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INVARIANT STATES AND RATES OF CONVERGENCE FOR
A CRITICAL FLUID MODEL OF A PROCESSOR

SHARING QUEUE

BY AMBER L. PUHA1 AND RUTH J. WILLIAMS2

California State University and University of California

This paper contains an asymptotic analysis of a fluid model for a heavily
loaded processor sharing queue. Specifically, we consider the behavior of
solutions of critical fluid models as time approaches ∞. The main theorems of
the paper provide sufficient conditions for a fluid model solution to converge
to an invariant state and, under slightly more restrictive assumptions, provide
a rate of convergence. These results are used in a related work by Gromoll for
establishing a heavy traffic diffusion approximation for a processor sharing
queue.

1. Introduction. This paper is a sequel to [10], which establishes a fluid (or
functional law of large numbers) approximation for a heavily loaded processor
sharing queue. In [10], a stochastic process µ(·) taking values in MF, the space of
finite, nonnegative Borel measures on R+ = [0,∞) endowed with the topology
of weak convergence, is used to track the evolution in time of the state of a
processor sharing queue. At time t , µ(t) is the measure that has one unit of mass
at the residual service time of each job present in the system at time t . From the
measure-valued state descriptor µ(·), one can recover the traditional performance
processes, such as the queue length and workload processes (cf. [10], Section 2.3).
Under mild conditions, it is proved in [10] that the fluid scaled state descriptors
for a sequence of heavily loaded processor sharing queues converge in distribution
to a measure-valued stochastic process, which we refer to as a fluid limit (cf. [10],
Theorem 3.2). Almost every sample path of this fluid limit is a solution of a certain
(deterministic) critical fluid model. In this paper, we study the asymptotic behavior
as time tends to ∞ of the solutions of this critical fluid model.

In [1] and [2], Bramson studied the asymptotic behavior of solutions of critical
fluid models associated with open multiclass queueing networks operating under
two HL (head-of-the-line) service disciplines. Then, in [3], Bramson showed
that, if the critical fluid model associated with an open multiclass HL queueing
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network has a certain asymptotic property, then a condition known as state space
collapse holds. In a companion work to [3], Williams [14] showed that state space
collapse, plus an algebraic condition on the first-order queueing model data, is
sufficient to imply a heavy traffic diffusion approximation for an open multiclass
queueing network operating under an HL service discipline. To illustrate this
modular approach, Bramson [3] and Williams [14] applied their results, together
with the results of [1] and [2], to obtain new heavy traffic diffusion limit theorems
for FIFO networks of Kelly type and for networks with an HLPPS (head-of-
the-line proportional processor sharing) service discipline. Processor sharing, as
considered in this paper, is not an HL service discipline. However, an analogue of
the modular approach of [3] and [14] is developed for a processor sharing queue
in [9]. The results proved here are used in [9] to prove a state space collapse result,
which in turn is used in [9] to establish a heavy traffic diffusion approximation for
a processor sharing queue.

To state our results, we need to recall the description of the critical fluid model
from [10]. The model has two parameters, α ∈ (0,∞) and a Borel probability
measure ν on R+ that does not charge the origin [ν({0}) = 0] and has a finite
first moment [

∫
R+ xν(dx) < ∞]. These parameters correspond to parameters in

the queueing system. Specifically, α corresponds to the long-run average rate at
which jobs arrive to the system, and the probability measure ν corresponds to the
distribution of the i.i.d. service times for those jobs. The qualifier critical refers to
the fact that we are interested in the critically loaded regime where the service and
arrival rates are equal. Thus, it is assumed throughout that

α =
(∫

R+
xν(dx)

)−1

.(1.1)

The pair (α, ν) is referred to as the data for the critical fluid model, or simply
the critical data. Here we only consider solutions of a critical fluid model, and
we simply refer to these as fluid model solutions. In particular, the assumption of
critical data is implicit.

A fluid model solution µ̄(·) is a deterministic function of time, taking values
in MF, that satisfies conditions (C1)–(C4). To state these conditions, we need to
introduce some notation. For a Borel set A ⊂ R+, let 1A denote the indicator
function of the set A. To simplify the notation, we use the shorthand notation 1
in place of 1R+ . For ζ ∈ MF, the real-valued projection of ζ associated with a
bounded, real-valued, Borel measurable function g defined on R+ is denoted by
〈g, ζ 〉 = ∫

R+ g(x)ζ(dx). The dynamic conditions [see (C3)] that an MF-valued
function µ̄(·) must satisfy in order to be a fluid model solution involve the real-
valued projections of µ̄(·) over the class of functions

C = {g ∈ C1
b(R+) :g(0) = 0, g′(0) = 0}.

Here C1
b(R+) denotes the space of once continuously differentiable real-valued

functions defined on R+ that, together with their first derivatives, are bounded
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on R+. The requirement that g and g′ vanish at the origin is imposed to avoid
possible singular behavior of 〈g, µ̄(·)〉 and 〈g′, µ̄(·)〉, associated with mass in
the fluid model abruptly disappearing as it reaches the origin. Such behavior
corresponds to jobs in the queueing system abruptly departing when their residual
service times reach 0.

A fluid model solution is a function µ̄ : [0,∞) −→ MF that satisfies the
following four conditions.

(C1) The function µ̄(·) is continuous.
(C2) For each t ≥ 0, 〈1{0}, µ̄(t)〉 = 0.
(C3) For each g ∈ C, µ̄(·) satisfies

〈g, µ̄(t)〉 = 〈g, µ̄(0)〉 −
∫ t

0

〈g′, µ̄(s)〉
〈1, µ̄(s)〉 ds + αt〈g, ν〉(1.2)

for all 0 ≤ t < t∗ = inf{s ≥ 0 : 〈1, µ̄(s)〉 = 0}.
(C4) For all t ≥ t∗, 〈1, µ̄(t)〉 = 0.

See [10], Section 3.1, for an interpretation of (C1)–(C4) in terms of the dynamics
of a processor sharing queue. In fact, using dominated convergence and (C2), it
is straightforward to see that µ̄ : [0,∞) −→ MF satisfies (C1)–(C4) if and only if
it satisfies these conditions with C replaced by C̃ = {g ∈ C1

b(R+) :g(0) = 0}. The
more restictive class was used in [10] as it simplified the proof of the existence of
solutions. In addition, as is proved in [10] and explained below, for the nontrivial
fluid model solutions considered here, t∗ = ∞.

To facilitate the present discussion, we review some results from [10] concern-
ing fluid model solutions. Let

Mc
F = {

ξ ∈ MF :
〈
1{x}, ξ

〉 = 0 for all x ∈ R+
}
,

where c stands for continuous. Theorem 3.1 in [10] states that, for each measure
ξ ∈ Mc

F, there exists a unique fluid model solution µ̄ξ (·) such that µ̄ξ (0) = ξ .
If ξ = 0, where 0 denotes the zero measure, then, by (C4), µ̄ξ (·) ≡ 0. Let

M
c,p
F = {ξ ∈ Mc

F : ξ �= 0},
where p stands for positive. In [10], it was also shown that, for ξ ∈ M

c,p
F , µ̄ξ (t) ∈

M
c,p
F for all t ≥ 0 (cf. [10], Theorem 3.1 and Proposition 4.6). In particular,

if ξ ∈ M
c,p
F , then t∗ = ∞.

Given ξ ∈ Mc
F, it is natural to ask about the asymptotic behavior of µ̄ξ (t) as t

tends to ∞. Specifically, as t tends to ∞, does µ̄ξ (t) converge in some sense? If
so, what is the limit and how fast is the convergence? To answer these questions,
we begin by identifying the possible limiting measures. Extending the terminology
in [3] to the present setting, a measure ξ ∈ Mc

F is said to be an invariant state if

µ̄ξ (t) = ξ for all t ≥ 0.
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Similarly, the collection of invariant states I, which is given by

I = {ξ ∈ Mc
F : µ̄ξ (t) = ξ for all t ≥ 0},

is called the invariant manifold. Here it turns out that the invariant manifold I

is a one-parameter family of measures that is determined by the probability
measure ν. To describe I, we need to introduce some notation. Let F denote
the cumulative distribution function associated with the probability measure ν.
The distribution function F has associated with it an excess lifetime cumulative
distribution function Fe, which is given by

Fe(x) = α

∫ x

0

(
1 − F(y)

)
dy for all x ∈ R+.

In particular, Fe has probability density function

fe(x) = α
(
1 − F(x)

)
for all x ∈ R+.

Note that (1.1) was used to simplify the form of the normalizing constant here.
Let νe denote the Borel probability measure on R+ that has density function fe,
that is, 〈1[0,x], νe〉 = Fe(x) = ∫ x

0 fe(y) dy for all x ∈ R+. We call νe the excess
lifetime probability measure. Define

βe = 1

〈χ, νe〉 ,

where χ(x) = x for x ∈ R+. The right member above is interpreted as 0 if the first
moment of νe is infinite.

THEOREM 1.1. A measure ξ ∈ Mc
F is an invariant state if and only if ξ = cνe

for some c ∈ [0,∞). Equivalently, the invariant manifold I is given by

I = {cνe : c ∈ [0,∞)}.

Theorem 1.1 is proved in Section 3.
Let ξ ∈ Mc

F. We wish to identify conditions under which µ̄ξ (t) converges to
a point on the invariant manifold as t tends to ∞ and to determine the limiting
state. For this, we define the fluid analogue of the workload at time t ∈ [0,∞) to
be given by 〈χ, µ̄ξ (t)〉. By Theorem 3.1 in [10], 〈χ, µ̄ξ (t)〉 = 〈χ, ξ 〉 for all t ≥ 0.
[This holds even if 〈χ, ξ 〉 = ∞, in which case 〈χ, µ̄ξ (t)〉 = ∞ for all t ≥ 0.] Thus,
when µ̄ξ (t) converges to an element cνe in I as t tends to ∞ and both 〈χ, ξ 〉 and
〈χ, νe〉 are finite, one might expect the first moment, c〈χ, νe〉, of the limit to be
given by 〈χ, ξ 〉, or, equivalently, that c = βe〈χ, ξ 〉. Indeed, we have the following
result.

THEOREM 1.2. Let ξ ∈ Mc
F. If 〈χ, ξ 〉 < ∞, then µ̄ξ (t) converges weakly to

βe〈χ, ξ 〉νe as t → ∞.
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Notice that βe > 0 if and only if 〈χ2, ν〉 < ∞, since, for γ ∈ R+, 〈χγ , νe〉 < ∞
if and only if 〈χγ+1, ν〉 < ∞. Therefore, the case in which ξ �= 0 and 〈χ2, ν〉 = ∞
is degenerate in the sense that µ̄ξ (t) converges to the zero measure as t tends to ∞,
but 〈χ, µ̄ξ (t)〉 does not converge to 0.

The result in Theorem 1.2 is more general than, but consistent with, Proposi-
tion 5 of [4], which concerns the asymptotic behavior of a fluid approximation
for the queue length of a heavily loaded processor sharing queue. Theorem 1.2 is
proved in Section 4, using proof techniques similar to those employed in [4].

Finally, we wish to give a rate at which µ̄ξ (t) converges as t tends to ∞. In fact,
we will prove two rate of convergence results. The first gives a rate of convergence
in terms of a metric on MF that induces the weak topology. For this, let ρ denote
the extension of the Prohorov metric to MF. Specifically, for ζ1, ζ2 ∈ MF, ρ(ζ1, ζ2)

is given by

ρ(ζ1, ζ2) = inf
{
δ > 0 : 〈1B, ζ1〉 ≤ 〈1Bδ , ζ2〉 + δ

and 〈1B, ζ2〉 ≤ 〈1Bδ, ζ1〉 + δ,(1.3)

for all nonempty, closed sets B ⊂ R+
}
,

where, for each nonempty, closed set B ⊂ R+,

Bδ =
{
x ∈ R+ : inf

y∈B
|x − y| < δ

}
.

Note that, under ρ, MF is a Polish space. Moreover, if {ζn, n = 1,2, . . . } ⊂ MF
and ζ ∈ MF, then ζn converges weakly to ζ as n tends to ∞ if and only if
limn→∞ ρ(ζn, ζ ) = 0 (cf. [6], Chapter 3, Theorems 1.7 and 3.1, which readily
generalize from the set of Borel probability measures to MF). Our second rate
result gives a rate of convergence in terms of the total variation distance. For a
signed, Borel measure ζ on R+,

‖ζ‖TV = sup
{|〈g, ζ 〉| such that g : R+ −→ R is Borel measurable

(1.4)
and |g(x)| ≤ 1 for all x ∈ R+

}
.

Note that, if {ζn, n = 1,2, . . . } ⊂ MF, ζ ∈ MF and limn→∞ ‖ζn − ζ‖TV = 0, then
ζn converges weakly to ζ as n → ∞. However, the converse is not true in general
(cf. [5], page 69). For each of our rate of convergence results, the convergence is
uniform over sets of initial conditions satisfying certain moment constraints. These
sets take the following form. For any finite, positive constants ε and M , let

BM,ε
ρ = {

ξ ∈ Mc
F : 〈1, ξ 〉 ∨ 〈χ, ξ 〉 ∨ 〈χ1+ε, ξ 〉 ≤ M

}
,(1.5)

BM,ε
TV = {

ξ ∈ Mc
F : 〈1, ξ 〉 ∨ 〈χ, ξ 〉 ∨ 〈χ2, ξ 〉 ∨ 〈χ2+ε, ξ 〉 ≤ M

}
.(1.6)

Of course, for ξ ∈ Mc
F , if 〈1, ξ 〉 ∨ 〈χ1+ε, ξ 〉 ≤ M , then ξ ∈ B2M,ε

ρ . Similarly, if

〈1, ξ 〉 ∨ 〈χ2+ε, ξ 〉 ≤ M , then ξ ∈ B2M,ε
TV . Definitions (1.5) and (1.6) are used to

simplify the tracking of constants in our proofs. Our rate of convergence results
are summarized by the following.
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THEOREM 1.3. Let M be a fixed, finite, positive constant.

(i) If, for some ε > 0, 〈χ2+ε, ν〉 < ∞, then there exist a finite, positive
constant Cρ and a finite, positive time Tρ such that

sup
ξ∈BM,ε

ρ

(
µ̄ξ (t), βe〈χ, ξ 〉νe

) ≤ Cρt−ε/4 for all t ≥ Tρ.(1.7)

(ii) If, for some ε > 0, 〈χ3+ε, ν〉 < ∞, then there exist a finite, positive
constant CTV and a finite, positive time TTV such that

sup
ξ∈BM,ε

TV

∥∥µ̄ξ (t) − βe〈χ, ξ 〉νe
∥∥

TV ≤ CTVt−ε for all t ≥ TTV.(1.8)

In Theorem 1.3, the times Tρ and TTV and the constants Cρ and CTV depend on
the values of the constants M and ε and on the critical data (α, ν). In the proofs,
we have not tried to obtain the best possible estimates for these constants.

In [9], Theorem 1.3(i) is used to prove a state space collapse result. In that
application, it is the uniform convergence over sets of the form BM,ε

ρ for M,ε ∈
(0,∞) that is critical. In fact, the specific rate and value of the constants are not
important for the argument. Although Theorem 1.3(ii) is not needed for [9], we
have included it here for its intrinsic interest and potential use in other applications.

The proof of part (i) of Theorem 1.3 exploits the asymptotic behavior of the
renewal function for a zero-delayed renewal process with interarrival distribution
determined by the probability measure νe. The condition 〈χ2+ε, ν〉 < ∞ is slightly
stronger than requiring that this interarrival distribution have a finite mean, that is,
that βe > 0. This condition is used in the proof to obtain a rate of convergence
for Blackwell’s renewal theorem. Similarly, the proof of part (ii) of Theorem 1.3
exploits the asymptotic behavior of the renewal measures for certain delayed
renewal processes with interarrival distribution determined by the probability
measure νe. The condition 〈χ3+ε, ν〉 < ∞ is slightly stronger than requiring
that the interarrival distribution have a finite second moment. This condition is
used in the proof to obtain a rate at which the renewal measures converge in
the total variation distance to the stationary renewal measure. Both the rate of
convergence for Blackwell’s renewal theorem and the rates of convergence for
renewal measures rely on the coupling results developed in [12]. In using those
results, we pay careful attention to the dependence of the various constants on the
initial measure ξ and the interarrival distribution νe.

The remainder of the paper is devoted to the proofs of Theorems 1.1–1.3.
Section 2 contains some background and two preparatory lemmas. Then Theorems
1.1, 1.2, 1.3(i) and 1.3(ii) are proved in Sections 3, 4, 5 and 6, respectively. In the
Appendix, coupling results from [12] are applied to verify some of the estimates
used in Section 6 to prove Theorem 1.3(ii).
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2. Background. Recall that, for ξ ∈ Mc
F, µ̄ξ (·) denotes the unique fluid

model solution such that µ̄ξ (0) = ξ . Given ξ ∈ Mc
F, the fluid analogue of the queue

length Z̄(·) is defined by

Z̄(t) = 〈1, µ̄ξ (t)〉 for all t ≥ 0.(2.1)

For obvious reasons, Z̄(t) is referred to as the total mass at time t . Due to (C1),
Z̄(·) is continuous. As previously noted, if ξ �= 0, then µ̄ξ (t) �= 0 for all t ≥ 0
(cf. [10], Theorem 3.1), and so Z̄(t) is strictly positive for all t ≥ 0. Conversely,
if ξ = 0, then µ̄ξ (·) ≡ 0 and Z̄(·) ≡ 0. Given this, for each t ≥ 0, the fluid analogue
of the cumulative service per job S̄(t) is defined by

S̄(t) =



0, if ξ = 0,∫ t

0
(Z̄(s))−1 ds, otherwise.

(2.2)

Thus, at time t ≥ 0, S̄(t) denotes the cumulative service per unit of mass in the
system up to time t . Since Z̄(·) is continuous and Z̄(t) > 0 for all t ≥ 0 when
ξ �= 0, it follows that S̄(·) is continuously differentiable. The reader will note that,
in order to avoid cluttering the notation, we choose not to append a subscript ξ to
quantities defined by (2.1) and (2.2), since it is typically clear from the context
which fluid model solution is under consideration. In [10], it was shown that,
if ξ ∈ M

c,p
F , then, for each t ≥ 0 and x ∈ R+,

〈
1[0,x], µ̄ξ (t)

〉 = 〈
1(S̄(t),S̄(t)+x], ξ

〉 + ∫ t

0
Gx

(
S̄(t) − S̄(s)

)
ds,(2.3)

where, for each x ∈ R+,

Gx(y) = fe(y) − fe(x + y) for all y ∈ R+
(cf. [10], Lemma 4.3 and (4.33)). Here we have used (C2). For each t ≥ 0, this
gives an explicit description of the measure µ̄ξ (t) in terms of the nonzero initial
measure ξ and the cumulative service per unit of mass function S̄(·).

To state what is known about S̄(·) for a given ξ ∈ M
c,p
F , we need to introduce

the renewal function Ue(·) associated with the critical data (α, ν) and the truncated
initial workload function Hξ(·) associated with an initial measure ξ . For this,
given a locally bounded, Borel measurable function g : R+ −→ R+ and a right-
continuous function U : R+ −→ R+ that is locally of bounded variation, let

(g ∗ U)(u) =
∫
[0,u]

g(u − s) dU(s) for all u ≥ 0.

Note that, by convention, the contribution to the above integral is g(u)U(0) at
s = 0 whenever U(0) �= 0. Let

Ue(u) =
∞∑
i=0

(F ∗i
e )(u) for all u ≥ 0,
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where F ∗0
e (·) ≡ 1 and F ∗i

e (·) = (F
∗(i−1)
e ∗ Fe)(·) for each i ∈ {1,2, . . . }.

For ξ ∈ M
c,p
F , define

Hξ(x) =
∫ x

0

〈
1(y,∞), ξ

〉
dy for all x ∈ R+.(2.4)

It is easily verified that, for each x ∈ R+, Hξ(x) = 〈χ ∧ x, ξ 〉, which explains why
Hξ is referred to as the truncated initial workload function. Since ξ has no atoms,
the integrand in (2.4) is continuous. Thus, for ξ ∈ M

c,p
F , Hξ(·) is continuously

differentiable with

H ′
ξ (x) = 〈

1(x,∞), ξ
〉

for all x ∈ R+.(2.5)

In Lemma 4.4 of [10], it was shown that S̄(·) maps [0,∞) onto [0,∞). Since
S̄(·) is also continuously differentiable and strictly increasing, it has a functional
inverse, with the same properties as S̄(·), defined on [0,∞) by

T̄ (u) = S̄−1(u) = inf{t ≥ 0 : S̄(t) > u} for all u ≥ 0.

If we let x tend to ∞ in (2.3), execute the time change u = S̄(t) and then use (2.2),
we obtain a convolution equation for T̄ ′(·). The solution of this is

T̄ ′(u) = (H ′
ξ ∗ Ue)(u) for all u ≥ 0,(2.6)

from which it follows that

T̄ (u) = (Hξ ∗ Ue)(u) for all u ≥ 0.(2.7)

For the full details of this derivation, see Lemma 4.4 of [10]. The convolution
representation (2.7) is key to many of the developments in this paper.

In the next lemma, we use the fact that T̄ (·) = S̄−1(·) to express Z̄(·) as a time
change of T̄ ′(·) and to express (2.3) as a time change of a renewal equation.

LEMMA 2.1. Let ξ ∈ M
c,p
F . Then, for each t ≥ 0,

Z̄(t) = (H ′
ξ ∗ Ue)(S̄(t)),(2.8)

and, for each t ≥ 0 and x ∈ R+,〈
1[0,x], µ̄ξ (t)

〉 = 〈
1(S̄(t),S̄(t)+x], ξ

〉 + (
(Gx ∗ Hξ) ∗ Ue

)
(S̄(t)).(2.9)

PROOF. To verify (2.8), use the fact that T̄ (·) = S̄−1(·) together with (2.2) to
obtain, for each t ≥ 0,

Z̄(t) = 1

S̄′(t)
= T̄ ′(S̄(t)).

This together with (2.6) implies (2.8). To verify (2.9), use the change of variables
y = S̄(s) and the fact that T̄ (·) = S̄−1(·) to obtain the following: for each t ≥ 0
and x ∈ R+,∫ t

0
Gx(

S̄(t) − S̄(s)
)
ds =

∫ S̄(t)

0
Gx(

S̄(t) − y
)
dT̄ (y) = (Gx ∗ T̄ )(S̄(t)).(2.10)
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Substituting (2.10) into (2.3) and then using (2.7) and the associativity of the
convolution operation completes the proof. �

In the next lemma, we show that, under appropriate conditions, S̄(t) is bounded
below by a linear function for all t sufficiently large.

LEMMA 2.2. Given η > 0, there exists a finite, positive time T ν,η depending
on η and ν such that, for all ξ ∈ M

c,p
F with 〈χ, ξ 〉 < ∞,

S̄(t) ≥ t

(βe + η)〈χ, ξ 〉 for all t ≥ 〈χ, ξ 〉T ν,η.(2.11)

PROOF. Fix η > 0 and ξ ∈ M
c,p
F such that 〈χ, ξ 〉 < ∞. By the elementary re-

newal theorem, Ue(t)/t converges to βe as t tends to ∞ (cf. [13], Theorem 3.3.3).
We note that this holds even if βe = 0, that is, if 〈χ, νe〉 = ∞. Thus, there exists a
finite, positive time T̃ ν,η such that

Ue(t) ≤ (βe + η)t for all t ≥ T̃ ν,η.

Note that T̃ ν,η does not depend on ξ since Ue(·) does not depend on ξ . Moreover,
since both Hξ and Ue are nondecreasing, from (2.7) and (2.4), it follows that
T̄ (t) ≤ Hξ(t)Ue(t) ≤ 〈χ, ξ 〉Ue(t) for all t ≥ 0. Thus,

T̄ (t) ≤ (βe + η)〈χ, ξ 〉t for all t ≥ T̃ ν,η.(2.12)

Since S̄(·) = T̄ −1(·), it follows that

S̄(t) ≥ t

(βe + η)〈χ, ξ 〉 for all t ≥ T̄ (T̃ ν,η).

By (2.12), T̄ (T̃ ν,η) ≤ (βe + η)〈χ, ξ 〉T̃ ν,η . Setting T ν,η = (βe + η)T̃ ν,η completes
the proof. �

When βe > 0, we can set η = βe in Lemma 2.2 to obtain the following corollary.

COROLLARY 2.3. If 〈χ2, ν〉 < ∞, then there exists a positive, finite time T ν

such that, for all ξ ∈ M
c,p
F with 〈χ, ξ 〉 < ∞,

S̄(t) ≥ t

2βe〈χ, ξ 〉 for all t ≥ 〈χ, ξ 〉T ν.(2.13)

3. The invariant manifold. Theorem 1.1 is proved in this section. For this,
we begin with the following proposition.

PROPOSITION 3.1. For each g ∈ C,

α〈g, ν〉 = 〈g′, νe〉.(3.1)
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PROOF. Fix g ∈ C. Note that (3.1) may be rewritten as

α

∫
R+

g(x) dF (x) =
∫

R+
g′(x)fe(x) dx.(3.2)

Recall that for real-valued, right-continuous functions U(·) and V (·) on R+, which
are locally of bounded variation and such that at least one of U or V is continuous,
we have the following integration by parts formula: for all 0 ≤ a < b < ∞,∫

(a,b]
V (x) dU(x) +

∫
(a,b]

U(x)dV (x) = V (b)U(b) − V (a)U(a)(3.3)

(see, e.g., [8], Theorem 3.30). To prove (3.2), use F(0) = 0, (3.3), g(0) = 0 and
g is bounded, together with limy→∞ F(y) = 1, to obtain∫

R+
g(x) dF (x) =

∫
(0,∞)

g(x) dF (x)

= lim
y→∞

∫
(0,y]

g(x) dF (x)

= − lim
y→∞

∫
(0,y]

g(x) d
(
1 − F(x)

)

= − lim
y→∞

[
g(y)

(
1 − F(y)

) −
∫
(0,y]

g′(x)
(
1 − F(x)

)
dx

]

=
∫

R+
g′(x)

(
1 − F(x)

)
dx.

Since fe(x) = α(1 − F(x)) for all x ∈ R+, (3.2) holds, and hence so does (3.1).
�

PROOF OF THEOREM 1.1. Recall that µ̄0(·) ≡ 0. Thus, ξ = 0 is an invariant
state. Therefore, to prove Theorem 1.1, it suffices to show that ξ ∈ M

c,p
F is an

invariant state if and only if ξ = cνe for some c ∈ (0,∞). Suppose that ξ ∈ M
c,p
F

is an invariant state, that is, that µ̄ξ (t) ≡ ξ for all t ≥ 0. Fix t > 0. Then, since
µ̄ξ (·) is a fluid model solution, it follows from (1.2) that, for any function g ∈ C,∫ t

0

〈g′, µ̄ξ (s)〉
〈1, µ̄ξ (s)〉 ds = αt〈g, ν〉.(3.4)

Since µ̄ξ (·) ≡ ξ , it follows that, for each 0 ≤ s ≤ t , the numerator and the
denominator of the integrand in (3.4) are given by 〈g′, ξ 〉 and 〈1, ξ 〉, respectively.
Therefore, (3.4) simplifies to

〈g′, ξ 〉 = 〈1, ξ 〉α〈g, ν〉.
By (3.1), the right-hand side of the above expression is given by 〈1, ξ 〉〈g′, νe〉.
Thus,

〈g′, ξ 〉 = c〈g′, νe〉 for all g ∈ C,(3.5)
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where c = 〈1, ξ 〉. It turns out that C is a sufficiently rich class of functions in order
for (3.5) to imply that ξ = cνe, where c = 〈1, ξ 〉. To see this, fix x ∈ (0,∞). For
ε ∈ (0, x/2), let gε ∈ C1

b(R+) such that 0 ≤ g′
ε ≤ 1,

g′
ε(y) =

{
1, if y ∈ (ε, x − ε),

0, if y ∈ [0, ε/2] ∪ [x − ε/2,∞),

and gε(y) = ∫ y
0 g′

ε(z) dz. Then gε ∈ C. Therefore, by (3.5), 〈g′
ε, ξ 〉 = c〈g′

ε, νe〉,
where c = 〈1, ξ 〉. By letting ε tend to 0, it follows from bounded convergence that
〈1(0,x), ξ 〉 = c〈1(0,x), νe〉 for all x ∈ (0,∞). Since neither ξ nor νe has an atom at
the origin, ξ = cνe, where c = 〈1, ξ 〉. This completes the proof of the “only if”
part of the theorem.

For the proof of the “if” part of the theorem, we must show that, if ξ = cνe
for some c ∈ (0,∞), then ξ is an invariant state, that is, that µ̄ξ (·) ≡ ξ . For this,
let µ̄(·) ≡ ξ , where ξ = cνe for some c ∈ (0,∞). It suffices to show that µ̄(·)
satisfies (1.2). Obviously, for each g ∈ C,

〈g, µ̄(t)〉 = 〈g, ξ 〉 = 〈g, µ̄(0)〉 for all t ≥ 0.(3.6)

By the definition of µ̄(·) and (3.1), for each g ∈ C,∫ t

0

〈g′, µ̄(s)〉
〈1, µ̄(s)〉 ds = t〈g′, νe〉 = αt〈g, ν〉 for all t ≥ 0.(3.7)

By combining (3.6) and (3.7), we see that µ̄(·) satisfies (1.2), as desired. �

4. Weak convergence to the invariant manifold. Theorem 1.2 is proved in
this section. For this, note that, by Lemma 2.1, for t ≥ 0 and x ∈ R+, Z̄(t) and
〈1(0,x], µ̄ξ (t)〉 can be expressed in terms of convolutions involving the renewal
function Ue(·). Under suitable conditions, the key renewal theorem characterizes
the asymptotic behavior of such convolutions. Since Fe is nonarithmetic, the key
renewal theorem implies that, for any Borel measurable function g : R+ −→ R+
that is directly Riemann integrable (see below for the definition),

lim
z→∞(g ∗ Ue)(z) = βe

∫ ∞
0

g(x) dx,(4.1)

(cf. [7], Chapter 11, page 363).
To apply the key renewal theorem, we will need to verify that certain functions

are directly Riemann integrable. We begin by recalling the definition of the latter
and some related facts. For g : R+ −→ R+ and n, k ∈ {1,2, . . . }, let

mn
k(g) = inf

{
g(z) : z ∈ [

(k − 1)/n, k/n
)}

and

Mn
k (g) = sup

{
g(z) : z ∈ [

(k − 1)/n, k/n
)}

,
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and define

Ln(g) = 1

n

∞∑
k=1

mn
k(g) and Un(g) = 1

n

∞∑
k=1

Mn
k (g).

Set

σ(g) = lim sup
n→∞

Ln(g) and σ(g) = lim inf
n→∞ Un(g).

The function g is said to be directly Riemann integrable if σ(g) < ∞ and σ(g) =
σ(g). Note that, for each n, the supremums and infimums defining mn

k and Mn
k

for k ∈ {1,2, . . . } are taken over intervals of a fixed length (not varying with k).
If g is directly Riemann integrable, then g is Riemann integrable and σ(g) =∫ ∞

0 g(x) dx. The converse is not true in general. However, if g : R+ −→ R+
is Riemann integrable on [0, x] for all x ∈ R+ and Un(g) < ∞ for some n ∈
{1,2, . . . }, then g is directly Riemann integrable (cf. [7]). In particular, if g is a
nonincreasing, Riemann integrable function, then g is directly Riemann integrable
since, for all n ∈ {1,2, . . . },

Un(g) ≤
∫ ∞

0
g(x) dx + 1

n
g(0) < ∞.

Also, if g1 : R+ −→ R+ is Riemann integrable on [0, x] for all x ∈ R+ and satisfies
g1 ≤ g2 for some directly Riemann integrable function g2 : R+ −→ R+, then g1 is
also directly Riemann integrable.

THEOREM 4.1. Let ξ ∈ M
c,p
F . If 〈χ, ξ 〉 < ∞, then, for each x ∈ R+,

lim
t→∞

〈
1[0,x], µ̄ξ (t)

〉 = βe〈χ, ξ 〉〈1[0,x], νe
〉

and lim
t→∞ Z̄(t) = βe〈χ, ξ 〉.

PROOF. Fix ξ ∈ M
c,p
F such that 〈χ, ξ 〉<∞. By Lemma 2.2, limt→∞ S̄(t) = ∞.

Also, the continuous function H ′
ξ (·) is directly Riemann integrable since H ′

ξ (·) is
nonincreasing and ∫ ∞

0
H ′

ξ (x) dx = 〈χ, ξ 〉 < ∞.

These two facts together with (2.8) and (4.1) immediately imply the stated
convergence result for Z̄(·).

It remains to prove the stated convergence result for the mass on [0, x] for
each x ∈ R+. For this, fix x ∈ R+. Since the total mass of ξ is finite and since,
by Lemma 2.2, limt→∞ S̄(t) = ∞, we have

lim sup
t→∞

〈
1(S̄(t),S̄(t)+x], ξ

〉 ≤ lim
t→∞

〈
1(S̄(t),∞), ξ

〉 = 0.(4.2)

Thus, the first term on the right-hand side of (2.9) tends to 0 as t tends to ∞. To
see that the second term on the right-hand side of (2.9) converges to the desired
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limit, we appeal to the key renewal theorem. For this, let f x
e (y) = fe(x + y)

for all y ∈ R+ and consider the function (f x
e ∗ Hξ)(·). Using the fact that Hξ is

continuously differentiable, it can be shown that (f x
e ∗ Hξ)(·) is continuous, and

therefore it is Riemann integrable over [0, y] for each y ∈ R+. Thus, to show that
(f x

e ∗ Hξ)(·) is directly Riemann integrable, it suffices to show that it is bounded
above by a function that is directly Riemann integrable. Using the fact that both
f x

e (·) and H ′
ξ (·) are nonincreasing, we obtain the following: for each y ∈ R+,

(f x
e ∗ Hξ)(y) =

∫ y/2

0
f x

e (y − z)H ′
ξ (z) dz +

∫ y

y/2
f x

e (y − z)H ′
ξ (z) dz

≤ f x
e (y/2)

∫ y/2

0
H ′

ξ (z) dz + H ′
ξ (y/2)

∫ y

y/2
f x

e (y − z) dz

≤ f x
e (y/2)

∫ ∞
0

H ′
ξ (z) dz + H ′

ξ (y/2)
(
Fe(x + y/2) − Fe(x)

)
≤ f x

e (y/2)〈χ, ξ 〉 + H ′
ξ (y/2).

As noted above, H ′
ξ (·) is directly Riemann integrable. Since f x

e (·) is nonincreasing
and Riemann integrable, f x

e (·) is also directly Riemann integrable. Therefore,
(f x

e ∗ Hξ)(·) is bounded above by a function that is directly Riemann integrable,
and hence (f x

e ∗ Hξ)(·) is itself directly Riemann integrable. In particular,
(f x

e ∗ Hξ)(·) is Riemann integrable over R+ and∫ ∞
0

(f x
e ∗ Hξ)(y) dy =

∫ ∞
0

∫ y

0
f x

e (y − z)H ′
ξ (z) dz dy

=
∫ ∞

0

∫ ∞
z

f x
e (y − z) dy H ′

ξ (z) dz

=
∫ ∞

0

∫ ∞
0

f x
e (y) dy H ′

ξ (z) dz(4.3)

= 〈χ, ξ 〉
∫ ∞

0
f x

e (y) dy

= 〈χ, ξ 〉
∫ ∞
x

fe(y) dy.

Since (Gx ∗ Hξ)(·) = (f 0
e ∗ Hξ)(·) − (f x

e ∗ Hξ)(·), it immediately follows that
(Gx ∗ Hξ)(·) is directly Riemann integrable. Moreover, by (4.3),∫ ∞

0
(Gx ∗ Hξ)(y) dy = 〈χ, ξ 〉

∫ x

0
fe(y) dy = 〈χ, ξ 〉Fe(x).(4.4)

This together with the key renewal theorem gives

lim
z→∞

(
(Gx ∗ Hξ) ∗ Ue

)
(z) = βe〈χ, ξ 〉Fe(x).
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Since, by Lemma 2.2, limt→∞ S̄(t) = ∞, it follows that

lim
t→∞

(
(Gx ∗ Hξ) ∗ Ue

)
(S̄(t)) = βe〈χ, ξ 〉Fe(x).(4.5)

Combining (2.9), (4.2) and (4.5) completes the proof. �

PROOF OF THEOREM 1.2. If ξ = 0, we have µ̄ξ (·) ≡ 0, βe〈χ, ξ 〉 = 0, and
the conclusion of Theorem 1.2 holds. Now take ξ ∈ M

c,p
F such that 〈χ, ξ 〉 < ∞.

First suppose that 〈χ2, ν〉 = ∞. Then βe = 0, and, by Theorem 4.1, Z̄(t) → 0
as t → ∞. Given a continuous, bounded function g : R+ −→ R, we have, for
each t ≥ 0,

|〈g, µ̄ξ (t)〉| ≤ sup
x∈R+

|g(x)|Z̄(t).

So, it follows that µ̄ξ (t) converges weakly to the zero measure as t → ∞. Next
suppose that 〈χ2, ν〉 < ∞, that is, that βe > 0. Recall that ξ �= 0 implies that
Z̄(t) > 0 for all t ≥ 0. Therefore, for each t ≥ 0, one can divide µ̄ξ (t) by the
total mass to form a probability measure. This normalization of µ̄ξ (t) for t ≥ 0
facilitates the use of standard results on convergence in distribution. For this, for
each t ≥ 0, define the probability distribution function

F(t, x) = 〈1[0,x], µ̄ξ (t)〉
Z̄(t)

for all x ∈ R+.

Since βe〈χ, ξ 〉 > 0, Theorem 4.1 implies that, for each x ∈ R+, F(t, x) −→ Fe(x)

as t → ∞. It follows that, for any bounded, continuous function g : R+ −→ R+,

lim
t→∞

∫
R+

g(x) dxF (t, x) =
∫

R+
g(x) dFe(x),

(cf. [5], Chapter 2, Theorem 2.2), that is, that

lim
t→∞

〈g, µ̄ξ (t)〉
Z̄(t)

= 〈g, νe〉.

Since limt→∞ Z̄(t) = βe〈χ, ξ 〉, it follows that, for any bounded, continuous
function g : R+ −→ R+,

lim
t→∞〈g, µ̄ξ (t)〉 = βe〈χ, ξ 〉〈g, νe〉,

which completes the proof. �

5. A rate of convergence in the Prohorov metric. In this section, we prove
Theorem 1.3(i), and in the next section, we prove Theorem 1.3(ii). For this, note
that the conditions of part (i) [as well as those of part (ii)] imply that ν satisfies
〈χ2, ν〉 < ∞, and hence βe > 0. To ease the typography, for βe > 0 and ξ ∈ Mc

F
satisfying 〈χ, ξ 〉 < ∞, we use the notation

κ = βe〈χ, ξ 〉.(5.1)
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We begin with Lemma 5.1, which identifies conditions that imply the result of
Theorem 1.3(i). For this, recall the definitions given by (1.3) and (1.5).

LEMMA 5.1. Let M,ε > 0. Suppose that 〈χ2, ν〉 < ∞ and that there exist
a finite constant C ≥ 1 and a finite time T ≥ 1 such that, for all ξ ∈ BM,ε

ρ , t ≥ T

and 0 < x ≤ ∞, ∣∣〈1[0,x), µ̄ξ (t)
〉 − 〈

1[0,x), κνe
〉∣∣ ≤ Ct−ε.(5.2)

Then, for all ξ ∈ BM,ε
ρ and t ≥ T ,

ρ
(
µ̄ξ (t), κνe

) ≤ Cρt−ε/4,

where Cρ is the unique positive root of the polynomial p(y) = y2 − (M + 4C)y −
2C, y ∈ R+.

PROOF. Let M,ε > 0 and fix ξ ∈ BM,ε
ρ . To prove Lemma 5.1, it suffices to

show that, for each t ≥ T and for all nonempty closed sets B ⊂ R+,

〈1B, µ̄ξ (t)〉 ≤ 〈1Bδt , κνe〉 + δt and 〈1B, κνe〉 ≤ 〈1Bδt , µ̄ξ (t)〉 + δt ,(5.3)

where δt = Cρt−ε/4. To verify (5.3), we begin with a simple observation. As an
immediate consequence of (5.2), the fact that µ̄ξ (t) has no atoms for each t ≥ 0
and the fact that νe has no atoms, it follows that, for each 0 ≤ x < y ≤ ∞,∣∣〈1(x,y), µ̄ξ (t)

〉 − 〈
1(x,y), κνe

〉∣∣ ≤ 2Ct−ε for all t ≥ T .(5.4)

We will use (5.4) in conjunction with (5.2) to verify (5.3). For this, fix a nonempty
closed set B ⊂ R+ and a finite time t ≥ T . Note that, since B ⊂ Bδt ,

〈1B, µ̄ξ (t)〉 ≤ 〈1Bδt , µ̄ξ (t)〉 and 〈1B, κνe〉 ≤ 〈1Bδt , κνe〉.(5.5)

To use (5.2) and (5.4), we will need to write Bδt as a union of intervals that are
relatively open in R+. Since Bδt is relatively open in R+, it is either a finite or
a countable union of relatively open, disjoint intervals. Moreover, by the definition
of Bδt , the length of each interval is at least δt . Let N denote the number of
these intervals that have nonempty intersection with [0, tε/2). Then N ≤ �tε/2/δt�,
where, for all x ∈ R, �x� denotes the smallest integer greater than or equal to x.
Moreover, we can write

Bδt = I1 ∪ I2 ∪ · · · ∪ IN ∪ (
Bδt ∩ (tε/2,∞)

)
,(5.6)

where Ii , i = 1, . . . ,N , are relatively open, disjoint intervals in R+ such that
Ii ∩ [0, tε/2) �= ∅ for i = 1, . . . ,N . Note that, for each i = 1, . . . ,N , either
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Ii = [0, x) for some 0 < x ≤ ∞ or Ii = (x, y) for some 0 ≤ x < y ≤ ∞. Using
(5.5) and (5.6), together with inequalities (5.2) and (5.4), we have

〈1B, µ̄ξ (t)〉 ≤
N∑

i=1

〈
1Ii

, µ̄ξ (t)
〉 + 〈

1(tε/2,∞), µ̄ξ (t)
〉

≤
N∑

i=1

〈
1Ii

, κνe
〉 + 〈

1(tε/2,∞), κνe
〉 + (N + 1)2Ct−ε

≤ 〈
1Bδt , κνe

〉 + 〈
1(tε/2,∞), κνe

〉 + (N + 1)2Ct−ε.

Similarly,

〈1B, κνe〉 ≤
N∑

i=1

〈
1Ii

, κνe
〉 + 〈

1(tε/2,∞), κνe
〉

≤
N∑

i=1

〈
1Ii

, µ̄ξ (t)
〉 + 〈1(tε/2,∞), κνe

〉 + N2Ct−ε

≤ 〈
1Bδt , µ̄ξ (t)

〉 + 〈
1(tε/2,∞), κνe

〉 + N2Ct−ε.

Since 〈χ2, ν〉 < ∞, it follows that 〈χ, νe〉 < ∞. Thus, by (5.1), 〈χ,κνe〉 = 〈χ, ξ 〉.
Therefore, 〈1(tε/2,∞), κνe〉 ≤ t−ε/2〈χ,κνe〉 = 〈χ, ξ 〉t−ε/2. This, together with the

fact that N ≤ (tε/2/δt ) + 1, gives

〈1B, µ̄ξ (t)〉 ≤ 〈1Bδt , κνe〉 + 〈χ, ξ 〉t−ε/2 + 2Ct−ε/2

δt

+ 4Ct−ε

and

〈1B, κνe〉 ≤ 〈1Bδt , µ̄ξ (t)〉 + 〈χ, ξ 〉t−ε/2 + 2Ct−ε/2

δt

+ 2Ct−ε.

Thus, to prove (5.3), it suffices to show that

〈χ, ξ 〉t−ε/2 + 4Ct−ε + 2Ct−ε/4

Cρ

≤ Cρt−ε/4

or, equivalently, that

(〈χ, ξ 〉t−ε/4 + 4Ct−3ε/4)Cρ + 2C ≤ C2
ρ.(5.7)

Since t ≥ T ≥ 1 and ξ ∈ BM,ε
ρ ,

〈χ, ξ 〉t−ε/4 + 4Ct−3ε/4 ≤ 〈χ, ξ 〉 + 4C ≤ M + 4C.

Moreover, since Cρ is a root of p(·), it follows that (M + 4C)Cρ + 2C = C2
ρ .

Therefore, (5.7) holds, which implies that (5.3) holds. �
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The next objective is to verify that the sufficient conditions in Lemma 5.1 hold
under the conditions in part (i) of Theorem 1.3. It suffices to consider ξ �= 0
since the left-hand side of (5.2) is 0 when ξ = 0. Note that, given M,ε > 0 and
ξ ∈ BM,ε

ρ , by (2.9) and the fact that µ̄ξ (t) has no atoms for each t ≥ 0, we have a
useful representation for the first of the two terms that appear on the left-hand side
of (5.2). Also, notice that, for each t > 0 and x ∈ R+,

〈
1(S̄(t),S̄(t)+x], ξ

〉 ≤ 〈
1(S̄(t),∞), ξ

〉 ≤ (
1

S̄(t)

)1+ε

〈χ1+ε, ξ 〉.(5.8)

By Corollary 2.3, under appropriate conditions, S̄(t) is bounded below by a linear
function of t for all t sufficiently large (with uniform control for ξ ∈ BM,ε

ρ ). Thus,
the most significant issue is to look at the difference between the last term in (2.9)
and 〈1[0,x), κνe〉 for each x ∈ R+. In the proof of Theorem 1.2, we used the key
renewal theorem to show that, under appropriate conditions, for each x ∈ R+,
the last term in (2.9) converges to κFe(x) = βe

∫ ∞
0 (Gx ∗ Hξ)(y) dy as t tends

to ∞ [cf. (5.1), (4.4) and (4.5)]. Thus, to verify that the sufficient conditions in
Lemma 5.1 hold, we first identify conditions that yield a rate for this convergence
that is uniform over x ∈ R+ and ξ ∈ BM,ε

ρ .

THEOREM 5.2. Let M,ε > 0. Suppose that 〈χ2+ε, ν〉 < ∞ and that
R : [0,∞) −→ R+ is a nonincreasing function for which there exists a finite time
T ≥ 2 and a finite constant C ≥ 1 such that

|Ue(t + s) − Ue(t) − βes| ≤ CR(t) for all s ∈ [0,1], t ≥ T .(5.9)

Then there exists a finite constant Ĉ ≥ 1 such that, for all ξ ∈ BM,ε
ρ and x ∈ R+,∣∣∣∣βe

∫ ∞
0

(Gx ∗ Hξ)(y) dy − (
(Gx ∗ Hξ) ∗ Ue

)
(t)

∣∣∣∣
(5.10)

≤ Ĉ
(
t−ε + R(t/2)

)
for all t ≥ T .

Before proceeding with the proof of Theorem 5.2, we show how to use it in
conjunction with Lemma 5.1 to prove part (i) of Theorem 1.3.

PROOF OF THEOREM 1.3(i). Fix M,ε > 0. Suppose that 〈χ2+ε, ν〉 < ∞. Let

R(t) =
{

1, 0 ≤ t < 1,

t−ε, t ≥ 1.

For each t ≥ 0, let D(t, s) = Ue(t + s) − Ue(t) − βes for all s ≥ 0 and denote
by TV1(D(t, ·)) the total variation of the function D(t, ·) over the interval [0,1].
Since, for each t ≥ 0, D(t,0) = 0, it follows that, for each t ≥ 0,

|Ue(t + s) − Ue(t) − βes| ≤ TV1(D(t, ·)) for all s ∈ [0,1].(5.11)
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Using coupling techniques, it is possible to obtain bounds on TV1(D(t, ·)) for t

sufficiently large (cf. [12]). For this, note that, since 〈χ2+ε, ν〉 < ∞, it follows
that 〈χ1+ε, νe〉 < ∞. Therefore, (6.7)(ii) in III.6 of [12] with G ≡ 1, U(·) = Ue(·),
B = 1 and λ = βe implies that there exist a finite constant C ≥ 1 and a finite time
T ≥ 2 such that

TV1(D(t, ·)) ≤ Ct−ε for all t ≥ T .

This together with (5.11) implies that (5.9) holds. Thus, by Theorem 5.2, there
exists a finite constant C̃ ≥ 1 [given by (1 + 2ε) times the constant Ĉ in (5.10)]
such that, for all ξ ∈ BM,ε

ρ , t ≥ T and x ∈ R+,∣∣∣∣βe

∫ ∞
0

(Gx ∗ Hξ)(y) dy − (
(Gx ∗ Hξ) ∗ Ue

)
(t)

∣∣∣∣ ≤ C̃t−ε.(5.12)

Fix ξ ∈ BM,ε
ρ . Using (5.12), together with (2.9), the fact that µ̄ξ (t) has no atoms

for each t ≥ 0, the fact that νe has no atoms, (4.4), (5.8) and the fact that T ≥ 2,
we obtain, for each x ∈ R+ and t ≥ 0 such that S̄(t) ≥ T ,∣∣〈1[0,x), µ̄ξ (t)

〉 − 〈
1[0,x), κνe

〉∣∣
≤

(
1

S̄(t)

)1+ε

〈χ1+ε, ξ 〉 + C̃

(
1

S̄(t)

)ε

(5.13)

≤ (〈χ1+ε, ξ 〉 + C̃)

(
1

S̄(t)

)ε

≤ (M + C̃)

(
1

S̄(t)

)ε

.

By Corollary 2.3 and the fact that ξ ∈ BM,ε
ρ , there exists a finite, positive time T ν

(that does not depend on ξ ) such that

S̄(t) ≥ t

2βeM
for all t ≥ MT ν.(5.14)

Let T̃ = max{2βeT,T ν}. Then, for all t ≥ MT̃ , (5.14) holds and S̄(t) ≥ T . This
together with (5.13) gives, for all x ∈ R+ and t ≥ MT̃ ,∣∣〈1[0,x), µ̄ξ (t)

〉 − 〈
1[0,x), κνe

〉∣∣ ≤ (M + C̃)(2βeM)εt−ε.(5.15)

By letting x → ∞ in (5.15) and using the facts that, for each t ≥ 0, µ̄ξ (t) ∈ MF

and νe ∈ MF, we see that (5.15) holds for x = ∞ for all t ≥ MT̃ . Therefore, (5.2)
in Lemma 5.1 holds for the finite constant given by (M + C̃)(2βeM)ε and the finite
time given by MT̃ . So, Theorem 1.3(i) follows from Lemma 5.1. �

The final task of this section is to prove Theorem 5.2. For this, we first establish
some basic properties of the functions (Gx ∗ Hξ)(·) for x ∈ R+.

PROPOSITION 5.3. Let ξ ∈ M
c,p
F . For each x ∈ R+, the following hold:

(i) For all u ≥ 0, 0 ≤ (Gx ∗ Hξ)(u) ≤ (fe ∗ Hξ)(u).
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(ii) The function (Gx ∗ Hξ)(·) is absolutely continuous. In particular, for
each u ≥ 0,

(Gx ∗ Hξ)(u) =
∫ u

0
Lx

ξ (w)dw,(5.16)

where, for each u ≥ 0,

Lx
ξ (u) = Gx(u)H ′

ξ (0) −
∫ u

0
Gx(u − v)ξ(dv).(5.17)

(iii) The function (Gx ∗ Hξ)(·) is of bounded variation. In particular,∫ ∞
0

|Lx
ξ (u)|du ≤ 3〈1, ξ 〉.

(iv) If, for some ε > 0, 〈χ2+ε, ν〉 < ∞ and 〈χ1+ε, ξ 〉 < ∞, then, for
each x ∈ R+, the following holds: for all u > 0,

(Gx ∗ Hξ)(u) ≤
∫ ∞
u

|Lx
ξ (v)|dv ≤ Kξu

−1−ε,(5.18)

where Kξ = (21+ε + 1)(〈χ1+ε, νe〉〈1, ξ 〉 + 〈χ1+ε, ξ 〉).

PROOF. Fix ξ ∈ M
c,p
F and x ∈ R+. Property (i) is immediate since

0 ≤ Gx(y) ≤ fe(y) for all y ≥ 0 and Hξ is nondecreasing.
To verify (5.16), note that, by Fubini’s theorem, for each u ≥ 0,∫ u

0

∫ w

0
Gx(w − v)ξ(dv) dw =

∫ u

0

∫ u

v
Gx(w − v) dw ξ(dv)

=
∫ u

0

∫ u−v

0
Gx(w)dw ξ(dv).

Recall that, for y ≥ 0, H ′
ξ (y) = 〈1(y,∞), ξ 〉. Thus, dH ′

ξ (v) = −ξ(dv). So we have

−
∫ u

0

∫ w

0
Gx(w − v)ξ(dv) dw =

∫ u

0

∫ u−v

0
Gx(w)dwdH ′

ξ (v).

Thus, regarding
∫ u−v

0 Gx(w)dw as a function of v ∈ [0, u] and using the
integration by parts formula (3.3), we obtain

−
∫ u

0

∫ w

0
Gx(w − v)ξ(dv) dw

= −H ′
ξ (0)

∫ u

0
Gx(w)dw +

∫ u

0
Gx(u − v)H ′

ξ (v) dv.

Then (5.16) follows.
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To prove (iii) and (iv), note that, by (ii) and the fact that Gx(y) ≤ fe(y) for
all y ≥ 0, we have, for all u ≥ 0,∫ ∞

u
|Lx

ξ (w)|dw ≤
∫ ∞
u

Gx(w)H ′
ξ (0) dw +

∫ ∞
u

∫ w

0
Gx(w − v)ξ(dv) dw

≤
∫ ∞
u

fe(w)H ′
ξ (0) dw +

∫ ∞
u

∫ w

0
fe(w − v)ξ(dv) dw.

By interchanging the order of integration in the second term on the right-hand side,
we obtain, for u ≥ 0,∫ ∞

u
|Lx

ξ (w)|dw ≤ H ′
ξ (0)

(
1 − Fe(u)

) +
∫ ∞

0

∫ ∞
v∨u

fe(w − v) dw ξ(dv)

≤ H ′
ξ (0)

(
1 − Fe(u)

) +
∫ u/2

0

(
1 − Fe(u − v)

)
ξ(dv)

+
∫ ∞
u/2

ξ(dv).

Now use the fact that 1 − Fe(·) is nonincreasing to obtain, for u ≥ 0,∫ ∞
u

|Lx
ξ (w)|dw ≤ H ′

ξ (0)
(
1 − Fe(u)

) + (
1 − Fe(u/2)

)
H ′

ξ (0) + H ′
ξ (u/2).(5.19)

To verify (iii), take u = 0 in (5.19). To prove (iv), let ε > 0 and assume that
〈χ2+ε, ν〉 < ∞ and 〈χ1+ε, ξ 〉 < ∞. Then we have 〈χ1+ε, νe〉 < ∞, and the second
inequality in (iv) follows from (5.19) and the fact that, for all t > 0,

H ′
ξ (t) ≤ 〈χ1+ε, ξ 〉t−1−ε and 1 − Fe(t) ≤ 〈χ1+ε, νe〉t−1−ε.(5.20)

To prove the first inequality in (iv), note that, since fe(·) and H ′
ξ (·) are

nonincreasing, it follows that, for u > 0,

(fe ∗ Hξ)(u) ≤ H ′
ξ (0)

∫ ∞
u/2

fe(y) dy + fe(0)

∫ ∞
u/2

H ′
ξ (y) dy,

where each term on the right-hand side of this inequality is finite for all u ≥ 0.
Therefore, by monotone convergence, each term on the right-hand side of this
inequality tends to 0 as u → ∞. This together with (i) implies that

lim
u→∞(Gx ∗ Hξ)(u) = 0.

Consequently, by (ii), it follows that

(Gx ∗ Hξ)(u) = −
∫ ∞
u

Lx
ξ (v) dv,

from which the first inequality in (iv) follows. �

To begin the proof of Theorem 5.2, we borrow an idea from the proof of
Theorem 3.1 in [11]. The idea is to write ((Gx ∗ Hξ) ∗ Ue)(t), for x ∈ R+ and
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t ≥ 0, as a sum of integrals over intervals of length 1 [cf. (5.24)] and then to use
integration by parts on each such integral [cf. (5.25)]. In this way, one obtains
expressions involving the quantities that appear in (5.9). In the next proposition,
a generic term in such a sum is rewritten using integration by parts. Following that,
we give the proof of Theorem 5.2.

PROPOSITION 5.4. Let x ∈ R+ and ξ ∈ M
c,p
F . For t ≥ 1 and 0 ≤ s ≤ t − 1,∫

(s,s+1]
(Gx ∗ Hξ)(t − y) dUe(y)

= (Gx ∗ Hξ)(t − s)
(
Ue(s + 1) − Ue(s)

)
(5.21)

−
∫
[t−s−1,t−s)

(
Ue(s + 1) − Ue(t − y)

)
Lx

ξ (y) dy.

PROOF. Fix x ∈ R+ and t ≥ 1 and 0 ≤ s ≤ t − 1. Using (5.16) and (3.3),
followed by a change of variables, gives∫

(s,s+1]
(Gx ∗ Hξ)(t − y) dUe(y)

= (Gx ∗ Hξ)(t − s − 1)Ue(s + 1) − (Gx ∗ Hξ)(t − s)Ue(s)

+
∫
[t−s−1,t−s)

Ue(t − y)Lx
ξ (y) dy.

Adding and subtracting the term (Gx ∗ Hξ)(t − s)Ue(s + 1) gives∫
(s,s+1]

(Gx ∗ Hξ)(t − y) dUe(y)

= (Gx ∗ Hξ)(t − s)
(
Ue(s + 1) − Ue(s)

)
+ (

(Gx ∗ Hξ)(t − s − 1) − (Gx ∗ Hξ)(t − s)
)
Ue(s + 1)

+
∫
[t−s−1,t−s)

Ue(t − y)Lx
ξ (y) dy.

Using the fact that

(Gx ∗ Hξ)(t − s − 1) − (Gx ∗ Hξ)(t − s) = −
∫
[t−s−1,t−s)

Lx
ξ (y) dy

and combining like terms gives the result. �

PROOF OF THEOREM 5.2. Fix ξ ∈ BM,ε
ρ and x ∈ R+. For t ≥ T , let Nt =

�t − T �. For t ≥ T , we have

(
(Gx ∗ Hξ) ∗ Ue

)
(t) =

∫
[0,t]

(Gx ∗ Hξ)(t − y) dUe(y) = I1(t) + I2(t),(5.22)
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where, for t ≥ T ,

I1(t) =
∫
[0,t−Nt ]

(Gx ∗ Hξ)(t − y) dUe(y)

and

I2(t) =
∫
(t−Nt ,t]

(Gx ∗ Hξ)(t − y) dUe(y).

By parts (i) and (iv) of Proposition 5.3, we have, for t ≥ T ,

I1(t) ≤ Kξ

∫
[0,t−Nt ]

(t − y)−1−ε dUe(y) ≤ KξN
−1−ε
t Ue(t − Nt).

Note that, for t ≥ T , we have t −Nt ≤ T + 1. In addition, for t ≥ 2T + 2, we have
Nt ≥ t/2. Thus, for t ≥ 2T + 2,

I1(t) ≤ 21+εKξUe(T + 1)t−1−ε.(5.23)

For I2(·), we have

I2(t) =
Nt∑
i=1

∫
(t−Nt+i−1,t−Nt +i]

(Gx ∗ Hξ)(t − y) dUe(y) for all t ≥ T .(5.24)

Thus, we can use (5.21) and then the change of variables j = Nt − i + 1 to obtain,
for t ≥ T ,

I2(t) =
Nt∑

j=1

(Gx ∗ Hξ)(j)
(
Ue(t + 1 − j) − Ue(t − j)

)
(5.25)

−
Nt∑

j=1

∫
[j−1,j )

(
Ue(t + 1 − j) − Ue(t − y)

)
Lx

ξ (y) dy.

Since, for each summand, j ≤ Nt , and since t −Nt ≥ T , it follows that t − j ≥ T .
Thus, we can use (5.9) on each term in the first sum. Similarly, since in the
integrand of each term in the second sum we have y ≤ Nt , we can use (5.9) on
each of these integrands. For t ≥ T , this gives

|I2(t) − I21(t)| ≤ I22(t) + I23(t), t ≥ T,(5.26)

where, for t ≥ T ,

I21(t) = βe

Nt∑
j=1

(
(Gx ∗ Hξ)(j) −

∫
[j−1,j )

(y + 1 − j)Lx
ξ (y) dy

)
,

I22(t) = C

Nt∑
j=1

(Gx ∗ Hξ)(j)R(t − j),

I23(t) = C

∫
[0,Nt )

R(t − y)|Lx
ξ (y)|dy.
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The above representation of I21(·) can be simplified. In fact, for t ≥ T ,

I21(t) = βe

∫
[0,Nt )

(Gx ∗ Hξ)(z) dz.(5.27)

To see this, write y +1−j as
∫ y
j−1 dz and then interchange the order of integration

to obtain the following: for all t ≥ T ,

I21(t) = βe

Nt∑
j=1

(
(Gx ∗ Hξ)(j) −

∫
[j−1,j )

(
(Gx ∗ Hξ)(j) − (Gx ∗ Hξ)(z)

)
dz

)

= βe

Nt∑
j=1

∫
[j−1,j )

(Gx ∗ Hξ)(z) dz = βe

∫
[0,Nt )

(Gx ∗ Hξ)(z) dz.

Let us now summarize what has been shown. By (5.22), (5.26) and (5.27),
for t ≥ T , ∣∣∣∣βe

∫ ∞
0

(Gx ∗ Hξ)(z) dz − (
(Gx ∗ Hξ) ∗ Ue

)
(t)

∣∣∣∣
(5.28)

≤ βe

∫
[Nt ,∞)

(Gx ∗ Hξ)(y) dy + I22(t) + I23(t) + I1(t).

We have already derived an upper bound on I1(·) [cf. (5.23)]. Next, we obtain
estimates on the remaining terms on the right-hand side of the above inequality.

By part (iv) of Proposition 5.3 and the fact that, for t ≥ 2T + 2, Nt ≥ t/2, we
have, for t ≥ 2T + 2,∫ ∞

Nt

(Gx ∗ Hξ)(y) dy ≤ Kξ

∫ ∞
Nt

y−1−ε dy = Kξ

ε
N−ε

t ≤ 2ε Kξ

ε
t−ε.(5.29)

To obtain a bound on I22(·), note that, for t ≥ T ,
Nt∑

j=1

R(t − j)(Gx ∗ Hξ)(j)

= ∑
j∈[1,t/2)

R(t − j)(Gx ∗ Hξ)(j) + ∑
j∈[t/2,Nt ]

R(t − j)(Gx ∗ Hξ)(j).

By part (iv) of Proposition 5.3, the fact that R(·) is nonincreasing and the fact
that t − Nt ≥ T for t ≥ T , we obtain, for t ≥ T ,∑

j∈[t/2,Nt ]
R(t − j)(Gx ∗ Hξ)(j)

≤ R(t − Nt)Kξ

∑
j∈[t/2,Nt ]

j−1−ε

≤ R(T )Kξ

∫ ∞
t/2−1

y−1−ε dy

≤ R(T )Kξ

ε

(
t

2
− 1

)−ε

.
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Note that, for t ≥ 2T + 2, we have 1 − 2/t ≥ T/(T + 1), and so

(
t

2
− 1

)−ε

≤
(

T + 1

T

)ε( t

2

)−ε

.

Thus, for t ≥ 2T + 2,

∑
j∈[t/2,Nt ]

R(t − j)(Gx ∗ Hξ)(j) ≤ R(T )Kξ2ε

ε

(
T + 1

T

)ε

t−ε.

Since R(·) is nonincreasing, it also follows from part (iv) of Proposition 5.3 that,
for t ≥ 2T + 2,

∑
j∈[1,t/2)

R(t − j)(Gx ∗ Hξ)(j) ≤ R(t/2)
∑

j∈[1,t/2)

(Gx ∗ Hξ)(j)

≤ KξR(t/2)
∑

j∈[1,∞)

j−1−ε.

Thus, we have, for t ≥ 2T + 2,

I22(t) ≤ C
R(T )Kξ2ε

ε

(
T + 1

T

)ε

t−ε + CKξ

( ∞∑
j=1

j−1−ε

)
R

(
t

2

)
.(5.30)

We now bound I23(·). In a similar manner to that above, for t ≥ 2T + 2,

I23(t) = C

∫
[0,Nt )

R(t − y)|Lx
ξ (y)|dy

= C

∫
[0,t/2)

R(t − y)|Lx
ξ (y)|dy + C

∫
[t/2,Nt )

R(t − y)|Lx
ξ (y)|dy.

Then, since R(·) is nonincreasing, it follows from parts (iii) and (iv) of
Proposition 5.3 that, for t ≥ 2T + 2,

I23(t) ≤ CR(t/2)

∫ ∞
0

|Lx
ξ (y)|dy + CR(0)

∫
[t/2,∞)

|Lx
ξ (y)|dy

(5.31)
≤ 3C〈1, ξ 〉R(t/2) + 21+εCR(0)Kξ t

−1−ε.

Combining (5.28)–(5.31) and (5.23) with the fact that, since ξ ∈ BM,ε
ρ ,

Kξ ≤ M(21+ε + 1)(〈χ1+ε, νe〉 + 1),

proves the desired result. �
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6. A rate of convergence in the total variation distance. Theorem 1.3(ii) is
proved in this section. For this, fix M,ε > 0. Throughout this section, we assume
that

〈χ3+ε, ν〉 < ∞.(6.1)

Note that, for ξ = 0, (1.8) holds for any positive constant CTV and any positive
time TTV. To see this, observe that, if ξ = 0, then κ = 0 [cf. (5.1)]. Moreover,
µ̄0(·) ≡ 0, and therefore, for all t ≥ 0, ‖µ̄ξ (t)− κνe‖TV = 0 if ξ = 0. So it suffices
to prove (1.8) for ξ ∈ BM,ε

TV such that ξ �= 0.
Fix ξ ∈ BM,ε

TV and ξ �= 0. The first order of business is to obtain an upper bound
on ‖µ̄ξ (t) − κνe‖TV, for t ≥ 0, that is comprised of three terms [cf. (6.6)]. Then
a rate of convergence to 0 as t tends to ∞ is obtained for each of the three terms.
For this, we need to introduce some notation. For a function g : R+ −→ R that is
locally of bounded variation, let TVx(g) denote the total variation of g on [0, x] for
each x ∈ R+. Also, denote the total variation of g by TV(g) = limx→∞ TVx(g).
Let

J (t, x) = 〈
1[0,x], µ̄ξ (t)

〉 − κ
〈
1[0,x], νe

〉
for all t ≥ 0, x ∈ R+.

Note that, for each t ≥ 0, neither µ̄ξ (t) nor νe charges the origin. Therefore, for
all t ≥ 0,

‖µ̄ξ (t) − κνe‖TV = TV(J (t, ·)).(6.2)

For each t ≥ 0, the function J (t, ·) is readily expressed as three distinct terms. To
see this, note that, by (2.3), (2.10) and the definition of Fe(·), it follows that, for
all t ≥ 0 and x ∈ R+,

J (t, x) = 〈
1(S̄(t),S̄(t)+x], ξ

〉 + (Gx ∗ T̄ )(S̄(t)) − κFe(x).(6.3)

Clearly, since S̄(t) tends to ∞ as t tends to ∞, the total variation of the first term
on the right-hand side of (6.3) tends to 0 as t tends to ∞. However, individually,
the total variation of the second and third terms on the right-hand side of (6.3)
fails to converge to 0. Therefore, it will be necessary to take advantage of the
minus sign. This can be done by expressing the third term on the right-hand side
of (6.3) as a sum of two terms (cf. Lemma 6.1), the first of which combines with
the second term on the right-hand side of (6.3) to form a term whose total variation
tends to 0 as t tends to ∞. For this, it will be convenient to view the convolution
in the second term on the right-hand side of (6.3) as a convolution of a function
with a measure. We make the following definition. Given a signed Radon measure
ζ and a bounded, Borel measurable function g : R+ −→ R+, let

(g ∗ ζ )(x) =
∫
[0,x]

g(x − y)ζ(dy) for all x ∈ R+.

Let τ be the Radon measure on R+ such that〈
1[0,x], τ

〉 = T̄ (x) for all x ∈ R+.(6.4)
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Then, for all t ≥ 0 and x ∈ R+,

J (t, x) = 〈
1(S̄(t),S̄(t)+x], ξ

〉 + (Gx ∗ τ )(S̄(t)) − κFe(x).(6.5)

To obtain an upper bound on TV(J (t, ·)) for each x ∈ R+ we will express Fe(x)

as a convolution of Gx(·) with Lebesgue measure on R+, plus a remainder term.
For this, let � denote Lebesgue measure on R+.

LEMMA 6.1. For x ∈ R+,

Fe(x) = (Gx ∗ �)(S̄(t)) + 〈
1(S̄(t),S̄(t)+x], νe

〉
.

PROOF. For each x ∈ R+,

Fe(x) =
∫ x

0
fe(y) dy =

(∫ ∞
0

fe(y) dy −
∫ ∞
x

fe(y) dy

)

=
(∫ ∞

0
fe(y) dy −

∫ ∞
0

fe(x + y) dy

)
=

∫ ∞
0

Gx(y) dy.

Splitting this integral into two pieces gives, for x ∈ R+ and t ≥ 0,

Fe(x) =
∫ S̄(t)

0
Gx(y)�(dy) +

∫ ∞
S̄(t)

Gx(y)�(dy)

=
∫ S̄(t)

0
Gx

(
S̄(t) − y

)
�(dy) +

∫ ∞
S̄(t)

(
fe(y) − fe(x + y)

)
�(dy)

= (Gx ∗ �)(S̄(t)) +
∫ x+S̄(t)

S̄(t)
fe(y)�(dy)

= (Gx ∗ �)(S̄(t)) + 〈
1(S̄(t),S̄(t)+x], νe

〉
. �

For each t ≥ 0 and x ∈ (0,∞), let

A(t, x) = 〈
1(S̄(t),S̄(t)+x], ξ

〉
,

B(t, x) = (Gx ∗ τ )(S̄(t)) − κ(Gx ∗ �)(S̄(t)),

C(t, x) = κ
〈
1(S̄(t),S̄(t)+x], νe

〉
.

Also, for each t ≥ 0, set A(t,0) = 0, B(t,0) = 0 and C(t,0) = 0. Note that A(t, ·),
B(t, ·) and C(t, ·) are right continuous. Then, by (6.5) and Lemma 6.1, for all t ≥ 0
and x ∈ R+,

J (t, x) = A(t, x) + B(t, x) − C(t, x).

Thus, by (6.2), for all t ≥ 0,

‖µ̄ξ (t) − κνe‖TV ≤ TV(A(t, ·)) + TV(B(t, ·)) + TV(C(t, ·)).(6.6)
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To prove part (ii) of Theorem 1.3, we will bound each term on the right-hand side
of (6.6) from above.

Since, for each t ≥ 0, the functions A(t, ·) and C(t, ·) are nondecreasing,

TV(A(t, ·)) = lim
x→∞A(t, x) − A(t,0) = 〈

1(S̄(t),∞), ξ
〉
,(6.7)

TV(C(t, ·)) = lim
x→∞C(t, x) − C(t,0) = κ

〈
1(S̄(t),∞), νe

〉
.(6.8)

By (6.7), (6.8), Chebyshev’s inequality, (6.1), (2.13), (5.1) and the fact that
ξ ∈ BM,ε

TV , it follows that, for t ≥ MT ν ,

TV(A(t, ·)) ≤ (S̄(t))−2−ε〈χ2+ε, ξ 〉 ≤ (2βe)
2+εM3+εt−2−ε,(6.9)

TV(C(t, ·)) ≤ κ(S̄(t))−2−ε〈χ2+ε, νe〉 ≤ 22+ε(βeM)3+ε〈χ2+ε, νe〉t−2−ε.(6.10)

Thus, for a proof of (1.8), we have obtained suitable upper bounds on the first and
last terms on the right-hand side of (6.6).

The remaining task is to bound TV(B(t, ·)) from above for t sufficiently large.
Observe that, for all t ≥ 0 and x ∈ R+,

B(t, x) = (
Gx ∗ (τ − κ�)

)
(S̄(t)) = (

(fe − f x
e ) ∗ (τ − κ�)

)
(S̄(t))

= α
(
(F x − F) ∗ (τ − κ�)

)
(S̄(t))

= α
(
Fx ∗ (τ − κ�)

)
(S̄(t)) − α

(
F ∗ (τ − κ�)

)
(S̄(t)),

where, for each x ∈ R+, Fx(y) = F(x + y) for all y ∈ R+. Note that (F ∗ (τ −
κ�))(S̄(t)) does not depend on x. Hence, it makes no contribution to the total
variation of B(t, ·). Thus, for each t ≥ 0,

TV(B(t, ·)) = αTV(D(t, ·)),(6.11)

where D(t, x) = (F x ∗ (τ − κ�)) (S̄(t)) for all t ≥ 0 and x ∈ R+. To obtain a
suitable upper bound on the total variation of D(t, ·) for all t sufficiently large, we
introduce the following additional notation. For a signed Radon measure ζ on R+,
let |ζ | denote the total variation measure of ζ and let ζ+ and ζ− be nonnegative
Radon measures such that ζ = ζ+ − ζ− and |ζ | = ζ+ + ζ−.

LEMMA 6.2. Let ζ be a signed Radon measure on R+. For fixed r ≥ 0, define
two functions g(x) = (F x ∗ ζ )(r) and ĝ(x) = (F x ∗ |ζ |)(r) for all x ∈ R+. Then
TV(g) ≤ TV(ĝ).

PROOF. Fix x ∈ R+ and h > 0. We have

g(x + h) − g(x) =
∫ r

0

(
F(x + h + r − y) − F(x + r − y)

)
ζ(dy).
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Since F is nondecreasing,

|g(x + h) − g(x)| ≤
∫ r

0

(
F(x + h + r − y) − F(x + r − y)

)|ζ |(dy)

= |ĝ(x + h) − ĝ(x)|.
The result follows from the definition of TV(·). �

By Lemma 6.2, for each t ≥ 0,

TV(D(t, ·)) ≤ TV(D̂(t, ·)),(6.12)

where D̂(t, x) = (F x ∗ |τ − κ�|) (S̄(t)) for all t ≥ 0 and x ∈ R+. Since F(·) is
nondecreasing, D̂(t, ·) is also nondecreasing for each fixed t ≥ 0. Therefore,

TV(D̂(t, ·)) = lim
x→∞ D̂(t, x) − D̂(t,0) for all t ≥ 0.(6.13)

By monotone convergence,

lim
x→∞ D̂(t, x) =

∫ S̄(t)

0
|τ − κ�|(dy) for all t ≥ 0.

Therefore, by (6.13),

TV(D̂(t, ·)) =
∫ S̄(t)

0

(
1 − F

(
S̄(t) − y

))|τ − κ�|(dy) for all t ≥ 0.(6.14)

When considering why (6.14) should be small when t is large, one realizes that,
for large values of the argument y, the measures τ and κ� are close, while for small
values of the argument y, the function 1 −F(S̄(t)− y) is small. To take advantage
of this, fix δ ∈ (0,1). Given t ≥ 0, rewrite the above integral as two pieces:∫ (1−δ)S̄(t)

0

(
1 − F

(
S̄(t) − y

))|τ − κ�|(dy),(6.15)

∫ S̄(t)

(1−δ)S̄(t)

(
1 − F

(
S̄(t) − y

))|τ − κ�|(dy).(6.16)

We begin by analyzing (6.15). For each t ≥ 0,∫ (1−δ)S̄(t)

0

(
1 − F

(
S̄(t) − y

))|τ − κ�|(dy)

≤ (
1 − F(δS̄(t))

) ∫ (1−δ)S̄(t)

0
|τ − κ�|(dy)(6.17)

≤ (
1 − F(δS̄(t))

)‖τ − κ�‖TV.

Using Chebyshev’s inequality, (6.1), (2.13) and the fact that ξ ∈ BM,ε
TV gives, for

each t ≥ M T ν ,

(
1 − F(δS̄(t))

) ≤ 〈χ3+ε, ν〉(δS̄(t))−3−ε ≤ 〈χ3+ε, ν〉
(

2βeM

δ

)3+ε

t−3−ε.(6.18)
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Combining (6.17) and (6.18), we have, for each t ≥ MT ν ,∫ (1−δ)S̄(t)

0

(
1 − F

(
S̄(t) − y

))|τ − κ�|(dy)

(6.19)

≤ ‖τ − κ�‖TV〈χ3+ε, ν〉
(

2βeM

δ

)3+ε

t−3−ε.

We now analyze (6.16). For each t ≥ 0,∫ S̄(t)

(1−δ)S̄(t)

(
1 − F

(
S̄(t) − y

))|τ − κ�|(dy)

(6.20)

≤
∫ S̄(t)

(1−δ)S̄(t)
|τ − κ�|(dy) ≤ 〈

1[S̄(t)(1−δ),∞), |τ − κ�|〉.
Then, by combining (6.14), (6.19) and (6.20), we have, for each t ≥ MT ν ,

TV(D̂(t, ·)) ≤ ‖τ − κ�‖TV〈χ3+ε, ν〉
(

2βeM

δ

)3+ε

t−3−ε

(6.21)
+ 〈

1[S̄(t)(1−δ),∞), |τ − κ�|〉.
From (6.21), we see that what is needed are estimates on

‖τ − κ�‖TV and
〈
1[r,∞), |τ − κ�|〉(6.22)

for large r . Recall that κ = βe〈χ, ξ 〉 and that ξ �= 0. So, after factoring out 〈χ, ξ 〉
from each of the expressions in (6.22), it suffices to obtain estimates on

‖τ/〈χ, ξ 〉 − βe�‖TV and
〈
1[r,∞),

∣∣τ/〈χ, ξ 〉 − βe�
∣∣〉,

for large r . We note that βe� is a stationary renewal measure. To see this, consider a
renewal process for which the interarrival distribution is determined by νe and the
initial delay distribution is determined by (νe)e, where (νe)e is the excess lifetime
probability measure associated with νe. Specifically, (νe)e is the Borel probability
measure on R+ that is absolutely continuous with respect to Lebesgue measure
on R+ and has density function

βe
(
1 − Fe(x)

)
for all x ∈ R+.

Here note that, by (6.1), βe > 0. This renewal process is stationary, and, for any
Borel set A ⊂ R+, βe〈1A, �〉 is the expected number of arrivals that occur in the
set A (cf. [12], Chapter III.2, (2.1)). Also notice that Hξ(·)/〈χ, ξ 〉 is a probability
distribution function on R+. In fact, it has density function H ′

ξ (·)/〈χ, ξ 〉, which
makes it the excess lifetime distribution function for the Borel probability measure
ξ/〈1, ξ 〉 on R+ [cf. (2.5)]. Let ξe denote the Borel probability measure on R+
associated with the distribution function Hξ(·)/〈χ, ξ 〉. The observation that
Hξ(·)/〈χ, ξ 〉 is a probability distribution function, together with (6.4) and (2.7),
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implies that τ/〈χ, ξ 〉 is the renewal measure associated with the renewal process
for which the interarrival distribution is determined by νe and the initial delay
distribution is determined by ξe (cf. [12], Chapter III.1, (1.4)(ii)). Therefore, what
is needed are estimates on the rate at which the delayed renewal measure τ/〈χ, ξ 〉
converges to the stationary renewal measure βe�.

One powerful tool that yields rates of convergence to stationarity for renewal
measures is coupling (cf. [12]). In fact, under certain conditions, it is possible
to couple two renewal processes with a common interarrival distribution so that
the respective excess lifetimes agree forever after some random time ς called the
coupling time. In our case, the common interarrival distribution is determined by νe

and the initial delay distributions are determined by ξe and (νe)e, respectively. In
addition, the coupling time ς is finite a.s. due to (6.1) and the fact that ξ ∈ BM,ε

TV
(cf. [12], Section 5 of Chapter III). Furthermore, the results in [12] state that if the
initial delay distributions and the interarrival distribution have finite γ th moments,
then the coupling time ς has a finite γ th moment (cf. [12], Chapter III.6, (6.2)).
Thus, by (6.1) and the fact that ξ ∈ BM,ε

TV , it follows that E[ςγ ] < ∞ for all
γ ∈ [0,1 + ε], where E denotes expected value. In fact, by carefully following the
discussion on pages 83 and 84 in [12], which explains how to adapt the proof of
Theorem 4.2 in Chapter II of [12] from the discrete-time setting to the continuous-
time setting, and by carefully keeping track of the constants used in that argument,
one can verify that, for γ ∈ [1,1 + ε],

E[ςγ ] ≤ 6γ 〈χ1+γ , ξ 〉
(1 + γ )〈χ, ξ 〉 + 〈χ2, ξ 〉

2〈χ, ξ 〉C
ν
1 (γ ) + Cν

2 (γ ),(6.23)

where Cν
1 (γ ) and Cν

2 (γ ) are finite, positive constants that depend on ν and γ , but
do not depend on ξ . In particular, since ξ ∈ BM,ε

TV ,

〈χ, ξ 〉E[ς ] ≤
(

3 + Cν
1 (1)

2
+ Cν

2 (1)

)
M,(6.24)

〈χ, ξ 〉E[ς1+ε] ≤
(

61+ε

2 + ε
+ Cν

1 (1 + ε)

2
+ Cν

2 (1 + ε)

)
M.(6.25)

Since it is more than a simple exercise to obtain (6.23) from the details included
in [12], the verification of (6.23) is included as an Appendix here (cf. Section A.2).

Next we show how to use (6.24) and (6.25) to obtain bounds on TV(D̂(t, ·)) for
t ≥ 0. For this, recall that, by (6.21), it suffices to obtain bounds on the quantities
that appear in (6.22). By carefully following the arguments on pages 84 and 85
of [12], it can be shown that, for r ≥ 1,

‖τ − κ�‖TV ≤ 2〈χ, ξ 〉Ue(1)
(
1 + E(ς)

)
,(6.26) 〈

1[r,∞), |τ − κ�|〉 ≤ 2〈χ, ξ 〉Ue(1)E(ς1+ε)r−ε(6.27)
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(cf. Section A.3). Combining (6.26) and (6.27) with (6.21), (2.13) and the fact that
ξ ∈ BM,ε

TV gives the following bound on TV(D̂(·, ·)): for all t ≥ M T ν ,

TV(D̂(t, ·))

≤ 2〈χ, ξ 〉Ue(1)

((
1 + E(ς)

)〈χ3+ε, ν〉
(

2βeM

δ

)3+ε

t−3
(6.28)

+ E(ς1+ε)

(
2βeM

1 − δ

)ε)
t−ε.

Combining (6.28) with (6.24) and (6.25) provides a bound on TV(D̂(t, ·)) for t ≥ 0
of the type that is needed to complete the proof of Theorem 1.3(ii).

PROOF OF THEOREM 1.3(ii). Fix M,ε > 0. If ξ = 0, it follows that ‖µ̄ξ (t)−
κνe‖TV = 0 for all t ≥ 0. Therefore, it suffices to show that there exists a finite,
positive constant CTV and a finite, positive time TTV such that (1.8) holds for all
ξ ∈ BM,ε

TV such that ξ �= 0. For this, combine (6.1), (6.6), (6.9)–(6.12) and (6.28).
Then use (6.24) and (6.25). �

APPENDIX

In this appendix, we verify (6.23), (6.26) and (6.27), which were used in the
proof of Theorem 1.3(ii). For this, fix M,ε > 0 and ξ ∈ BM,ε

TV such that ξ �= 0.
Throughout the Appendix, it is assumed that (6.1) holds.

The proofs of (6.23), (6.26) and (6.27) hinge on using the general coupling con-
struction given in Section 5 in Chapter III of [12] to couple two renewal processes
with a common interarrival distribution determined by νe and initial delay distribu-
tions determined by ξe and (νe)e, respectively. We refer to such renewal processes
as ξe-delay and stationary renewal processes, respectively. Given a ξe-delay (resp.
stationary) renewal process, let N(·) [resp. N s(·)] denote the associated count-
ing measure. Here the superscript s stands for stationary. Thus, for each Borel
set A ⊂ R+,

E[N(A)] = 〈1A, τ 〉
〈χ, ξ 〉 and E[N s(A)] = βe〈1A, �〉,(A.1)

where τ is defined by (6.4) and � denotes Lebesgue measure. Also, for n ∈
{1,2, . . . }, let Tn (resp. T s

n ) denote the time of the nth arrival in the ξe-delay (resp.
stationary) renewal process. By convention, set T0 = T s

0 = 0. For t ≥ 0, let

A(t) = min{t − Tn ≥ 0 :n = 0,1,2, . . . },
D(t) = min{Tn − t > 0 :n = 0,1,2, . . . }.

At time t , A(t) is the time that has elapsed since the most recent arrival in
the ξe-delay renewal process, that is, the age of the most recent arrival. Similarly,
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D(t) is the time that will elapse beginning from time t until the next arrival
in the ξe-delay renewal process, that is, the delay until the next arrival. For the
stationary renewal process, the age process As(·) and the delay process Ds(·) are
defined in an analogous fashion. The reason for referring to the renewal process
with initial delay distribution determined by (νe)e as a stationary renewal process
is that, for each t ≥ 0, the distribution of Ds(t) is equal to that of Ds(0), which is
determined by (νe)e.

The coupling construction in [12] uses various properties of zero-delay renewal
processes, which are renewal processes with initial delay distribution determined
by δ0, where δ0 is the probability measure that puts one unit of mass at the origin.
Given such a renewal process with interarrival distribution determined by νe,
the associated counting measure and other processes are defined in a manner
analogous to that for the ξe-delay and stationary renewal processes, except that
they are distinguished by the presence of a superscript z [N z(·), T z· , Az(·) and
Dz(·)]. Note that N z({0}) = 1, T z

1 = 0 almost surely and, for each t ≥ 0,

E
[
N z([0, t])] = Ue(t)(A.2)

(cf. [12], Chapter III, (1.4)(i)). Properties of the distribution of Az(t), for t

sufficiently large, are used in determining the frequency of coupling attempts.
Specifically, since νe has a density (which implies that it is “spread out”), by
Lemma 5.1 in Chapter III of [12], there exist finite, positive constants m, k

and T such that, for each t ≥ T , the distribution of Az(t) has an absolutely
continuous component for which the density is bounded below by m on [0, k] and
1 − Fe(k) > 0. For the remainder of the Appendix, we fix such a triple, (m, k,T ).
Note that these constants depend only on ν, and not on ξ , since it is zero-delay
renewal processes that are under consideration here.

We begin in Section A.1 by summarizing some important properties of the
coupling construction given in [12]. Then, in Section A.2, we use these properties
to derive a bound that is sufficient to imply (6.23) (cf. Theorem A.1). Finally
(6.26) and (6.27) are verified in Section A.3.

A.1. The coupling time. For the case where the initial delay distributions are
determined by ξe and (νe)e, the interarrival distributions are determined by νe and
the triple (associated with the interarrival distribution νe) is given by (m, k,T ),
the coupling construction in Section 5 of Chapter III of [12] yields a ξe-delay
renewal process and a stationary renewal process, both defined on the same
probability space, with certain additional properties, some of which we describe
below. For this, we use the same notation for the interarrival times, age processes
and delay processes associated with these two renewal processes as established at
the beginning of the Appendix. In addition, we let W0 = 0, n0 = 0, ns

0 = 0 and for
i ∈ {1,2,3, . . . }, we iteratively define

Zi−1 = max{D(Wi−1),D
s(Wi−1)}, Wi = Wi−1 + Zi−1 + T,

ni = max{n :Tn ≤ Wi}, ns
i = max{n :T s

n ≤ Wi}.
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Finally, we let

T = min{i ≥ 1 :D(Wi) = Ds(Wi)}.(A.3)

The coupling construction in [12] is such that

P (T < ∞) = 1 and D(t) = Ds(t) for all t ≥ WT

(cf. [12], page 81). In fact, by (5.3) in Chapter III of [12], there exists δ ∈ (0,1],
which does not depend on ξ , such that

P(T ≥ i) ≤ (1 − δ)i−1 for i = 1,2, . . . .(A.4)

Using the fact that the interarrival distribution is determined by νe, it is possible to
show that (A.4) holds for δ = m2(1 − Fe(k))k2. The coupling time ς is given by

ς = Z0 +
T∑

i=1

(T + Zi) = Z0 +
∞∑
i=1

1{T ≥i}(T + Zi).(A.5)

The times Wi, i = 1, . . . ,T , are the times at which coupling attempts were
made. For 1 ≤ i < T , each attempt was unsuccessful since D(Wi) �= Ds(Wi).
However, the T th such attempt was successful since D(WT ) = Ds(WT ). The
coupling construction is such that, between successive coupling attempts, the
coupled renewal processes satisfy a conditional independence property, which we
now describe. For this, let, for i ∈ {0,1,2, . . . },

Fi = σ
{
Tn∧(ni+1), T

s
n∧(ns

i+1) :n = 0,1,2, . . .
}
.

For fixed i ∈ {1,2,3, . . . }, conditioning on Fi allows the two renewal processes
to be restarted at the arrival times Tni+1 and T s

ns
i+1, respectively. When the two

renewal processes conditioned on Fi are restarted at their respective renewal
arrival times, the coupling construction ensures that, on {T > i}, they evolve as
independent zero-delay renewal processes for T + Zi − D(Wi) and T + Zi −
Ds(Wi) units of time, respectively. This conditional independence property is
important for the proofs given below.

A.2. Bounds for moments of the coupling time. In this section, we prove
the following theorem, which implies (6.23).

THEOREM A.1. Let γ ∈ [1,1+ε]. Then ς has a finite γ th moment. Moreover,

(E[ςγ ])1/γ ≤ (E[Zγ
0 ])1/γ + (

2γ T γ + 22γ+1C1(T + 1) + 22γ+1C1E[Z0])1/γ

+ ((2γ T γ + 22γ+1C1(T + 1))(1 − δ) + 22γ+2C1C2)
1/γ

1 − (1 − δ)1/γ
,

where T is as in Section A.1, δ ∈ (0,1] is as in (A.4) and C1 and C2 are finite,
positive constants that do not depend on ξ (but may depend on ν and γ ).
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We begin by showing how to obtain (6.23) from Theorem A.1.

PROOF OF (6.23). Fix γ ∈ [1,1 + ε]. Recall that T and δ do not depend on ξ .
Let

K1 = 2γ T γ + 22γ+1C1(T + 1),

K2 = 22γ+1C1,

K3 = ((2γ T γ + 22γ+1C1(T + 1))(1 − δ) + 22γ+2C1C2)
1/γ

1 − (1 − δ)1/γ
.

Thus, K1, K2 and K3 do not depend on ξ . By Theorem A.1,

E[ςγ ] ≤ ((
E[Zγ

0 ])1/γ + (K1 + K2E[Z0])1/γ + K3
)γ

≤ (
3 max

{
(E[Zγ

0 ])1/γ , (K1 + K2E[Z0])1/γ ,K3
})γ(A.6)

≤ 3γ E[Zγ
0 ] + 3γ (K1 + K2E[Z0]) + 3γ K

γ
3 .

Since Z0 ≤ D(0) + Ds(0), it follows that Z
γ
0 ≤ 2γ (D(0))γ + 2γ (Ds(0))γ .

Therefore,

E[Z0] ≤ E[D(0)] + E[Ds(0)] = 〈χ, ξe〉 + 〈χ, (νe)e〉,(A.7)

E[Zγ
0 ] ≤ 2γ E[(D(0))γ ] + 2γ E[(Ds(0))γ ] = 2γ 〈χγ , ξe〉 + 2γ 〈χγ , (νe)e〉.(A.8)

It is easily verified that

〈χ, ξe〉 = 〈χ2, ξ 〉
2〈χ, ξ 〉 and 〈χγ , ξe〉 = 〈χ1+γ , ξ 〉

(1 + γ )〈χ, ξ 〉 .(A.9)

Combining (6.1) and (A.6)–(A.9) proves (6.23). �

The remaining task is to prove Theorem A.1. For this, we apply some of
the general arguments given in [12] to the special case where the interarrival
distribution is determined by νe and the initial delays are given by (νe)e and ξe,
respectively. Since [12] does not indicate how the various constants that appear in
the proofs depend on the initial delay ξe, we provide enough details here to keep
track of this dependence. For this, we follow the arguments on pages 83 and 84
in [12], filling in certain details and carefully keeping track of the constants
and what they depend on. These general arguments exploit certain properties of
zero-delay renewal processes. For our purposes, the statements in Lemma A.2
suffice. Note that, in Lemma A.2, it is the zero-delay renewal process that is being
considered. Therefore, the constants C1 and C2 do not depend on ξ . However, they
do depend on ν and the constant C1 may also depend on γ .

LEMMA A.2. (i) For each γ ∈ [0,2 + ε], there exists a finite, positive
constant C1 such that, for all t ≥ 0, E[(Dz(t))γ ] ≤ C1(t + 1).
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(ii) There exists a finite, positive constant C2 such that E[Dz(t)] ≤ C2 for all
t ≥ 0.

PROOF. Fix γ ∈ [0,2 + ε] and t ≥ 0. Note that, by (6.1), 〈χγ , νe〉 < ∞. From
page 84 of [12], it follows that

E[(Dz(t))γ ] ≤ 〈χγ , νe〉Ue(t).

By (6.1), 〈χ2, νe〉 < ∞. Therefore, by Lorden’s inequality (cf. [12], Chapter III,
(4.1)(ii)),

E[(Dz(t))γ ] ≤ 〈χγ , νe〉
〈χ, νe〉 t + 〈χγ , νe〉〈χ2, νe〉

〈χ, νe〉2
,

which proves (i). To prove (ii), note that

Dz(t) = T z
Nz([0,t])+1 − t.

Therefore, by (A.2) and Wald’s identity,

E[Dz(t)] = 〈χ, νe〉(Ue(t) + 1
) − t.

Then, by Lorden’s inequality,

E[Dz(t)] ≤ t + 〈χ2, νe〉
〈χ, νe〉 + 〈χ, νe〉 − t = 〈χ, νe〉 + 〈χ2, νe〉

〈χ, νe〉 ,

which completes the proof. �

PROOF OF THEOREM A.1. Fix γ ∈ [1,1 + ε]. By (A.5) and Minkowski’s
inequality,

(E[ςγ ])1/γ ≤ (E[Zγ
0 ])1/γ +

∞∑
i=1

(
E

[
(T + Zi)

γ 1{T ≥i}
])1/γ

.(A.10)

Since γ ∈ [1,1 + ε], by (6.1), 〈χγ , (νe)e〉 < ∞. Also, since ξ ∈ BM,ε
TV ,

〈χγ , ξe〉 < ∞. Therefore, E[Zγ
0 ] < ∞ [cf. (A.8)]. The next objective is to

bound E[(T + Zi)
γ 1{T ≥i}] from above for each i ∈ {1,2,3, . . . }. For this,

fix i ∈ {1,2,3, . . . }. Note that 1{T ≥i} ∈ Fi−1. Moreover, by using the inequality
(x + y)γ ≤ 2γ (xγ + yγ ), for x, y ∈ R+, it follows that

E[(T + Zi)
γ |Fi−1] ≤ 2γ T γ + 2γ E[Zγ

i |Fi−1].
By definition, Zi = max{D(Wi),D

s(Wi)}. Therefore,

E[Zγ
i |Fi−1] ≤ 2γ E

[
(D(Wi))

γ |Fi−1
] + 2γ E

[
(Ds(Wi))

γ |Fi−1
]
.
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By Lemma A.2(i) and the conditional independence property of the coupling
construction, it follows that, on {T ≥ i},

E[Zγ
i |Fi−1] ≤ 2γ C1

(
T + Zi−1 − D(Wi−1) + 1

)
+ 2γ C1

(
T + Zi−1 − Ds(Wi−1) + 1

)
≤ 2γ+1C1(T + 1 + Zi−1).

Thus, on {T ≥ i},
E[(T + Zi)

γ |Fi−1] ≤ 2γ T γ + 22γ+1C1(T + 1 + Zi−1).

This together with (A.4) implies that

E
[
(T + Zi)

γ 1{T ≥i}
] ≤ (

2γ T γ + 22γ+1C1(T + 1)
)
(1 − δ)i−1

+ 22γ+1C1E
[
Zi−11{T ≥i}

]
.

If i = 1, we obtain

(
E

[
(T + Z1)

γ 1{T ≥1}
])1/γ

(A.11)
≤ (

2γ T γ + 22γ+1C1(T + 1) + 22γ+1C1E[Z0])1/γ
.

If i ≥ 2, then making the observation that 1{T ≥i} ≤ 1{T ≥i−1} and conditioning
on Fi−2 gives

E
[
(T + Zi)

γ 1{T ≥i}
] ≤ (

2γ T γ + 22γ+1C1(T + 1)
)
(1 − δ)i−1

+ 22γ+1C1E
[
E[Zi−1|Fi−2]1{T ≥i−1}

]
.

Recall that Zi−1 = max{D(Wi−1),D
s(Wi−1)} ≤ D(Wi−1) + Ds(Wi−1). Thus,

if i ≥ 2, Lemma A.2(ii) and the conditional independence property of the coupling
construction imply that, on {T ≥ i − 1},

E[Zi−1|Fi−2] ≤ 2C2.

Therefore, if i ≥ 2,

(
E

[
(T + Zi)

γ 1{T ≥i}
])1/γ

≤ ((
2γ T γ + 22γ+1C1(T + 1)

)
(1 − δ) + 22γ+2C1C2

)1/γ(A.12)

× (1 − δ)(i−2)/γ .

Combining (A.10)–(A.12) completes the proof. �
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A.3. Verification of (6.26) and (6.27). Here we apply the general arguments
given on pages 84 and 85 of [12] to the particular circumstances of interest here
while keeping track of the constants to verify (6.26) and (6.27). For this, note that,
for each t ≥ 0, 〈

1[t,t+1), |τ − κ�|〉 = 〈χ, ξ 〉〈1[t,t+1), |τ̃ − βe�|〉,
where τ̃ = τ/〈χ, ξ 〉. Recall that τ̃ and βe� are the renewal measures associated
with the coupled ξe-delay and stationary renewal processes described in Sec-
tion A.1. As noted in the introduction to the Appendix, for each t ≥ 0, the Borel
probability measure corresponding to the distribution of the delay Ds(t) is given
by (νe)e for all t ≥ 0. For each t ≥ 0, let ξe(t) denote the Borel probability measure
corresponding to the distribution of the delay D(t). For each t ≥ 0, by restarting
each process at time t , it follows that〈

1[t,t+1), |τ̃ − βe�|〉 ≤ Ue(1)‖ξe(t) − (νe)e‖TV(A.13)

(cf. [12], Chapter III, (6.6)). By the coupling–mapping inequality (cf. [12],
Chapter I, (2.12)), for each t ≥ 0,

‖ξe(t) − (νe)e‖TV ≤ 2P(ς > t).(A.14)

By (A.13) and (A.14), for each r ≥ 0,

〈
1[r,∞), |τ̃ − βe�|〉 ≤ ∞∑

i=0

〈
1[r+i,r+i+1), |τ̃ − βe�|〉 ≤ Ue(1)

∞∑
i=0

2P(ς > r + i).

In the above inequality, for each i ∈ {0,1,2, . . . }, replace P (ς > r + i) with

∞∑
j=i

P(r + j < ς ≤ r + j + 1),

interchange the order of summation and simplify, to obtain, for each r ≥ 0,

〈
1[r,∞), |τ̃ − βe�|〉 ≤ 2Ue(1)

∞∑
j=0

(j + 1)P(r + j < ς ≤ r + j + 1).(A.15)

Letting r = 0 in (A.15) gives

‖τ̃ − βe�‖TV ≤ 2Ue(1)(1 + E[ς ]).
Multiplying this by 〈χ, ξ 〉 proves (6.26). To verify (6.27), fix r ≥ 1. Then,
from (A.15), using the fact that r ≥ 1, it follows that

〈
1[r,∞), |τ̃ − βe�|〉 ≤ 2Ue(1)

∞∑
j=0

(r + j)P (r + j < ς ≤ r + j + 1).
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Note that, for each j ≥ 0, 1 ≤ r−ε(r + j)ε . So it follows that

〈
1[r,∞), |τ̃ − βe�|〉 ≤ 2Ue(1)

( ∞∑
j=0

(r + j)1+εP (r + j < ς ≤ r + j + 1)

)
r−ε

≤ 2Ue(1)E[ς1+ε]r−ε.

Multiplying the above inequality by 〈χ, ξ 〉 proves (6.27).
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