinitely-

long linear staircase function and a saturation. This permits the analysis to subdivide into

estimator computations, seemingly independent of the performance criterion, and an escape time

evaluation, which ties the control back into the choice of quantizer saturation bound. An example

is studied which illustrates the role of the control objective in determining the efficacy of coding

using these schemes. The results mesh well with those observed in signal coding. However, the

introduction of a realization-based escape time is a novelty departing significantly from mean

square computations.
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4.1 Introduction

We consider a linear plant with input ut and output yt connected to a controller by a

noise-free fixed-bitrate-b memoryless channel. The measured output is coded for transmission

through the channel and we consider several period-two coding or bitrate assignment strategies.

In each case, the output is quantized with a linear fixed quantizer with saturation bound ζ . The

coding strategies perform a period-two bit-allocation for the signal being communicated across

the channel. In Strategy I, the b bits of a b-bit quantizer are sent at each instant. Strategy II

applies a 2b-bit quantizer and sends alternately the most significant b bits and the least significant

b bits of the even-timed output sample. The strategies differ in their delays and accuracy; yt has

b bits at each time versus y2t has b bits at time 2t and 2b bits at time 2t +1. No information is

transmitted about y2t+1 in the second strategy. A third, intermediate strategy is also examined.

These coding/bit-assignment schemes are evaluated using the LQ performance of the controlled

plant. Using a result from Curry [1], the optimal control will comprise linear state-variable

feedback and a conditional mean estimator using the decoded output.

A quantizer is the functional composition or cascade of two distinct memoryless char-

acteristic; an infinite quantizer and a saturation. This is depicted in Figure 4.1. We divide our

SaturationInfinite-Stair
 Linear Quantizer

Q(·)
<latexit sha1_base64="hlw63iSDJ+HLfWbVfk6I4utyLa8=">AAAB+nicbVBPS8MwHE3nvzn/dXr0EhzCvIx2CnocevG4gduEtYw0TbewNClJqoy6j+LFgyJe/STe/DamWw+6+SDweO/34/fygoRRpR3n2yqtrW9sbpW3Kzu7e/sHdvWwp0QqMeliwYS8D5AijHLS1VQzcp9IguKAkX4wucn9/gORigp+p6cJ8WM04jSiGGkjDe2qFyM9xojBTt3DodBnQ7vmNJw54CpxC1IDBdpD+8sLBU5jwjVmSKmB6yTaz5DUFDMyq3ipIgnCEzQiA0M5ionys3n0GTw1SggjIc3jGs7V3xsZipWaxoGZzIOqZS8X//MGqY6u/IzyJNWE48WhKGVQC5j3AEMqCdZsagjCkpqsEI+RRFibtiqmBHf5y6uk12y4541m56LWui7qKINjcALqwAWXoAVuQRt0AQaP4Bm8gjfryXqx3q2PxWjJKnaOwB9Ynz9Af5NX</latexit>

Figure 4.1. Representation of a quantizer as the functional composition of two memoryless
nonlinearities; an infinite quantizer and a saturation. The analysis treats each component in
succession.

analysis to consider each nonlinear aspect separately. In the case where the quantizer does not

saturate and we use subtractive dithered quantization, the optimal conditional mean estimator is

the Kalman filter, whose state estimate error covariance is computable using standard methods.
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The quantizer step size appears in the measurement noise term. For each coding strategy this

covariance is simply computed and the LQ control performance derived. Next , the saturation

nonlinearity is introduced by using these second-order signal statistics to compute the expected

time before saturation. This escape time is a function of the closed-loop controlled signal yt . We

use this property to tie to the controller objective function to the selection of the quantizer bound,

ζ . For a given feasible set of escape time, bitrate and control objective, there is a saturation

bound and LQ performance. As the coding strategies change, so too does this performance. For

a given escape time, we compare the quasi-stationary performance.

Contribution of this paper

• By treating a limited set of coding schemes, we are able to draw conclusions about coding

in the output signal path. The range and the correlation/predictability of the closed-loop

plant output play a role in the efficacy of coding. Less predictable outputs, such as those

of minimum variance control, benefit less from coding. This concurs with observations in

signal processing.

• At low bitrates coding can become important.

• The decomposition of the quantizer into two factors admits analysis using the escape time

ideas introduced in this paper. This makes the study of methods possible by separating the

estimator performance from the saturation behavior.

• The escape time analysis permits the consideration of stabilization problems and per-

formance together. The focus on realization based behavioral descriptors admits new

viewpoints compared with asymptotic moments.

Relevant prior work

Borkar and Mitter [42] study a full-state feedback formulation with vector quantization

and coding delay similar to the strategies in this paper. They use the full state measurement
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to compute the process noise and then code this using vector quantization. They define a

delay-accuracy tradeoff denoted by N and indicating the number of noise samples held before

transmission. Longer delay admits multiples of the underlying bitrate when eventually transmit-

ted. When N = 1, their results are similar to our Strategy I and when N = 2 they resemble our

Strategy II. An optimal vector quantizer [43] then encodes the data into the available bits. This

vector quantizer yields the conditional mean process noise reconstruction at the receiver even

though the channel is not error-free. The decoded value is then used to construct the conditional

mean state estimate. Then could apply the same theorem from Curry in [1] to which we appeal

shortly. By limiting the discussion to stable systems, as in our earlier paper [44], they are able to

avoid explicit discussion of the saturation issues with quantization, vector or otherwise.

Fu in [45] studied the coding problem for the control signal of linear quadratic Gaussian

control with a memoryless error-free channel of fixed rate. The paper deals with optimization

over the set of causal encoders and their decoder pairs. Fu looks only at finite-horizon optimal

control and therefore sidesteps the stability and saturation questions. He does, however, develop

a value for the finite-horizon LQG performance, which involves the distortion function connects

the coder and the objective function. In practice, optimizing this distortion appears intractable.

He presents in Theorem 4.1, a corrected version of Fischer’s result [46], a weak separation

theorem where the estimate distortion function D is a function of the control problem and not

just the estimation problem parameters. When he considers the optimal coding problem for even

a simple initial condition case, the solution depends on the control objective and the effect of the

current encoding on future distortions. So his coder needs both memory and look-ahead and the

problem begins to mimic the intractability of stochastic optimal control. In the current paper, by

limiting our discussion to specific coding strategies, we reveal other aspects of a complicated

picture. By limiting our coders to being memoryless, we are able to appeal to the separation

theorem of Curry.

Nair and Evans [47] treat adaptive coding to achieve stabilization with limited bitrate.

They assign on level of an adaptive quantizer to indicate saturation. When this level is received at
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the decoder, the quantizer range is expanded multiplicatively. Effectively, the bitrate required to

stabilize an unstable system is tied to being able to achieve the expansion as a sufficiently rapid

rate to catch the unstable output. This imaginative coding scheme concentrates on stabilization

in mean square and does not address signal limits nor controlled performance.

The impact of quantization on performance at high rates is explored in [48], the state of

the system being quantized prior to transmission to the controller and they assess the performance

of the controller to minimize a quadratic cost.

A similar approach is explored in [49] pertinent for speech coding but close to the current

paper, in particular Strategies I and II. These strategies are applied to speech with an autoregres-

sive model. The performance is evaluated qualitatively by Mean Opinion Score. They show that

down-sampling plus smoothing leads to better coding results for highly-correlated voiced speech

and low-delay coding is preferable for unvoiced speech, which resembles modulated white noise.

Kostina and Hassibi [50] consider LQR optimal control and the question of minimal

channel capacity required to achieve a given bound, b, on the expected LQR cost. They explore

the problem with fully observed and partially observed state. In addition to this capacity bound,

they explore specific lattice codes which achieve the bound. The bound itself depends on both

control and estimation aspects for the partially observed case. They consider an error-free

channel and explore all possible causal codes. Their communications structure is a limited

capacity forward channel from the transmitter to receiver/controller together with a side channel

which conveys the controller’s state prediction back to the encoder. The minimizing codes

transmit quantized versions of the error between the transmitter’s state (or state prediction) and

the receiver’s state prediction. This communications structure obviates the requirement for the

system to be stable. Although, similarly to [47], the logarithm of the determinant of the system

matrix appears in the capacity bound.

4.2 Problem statement

Consider the following optimal control problem.
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• Linear plant system with Gaussian noises:

xt+1 = Axt +But +wt , x0, (4.1)

yt =Cxt + vt , (4.2)

Here, state xt ∈ Rn, input ut ∈ Rp, output yt ∈ Rm, process noise wt ∈ Rn, measurement

noise vt ∈ Rm. Noise sequences {wt} and {vt} are Gaussian, mutually independent, zero-

mean and white with known covariances. The plant initial condition is also Gaussian and

independent from wt and vt for all t.

• Quadratic performance criterion, minimized over non-anticipatory controls, ut , computed

from the received data at the controller,

JLQ = lim
N→∞

1
N

E

(
N

∑
t=1

xT
t Qcxt +uT

t Rcut

)
.

• The communications link between the plant measurement and the control computation

consists of a limited bitrate, b-bits-per-sample, memoryless noise-free channel.

• The coder-controller is restricted to the following elements.

• The measurement yt is quantized to a fixed number of bits, which can be larger than b.

• Some of these bits are encoded into the bitstream forwarded to the controller subject to the

bitrate limit.

• For this paper, we restrict attention to period-two bitrate assignment strategies.

• The controller computes and applies the control.

4.2.1 LQ Optimal Controller

Denote by {pt} the sequence of decoded signal values available at the controller. Then,

we have the following result from Curry.
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Theorem 17 (Curry [1]). For the linear state system (4.1)-(4.2) with nonlinear, memoryless

measurement

pt = ϕt(xt ,vt),

with {vt} white and independent from xt and quadratic objective function

Jt = E

(
N+1

∑
k=t

xT
k Qkxk +uT

k Rkuk

∣∣∣∣∣P
t ,Ut−1,π0|−1

)
, (4.3)

the optimal output feedback control is given by

u?t =−Kt E(xt |Pt ,Ut−1,π0|−1),

where, Pt = {p1, p2, ..., pt}, Ut = {u1,u2, ...,ut} and Kt is the standard LQ optimal feedback

gain.

Decoding signal pt at the receiver side, the filtered plant state estimate x̂t|t and infinite-

horizon control law ut =−Kx̂t|t are computed with K = dare(A,B,Qc,Rc). The performance is

evaluated with the LQ criterion. Signal pt will be derived from output yt by quantization and

coding.

4.3 Controller Coding Strategies

The problem statement imposes the quantization of plant output signal yt . We restrict our

attention to uniform quantization and limit consideration to subtractive dithered quantizers in

order to facilitate the receiver-side estimation.
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4.3.1 Dithered Quantization

A subtractive b-bit dithered quantizer, Qb(·), is a memoryless function which takes input

signal yt and dither signal, dt , and produces an output signal

Qb(yt) = Qb(yt +dt)−dt , (4.4)

where Qb(·) is a standard uniform quantizer. Such quantizers are examined in detail in, for

example, [3].

Theorem 18. Consider a uniform, midrise, symmetric, b-bits-per-channel, subtractive dithered

quantizer, Qb(·), with saturation bounds ±ζ . Assume:

(A) dither dt is a white noise process independent from yt with a probability density possessing

characteristic function, Φd(·), satisfying Φd

(
l π2b

ζ

)
= 0 for l =±1,±2, . . . ,

(B) yt +dt ∈ [−ζ ,ζ ], i.e. no saturation of the dithered quantizer occurs.

Then, the quantization error

qb,t ,Qb(yt)− yt , (4.5)

is: (i) white, (ii) independent from yt , (iii) uniformly distributed on
[
− ζ

2b ,
ζ

2b

]
.

This theorem, an embellishment of Theorem QTSD of [3], presents conditions under

which the quantization error is an additive white noise independent from the signal being

quantized as studied with details in [2]. Denote the quantizer step size as

∆ =
ζ

2b−1 .
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Then, we note the following.

qb,t ∼U

[
−∆

2
,
∆

2

]
, E(qb,t) = 0,

cov(qb,t) =
ζ 2

3×22b , Sb. (4.6)

We also, note that the characteristic function condition is satisfied by dither which is uniformly

distributed U [−∆/2,∆/2] or which is triangularly distributed tr[−∆,∆], for example. In our

calculations later, we use uniform dither dt .

4.3.2 Period-two Bit-assignment and Transmission Strategies

We consider a fixed-rate, b-bits-per-transmission, channel and propose three period-two

quantization strategies which reflect similar approaches from Signal Processing [51], [52], [49].

The intention is to manage the quantization error with periodic changes to the effective bitrate

and allied signal delay. We will examine the efficacy of these methods in terms of their benefits

for LQ output feedback control.

The presence of the b-bits-per-sample channel militates that the subtractive dithered

quantizer operates on both sides of the channel. That is, b bits are transmitted each sample as

symbol mk from the transmitter. Then at the receiver subtractive dither is applied. This and other

implementation issues of wordlength etc. are discussed in [3]. With our period-two strategies,

both the dithering and the subtraction will be modified. Here MSBn(xt) and LSBn(xt) denote

the most significant and least significant n bits of signal xt . While mt is the b-bit transmitted

message at time t, pt or p′t denotes the reconstructed/decoded plant output at the receiver for

input into the Kalman filter.

Strategy I

1: for t even or odd do

2: mt = Qb(yt +db
t ) is transmitted

3: pt ← mt−db
t at the receiver
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4: x̂t|t ← (4.7) Kalman filter Lemma 19

5: ut ←−Kx̂t|t

Strategy II

1: if t = 2k, even time, then

2: m2k = MSBb(Q2b(y2k +d2b
2k )) is transmitted

3: p2k← m2k at the receiver without dither subtraction

4: x̂2k|2k← (4.8) Kalman filter from Lemma 20

5: u2k←−Kx̂2k|2k

6: else t = 2k+1, odd time,

7: m2k+1 = LSBb(Q2b(y2k +d2b
2k )) is transmitted

8: p2k+1← p2k +2−bm2k+1−d2b
2k at the receiver

9: x̂2k+1|2k+1← (4.9) Kalman filter from Lemma 20

10: u2k+1←−Kx̂2k+1|2k+1

Strategy III

1: if t = 2k, even time, then

2: m2k = MSBb(Qb+r(y2k +db+r
2k )) is transmitted

3: p2k← m2k at the receiver without dither subtraction

4: x̂2k|2k← (4.10) Kalman filter from Lemma 21

5: u2k←−Kx̂2k|2k

6: else t = 2k+1, odd time,

7: m2k+1 = LSBr(Qb+r(y2k +db+r
2k ))

8: +2−rMSBb−r(Qb−r(y2k+1 +db−r
2k+1))

9: is transmitted

10: p′2k← p2k +2−bMSBr(m2k+1)−db+r
2k

11: p2k+1← LSBb−r(m2k+1)−db−r
2k+1

12: x̂2k+1|2k+1← (4.11) Kalman filter from Lemma 21
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13: u2k+1←−Kx̂2k+1|2k+1

We note two central features of the time-varying strategies.

• Strategy I uses a quantizer and associated dither of step size ζ

2b−1 while Strategy II uses

step size ζ

22b−1 , and Strategy III uses alternately ζ

22(b+r)−1 and ζ

22r−1 .

• Strategies II and III at even times receive undithered b-most-significant-bit transmissions,

since the dither operates further along the bitstream. Accordingly, the quantization error

at even times is not white, nor uniform, nor independent from y2k, even though the

quantization noise for y2k at time 2k+1 does possess these properties. We shall conduct

our analysis blithely without taking these even quantization error properties fully into

account.

We note that, with Strategies II and III, the state estimate calculation will be non-standard

at the controller, reflecting the periodic information pattern. The associated Kalman filter will

be presented shortly and computes x̂2k|2k+1 and then x̂2k+1|2k+1 from the received data. The

derivation of these filters and their properties is a core contribution of the paper.

4.4 Kalman Filters and Covariances for the Strategies

We derive the Kalman filters associated with each of the strategies under the following

assumption.

Assumption 3 (For this and the following sections alone). The quantizer never saturates. That

is, yt +dt ∈ [−ζ ,ζ ]. So, following Theorem 18, the quantization errors:

Strategy I: pt− yt;

Strategy II: p2k+1− y2k;

Strategy III: p′2k− y2k and p2k+1− y2k+1;
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are independent from {yt}, white, zero-mean, uniformly distributed with covariances Sb, S2b,

Sb+r and Sb−r respectively, where Sb is defined in (4.6).

Further and without justification, we assume that the other quantization errors, p2k− y2k

in Strategies II and III, satisfy the same properties with covariances Sb.

Assumption 4. Each strategy’s state estimator commences with state estimate x̂0|−1 and covari-

ance Σ0|−1,at t = 0.

The following results for Strategies I, II and III are proved in the Appendix.

Lemma 19 (Anderson, Moore [29]). For Strategy I, the Kalman filter driven by signal pt from

Algorithm I Line 3 is calculated by:

Lt = Σt|t−1CT (CΣt|t−1CT +R+Sb)
−1,

x̂t|t = x̂t|t−1 +Lt(pt−Cx̂t|t−1), (4.7)

x̂t+1|t = (A−BK)x̂t|t ,

Σt+1|t = AΣt|t−1AT −ALtCΣt|t−1AT +Q.

Lemma 20. For Strategy II, the Kalman filter driven by signals p2k from Algorithm II Line 3

and p2k+1 from Line 8 is calculated by:

At even times, t = 2k :

L2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb)
−1,

x̂2k|2k = x̂2k|2k−1 +L2k(p2k−Cx̂2k|2k−1), (4.8)
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At odd times, t = 2k+1 :

L2k+1 = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+S2b)
−1,

x̂2k+1|2k+1 = A
(
x̂2k|2k−1 +L2k+1(p2k+1−Cx̂2k|2k−1)

)

−BKx̂2k|2k, (4.9)

x̂2k+2|2k+1 = (A−BK)x̂2k+1|2k+1,

Σ2k+2|2k+1 = A2
Σ2k|2k−1A2T −A2L2k+1CΣ2k|2k−1A2T

+AQAT +Q.

Lemma 21. For Strategy III, the Kalman filter driven by signals p2k from Algorithm III Line 3,

p′2k Line 10 and p2k+1 Line 11 is calculated by:

At even times, t = 2k,

L2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb)
−1,

x̂2k|2k = x̂2k|2k−1 +L2k(p2k−Cx̂2k|2k−1), (4.10)
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At odd times, t = 2k+1,

L′2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb+r)
−1,

x̂′2k+1|2k = Ax̂2k|2k−1 +AL′2k(p′2k−Cx̂2k|2k−1)

−BKx̂2k|2k,

Σ
′
2k+1|2k = AΣ2k|2k−1AT −AΣ2k|2k−1CT×

(CΣ2k|2k−1CT +R+Sb+r)
−1CΣ2k|2k−1AT +Q,

L2k+1 = Σ
′
2k+1|2kC

T (CΣ
′
2k+1|2kC

T +R+Sb−r)
−1,

x̂2k+1|2k+1 = x̂′2k+1|2k +L2k+1(p2k+1−Cx̂′2k+1|2k), (4.11)

x̂2k+2|2k+1 = (A−BK)x̂2k+1|2k+1,

Σ2k+2|2k+1 = AΣ
′
2k+1|2kAT −AΣ

′
2k+1|2kC

T×

(CΣ
′
2k+1|2kCT +R+Sb−r)

−1
Σ
′
2k+1|2kAT +Q.

Although both covariances limk→∞ Σ2k|2k−1 and limk→∞ Σ2k+1|2k may have different

limiting values for Strategies II & III, the value of the former suffices for the rest of the

calculation.

Corollary 22. For Strategy I, Σ
p,∞
I , limk→∞ Σk|k−1 and Σ∞

I , limk→∞ Σk|k satisfy

Σ
p,∞
I = dare(AT ,CT ,Q,R+Sb),

Σ
∞
I = Σ

p,∞
I −Σ

p,∞
I CT (CΣ

p,∞
I CT +R+Sb)

−1CΣ
p,∞
I .

(4.12)

Corollary 23. For Strategy II, Σ
p,∞
II , limk→∞ Σ2k|2k−1, Σ∞

IIeven
, limk→∞ Σ2k|2k and Σ∞

IIodd
,
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limk→∞ Σ2k+1|2k+1 satisfy

Σ
p,∞
II = dare

(
A2T

,CT ,AQAT +Q,R+S2b

)
,

Σ
∞
IIeven

= Σ
p,∞
II −Σ

p,∞
II CT (CΣ

p,∞
II CT +R+Sb)

−1CΣ
p,∞
II ,

Σ
∞
IIodd

= Σ
p,∞
II −Σ

p,∞
II CT (CΣ

p,∞
II CT +R+S2b)

−1CΣ
p,∞
II .

(4.13)

Corollary 24. For Strategy III, Σ
p,∞
III limk→∞ , Σ2k|2k−1, Σ∞

IIIeven
, limk→∞ Σ2k|2k,

and Σ∞
IIIodd
, limk→∞ Σ2k+1|2k+1, satisfy

Σ
p,∞
III = dare

(
A2T

,G1,AQAT +Q,G2,

[
0 AQCT

]
,eye(n)

)
,

Σ
∞
IIIeven

= Σ
p,∞
III −Σ

p,∞
III CT (CΣ

p,∞
III CT +R+Sb+r)

−1CΣ
p,∞
III ,

Σ
∞
IIIodd

= Σ
p,∞
III −Σ

p,∞
III CT (CΣ

p,∞
III CT +R+Sb−r)

−1CΣ
p,∞
III ,

(4.14)

where

G1 =

[
CT ATCT

]
, G2 =




R+Sb+r 0

0 CQCT +R+Sb−r


 .

4.5 Control performance analysis

The limiting performance of three strategies may be computed using standard covariance

methods.

Definition 1. The i, j-block (n× n) entry of matrices ΨX , below is denoted by ΨX(i, j) for

X = I, II, III.

Theorem 25. Subject to Assumption 3, the performance for Strategy I given by

JI = trace[QcΨI(1,1)]+ trace[KT RcKΨI(2,2)], (4.15)

calculated through these steps:
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(i) K = dare(A,B,Qc,Rc),

(ii) Σ
p,∞
I = dare

(
AT ,CT ,Q,R+Sb

)
,

(iii) L = Σ
p,∞
I CT (CΣ

p,∞
I CT +R+Sb

)−1
,

(iv) ΨI = dlyap
(
M1,N1P1N

T
1
)
,

where

M1 =




A −BK

LCA (I−LC)A−BK


 , N1 =




I 0 0

LC L L


 ,

P1 =




Q 0 0

0 R 0

0 0 Sb



, ΨI =




E(xkxT
k ) E(xkx̂T

k|k)

E(x̂k|kxT
k ) E(x̂k|kx̂T

k|k)


 .

Theorem 26. Subject to Assumption 3, the performance for Strategy II, given by

JII =
1
2

trace{Qc[ΨII(1,1)+ΨII(3,3)]}+
1
2

trace
{

KT RcK[ΨII(2,2)+ΨII(4,4)]
}
, (4.16)

calculated through these steps:

(i) K = dare(A,B,Qc,Rc),

(ii) Σ
p,∞
II = dare

(
A2T

,CT ,AQAT +Q,R+S2b

)
,

(iii) Leven = Σ
p,∞
II CT

(
CΣ

p,∞
II CT +R+Sb

)−1
.

(iv) Lodd = Σ
p,∞
II CT (CΣ

p,∞
II CT +R+S2b)

−1,

(v) ΨII = dlyap
(
M2,N2P2N T

2
)
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where

M2 = F4F3F2F1, N2 =

[
F4F3F2G1 F4G3 F4F3G2 G4

]
,

P2 =




Q 0 0 0

0 Q 0 0

0 0 R+Sb R+S2b

0 0 R+S2b R+S2b



,

ΨII = E







x2k

x̂2k|2k

x2k+1

x̂2k+1|2k+1




[
xT

2k x̂T
2k|2k xT

2k+1 x̂T
2k+1|2k+1

]




G1 =




0

I


 , G2 =




0

0

L0



, G3 =




0

0

L1



, G4 =




0

0

I

0




F1 =




0 0 0 A−BK

0 0 A −BK


 , F2 =




I 0

0 I

(I−L0C) L0C



,

F3 =




0 I 0

0 0 I

(I−L1C) L1C 0



, F4 =




I 0 0

0 I 0

A −BK 0

0 −BK A



.
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Note, the two-step update is described by the recursion




x2k

x̂2k|2k

x2k+1

x̂2k+1|2k+1



= M2




x2k−2

x̂2k−2|2k−2

x2k−1

x̂2k−1|2k−1



+N2




w2k−1

w2k


v2k +q2k

v2k +q2k+1






.

Theorem 27. Subject to Assumption 3, the performance for Strategy III, given by

JIII =
1
2

trace{Qc[ΨIII(1,1)+ΨIII(3,3)]}+
1
2

trace
{

KT RcK[ΨIII(2,2)+ΨIII(4,4)]
}
, (4.17)

calculated through these steps:

(i) K = dare(A,B,Qc,Rc),

(ii) Σp,∞ = dare
(

A2T
,G1,AQAT +Q,G2,

[
0 AQCT

]
,eye(n)

)
,

(iii) Leven = Σp,∞CT
(
CΣp,∞CT +R+Sb

)−1
,

(iv) Lodd1 = Σp,∞CT (CΣp,∞CT +R+Sb+r)
−1,

(v) Lodd2 = Σp,∞CT (CΣp,∞CT +R+Sb−r)
−1,

(vi) ΨIII = dlyap
(
M3,N3P3N T

3
)
,
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where

M2 = F4F3F2F1,

N2 =

[
F4F3F2G1 F4G3 F4F3G2 G4

]
,

P3 =




Q 0 0 0 0

0 Q 0 0 0

0 0 R+Sb R+Sb+r 0

0 0 R+Sb+r R+Sb+r 0

0 0 0 0 R+Sb−r




ΨIII = E







x2k+1

x̂2k+1|2k+1

x2k

x̂1
2k|2k




[
xT

2k+1 x̂T
2k+1|2k+1 xT

2k x̂1T

2k|2k

]




G1 =




I

0


 , G2 =




0 0

Leven 0

0 Lodd1



, G3 =




I

0

0

0



, G4 =




0

Lodd2

0

0



,

F1 =




A −BK 0 0

0 A−BK 0 0


 , F2 =




I 0

LevenC (I−LevenC)

Lodd1C (I−Lodd1C)



, F3 =




A −BK 0

0 0 I

I 0 0

0 I 0



,

F4 =




I 0 0 0

Lodd2C (I−Lodd2C)A 0 −(I−Lodd2C)BK

0 0 I 0

0 0 0 I



,
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The two-step update is described by the recursion




x2k+1

x̂2k+1|2k+1

x2k

x̂1
2k|2k



= M3




x2k−1

x̂2k−1|2k−1

x2k−1

x̂1
2k−2|2k−2




+N3




w2k−1

w2k


v2k +qb,2k

v2k +qb+r,2k




v2k+1 +qb−r,2k+1




.

4.6 Escape time analysis

The performance analysis from earlier sections is based on direct second moment calcu-

lations subject to the validity of Assumption 3, i.e. that the controlled system output

zt = yt +dt ,

satisfies |zt | ≤ ζ . For Gaussian yt , or indeed for any yt with density of unbounded support, the

signal yt +dt is guaranteed to exceed this bound infinitely often. Our aim in this section is to

quantify the average residence time of the dithered controlled output signal inside the saturation

bound. If this residence time is long, then the earlier linear analysis will remain valid on average

for a long time and can be used to characterize performance, since the stabilizing control yields a

quasi-stationary closed loop subject to no saturation. This will be validated by computational

experiments in Section 4.7.

We make the following definition.

98



Definition 2. The escape time, τesc, is the first time that zt 6∈ [−ζ ,ζ ].

Our aim is now to calculate the mean escape time as a function of ζ . This will demonstrate

that the choice of ζ to yield a particular mean escape time depends on the choice of state feedback

control gain K. The state estimation covariance analysis of Section 4.4 did not explicitly depend

on K. But now, via its effect on ζ , the control problem affects this covariance.

If we have ergodicity of the stochastic process {zt} then the long-term sample average

frequency of zt falling outside [−ζ ,ζ ] is equal to the ensemble average computable from the

density of zt . If the Gaussian process {yt} is ergodic, then since {dt} is white and stationary, the

signal {yt +dt} is ergodic. We have the following theorem from Caines [53] who cites earlier

sources going back to Maruyama and Grenander.

Theorem 28. [53] A necessary and sufficient condition for a discrete-time stationary Gaussian

process to be ergodic is that the spectral distribution of the process is continuous.

If yt is the output of a stable linear system driven by white, independent, zero-mean

Gaussian noises nt and rt with covariances Q and R respectively, that is,

ξt+1 = Fξt +Gnt ,

yt = H pt + Jrt ,

then its power spectral density is given by

Φyy(ω) = JRJT +H(e jω I−F)−1GQGT (e− jω I−FT )−1.

If the eigenvalues of F are within |z|< 1 and JRJT > 0, then yt is ergodic by Theorem 28, as is

the signal zt .
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For our LQG problem, yt is generated with

F =




A −BK

LCA A−BK−LCA


 , G =




I 0

LC L


 ,

H =

[
C 0

]
, J = I,

which F has all eigenvalues inside the unit circle by construction subject to the conditions in the

following theorem.

Theorem 29. [54] Subject to Assumption 3, provided Rc > 0, R > 0, [A,Qc] detectable, [A,Q]

stabilizable, the dithered controlled output signal, zt = yt +dt , is asymptotically stationary and

ergodic. So

lim
T→∞

1
T

T

∑
t=1

1|zt |>ζ = Pr(|zt |> ζ ) , (4.18)

where 1A is the indicator function of event A.

Once we have ergodicity of the closed-loop signal zt , then we have the following result.

Theorem 30. For ergodic zt , if Pr(|zk|> ζ ) = β , then the expected escape time is E[τesc] =
1
β
.

These are the steps and important parameters of the analysis.

1. Choose a desired average escape time E[τesc]. The escape probability is β = 1
E[τesc]

.

2. Initiate the line search for ζ depending on coding strategy and using one of

• ΨI(1,1) from (4.15), or

• ΨII(1,1) and ΨII(3,3) from (4.16), or

• ΨIII(1,1) and ΨIII(3,3) from (4.17),

compute Z, the covariance of zt . Then solve

β

2
= mvncdf(−ζnew.1m,0m,Z) ,
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where mvncdf is the multivariate normal cumulative distribution function.

4.7 Numerical examples

We compare coding strategies in the following examples through certain steps.

1. With given {A,B,C,Q,R,Qc,Rc}, compute the linear feedback gain K, via Theorem 25

Step (i).

2. Fix the mean escape time, τesc.

3. For each coding strategy, compute the corresponding quantizer bound, ζ , using the iteration

described below Theorem 30.

4. Compute the performance of each strategy using Theorems 25-27, as appropriate.

4.7.1 Escape time and quantizer bound

We compute the residence time through two methods, the analytical method based on

Theorem 30 and the simulation. In addition, we compare the performance of coding strategies.

Let us define the parameters as follow

• Rc, control weights in LQ output feedback control.

• A−BK, closed-loop pole of LQ.

• ζ , quantization bound.

• τa, mean escape time computed via Theorem 30.

• τemp, empirical mean escape time from simulation.

• JI,JII, corresponding performances for strategy I and II.
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In the simulation for computing, τemp, we make the average over 20000 iterations of computing

the very first time that the output signal jumps out of the quantizer bound for 5000 sample limit

with the following parameter for the scalar system. Then we compare the performance of two

different strategies with a fixed time τ = 1000 and the parameters as follow

A = 0.9999; B = 1; C = 1; Q = 1;

R = 1; Qc = 1;

for 3-bit quantizer

Rc A-BK ζ τa τemp JI JII

1e5 0.9968 43.14 1000 2320 325 309

1e4 0.9900 24.67 1000 2194 104 101

1e3 0.9689 14.50 1000 1813 34.136 34.135

100 0.9049 9.15 1000 1317 11.81 12.43

10 0.7298 6.62 1000 1040 4.78 5.56

1 0.3819 5.68 1000 990 2.64 3.45

0.1 0.0839 5.49 998 977 2.10 2.92

for 2-bit quantizer

Rc A-BK ζ τa τemp JI JII

1e5 0.9968 48.14 1000 2354 474 315

1e4 0.9900 27.74 1000 2159 137 103

1e3 0.9689 16.44 1000 1780 42.22 35.04

100 0.9049 10.43 1000 1413 14.34 12.97

10 0.7298 7.54 1000 1213 5.94 5.91

1 0.3819 6.40 1000 1164 3.43 3.73

0.1 0.0839 6.12 998 1146 2.81 3.18

As we may conclude from the above example, the coding strategy is picked based on the nature

of the controlled output signal. If the output signal has random or unpredictable nature, Figure

4.2, the coding has less benefits and we stick with Strategy I. In contrast, the coding strategy
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Figure 4.2. Controlled output signal y(t) with 3-bit coding and Rc = 0.01, corresponding to
roughly minimum-variance control and hence to low amplitude, near-white yt . Coding provides
little benefit.

has advantages if the output controlled signal is more regulated or predictable such as Figure

4.3. In this case, as we have higher resolution or accuracy including a delay in updating the

measurement, Strategy II outperforms Strategy I in which the measurement is updated each

time but with less accuracy. When the control objective is minimum variance, the output signal

resembles to a white noise signal and the quantization bound has smaller size, so the coding has

no benefits. Once we move away from minimum variance control objective the output signal yk

has larger amplitude, furthermore the output signal yk is correlated.

We may wrap up the following results from this example,

• If Rc is small, no benefit is obtained from coding.

• If bits, b, is large then coding has limited benefits.

• The quantizer bound, ζ , is smaller for the better regulated signal yt .

• The controller with smaller Rc leads to smaller and whiter signal yt .

103



0 50 100 150 200 250 300 350 400 450 500

Time

-10

-8

-6

-4

-2

0

2

4

6

8

10

O
ut

pu
t s

ig
na

l y
(t

)

Figure 4.3. Controlled output signal y(t) with 3-bit coding and Rc = 100, corresponding to
higher amplitude, correlated yt . Coding provides tangible control benefit.

4.8 Conclusion

We have explored three very specific periodic coding strategies of the plant output signal

and their effect on LQ performance subject to an expected escape time. The interaction between

the control law and the estimation problem occurs through the selection of the upper bound, ζ ,

of the dithered quantizers. The general conclusion is that the more correlated is the controlled

output, the more benefit is achieved by coding. So that minimum variance problems should

exhibit less gain from coding than should those with heavier control penalty. The computational

examples show that these coding schemes is of most value when the number of bits is small.

These are generalizable conclusions to other more sophisticated codes and reflect observations in

signal processing, but without the connection to a control objective.

The novelties of the approach lie in the treatment of the dithered quantizers and the

introduction of the system escape time as a tool for analysis. The decomposition of the quantizer

into two parts – infinite quantizer plus saturation – together with the escape time permits the

consideration of linear controlled covariances and the distinct escape time analysis. These

study of escape time is distinguished from other studies which seek to manage asymptotic or
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infinite-horizon average properties.

4.9 Appendix

Proof for lemma 20:

Let us start with initial state estimate x̂0|−1 and covariance Σ0|−1, the Kalman filter is calculated

by:

At even time, t = 2k : (Low resolution measurement)

L2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb)
−1,

x̂2k|2k = x̂2k|2k−1 +L2k(p2k−Cx̂2k|2k−1),

At odd time, t = 2k+1 : (High resolution measurement) We receive the less significant part of

the quantized y2k and construct the 2b-bits measurement z2b,2k+1 = zb,2k⊕2b,2k through concate-

nation,

p2k+1← p2k +2−bm2k+1−d2b
2k

L2k+1 = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+S2b)
−1,

x̂2k+1|2k+1 = Ax̂2k|2k+1 +Bu2k,

x̂2k+1|2k+1 = A
(
x̂2k|2k−1 +L2k+1(p2k+1−Cx̂2k|2k−1)

)

−BKx̂2k|2k,

x̂2k+2|2k+1 = (A−BK)x̂2k+1|2k+1,

Σ2k+2|2k+1 = A2
Σ2k|2k−1A2T −A2L2k+1CΣ2k|2k−1A2T

+AQAT +Q.

Proof for Lemma 21:

Let us start with initial state estimate x̂0|−1 and covariance Σ0|−1,at t = 0, the Kalman filter is

calculated by:
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At even time, t = 2k,

L2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb)
−1,

x̂2k|2k = x̂2k|2k−1 +L2k(p2k−Cx̂2k|2k−1),

At odd times, t = 2k+1,

p′2k = p2k +2−bMSBr(m2k+1)−db+r
2k ,

L′2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb+r)
−1,

x̂′2k+1|2k = Ax̂2k|2k−1 +AL′2k(p′2k−Cx̂2k|2k−1)

−BKx̂2k|2k,

Σ
′
2k+1|2k = AΣ2k|2k−1AT −AΣ2k|2k−1CT×

(CΣ2k|2k−1CT +R+Sb+r)
−1CΣ2k|2k−1AT +Q,

p2k+1 = LSBb−r(m2k+1)−db−r
2k+1,

L2k+1 = Σ
′
2k+1|2kC

T (CΣ
′
2k+1|2kC

T +R+Sb−r)
−1,

x̂2k+1|2k+1 = x̂′2k+1|2k +L2k+1(p2k+1−Cx̂′2k+1|2k),

x̂2k+2|2k+1 = Ax̂2k+1|2k+1 +Bu2k+1,

x̂2k+2|2k+1 = (A−BK)x̂2k+1|2k+1,

Σ2k+2|2k+1 = AΣ
′
2k+1|2kAT −AΣ

′
2k+1|2kC

T×

(CΣ
′
2k+1|2kCT +R+Sb−r)

−1
Σ
′
2k+1|2kAT +Q.

Proof for Corollary 22:

Can be found at [29] but the difference is quantization noise Sb is added to the measurement

noise, and it is replaced by R+Sb in all calculation.

Proof for Corollary 23:

Let us start with Σ, Σ2k|2k−1
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(i) Low resolution measurement

Σ2k|2k = Σ−ΣCT (CΣCT +R+Sb)
−1CΣ (4.19)

(ii) High resolution measurement

Σ2k|2k+1 = Σ−ΣCT (CΣCT +R+S2b)
−1CΣ (4.20)

(iii) Time 2k+1 filtered measurement

Σ2k+1|2k+1 = AΣ2k|2k+1AT +Q.

(iv) Time 2k+2 prediction and let k→ ∞

Σ2k+2|2k+1 = AΣ2k+1|2k+1AT +Q,

= A2
Σ2k|2k+1A2T

+AQAT +Q,

Σ
p,∞
II = A2

Σ
p,∞
II A2T −A2

Σ
p,∞
II CT×

(CΣ
p,∞
II CT +R+S2b)

−1CΣ
p,∞
II A2T

+

AQAT +Q.

where

lim
k→∞

Σ2k|2k−1 = Σ
p,∞
II = dare

(
A2T

,CT ,AQAT +Q,R+S2b

)
.
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(v) Substitute Σ
p,∞
II into (4.19) and (4.20)

Σ
p,∞
II = dare

(
A2T

,CT ,AQAT +Q,R+S2b

)
,

Σ
∞
IIeven

= Σ
p,∞
II −Σ

p,∞
II CT (CΣ

p,∞
II CT +R+Sb)

−1CΣ
p,∞
II ,

Σ
∞
IIodd

= Σ
p,∞
II −Σ

p,∞
II CT (CΣ

p,∞
II CT +R+S2b)

−1CΣ
p,∞
II .

Proof for Corollary 24:

The period-two update consists of two pieces starting from the same initial data,

(x̂2k|2k−1,Σ = Σ2k|2k−1).

Even times – No need to keep track of this in the computation of the covariance Σ2k+1|2k+1

since this is calculated based only on

z′2k =Cx2k + v2k +qb+r,2k,

z2k+1 =Cx2k+1 + v2k+1 +qb−r,2k+1.

It is, however, important for the Lyapunov computation.

Odd times – We skip over the even step and use both z′2k and z2k+1 to update x̂2k|2k−1. Start as

usual.

x2k+1 = Ax2k +Bu2k +w2k,

p2k+1 = Ax2k +w2k,

z′2k =Cx2k + v2k +qb+r,2k,

z2k+1 =CAx2k +CBu2k +Cw2k + v2k+1 +qb−r,2k+1,

ζ2k+1 =CAx2k +Cw2k + v2k+1 +qb−r,2k+1
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where denote ζ2k+1 = z2k+1−CBu2k and calculate joint conditional density,

pdf







p2k+1

z′2k

ζ2k+1




∣∣∣∣∣∣∣∣∣∣

Z 2k−1




= N







Ax̂2k|2k−1

Cx̂2k|2k−1

CAx̂2k|2k−1



,M



,

M =




AΣAT +Q AΣCT AΣATCT +QCT

CΣAT CΣCT +R+Sb+r CΣATCT

CAΣAT +CQ CAΣCT CAΣATCT +CQCT +R+Sb−r



,

hence,

cov(x2k+1|Z 2k+1) = AΣAT +Q−
[

AΣCT AΣATCT +QCT

]
×




CΣCT +R+Sb+r CΣATCT

CAΣCT CAΣATCT +CQCT +R+Sb−r




−1

×




CΣAT

CAΣAT +CQ


 ,

by taking limits as

lim
k→∞

Σ2k|2k−1 = Σ2k+2|2k+1 = Σ,

cov(x2k+2|Z 2k+1) = A× cov(x2k+1|Z 2k+1)×AT +Q,

109



Σ = A2
ΣA2T

+AQAT +Q−
[

A2ΣCT A2ΣATCT +AQCT

]
×




CΣCT +R+Sb+r CΣATCT

CAΣCT CAΣATCT +CQCT +R+Sb−r




−1

×




CΣA2T

CAΣA2T
+CQAT


 ,

= A2
ΣA2T

+AQAT +Q−
(

A2
Σ

[
CT ATCT

]
+

[
0 AQCT

])
×







C

CA


Σ

[
CT ATCT

]
+




R+Sb+r 0

0 CQCT +R+Sb−r







−1

×







C

CA


ΣA2T

+




0

CQAT





 .

and we use DARE to calculate,

Σ
p,∞
III = dare

(
A2T

,

[
CT ATCT

]
,AQAT +Q,W ,

[
0 AQCT

]
,eye(n)

)
,

and similar to proof of Corollary 23

Σ
∞
IIIeven

= Σ
p,∞
III −Σ

p,∞
III CT (CΣ

p,∞
III CT +R+Sb+r)

−1CΣ
p,∞
III ,

Σ
∞
IIIodd

= Σ
p,∞
III −Σ

p,∞
III CT (CΣ

p,∞
III CT +R+Sb−r)

−1CΣ
p,∞
III ,

where,

W =




R+Sb+r 0

0 CQCT +R+Sb−r


 .

Proof for Theorem 25:
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Truncate every sample to b bits, transmit

zt =Cxt + vt +qb,t .

Kalman filter is stationary and satisfies

Σ = dare
(
AT ,CT ,Q,R+Sb

)
,

L = Σ−ΣCT (CΣCT +R+Sb
)
.
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Closed-loop equations

xt+1 = Axt−BKx̂t|t +wt ,

x̂t+1|t+1 = x̂t+1|t +L(Cxt+1 + vt+1 +qb,t+1

−Cx̂t+1|t),

= (Ax̂t|t−BKx̂t|t)

+L
[
C(Axt−BKx̂t|t +wt)

]

+L
[
vt+1 +qb,t+1−C(A−BK)x̂t|t

]
,

= [(I−LC)(A−BK)−LCBK]x̂t|t

+LCAxt +LCwt

+Lvt+1 +Lqb,t+1,

= LCAxt +[(I−LC)A−BK]x̂t|t

+LCwt +Lvt+1 +Lqb,t+1,



xt+1

x̂t+1|t+1


=




A −BK

LCA (I−LC)A−BK







xt

x̂t|t




+




I 0 0

LC L L







wt

vt+1

qb,t+1



.

Let us denote

A =




A −BK

LCA (I−LC)A−BK


 , B =




I 0 0

LC L L


 ,
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Q =




Q 0 0

0 R 0

0 0 Sb



, ΨI = dlyap

(
M1,N1P1N

T
1
)
,

hence the performance calculation,

JI = trace[QcΨI(1,1)]+ trace[KT RcKΨI(2,2)],

where,

ΨI =




E(xkxT
k ) E(xkx̂T

k|k)

E(x̂k|kxT
k ) E(x̂k|kx̂T

k|k)


 .

Proof for Theorem 26:

Truncate yt to b bits at even times t and then to 2b bits at odd times t. The quantization variances

Sb and S2b respectively.

Start with x2k−1, x̂2k−1|2k−1 and Σ2k|2k−1. Compute

L2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb)
−1,

L2k+1 = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+S2b)
−1.

State and predictor update

x2k = Ax2k−1−BKx̂2k−1|2k−1 +w2k−1.

x̂2k|2k−1 = (A−BK)x̂2k−1|2k−1,
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so rearrange these equations,




x̂2k|2k−1

x2k


=




0 0 0 A−BK

0 0 A −BK







x2k−2

x̂2k−2|2k−2

x2k−1

x̂2k−1|2k−1




+




0

I


w2k−1

Filter update with low resolution measurement, zb,2k.

x̂2k|2k = x̂2k|2k−1 +L2k(zb,2k−Cx̂2k|2k−1),

rearrange the equation in matrix form,




x̂2k|2k−1

x2k

x̂2k|2k



=




I 0

0 I

(I−L2kC) L2kC







x̂2k|2k−1

x2k




+




0

0

L2k




v2k +




0

0

L2k




q2k.

Filter update with high resolution measurement,

z2k+1 = zb,2k⊕ z2b,2k =Cx2k + v2k +q2k+1,

x̂2k|2k+1 = x̂2k|2k−1 +L2k+1(z2k+1−Cx̂2k|2k−1),
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


x2k

x̂2k|2k

x̂2k|2k+1



=




0 I 0

0 0 I

(I−L2k+1C) L2k+1C 0







x̂2k|2k−1

x2k

x̂2k|2k




+




0

0

L2k+1




v2k +




0

0

L2k+1




q2k+1.

State and state estimate update.

x2k+1 = Ax2k−BKx̂2k|2k +w2k,

x̂2k+1|2k+1 = Ax̂2k|2k+1−BKx̂2k|2k.

denote,




x2k

x̂2k|2k

x2k+1

x̂2k+1|2k+1



=




I 0 0

0 I 0

A −BK 0

0 −BK A







x2k

x̂2k|2k

x̂2k|2k+1




+




0

0

I

0




w2k.

Now define

lim
k→∞

L2k = Leven = Σ
p,∞
II CT (CΣ

p,∞
II CT +R+Sb

)−1
,

lim
k→∞

L2k+1 = Lodd = Σ
p,∞
II CT (CΣ

p,∞
II CT +R+S2b)

−1,
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F1 =




0 0 0 A−BK

0 0 A −BK


 , F2 =




I 0

0 I

(I−LevenC) LevenC



,

F3 =




0 I 0

0 0 I

(I−LoddC) LoddC 0



, F4 =




I 0 0

0 I 0

A −BK 0

0 −BK A



,

G1 =




0

I


 , G2 =




0

0

Leven



, G3 =




0

0

Lodd



, G4 =




0

0

I

0




Then, the two-step update is described by the recursion




x2k

x̂2k|2k

x2k+1

x̂2k+1|2k+1



= M2




x2k−2

x̂2k−2|2k−2

x2k−1

x̂2k−1|2k−1



+N2




w2k−1

w2k


v2k +q2k

v2k +q2k+1






,

with

M2 = F4F3F2F1, N2 =

[
F4F3F2G1 G4 F4F3G2 F4G3

]
.
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Whence,

ΨII = E







x2k

x̂2k|2k

x2k+1

x̂2k+1|2k+1




[
xT

2k x̂T
2k|2k xT

2k+1 x̂T
2k+1|2k+1

]



,

ΨII = dlyap




M2,N2




Q 0 0 0

0 Q 0 0

0 0 R+Sb R+S2b

0 0 R+S2b R+S2b




N T
1



,

and

JII =
1
2

trace{Qc[ΨII(1,1)+ΨII(3,3)]}+
1
2

trace
{

KT RcK[ΨII(2,2)+ΨII(4,4)]
}
,

Proof for Theorem 27:

From Σ = Σ2k|2k−1, compute the filter gains

L2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb)
−1,

L′2k = Σ2k|2k−1CT (CΣ2k|2k−1CT +R+Sb+r)
−1,

Σ2k+1|2k = AΣ
′
2k|2kAT +Q,

= AΣAT −AΣCT (CΣCT +R+Sb+r)
−1CΣAT +Q,

L2k+1 = Σ2k+1|2kC
T (CΣ2k+1|2kC

T +Sb−r)
−1.
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denote the quantization noises Sb =
ζ 2

3×22b

Sb+r =
ζ 2

3×22(b+r)
, Sb−r =

ζ 2

3×22(b−r)
.

Let us start with




x2k−1

x̂2k−1|2k−1

x2k−2

x̂1
2k−2|2k−2




and then,

x2k = Ax2k−1−BKx̂2k−1|2k−1 +w2k−1,

x̂2k|2k−1 = Ax̂2k−1|2k−1−BKx̂2k−1|2k−1,

= (A−BK)x̂2k−1|2k−1,

x̂1
2k|2k = (I−L2kC)x̂2k|2k−1 +L2kz1

2k,

= (I−L2kC)x̂2k|2k−1 +L2kCx2k

+L2kv2k +L2kqb,2k,

x̂′2k|2k = (I−L′2kC)x̂2k|2k−1 +L′2kCx2k

+L′2kv2k +L′2kqb+r,2k,

x2k+1 = Ax2k−BKx̂1
2k|2k +w2k,

x̂2k+1|2k = Ax̂′2k|2k−BKx̂1
2k|2k,

x̂2k+1|2k+1 = (I−L2k+1C)x̂2k+1|2k +L2k+1z2k+1,

= (I−L2k+1C)Ax̂′2k|2k

− (I−L2k+1C)BKx̂1
2k|2k

+L2k+1Cx2k+1 +L2k+1v2k+1

+L2k+1qb−r,2k+1.
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The short sequence.




x2k

x̂2k|2k−1


=




A −BK 0 0

0 A−BK 0 0







x2k−1

x̂2k−1|2k−1

x2k−2

x̂1
2k−2|2k−2




+




I

0


w2k−1,




x2k

x̂1
2k|2k

x̂′2k|2k



=




I 0

L2kC (I−L2kC)

L′2kC (I−L′2kC)







x2k

x̂2k|2k−1




+




0 0

L2k 0

0 L′2k







v2k +qb,2k

v2k +qb+r,2k


 ,




x2k+1

x̂′2k|2k

x2k

x̂1
2k|2k



=




A −BK 0

0 0 I

I 0 0

0 I 0







x2k

x̂1
2k|2k

x̂′2k|2k



+




I

0

0

0




w2k,




x2k+1

x̂2k+1|2k+1

x2k

x̂1
2k|2k



=




I 0 0 0

L2k+1C (I−L2k+1C)A 0 −(I−L2k+1C)BK

0 0 I 0

0 0 0 I



×




x2k+1

x̂′2k|2k

x2k

x̂1
2k|2k



+




0

L2k+1

0

0



(v2k+1 +qb−r,2k+1)
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denote

lim
k→∞

L2k = Leven = Σ
p,∞CT (CΣ

p,∞CT +R+Sb
)−1

,

lim
k→∞

L′2k = Lodd1 = Σ
p,∞CT (CΣ

p,∞CT +R+Sb+r)
−1,

lim
k→∞

L2k+1 = Lodd2 = Σ
p,∞CT (CΣ

p,∞CT +R+Sb−r)
−1,

F1 =




A −BK 0 0

0 A−BK 0 0


 , G1 =




I

0


 ,

F2 =




I 0

LevenC (I−LevenC)

Lodd1C (I−Lodd1C)



,G2 =




0 0

Leven 0

0 Lodd1



,

F3 =




A −BK 0

0 0 I

I 0 0

0 I 0



, G3 =




I

0

0

0



, G4 =




0

Lodd2

0

0



,

F4 =




I 0 0 0

Lodd2C (I−Lodd2C)A 0 −(I−Lodd2C)BK

0 0 I 0

0 0 0 I



.
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Then, the two-step update is described by




x2k+1

x̂2k+1|2k+1

x2k

x̂1
2k|2k



= M3




x2k−1

x̂2k−1|2k−1

x2k−1

x̂1
2k−2|2k−2



+N3




w2k−1

w2k


v2k +qb,2k

v2k +qb+r,2k




v2k+1 +qb−r,2k+1




,

with

M3 = F4F3F2F1,

N3 =

[
F4F3F2G1 F4G3 F4F3G2 G4

]
,

ΨIII = E







x2k+1

x̂2k+1|2k+1

x2k

x̂1
2k|2k




[
xT

2k+1 x̂T
2k+1|2k+1 xT

2k x̂1T

2k|2k

]



,

ΨIII = dlyap
(
M3,N3P3N

T
3
)
,

P3 =




Q 0 0 0 0

0 Q 0 0 0

0 0 R+Sb R+Sb+r 0

0 0 R+Sb+r R+Sb+r 0

0 0 0 0 R+Sb−r




,
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JIII =
1
2

trace{Qc[ΨIII(1,1)+ΨIII(3,3)]}+
1
2

trace
{

KT RcK[ΨIII(2,2)+ΨIII(4,4)]
}
.

Proof for Theorem 30:

Suppose Pr(|zk|> ζ ) = β , then Pr(|zk|< ζ ) = 1−β , for t = 1,2, ... and assuming the events to

be independent,

Pr[(|z1|< ζ )∩ (|z2|< ζ )...∩ (|zN |< ζ )] = (1−β )N .

The probability that the process escapes at time T is computed as (1−β )T−1β and the expected

time is

E[τesc] = β +2(1−β )β +3(1−β )2
β +4(1−β )3

β + ...,

= β [1+2(1−β )+3(1−β )2 +4(1−β )3 + ...],

= β
d

dβ
[

−1
1− (1−β )

],

= β
d

dβ

[−1
β

]
,

=
1
β
.
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Chapter 5

Conclusions and future directions

A comprehensive survey of prior research in quantization process is reviewed with

the goal to apply in control systems, and various conditions are studied to catch the proper

stipulations to ameliorate the side effects of quantization error. Eventually we refine the results

of previous achievements to treat the quantization error as white noise. This results play a

conspicuous role in the rest of our study surely. We have introduced and applied subtractive

dither quantization in a network control systems.

We have presented a complete assessment of predictive coding when used as a part of

network control system. We have shown that feedback control based on transmission of the

innovations sequence can not stabilize an unstable system because the unstable mode is not

detectable.

We have investigated the application of Bayesian filter for control systems based on a

predictive coding method. The predictive coding conveys efficiency in the use of the channel bits

and capacity. This leads to develop state estimation at the receiver and, in turn, to a more accurate

state density at the receiver. We assessed the LQG control performance for the controlled closed

loop feedback and the performance of three controllers was computed using LQ-optimal feedback

gain and the various conditional mean state estimates. We have concluded the controller is based

on filtered state estimate from quantized innovation outperforms the controller is produced from

the filtered state estimate. Clearly the worst performance pertains to the controller produced from

the quantized output. Hence we have shown the predictive coding has a significant advantage in
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network control system and it could be very useful. In particular geographically distributed large

scale network control systems. Of course this requires to be balanced against the computational

cost of operation Bayesian filter at the receiver.

We have explored very specific periodic coding strategies of the plant output signal and

their impact on linear quadratic performance subject to an expected escape time. We realized the

more correlated is the controlled output, the more benefit is obtained by coding. The conclusion

is that the coding is of most value when the number of bits is small. Through some basic coding

strategies, we have shown the control objective function has a key role to play in the efficacy of

coding depending on the nature of the controlled output signal.

The novel commodity of this study traced back to treat the quantization’s saturation

via introducing the escape time first and assess the LQG performance over that time. We have

decomposed the quantizer in two stages as infinite levels quantizer and saturation. So it offers us

to investigate the linear controlled covariances and escape time at once. The study of the escape

time is distinguished from other studies which seek to focus on infinite-horizon average or to

manage asymptotic properties.

The future and subsequent directions could be: we would introduce more complicate

communication channel and the second channel from the controller to the plant. Incorporation

of further channel defects such as packet-drop, delays are simple extensions of the Bayesian

filter, additive noise and more complicated channel codings. The coding methods to be studies

could cover, not just more sophisticated codes tuned to the control output signal properties, but

error-correcting codes when the channel introduces errors. From a practical point, when we

implement Bayesian filter, we have chosen a stationary problem to be able to compute on a static

grid, while more generally Bayesian filter is realized through Particle filters.

Generally the innovations sequence no longer need to be white. Even in case of linear non-

Gaussian, it is uncorrelated but not necessarily white. In addition we can extend the computation

with fully nonlinear, time-varying state and measurement equations.

125



Bibliography

[1] Renwick E. Curry. Estimation and Control with Quantized Measurements, volume 60 of
Research Monograph. MIT Press, Cambridge MA, 1970.

[2] Robert M Gray and Thomas G Stockham. Dithered quantizers. IEEE Transactions on
Information Theory, 39(3):805–812, 1993.

[3] B. Widrow and I. Kollár. Quantization Noise: Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge Univ. Press, 2008.

[4] Anekal Sripad and Donald Snyder. A necessary and sufficient condition for quantization
errors to be uniform and white. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 25(5):442–448, 1977.

[5] Leonard Schuchman. Dither signals and their effect on quantization noise. IEEE Transac-
tions on Communication Technology, 12(4):162–165, 1964.

[6] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer Academic
Publishers, New York, NY, 1992.

[7] Telecommunication Standardization Sector. 7 kHz audio-coding within 64 kbit/s. Interna-
tional Telecommunication Union, September 2012.

[8] H.M. Jones, R.R. Bitmead, and S. Crisafulli. Feedback control applied to speech coding.
In IEEE Conference on Decision and Control, pages 1881–1885, Kobe, Japan, 1996.

[9] G. Nair and R.J. Evans. Stabilizability of stochastic linear systems with finite feedback
data rates. SIAM Journal on Control and Optimization, 43(2):413–436, 2004.

[10] K. You, L. Xie, S. Sun, and W. Xiao. Multiple-level quantized innovation Kalman filter.
Proc. 17th International Federation of Automatic Control World Congress, Seoul, Korea,
2008.

[11] A. Ribeiro, G.B. Giannakis, and S.I. Roumeliotis. SOI-KF: Distributed Kalman filtering
with low-cost communications using the sign of innovations. IEEE Transactions on Signal
Processing, 54:4782–4795, 2006.

126



[12] R. Sukhavasi and B. Hassibi. The Kalman-like particle filter: Optimal estimation with
quantized innovations/measurements. IEEE Transactions on Signal Processing, 61(1):131–
136, January 2013.

[13] V.S. Borkar and S.K. Mitter. LQG control with communication constraints. In A. Paulraj,
V. Roychowdhury, and C.D. Schaper, editors, Communication, Computation, Control and
Signal Processing, chapter 21, pages 365–373. Kluwer Academic Publishers, New York
NY, 1997.

[14] D.F. Delchamps. Extracting state information from quantized output record. Systems &
Control Letters, 13:365–372, 1989.

[15] Wing Shing Wong and R.W. Brockett. Systems with finite communication bandwidth con-
straints. i. state estimation problems. IEEE Transactions on Automatic Control, 42(9):1294
–1299, September 1997.

[16] S-I Azuma and T. Sugie. Optimal dynamic quantizers for discrete-valued input control.
Automatica, 44:396–406, 2008.

[17] H. Okajima, K. Sawada, and M. Matsunaga. Dynamic quantizer design under commu-
nication rate constraints. IEEE Transactions on Automatic Control, 61(10):3190–3196,
2016.

[18] T.R. Fischer. Optimal quantized control. IEEE Trans Automatic Control, 27(4):996–998,
1982.

[19] Minyue Fu. Lack of separation principle for quantized Linear Quadratic Gaussian control.
IEEE Trasactions on Automatic Control, 57(9):2385–2390, 2012.

[20] Serdar Yüksel. Jointly optimal LQG quantization and control policies for multi-dimensional
systems. IEEE Transactions on Automatic Control, 59(6):1612–1617, 2014.

[21] Jia Zhang and Chih-Chun Wang. On the rate-cost of gaussian linear control systems with
random communication delays. In 2018 IEEE International Symposium on Information
Theory (ISIT), pages 2441–2445. IEEE, 2018.

[22] V. Kostina and Babak Hassibi. Rate-cost tradeoffs in control. In Fifty-fourth Annual
Allerton Conference, pages 1157–1164, Allerton House IL, September 2016.

[23] T. Tanaka, K.H. Johansson, T. Oechtering, H. Sandberg, and M. Skoglund. Rate of prefix-
free codes for LQG control systems. In IEEE International Symposium on Information
Theory, pages 2399–2403, Barcelona, Spain, 2016.

[24] Photios A Stavrou, Jan Østergaard, Charalambos D Charalambous, and Milan Derpich. An
upper bound to zero-delay rate distortion via kalman filtering for vector gaussian sources.

127



In 2017 IEEE Information Theory Workshop (ITW), pages 534–538. IEEE, 2017.

[25] S. Tatikonda and S. Mitter. Control under communication constraints. IEEE Transactions
on Automatic Control, 49(7):1056 – 1068, July 2004.

[26] Photios Stavrou and Jan Ostergaard. Fixed-rate zero-delay source coding for stationary
vector-valued gauss-markov sources. In Data Compression Conference, March 27-30 2018,
2018.

[27] Photios Stavrou, Jan Ostergaard, and Charalambos Demetriou Charalambous. Zero-delay
rate distortion via filtering for vector-valued gaussian sources. IEEE Journal of Selected
Topics in Signal Processing, 2018.

[28] Alexey S Matveev and Andrey V Savkin. Estimation and control over communication
networks. Springer Science & Business Media, 2009.

[29] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Dover Books on Electrical Engineer-
ing. Dover Publications, Mineola NY, 2012.

[30] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley and Sons Inc.,
New York, 2006.

[31] David Angeli. A Lyapunov approach to incremental stability properties. IEEE Transactions
on Automatic Control, 47(3):410–421, 2002.

[32] Chun-Chia Huang and Robert R Bitmead. Escape time formulation of state estimation and
stabilization with quantized intermittent communication. Automatica, 61:201–210, 2015.

[33] B.D.O. Anderson and J.B. Moore. Detectability and stabilizability of time-varying discrete-
time linear systems. SIAM J. Control Optimization, 19(1):20–32, 1981.

[34] Salvatore Crisafulli. Adaptive speech coding via feedback techniques. PhD thesis, Aus-
tralian National University, Canberra ACT Australia, 1992.

[35] D. Simon. Optimal State Estimation: Kalman, H∞, and nonlinear approaches. John Wiley
& Sons, Hoboken NJ, 2006.

[36] A. Doucet, J.F.G. de Freitas, and N.J. Gordon. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, NY, 2001.

[37] J.F. Ferreira, J. Lobo, and J. Dias. Bayesian real-time perception algorithms on GPU.
Journal of Real-Time Image Processing, 6(3):171–186, 2011.

[38] M. Loève. Probability Theory vols 1 & 2. Springer Verlag, Berlin, 1977.

128



[39] Panqanamala Ramana Kumar and Pravin Varaiya. Stochastic systems: Estimation, identifi-
cation, and adaptive control, volume 75. SIAM, 2015.

[40] Frederick J Beutler. Dynamic programming: Deterministic and stochastic models (dimitri
p. bertsekas). SIAM Review, 31(1):132, 1989.

[41] T. Mita. Optimal digital feeedback control systems counting computation time of control
laws. IEEE Transactions on Automatic Control, 30(6):542–548, 1985.

[42] Vivek S Borkar and Sanjoy K Mitter. Lqg control with communication constraints. In
Communications, Computation, Control, and Signal Processing, pages 365–373. Springer,
1997.

[43] Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

[44] Chun-Chia Huang, Behrooz Amini, and Robert R Bitmead. Predictive coding and control.
IEEE Transactions on Control of Network Systems, 6(2):906–918, 2018.

[45] Minyue Fu. Lack of separation principle for quantized linear quadratic gaussian control.
IEEE Transactions on Automatic Control, 57(9):2385–2390, 2012.

[46] T Fischer. Optimal quantized control. IEEE Transactions on Automatic Control, 27(4):996–
998, 1982.

[47] Girish N Nair and Robin J Evans. Stabilizability of stochastic linear systems with finite
feedback data rates. SIAM Journal on Control and Optimization, 43(2):413–436, 2004.

[48] Vijay Gupta, Amir F Dana, Richard M Murray, and Babak Hassibi. On the effect of
quantization on performance at high rates. In American Control Conference, 2006, pages
6–pp. IEEE, 2006.

[49] Jennifer A Fulton, Robert R Bitmead, and Robert C Williamson. Sampling rate versus
quantisation in speech coders. Signal processing, 56(3):209–218, 1997.

[50] Victoria Kostina and Babak Hassibi. Rate-cost tradeoffs in control. IEEE Transactions on
Automatic Control, 64(11):4525–4540, 2019.

[51] Graham C Goodwin, Mauricio Esteban Cea Garrido, Arie Feuer, and David Q Mayne. On
the use of one bit quantizers in networked control. Automatica, 50(4):1122–1127, 2014.

[52] Mauricio G Cea, GC Goodwin, Arie Feuer, and David Q Mayne. On the control rate
versus quantizer-resolution trade off in networked control. IFAC Proceedings Volumes,
47(3):10343–10348, 2014.

[53] Peter E Caines. Linear stochastic systems, volume 77. SIAM, 2018.

129



[54] Torsten Söderström. Discrete-time stochastic systems: estimation and control. Springer
Science & Business Media, 2012.

130


	Signature Page
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Contributions

	Dithered quantization
	Introduction
	Quantizer Definition
	Quantization Error

	 Linear Quantizers
	Linear Infinite Level Quantizer
	 Linear Finite-Level Quantizer

	Examples
	Subtractive Dithered Quantizer
	Refined Version of QTSD Theorem and Quantizing Time Series

	Predictive coding and control
	Abstract
	Introduction
	Contributions

	Nonlinear Predictive Quantization – Transmitter side
	Nonlinear plant & predictor
	Linear Gaussian plant & predictor
	Quantization
	Transmitter assumptions

	Quantized Innovations Bayesian Filtering – Receiver Side
	Open-Loop System Stability Condition
	Bayesian filter
	Reduced-order Bayesian filter
	Computational issues
	Density properties

	Controller
	Quantized Linear Innovations Filtering
	Linear Innovations with Dithered Quantizer
	Comparative optimal control examples
	LQG control with dithered quantizer
	Non-LQ optimal control

	Conclusion & extensions
	Appendix 
	Proof of Theorem 8
	Derivation of the Bayesian filters for quantized linear systems
	Bayesian filter for quantized innovations
	Bayesian filter for state-estimate density calculation
	Bayesian filter for quantized outputs
	Optimal control and value E[t+1|It] for system (3.7)


	Acknowledgements
	LQG Control Performance with Low Bitrate Periodic Coding
	Introduction
	Problem statement
	LQ Optimal Controller

	Controller Coding Strategies
	Dithered Quantization 
	Period-two Bit-assignment and Transmission Strategies

	Kalman Filters and Covariances for the Strategies
	Control performance analysis
	Escape time analysis
	Numerical examples
	Escape time and quantizer bound

	Conclusion
	Appendix

	Acknowledgements
	Conclusions and future directions
	Bibliography



