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Abstract

Establishing meaningful relationships between cellular structure and function requires accurate

morphological reconstructions. In particular, there is an unmet need for high quality surface

reconstructions to model subcellular and synaptic interactions among neurons at nanometer

resolution. We address this need with VolRoverN, a software package that produces accurate,

efficient, and automated 3D surface reconstructions from stacked 2D contour tracings. While

many techniques and tools have been developed in the past for 3D visualization of cellular

structure, the reconstructions from VolRoverN meet specific quality criteria that are important for

dynamical simulations. These criteria include manifoldness, water-tightness, lack of self- and

object-object-intersections, and geometric accuracy. These enhanced surface reconstructions are

readily extensible to any cell type (including glia) and are used here on complex spiny dendrites

and axons from mature rat hippocampal area CA1. Both spatially realistic surface reconstructions

and reduced skeletonizations are produced and formatted by VolRoverN for easy input into

analysis software packages for neurophysiological simulations at multiple spatial and temporal

scales ranging from ion electro-diffusion to electrical cable models.

Introduction

Brains are richly structured at the cellular and subcellular level as evidenced by the diversity

in form of synapses, the compartmentalization of synaptic spines on dendrites, the intricate

branching of dendrites and axons, and the complex inter-digitation of glial processes [1, 2].

Clinical findings reveal dramatic disruption in the structure and subcellular composition

under a variety of neuropathies [3–8]. Recent advances in imaging are beginning to provide
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access to an unprecedented amount of structural data from serial section electron

microscopy (EM) at nanometer resolution [9–16]. A number of software packages have been

developed to support three-dimensional reconstruction from EM images

(RECONSTRUCT™ [17, 18], TrakEM2 [19], ilastik [20], NeRV [21], NeuroTrace [22],

KNOSSOS [23, 24]); however, their surface representations were developed primarily for

rapid visualization and are insufficient to serve as a framework for dynamical simulations.

Any algorithm for reconstruction of brain geometry from serial sections must confront the

challenge posed by structures that are smaller than section thickness (~45 nm) [25]. Objects

within the thickness of the section can be obscured by overlapping structures in the

projected EM image. Consequently, ambiguous geometries arise in the reconstruction of fine

structure that is undersampled by the image data and incorrectly represented by extracted

contours, frequently yielding 3D objects that are nonphysiological, e.g. with aberrant holes

in the surface or erroneous connections between cells.

VolRoverN is a new software package that accepts as input the contour tracings from

existing software tools, and automatically generates reconstructions that are physiologically

plausible and formatted for easy input into other software tools for simulation of neuronal or

other cellular dynamics. VolRoverN makes implementations of published algorithms

available to practitioners in an intuitive, comprehensive interface, easing the task of model

generation. We describe the functionality of VolRoverN, including accurate 3D surface

reconstructions from manual contour tracings and production of derivative skeletonizations

from these reconstructions. We enumerate common errors in surface reconstruction and

demonstrate VolRoverN’s ability to produce error-free, quality reconstructions.

Functionality

VolRoverN is freely downloadable at http://cvcweb.ices.utexas.edu. It is currently available

on the Mac OS X platform, and we anticipate release for Linux and Windows platforms.

With the VolRoverN download is a sample dataset with contours and images of 8 axons and

2 dendrites in the CA1 region of the hippocampus. All images in this paper were produced

using this dataset. A shared data repository will also be available where users of VolRoverN

can share images, traces, 3D meshes, and simulation files for NEURON and MCell.

VolRoverN accepts RECONSTRUCT™ and TrakEM2 contour tracings as input. In the case

of TrakEM2, the tracings are pixel-based and are automatically converted to polygonal

representation by VolRoverN. Aligned and segmented images can also be imported into

VolRoverN for visualization purposes.

The software first fits a triangulated surface to contours such that the contours are exactly

interpolated and the surface meets important quality criteria. We list and show examples of

violations of these criteria in Fig 1. Properties of quality reconstructions include water-

tightness, manifoldness, lack of intersections, quality (close to equilateral) triangles, and

geometric accuracy. With the surface mesh in place the user can make geometric queries,

such as surface area and volume of a spine head. Further, VolRoverN provides tools to

create derivative models, including 1D cable models. The various models can be saved in
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standard file formats, including Wavefront obj, OFF, ele/node, MDL (MCell), and HOC

(NEURON).

VolRoverN shares a code base with the related software package VolRover 2.0 [26] which

performs image processing, reconstruction and visualization of single particle and

tomographic cryo-EM and includes 3DEM molecular ultra-structure identification and

quasi-atomistic model-based refinement. As such, VolRoverN and VolRover 2.0 have

similar look and feel, but the tools included in VolRoverN are appropriate primarily for

neuronal modeling.

VolRoverN has 4 steps in producing models suitable for analysis (Fig 2). 1) Process 2D

input. 2) Fit a 3D triangulated surface to the contours. 3) Process the 3D surface meshes,

which includes improvement of the mesh. 4) Reduce the mesh to a 1D cable model. We now

discuss each of these steps.

2D processing

Contour intersection removal—Contours are given as closed, simple polygons.

Contours may be nested, as is the case with surface dimples and organelles. Each contour

has a label that corresponds to a unique neuronal process, for example “axon16” or

“dendrite3”. Manually-traced contours can accidentally intersect each other and these

overlaps must be removed. VolRoverN has an automatic intersection removal algorithm [27]

(Fig 3) that not only ensures that contours don’t intersect each other, but has an optional

feature of guaranteeing a minimum separation distance [28]. The 2D intersection removal

algorithm is purely geometric and does not take the EM images into consideration.

2D to 3D

ContourTiler—VolRoverN has a 2D image and contour display called the Section Viewer

(Fig 4A) that enables navigation through sections while inspecting contours. The Section

Viewer and 3D Viewer are linked: imagery and semi-transparent contours can be visualized

in the 3D view alongside surface meshes and volumes (Figs 4B and 4C). VolRoverN

includes a tool called ContourTiler [27, 29] that fits a triangulated surface to a set of 2D

polygonal contours derived from EM images. We call these triangles “tiles”. Three attributes

of neuronal data make reconstruction non-trivial: (1) ssEM data is highly anisotropic. In-

plane pixel resolution is usually about 2–5 nm, whereas spacing between sections is usually

45–70 nm. (2) Neurons are tortuous, with frequent twists and branching. (3) Neuronal

processes are tightly packed. These three attributes make reconstruction of intersection-free

surface meshes especially difficult for such complex morphologies. Other cell types, such as

glia, can have similarly complex surfaces.

ContourTiler matches adjacent contours with identical labels and fits a surface between

them. Matching is commonly referred to as the correspondence problem, i.e., whether two

contours with identical labels in adjacent sections should be connected topologically. The

correspondence problem is difficult and many methods have been used to solve it, including

user consensus [23] and machine learning [30]. Our algorithm uses a simple heuristic, that

of matching contours from adjacent sections together if their projections onto the plane
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intersect, which results in sensitivity to image registration quality. Our heuristic can also

result in errors when small contours that are oriented obliquely to the image plane have grey

boundaries that are difficult to trace, which may result in corresponding contours that don’t

overlap. We anticipate incorporating more sophisticated correspondence predicates in the

future.

Our tiling algorithm requires that the contours have no intersections, which is taken care of

in our 2D contour intersection removal step. In addition, the contours are assumed to be

registered, or aligned. Registration is typically done using the EM images [31] and the

resulting 2D transformations are applied to the contours. An important property of our

reconstruction approach is that the reconstructed surface exactly interpolates the input

contours, so no error in the original section planes is introduced.

ForestTiler—ContourTiler produces a surface for each individual object. These surfaces

are then combined together into a single geometry file that contains all of the objects. When

the section spacing is very large, as is the case with anisotropic data, combining object

meshes yields many object-object intersections. Most solutions to the intersection problem

are primarily used with reconstruction algorithms that tend not to preserve correct topology

in tightly-packed data [32]. We have implemented an algorithm called ForestTiler [27] that

removes intersections in a way that preserves the interpolation property of the original

reconstruction. In addition, similar to 2D contour curation, the user can specify a minimum

separation distance δ, which corrects the reconstruction of unknown regions (between

sections) to more closely match empirically determined extracellular spacings [28].

ForestTiler does not take membrane junctions into account, but a small value for distance δ
may be specified to preserve very close spacing.

3D processing

Mesh quality improvement—VolRoverN includes a suite of tools to produce meshes

with good quality triangles, i.e. triangles that are close to equilateral. The first tool is

decimation, which uses the QSlim algorithm [33] to reduce the number of triangles. QSlim

is an edge-collapse algorithm that is popular because of its speed and robustness. We then

use the geometric-flow mesh improvement algorithm of Zhang et al [34, 35] that produces a

surface mesh with triangles of good aspect ratio (Figs 5A–5B). The mesh improvement

algorithm can be iteratively applied for increasing triangle quality. Quality improved meshes

are not guaranteed to meet the contour interpolation property. VolRoverN also has mesh

repair utilities (Figs 5C–5D) to repair errors such as holes, non-manifoldness and self-

intersections. Non-manifoldness and self-intersections are repaired by automatic removal of

offending triangles. Resulting gaps are then closed using our hole-filling tool, which uses an

ear-clipping algorithm [36]. Our mesh repair utilities are general and can be applied to

problematic meshes from other reconstruction software packages. Simplification,

improvement, and mesh fixing are intended to be applied as follows:

1. Simplification

2. Improvement

3. Repair
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4. Improvement

Repair is generally more effective if the model has already been simplified and improved. It

is often best to finish with the improvement step as repair can introduce poor quality

triangles.

Complementary space and tetrahedralization—A feature of VolRoverN is automatic

complementary space (CS) generation outside (and complementary) to water-tight surface

meshes and inside a bounded region of interest. The user is able to define a bounding box

and the CS tool constructs a closed polyhedron with faces consisting of portions of the

surface meshes and the bounding box (Fig 6). The CS polyhedron converges to a model of

extra-cellular space (ECS) when the input surface meshes are a complete description of cells

within a bounding box. Models of ECS have been used in reaction-diffusion simulations [28,

37].

VolRoverN also has the capability of tetrahedralizing surface meshes [38–40] (Fig 6D). This

uses an adaptive subdivision meshing algorithm contained in a library from our Level Set

Boundary-Interior-Exterior (LBIE) software package [41]. Tetrahedra are exported in RAW

and ele/node formats for ease of import into simulation packages such as STEPS [42].

Comparison to other surface reconstructions

Standard algorithms such as marching cubes, which is used in most popular contouring

software packages [19–21], yield large numbers of intersections between objects when the

objects are tightly packed (Fig 7). Additionally, marching cubes produces blocky

reconstructions with poor geometric accuracy due to its lack of interpolation between

contours. This is especially evident with neuronal EM images that are highly anisotropic.

Our algorithm resolves both problems, producing surface meshes that are intersection-free

and linearly interpolated between contours.

Here we compare ContourTiler with the implementation of marching cubes found in

TrakEM2 (ImageJ) [19, 43] and the Boissonnat algorithm implemented in the

RECONSTRUCT™ software [44]. We compared object-object intersections and geometric

accuracy, as well as water-tightness and manifoldness. Other important surface mesh

qualities (oriented normals, regularity, topological correctness, and contour interpolation)

are met by all three algorithms. We reconstructed the 8 axons and 2 dendrites in the sample

dataset distributed with VolRoverN using both RECONSTRUCT™ and VolRoverN and

compared the results by quantifying the most common errors of those described in Fig 1.

Figs 7A–7D show reconstruction of two axons in close proximity (a001 and a020 from the

sample dataset) using the three reconstruction methods. VolRoverN meshes are free of

intersections between multiple objects, in contrast to surfaces produced by the marching

cubes and the Boissonnat algorithms. The Boissonnat and marching cubes representations

yield a large number of intersections, whereas the VolRoverN surfaces are entirely free of

intersections because VolRoverN meshes are guaranteed to have a user-specified minimum

spacing between objects. Meshes produced by VolRoverN interpolate, or pass exactly

through, the input contours. To quantify surface error in regions between contours we

compared surfaces produced by VolRoverN and the other two algorithms to a C1-continuous
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surface fitted to the contours. The distribution of errors is reported in Fig 7E and shows that

VolRoverN’s reconstructions are geometrically very similar to the RECONSTRUCT™

implementation of the Boissonnat algorithm, both of which are closer to a smooth

approximation than marching cubes.

Triangle quality is another important measure of how successful a simulation will likely be

in terms of error convergence [45]. Figure 7F illustrates how VolRoverN outperforms both

other methods in terms of triangle aspect ratio (ratio of the circumradius to twice the

inradius).

Using VolRoverN output in simulations

3D to 1D skeletonization and surface segmentation

Cable model simulation requires 1D skeleton models of neurons. Cable models are typically

created with neurite tracing software, but VolRoverN utilizes surface meshes to generate 1D

models automatically. VolRoverN decomposes the mesh into cylindrical chunks using an

algorithm that first finds a skeleton of the surface mesh (Fig 8A) using an iterative Laplace

contraction algorithm [46]. The skeletonization algorithm induces a surface segmentation as

a side effect. The segmentation is not perfect, so VolRoverN performs operations to repair

and smooth the segmentation, resulting in regions such as those shown in Fig 8B. Each of

these regions is approximated with a 1D segment with length and diameter (and thereby

volume and surface area) properties. These segments are typically conceptualized as

generalized cylinders. Our decomposition algorithm preserves volume, that is, the sum of all

cylindrical region volumes equals the volume of the polyhedron. VolRoverN reports surface

area and volume of regions of a reconstructed object. After surface segmentation, the user

can discover geometric measurements of segments (e.g. Fig 8B) by clicking on the region.

NEURON

VolRoverN’s skeletonization tools are used to automatically reduce the surface

representation to a multicompartmental cable model and simulate ion channel-driven

dynamics of membrane voltage in NEURON [47]. NEURON is a simulation software that

implements multi-compartment models of electrical signaling based on cable theory (Fig

8C). VolRoverN outputs to a NEURON HOC file, which contains length and diameter

properties for each region as well as connection properties defining their topological

connectedness. The output HOC file also contains a skeleton simulation function. As

reduction to 1D includes a coarsening of resolution, we expect NEURON simulation results

to be similar regardless of reconstruction algorithm used.

MCell

VolRoverN also enables MCell simulations. MCell [48, 49] is a software package that

simulates multi-ion species reaction-diffusion usingMonte Carlo algorithms over

geometrically complex domains. VolRoverN’s ForestTiler and mesh improvement tools

were used to generate surface triangulations of an individual axon and dendrite in the

VolRoverN sample (Fig 9A). The MCell export tool in VolRoverN writes a given surface

mesh to an MCell MDL file. As noted, these meshes are required to be water-tight,
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manifold, and free of self-intersections which can be repaired, if necessary, using

VolRoverN’s mesh repair utilities. A complete physiological simulation study was set up

with the CellBlender software package (http://www.mcell.org) using the MCell MDL

geometry files. The geometric analysis tools in CellBlender confirmed that the imported

MDL meshes were of computational quality for use in simulations. CellBlender was then

used to generate and run an MCell simulation of glutamatergic synaptic transmission at a

synapse between the axon and dendrite (Fig 9B). Fig 9C shows the time course of activation

of synaptic receptors by diffusing neurotransmitter molecules released at the synapse.

Direct comparison of MCell simulations using VolRoverN, Boissonnat, and marching cubes

models has not been informative because reaction-diffusion simulations such as MCell

require geometric consistency. Meshes with errors are rejected outright with an error

message. As shown in Figs 7A and 7C Boissonnat and marching cubes models have large

numbers of intersections between objects, causing attempted simulations to fail.

Volume rendering and isocontour visualization

VolRoverN’s volume rendering capabilities and isocontour visualization tools enable

interactive visual exploration of topology and geometry. Volume renderings include the

capacity to illustrate numerous objects of varying color and transparencies (Fig 10A) which

can also be illustrated as NEURON-ready skeletons (Fig 10B) and include intracellular

organelles (Fig 10C).

The signed distance function (SDF) in VolRoverN is a tool that produces a volume of scalar

values (a volumetric scalar field) representing the distance from a surface. SDF, together

with VolRoverN’s volume rendering capabilities (Fig 10) and isocontour visualization tools,

enables interactive visual exploration of topology and geometry of isosurfaces (also called

level sets) at various isovalues (level-set values) of the magnitude of the SDF . VolRoverN

volume renders scalar fields (stored in HDF5 format) and geometries together and

seamlessly. The transfer function tool supports both color and transparency ramps across the

spectrum of level-set values in a volume and is used to color and achieve see-through

translucency. The fast isocontour visualization [50] capability within VolRoverN enables

interactive visual exploration of volumetric scalar fields through rendering of isosurfaces

generated for distinct isovalues. Fast isocontour visualization when applied to SDF of input

surfaces of complicated topology and geometry, provides for a quick visual surface

exploration of the topological and geometric complexity (Fig 11). SDF fields of surfaces

produced by ForestTiler can be examined for changes in their level-set topology and

geometry. Fast isocontour visualization also provides a means to explore visually the results

of function fields produced in simulations. A supporting topological visualization tool is the

contour tree [51, 52] where branching reveals the splitting of level sets across the entire

range of level-set values (Figs 11A–11C). The contour spectrum [53] plot gives additional

insight, showing signature curves representing the variation of isosurface properties such as

area, volume and gradient (normal) magnitude across isovalues (Fig 11D). The spectrum

plot helps quickly locate isovalues where the isosurface properties become critical (e.g.

maximum, minimum, etc.).
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Scalability and performance

The algorithms used in VolRoverN are scalable. Our reconstruction method linearly

interpolates between sections, so only two sections need be stored in memory at one time,

thus the memory requirements remain static with increasing stack size. Memory also

remains static with increasing image resolution since the reconstruction algorithm uses

exclusively geometric contours and not the original images. However, memory requirements

do increase with larger numbers of contours per image (such as would be the case with

greater image footprints), but memory goes up proportionally to the number of contours.

The fact that the VolRoverN reconstruction algorithm operates only on pairs of sections

makes it an excellent candidate for parallelization, a feature for future development.

ForestTiler and associated mesh improvement tools in VolRoverN are efficient. We tested

reconstruction time on the sample dataset, which consists of portions of 8 axons and 2

dendrites with a combined 129.32 µm2 surface area, 8.44 µm3 volume and 204,906 triangles.

Reconstruction took 6 minutes and 40 seconds on a Linux Kubuntu workstation with Intel

Xeon 3.20 GHz quad core CPU and 4 GB of memory. Decimation, triangle improvement

and mesh fixing tools took an additional 56 seconds.

Discussion

VolRoverN plays a complementary role in the set of neuronal morphology software. It

provides tools to enhance geometric understanding of 2D tracings and offers an alternative

method of skeletonizing neurites. VolRoverN also fills a critical gap, in that it produces

meshes that are manifold, geometrically accurate, water-tight, and free of intersections.

Before now, producing such reconstructions required a large amount of manual work, but

VolRoverN’s powerful tools greatly reduce the amount of time and domain knowledge

required to prepare reconstructions for geometric analysis. Reconstructions serve as

substrate for dynamical simulation of cellular activity.

VolRoverN accepts geometric contours as input. Thus, success in quality reconstruction is at

least partly dependent on the quality of the contours produced using other software tools.

This is largely mitigated by visual proofing tools in tracing software [17–19]. However, if

surface reconstruction from VolRoverN reveals errors in the contour tracings then the user

can revert back to the original tracing software for contour repair at well-identified

locations.

Representations of the cell surface enable simulations using 3D boundary element methods

(BEM) such as combined Monte Carlo simulation of particle diffusion and kinetic state-

based modeling of protein dynamics at the microsecond time scale by MCell [28,37]. 3D

finite element method (FEM) simulations [54] of electro-diffusion with multi-species

continuum concentrations are enabled by decomposing a reconstruction into a collection of

small volumes. Also, by approximating neuronal geometry as a collection of cylindrical

compartments each aligned to segments of the geometry [55], and modeling ionic

conductance in each compartment with coupled differential equations, one arrives at the

traditional cable simulation of electrical signals in the brain at the millisecond scale, as
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supported by simulation software such as NEURON [47]. Deriving these geometric

representations of brain structure from a single source (surface meshes) facilitates future

multi-scale simulations via coupled MCell, FEM and NEURON models.

Third-party libraries

VolRoverN uses several third-party software libraries. The reconstruction tools use CGAL

[56] and QSlim [33]. Rendering is done using OpenGL and the interface uses the cross-

platform GUI package QT.

Data sources

Data used in the figures is from hippocampal area CA1 of a postnatal day 77, perfusion-

fixed, male rat [57,58]. All images are ssEM with 2 nm in-plane and 45 nm out-of-plane

resolution. Image size is 4K × 4K pixels. The dataset is available as a sample with download

of VolRoverN. All rendered figures in this paper were produced using VolRoverN except

plots (prepared by gnuplot) and the MCell simulation which used CellBlender (Figs 9A and

9B).

Information sharing

VolRoverN binaries, a tutorial, and a sample dataset are freely downloadable at http://

cvcweb.ices.utexas.edu. Source code is freely available at the same link for non-profit

institutions. We anticipate the future addition of a public data repository on the same page

for images, traces, 3D meshes, and simulation files.
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Figure 1.
Requirements for quality surface models. The illustrations demonstrate errors commonly

encountered in morphological reconstructions of neurons. (A) Surface models should be

water-tight, or free of holes. (B) A normal vector is associated with each facet in a mesh

representation, and all facets should be consistently oriented. (C) Vertices should not be

coincident with edges of other facets. (D) A surface is manifold if an arbitrarily small piece

of the surface is a topological disk. In this example the point at which the two surfaces meet

is not a topological disk. (E) In this example, two spine heads are erroneously joined during

the reconstruction process. Meshes should be topologically consistent with the physical

specimen they are approximating. (F) In a mesh representation, the facets (most commonly

triangles) should be of good quality. In the case of a triangle, one definition of quality is that

the ratios of edge lengths are close to one, or the triangle is close to equilateral. (G) A very

common error in existing neuropil reconstruction methods is object-object intersections.

Also common are triangle intersections within the same object. (H) Surface reconstructions

should interpolate, or pass exactly through, the original contour tracings. The figure shows

an example of error in interpolation. Both VolRoverN and marching cubes are error-free in

that they exactly interpolate the contours.
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Figure 2.
A high-level look at VolRoverN’s functionality. There are four main phases: 2D processing,

2D to 3D reconstruction, 3D processing, and 3D to 1D reduction.
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Figure 3.
2D curation. Because components are usually traced independently of each other,

intersection errors can occur. (A) A number of intersections and close approaches can be

seen between contours. (B) The intersections have been removed and a specific contour

spacing is enforced.
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Figure 4.
Reconstruction from 2D contours. (A) Input to VolRoverN is a set of 2D polygonal traces,

or contours, derived from EM images. (B) Software embedded in VolRoverN called

ContourTiler fits a triangulated surface to each set of contours to produce a 3D surface

model. (C) Multiple components are combined using ForestTiler such that they are free of

intersections.
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Figure 5.
Mesh improvement. (A) The original reconstructed triangulation of a dendrite and axon. The

horizontal bands in the surface mesh reflect the separation between EM images of thin tissue

sections. (B) The reconstruction after decimation and smoothing. The final triangulation has

fewer than half the triangles as the original and the triangles have far better aspect ratio. (C)

Repair utilities in VolRoverN include manifold correction and hole filling. The figure shows

a hole outlined in red.(D) After hole filling. The before/after ratio of total mesh surface area

in this example was 32.7/32.8, for a total hole surface area of 0.3%.
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Figure 6.
VolRoverN utilities. (B) A bounding box is placed around the surface meshes in an area of

interest. (B) The surfaces are clipped at the bounding box. (C) VolRoverN’s ECS and

tetrahedralization tools create a volumetric model of complementary space. (D)

Tetrahedralization of a dendrite using VolRoverN’s tetrahedralization tool.
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Figure 7.
Comparisons with RECONSTRUCT™ and TrakEM2. (A)-(B) Comparison between

RECONSTRUCT™ (Boissonnat) and VolRoverN surfaces using axons a001 and a020 from

the sample dataset. Part of a020 is cut out to see the interior intersections. The

RECONSTRUCT™ surfaces yield a large number of intersections between objects. Output

from ForestTiler is intersection-free. (C)-(D) Comparison between TrakEM2 and

VolRoverN surfaces. A portion of two axons are reconstructed with ImageJ’s marching

cubes implementation (resample=1, no smoothing) and the top is lifted to reveal the interior.
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Marching cubes yields numerous intersections between objects. Output from ForestTiler is

intersection-free. (E) Geometric error measured as distance from a reconstruction to a C1-

continuous approximating surface. This is a cumulative plot of percentage of sample points

within a given error. 100,000 sample points were taken. VolRoverN and

RECONSTRUCT™ have far less geometric error than TrakEM2. To create the C1-

continuous surface SC1, we randomly choose 4 adjacent, non-bifurcating contours (called c1,

c2, c3, and c4) and fit cubic B-splines to each of them using a least-squares fit. We then join

the contours together with interpolating cubic curves, forming a patch that is C1-continuous

everywhere between c1 and c2. The data used in this test are from axon a001 between slices

115 and 118. (F) Comparison of quality of triangles between the three reconstruction

methods. We define triangle ratio as rc/2ri where rc is the circumradius and ri is the inradius

of a triangle. The ideal triangle ratio is 1. The plot is a cumulative percentage of triangles

below a given ratio.
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Figure 8.
Multi-compartment model generation. Our surface segmentation first skeletonizes the mesh

(A), which induces a segmentation (B). Each segment is in a different color in the figure.

After correction, the segmentation can be used to produce surface area/volume statistics of

different regions as well as labeling different regions for ion diffusion studies. This graphic

shows a simple cable model simulation. The compartmentalized versions of the axon and

dendrite are input to NEURON. A synapse with a threshold and delay is added between the

dendrite and axon and a point charge is placed at the end of the axon. Three potential
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measurements are made over time. Arrow colors correspond the potential measurements

reported in the NEURON simulation graph in figure (C).
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Figure 9.
MCell reaction/diffusion simulation of synaptic transmission from generated model.

Generated meshes of axon (green) and dendrite (yellow) were imported into CellBlender to

create an MCell simulation from the meshes. Images were rendered using CellBlender. (A)

The axon and dendrite. (B) Visualization of synaptic transmission 100 microseconds after

release of 2000 molecules of the neurotransmitter glutamate (small green ellipsoids). 10

NMDA receptors (NMDAR) and 100 AMPA receptors (AMPAR) were placed at the

synaptic contact area between the axon and dendrite (small red patch of membrane on the
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dendrite). Color indicates state of activation of the receptors. At 100 microseconds, the

glutamate has started to bind and activate some receptors and has started to spill out of the

synaptic cleft space into the surrounding volume. (C) Time course of activation of

AMPARs. AMPAR can be in 7 states: c0 (unbound state), c1 (one glutamate bound), c2

(two glutamate bound), c3 (one glutamate bound, desensitized state 1), c4 (two glutamate

bound desensitized state 2), c5 (two glutamate bound, desensitized state 3), and O (two

glutamate bound, ion channel open).
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Figure 10.
Volume rendering with geometry rendering. (A) Axons rendered with semi-transparent

dendrites. (B) A view of a skeletonization of all axons and dendrites in the sample dataset.

Skeletons can be saved in OFF and raw file formats. (C) A dendrite is rendered with semi-

transparent volume rendering to reveal mitochondria. ForestTiler naturally supports nested

components.
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Figure 11.
Isosurfaces of a signed distance scalar field generated from a triangulated surface model of a

dendrite, and at different isovalues. Isosurfaces are computed from surface geometries and

are useful in characterizing object shape. The contour tree at bottom shows the topological

branching structure of the isosurface. The vertical line in the contour tree shows the isovalue

of the surface relative to the tree. (A) is close to the true surface, as at that isovalue the

contour tree is a confluence of branches into one. (B) and (C) are isosurfaces at

progressively larger absolute distance values. By convention, negative distance values

indicate points outside the object, while positive values are for points inside. (D) The

contour spectrum tool’s signature properties plot window. Four attribute curves are shown:

surface area (red); min volume (green); max volume (blue); gradient weighted surface area

(yellow). The green isovalue node is at an isovalue for which surface area and gradient

weighted surface area curves are close to their respective maximum values, which usually

occurs near the zero isovalue. The×axis represents distance from the original surface. Each

curve is normalized with respect to the y axis.
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