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Matching Cross-linked Peptide Spectra:
Only as Good as the Worse Identification*□S

Michael J. Trnka‡, Peter R. Baker‡, Philip J. J. Robinson§, A. L. Burlingame‡,
and Robert J. Chalkley‡¶

Chemical cross-linking mass spectrometry identifies inter-
acting surfaces within a protein assembly through labeling
with bifunctional reagents and identifying the covalently
modified peptides. These yield distance constraints that
provide a powerful means to model the three-dimensional
structure of the assembly. Bioinformatic analysis of cross-
linked data resulting from large protein assemblies is chal-
lenging because each cross-linked product contains two
covalently linked peptides, each of which must be correctly
identified from a complex matrix of potential confounders.

Protein Prospector addresses these issues through a
complementary mass modification strategy in which each
peptide is searched and identified separately. We demon-
strate this strategy with an analysis of RNA polymerase II.
False discovery rates (FDRs) are assessed via comparison
of cross-linking data to crystal structure, as well as by
using a decoy database strategy. Parameters that are
most useful for positive identification of cross-linked
spectra are explored. We find that fragmentation spectra
generally contain more product ions from one of the two
peptides constituting the cross-link. Hence, metrics re-
flecting the quality of the spectral match to the less con-
fident peptide provide the most discriminatory power be-
tween correct and incorrect matches. A support vector
machine model was built to further improve classification
of cross-linked peptide hits. Furthermore, the frequency
with which peptides cross-linked via common acylating
reagents fragment to produce diagnostic, cross-linker-
specific ions is assessed.

The threshold for successful identification of the
cross-linked peptide product depends upon the com-
plexity of the sample under investigation. Protein Pro-
spector, by focusing the reliability assessment on the
least confident peptide, is better able to control the FDR
for results as larger complexes and databases are ana-
lyzed. In addition, when FDR thresholds are calculated

separately for intraprotein and interprotein results, a
further improvement in the number of unique cross-links
confidently identified is achieved. These improvements
are demonstrated on two previously published cross-
linking datasets. Molecular & Cellular Proteomics 13:
10.1074/mcp.M113.034009, 420–434, 2014.

Most proteins are organized into stable assemblies that
communicate among themselves through transient protein–
protein interaction networks to catalyze cellular phenomena.
Chemical cross-linking mass spectrometry directly measures
protein–protein interactions by using bifunctional cross-link-
ing reagents to covalently link surfaces of interacting partners
(1–3). Following proteolysis, mass spectrometry is used to
identify the covalently linked peptides and modified residues.
This information, taken together with the geometry of the
cross-linking reagent, provides distance constraints that are
reflective of the three-dimensional structure of the protein
complex. Cross-linking-derived distance constraints provide
a powerful means by which to integrate atomic resolution
structures of individual protein subunits or subassemblies
with low-resolution electron-microscopy-derived structures,
as well as to clarify molecular details that are unresolved in
electron density maps. For instance, this approach has re-
cently been applied to modeling the RNA Pol II preinitiation
complex (4), several chromatin remodeling complexes (5, 6),
the 26S proteasome (7), and the Mediator middle module (8);
solving the subunit arrangement of TCP1 ring complex (9, 10);
modeling the electron density map of the Mediator head
module (11); and investigating the binding sites of ribosomal
protein S1 to the 30S ribosome (12) and the general transcrip-
tion factor TFIIF to RNA polymerase II (13).

Successful identification of cross-linked spectra from large
datasets is a challenging database search task, as every
cross-linked product contains two individual peptides cova-
lently linked. Thus, the number of cross-linked products that
are consistent with a given precursor mass grows quadrati-
cally with the size of the protein complex under investigation.
Furthermore, product ion spectra of cross-linked peptides
contain fragment ions from both of the individual peptides.
We have noted that under collisional activated dissociation
regimes, it is very common for these fragment ions to be
unevenly distributed between the two individual precursor

From the ‡Department of Pharmaceutical Chemistry, University of
California San Francisco, San Francisco, California 94158; §Depart-
ment of Structural Biology, Stanford University School of Medicine,
Stanford, California 94305

Received August 28, 2013, and in revised form, November 19, 2013
Published, MCP Papers in Press, December 12, 2013, DOI 10.1074/

mcp.M113.034009
Author contributions: M.J.T., A.L.B., and R.J.C. designed research;

M.J.T. and R.J.C. performed research; M.J.T., P.R.B., P.J.R., and
R.J.C. contributed new reagents or analytic tools; M.J.T. and R.J.C.
analyzed data; M.J.T., P.R.B., and R.J.C. wrote the paper.

Research
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

420 Molecular & Cellular Proteomics 13.2



peptides; that is, the majority of peptide backbone dissocia-
tions take place on one of the two peptides that constitute the
cross-linked product.

One way to address this issue is through the use of MS-
cleavable cross-linking reagents (14–18). These cleavable re-
agents incorporate a low-energy bond such as an Asp-Pro
peptide bond (15), a sulfoxide (16), or the stabilized amino
group of a Rink linker (14), which are more readily cleaved
than typical peptide backbone bonds, to produce the major
fragments in MS2 spectra. Separate MS3 experiments of the
two peptides are acquired, and each peptide can be identified
separately, with known cross-linker-specific modifications, by
regular peptide identification search engines. A concern with
this approach is that MS3 is necessarily a less sensitive
technique than MS2. Furthermore, these methods depend
upon the two most intense MS2 products being consistently
the two component peptides of the cross-link and successful
MS3 of both of these ions. Also, it is currently not possible to
selectively target only potential cross-linked components for
MS3 analysis, so if MS2 and two MS3 spectra are acquired for
every precursor, the number of components that can be an-
alyzed in a run is compromised.

Several bioinformatic tools have been developed for cross-
linking analysis, and unsurprisingly, these are mostly based
on tools for the identification of linear peptides. These can
broadly be classified into two strategies. The first is to create
a database enumerating all recombined peptide pairs from
the sample proteins joined by the appropriate cross-linker
mass. This is queried analogously to a regular, linear peptide
search, in which database entries within the tolerance of the
precursor mass are assessed for how well their product ions
match the theoretical MS2 products from the recombined
peptides (9, 19–22). A challenge with this approach is that
with a linear increase in the number of proteins considered,
the number of cross-linked peptide permutations increases
quadratically. Thus, prefiltering steps, such as a hard require-
ment for matching particular fragment ions, have been incor-
porated to try to reduce the number of permutations that need
to be considered (20).

The second strategy is to initially search only for single
peptides that have been tagged as potentially constituting half
of a cross-linked pair. As described earlier, cleavable reagents
allow separate fragmentation of each peptide. In a spectrum
where fragments from both linked peptides are present, an
analogous analysis approach is achieved bioinformatically by
treating a cross-linked peptide complex as a single peptide
bearing a large mass modification (23–25). Here the modifi-
cation represents the second peptide plus the cross-linker
bridge. Based on the specificity of the cross-linking reagent,
the modification needs to be considered on only a limited
number of residues; the most heavily used reagents target
primary amines, so lysine side-chains and protein N termini
are the sites of modification normally considered. These pro-
grams search against a regular protein database, with each

constituent peptide identified separately, and a second com-
putation step recombines individual peptide hits into cross-
linked hits. For instance, Protein Prospector scans the mass
of the variable modifications through a range of integers (plus
a mass defect derived from averagine (26)) and regards pep-
tide matches bearing large modifications (typically �400 Da)
as potential cross-linked products.

For samples that contain only a few proteins, the identifi-
cation of one peptide plus the mass of the second peptide
may be enough for cross-linked product identification (23).
Essentially, the second peptide can be identified by knowl-
edge of its intact mass alone. However, in complex mixtures
the second peptide must be identified by a product ion series
as well. If a hypothetical cross-linked dipeptide product were
to produce a complete fragment ion series from both pep-
tides, the mass modification approach would produce two
high-scoring matches to separate peptides that bore comple-
mentary mass modifications. That is, the mass modification
on peptide 1 would correspond to the mass of peptide 2
plus the appropriate linker mass, and vice versa. This ap-
proach, as implemented in Protein Prospector, enables
querying of large datasets against complex databases for
cross-linked peptides.

Measuring the reliability of the reported results is a complex
issue. Most recent efforts have utilized a concatenated target-
decoy database searching strategy (25, 27), derived from the
well-established approach used for identification of linear
peptides (28). High-scoring, incorrect cross-linked product
matches frequently correctly identify one of the two peptides,
and thus are not random occurrences. However, these
matches contain no meaningful information and must be
treated as decoy matches. Thus, the number of decoy per-
mutations considered is larger than the number of target
permutations considered, and this skews the distribution of
answers. Other studies have used a decoy cross-linker bridge
mass rather than decoy peptide sequences (9, 13). However,
it is also likely that the choice of decoy cross-linker mass
significantly affects the size of the decoy database, as certain
masses are very unlikely or not even possible, especially for
shorter peptides. Finally, most studies have also compared
the distances defined by the cross-linked residues to avail-
able crystallographic structures. Typically, the distances be-
tween C� or C� atoms are measured, as the lysine side
chains themselves are not rigid. However, in solution, proteins
are more dynamic and can exist in more conformations than
reflected by crystal structures measured in condensed states.

Here we formally show that collisional activation of cross-
linked peptide products typically favors the formation of prod-
uct ions from one of the two constituent peptides. Because
generally the longer peptide dissociates more efficiently, a
disproportionate amount of information identifies one half of
the cross-link rather than the other. The challenge in identify-
ing a cross-linked peptide spectrum is thus frequently a mat-
ter of assessing whether there are sufficient product ions
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matching the less confident of the two peptide matches. The
amount of information necessary to identify the second pep-
tide depends upon the complexity of the biological sample
and thus the size of the sequence database searched. In
experiments on binary protein complexes, when one peptide
is confidently matched there may be only one potential sec-
ond peptide that could account for the uninterpreted mass.
However, large protein complexes containing dozens of pro-
teins, or even cell lysates that contain thousands of proteins,
will require more product ion signals to match the second
peptide.

Most current algorithms only assess the reliability of cross-
link matches as a score reflecting the match of the spectrum
to the entire cross-linked dipeptide product. These scores are
unable to differentiate between cases where both peptides
are identified with high confidence and cases where one
peptide is identified with very high confidence but the other is
ambiguous. Hence, assessing the reliability of the lower con-
fidence peptide identification, independent of how confidently
the other peptide is identified, becomes essential. Recogniz-
ing this, some software employs an arbitrary cut-off based on
a minimum number of fragment ions matched to the less
confidently identified peptide (9, 13), whereas others recom-
mend manual verification of results where one peptide is short
(27). In these approaches there is no way to assess whether
an optimal threshold is being employed, so they may be too
conservative, too liberal, or too subjective.

Using the 500-kDa RNA polymerase II (pol II)1 enzyme
complex as a testing ground, in the present work we demon-
strate that the most reliable metrics for discriminating be-
tween incorrect and correct cross-linked peptide matches are
scores reflecting the confidence of the worse of the two
peptide identifications. As most cross-linking search engines
report a score based on the total number of product ion
matches regardless of their peptide of origin, Protein Pro-
spector can more robustly assess the reliability of cross-
linked peptide matches than current software, particularly
when analyzing more complex samples. This is demonstrated
by a reanalysis of two previously published datasets (25).
Additionally, we assess the frequency of cross-linker specific
diagnostic product ions resulting from cleavage at or near the
lysyl-cross-linker bond (29, 30) and discuss the utility of de-
termining separate false discovery rate (FDR) estimates for
interprotein and intraprotein cross-link hits in large database
searches (27).

EXPERIMENTAL PROCEDURES

Cross-linking of Pol II—RNA pol II was purified from Saccharomy-
ces cerevisiae as previously described (11). 60 �g of pol II (deter-

mined by Bradford assay) was reacted with 1 mM disuccinimidyl
suberate (DSS) (Thermo Scientific, San Jose, CA) added from 30x
dimethyl sulfoxide stock in a final volume of 60 �l. The reaction
mixture was incubated at 0 °C for 2 h and quenched by the addition
of Tris Base to final concentration of 50 mM (added from 20x aqueous
stock). Cross-linked samples were concentrated to a final volume of
25 �l and exchanged into 8 M urea, 10 mM triscarboxyethylphosphine
using three spins on a 5-kDa cut-off Ultrafree MC centrifugal device
(Millipore, Billerica, MA). After being heated at 50 °C for 20 min, the
samples were cooled, alkylated with 20 mM iodoacetamide, and then
diluted to 100 �l with 100 mM (NH4)HCO3 before 2 �g of side chain
protected trypsin (Promega, Madison, WI) was added and the sam-
ples were digested at 37 °C for 7 h. The peptide digests were diluted
to 500 �l with 0.3% TFA (aq) and applied to a C18 MacroTrap
cartridge (Bruker-Michrom, Auburn, CA) at 100 �l/min, using the
same buffer. Elution was accomplished with 0.3% TFA, 70% aceto-
nitrile at a flow rate of 250 �l/min. The eluate was dried and resus-
pended in 500 �l of buffer A (10 mM NH4HCOO, pH 10) and then
loaded onto a Gemini C18 1.0 � 100 mm, 3-�m (particle size), 110-Å
(pore size) column (Phenomenex, Torrance, CA) at a flow rate of 75
�l/min. A linear gradient to 65% buffer B (50% acetonitrile, 10 mM

NH4HCOO, pH 10) over 5 ml was applied while collecting 15 � 200 �l
fractions. Fractions were dried on a vacuum centrifuge and brought
up in 20 �l of 0.1% formic acid. Chromatographic steps were per-
formed on an Akta Purifier 10 HPLC system (GE Healthcare).

Mass Spectrometry of Pol II Cross-links—Mass spectra were ob-
tained on an LTQ-Orbitrap Velos (Thermo Scientific) coupled to a
nanoAcquity UPLC system (Waters, Millford, MA). 10-�l cross-linked
peptide fractions were loaded onto a Symmetry C18 180 �m � 20
mm, 5-�m (particle size) trap column (Waters) at 5 �l/min in 3% B
(A � 0.1% formic acid (aq); B � 0.1% formic acid in acetonitrile) for
5 min. Peptides were eluted over a BEH130 C18 100 �m � 100 mm,
1.7-�m (particle size) column (Waters) via a linear gradient from
3%–27% B followed by washing at 50% B and re-equilibration at 3%
B at a flow rate of 600 nl/min. The total run lengths were either 60 or
90 min depending on the anticipated level of complexity of each
fraction. Both precursor and product ion signals were measured in the
Orbitrap at 30,000 and 7500 resolving power, respectively. The six
most intense ion signals in the precursor scan that were at least triply
charged (as determined by the instrument firmware) were selected for
HCD activation using a 3 m/z isolation window and a normalized
collision energy of 30. Precursor ions were excluded from further
selection for 30 s.

Protein Prospector Search Algorithm and Scoring Results—Cross-
linked peptide identification in Protein Prospector is performed by
mass modification searching (31), which considers a modification
within a specified mass range (for the searches in this study, this
range was typically from m/z 400 to m/z 5000) where the modification
can occur only on internal lysines (i.e. that are a missed tryptic
cleavage site) or on the protein N terminus. For each spectrum,
typically the top 1000 peptide identifications are saved, although this
is a user-adjustable parameter. The software then pairs together
results in which the mass modification on one peptide corresponds to
the mass of the second peptide plus the mass of the cross-linker.
Many metrics are reported about each potential cross-linked peptide
identification, including scores (score is based on number and types
of fragment ions identified and is sequence and charge dependent
(32, 33)) and expectation values for each peptide identification, as
well as for the entire cross-linked product, and a score difference
corresponding to how much better the cross-linked peptide identifi-
cation scores compared with the top-ranked assignment to a single
peptide. Only results in which the score difference was greater than 0
(i.e. the cross-linked peptide match was better than a single peptide
match alone) were considered. The expectation values are calculated

1 The abbreviations used are: pol II, RNA polymerase II; DSS,
disuccinimidyl suberate; FDR, false discovery rate; HCD, high-energy
collisional dissociation; MS, mass spectrometry; PDB, Protein Data-
bank; SVM, support vector machine; TIC, total ion current; UTP,
U-three protein.
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based on matches to single peptides and so should be treated as
another score, rather than a rigorous measure of probability.

Prospector considers a-, b-, and y-ions, along with water and
ammonia loss ions, internal ions, and immonium ions for HCD data. It
also considers the cross-linker-specific ions resulting from dissocia-
tion of the cross-linker-lysine amide bond (illustrated for DSS/ bis-
(sulfosuccinimidyl) suberate cross-links in Fig. 3). These consist of
one fragment with the same mass as the individual peptide (which we
refer to as a P ion), one peptide with the cross-linker fragment
attached (PL ion), and one peptide with the cross-linker fragment
modified by a tetrahydropyridine originating from the modified lysine
of the other peptide (PLK ion). Protein Prospector assigns different
weightings for ion types, depending on their frequency and their
specificity. Weightings for ions not related to the cross-linker are
derived from single peptide identifications from HCD data and were
calculated similarly to those reported for electron transfer dissociation
data using several thousand spectra as the reference (33). Weightings
for cross-linker specific ions were calculated based on the frequency
of their observation in cross-linked peptide spectra acquired in-
house. These constituted only a few hundred spectra, so weightings
were more stochastic in nature. Different weightings are used de-
pending on whether the data are ion trap collision-induced dissocia-
tion, HCD, or electron transfer dissociation fragmentation data.

For high-resolution product ion spectra, the software determines
charge states based on the spacing of isotope peaks. For each
spectrum, the mass range of observed peaks is split in half (the same
as for regular peptide identification using Protein Prospector (32));
then, after deisotoping, the most intense peaks in each half of the
mass range are combined. The total number of peaks considered is a
user-definable value within Batch-Tag. Cross-link searches typically
work best with at least 70 product ion peaks considered. The detec-
tion of monoisotopic peaks and removal of isotopes in the product ion
peaklist is by a “look back” approach. Starting with the highest m/z
signal, the algorithm looks for isotope peaks (i.e. m/z 1.00, m/z 0.50,
or m/z 0.33 lower for singly, doubly, or triply charged peaks, respec-
tively) where the matched isotope is at least 20% the intensity of the
current peak. If no peak matches the correct m/z spacing, the current
signal is assumed to be the monoisotopic peak. Otherwise, the cur-
rent peak is removed and the look-back step is repeated. Using this
process, Protein Prospector will match fragments of any charge state
up to that of the precursor ion, provided it is possible to determine the
charge of the peak. All peaks without isotopes are assumed to be
singly charged.

Analysis of RNA Pol II—Because highly charged precursor ions are
more frequently misannotated in peak lists and cross-linked products
have higher charges due to charge contributions from both peptides,
and to allow for multiple precursors falling within the ion selection
window, a hybrid method of peaklist generation was employed. Peak-
lists were initially generated using an in-house script, PAVA (34),
based on the Raw_Extract script in Xcalibur v2.4 (Thermo Scientific).
In parallel, Hardklor v1.35 (35) was used to deisotope precursor ion
scans from the raw data. Then, for a given product ion spectrum in the
PAVA peaklists, each Hardklor-determined monoistopic ion that fell
within 3 m/z units of the nominal precursor was annotated as a
separate spectrum in the final MGF format peaklist produced by an
in-house Ruby script. Hardklor and PAVA agreed on a monoisotopic
precursor �50% of the time. Product ions were not deisotoped at this
stage, as Protein Prospector handles this task. This procedure re-
sulted in 111,893 spectra from 16 high-pH HPLC-separated fractions.

85 peaks from each spectrum were searched using a tolerance of
10 ppm for precursor ions and 25 ppm for product ions. Enzyme
specificity was tryptic, and up to four missed cleavages per peptide
were allowed. Carbamidomethylation of cysteines was specified as a
constant modification, and oxidation of methionine, pyro-glutamate

derived from peptide N-terminal glutamine, protein N-terminal methi-
onine removal and/or acetylation, and dead-end modification with the
cross-linker (where one end reacts with a primary amine in the pep-
tide but the other is hydrolyzed) were set as variable modifications.
The database searched was a custom database containing the se-
quences of 52 components of the S. cerevisiae preinitiation complex,
including all of the subunits of pol II, Mediator, and the general
transcription factors. Additionally, each of the 52 preinitiation com-
plex sequences was randomized 10 times, and these sequences
were concatenated to the forward sequences. Thus the final data-
base contained the 52 target sequences in addition to 520 decoy
sequences.

Spectra were annotated as potential cross-linked products by Pro-
spector based on a total score of the cross-linked product of �20 and
a score difference � 0. If either of the two component peptides
matched to the decoy database, then the identification was classified
as a decoy. Exploratory data analysis was performed to determine
which Prospector metrics had the most discriminatory power be-
tween target and decoy hits (see “Results” section). Furthermore,
spectral matches to cross-linked peptides were randomly split into a
test set and a training set. A support vector machine (SVM) classifi-
cation model was built on several Prospector parameters and evalu-
ated on the test set, using the e1071 package for the R platform.
Models were evaluated based on their specificity (proportion of decoy
hits correctly classified) and the total number of hits to the target
database that were classified as such. The final model combined two
parameters (“score difference” and “% TIC matched”) in a linear SVM
model that was applied to the entire dataset to generate the final SVM
decision value classifier.

The best cross-link match to each spectrum was kept if the SVM
score was 0.3 greater than the second hit. Otherwise the spectrum
was marked as ambiguous and all possibilities within this score range
were annotated in the final list. This situation applied almost exclu-
sively to ambiguous site localizations as to the exact lysine that was
modified. Cross-links were next sorted by the position and identity of
the two adducted lysine residues (without regard to peptide se-
quence), and only the best-scoring match was kept. The final list was
manually inspected for correct precursor annotation.

Analysis of UTP-B Complex and E. coli Soluble Proteome—Raw
data were kindly supplied by the authors of the pLink study (25).
Raw data were converted to peaklists using an in-house script, PAVA
(34). Data were searched with an instrument setting of ESI-Q-hi-res.
UTP-B data were searched against a concatenated database of
seven proteins (the six yeast proteins in the complex and pig trypsin)
plus sequence-randomized versions of these entries (i.e. the data-
base contained 14 entries). E. coli data were searched against two
different databases. The first was a concatenated database of all
E. coli proteins in the March 2012 release of Swiss-Prot plus se-
quence-randomized versions of these (a total of 11,934 protein en-
tries were searched). A second set of searches were performed
against a list of protein accession numbers identified in the sample on
the basis of unmodified peptides, plus sequence-randomized ver-
sions of these entries, for a total of 1512 entries. Searches of 72,721
spectra against all E. coli entries took roughly 1 day on a 2.66-GHz
eight-core processor, whereas the restricted accession number
searches took just over five hours.

Peaklists were searched with a �20-ppm mass tolerance on pre-
cursor ions and �25 ppm for fragment ions. The top 35 peaks from
each half of the m/z range (70 peaks total) of each spectrum were
used for searching. Modifications were specified as above. Addition-
ally incorrect monoisotopic peak assignments (where the mass in the
peak list corresponded to the second or third isotope of the peptide)
were considered as variable modifications. When incorrect monoiso-
topic peak identifications are reported, Prospector requires this mod-
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ification in both of the individual peptide identifications of the cross-
linked product. Results were filtered to remove any assignments
where one of the cross-linked peptides was less than four amino
acids long.

The classification score used in this analysis was S.D. �
pep2.pExp, where S.D. is the difference in score between the cross-
linked result and the best match to a single (non-cross-linked) pep-
tide, and pep2.pExp is the log of the expectation value of the least
confident peptide identification. Thus, if the cross-link match scored
10 more than the best single peptide match and the less confident
peptide was identified with an expectation value of 0.01, then the
score would be: 10 � (�2) � 12.

If either peptide matched to the decoy database, the cross-link hit
was classified as decoy. FDR values for intraprotein and interprotein
cross-link hits were calculated separately and compared with global
FDR estimates. The decoy database contained sequence-shuffled
versions of each protein in the target database. If a match to target
and shuffled versions of the same protein was reported, this was
interpreted as a decoy intraprotein identification. See the supplemen-
tary material for further discussion of FDR calculation and assess-
ment for cross-linking analysis.

The two datasets analyzed here both employed isotope-labeled
bis(sulfosuccinimidyl) suberate as the crosslinker, with a light version
and a heavy version in which four hydrogens were replaced with
deuterium atoms. The data were searched twice, once assuming the
light cross-linker and once assuming the heavy cross-linker. Results
were then combined using Prospector’s Search Compare program,
followed by removal of the lower confidence match for a particular
spectrum when the two searches both produced an assignment.

RESULTS

Cross-link Backbone and Diagnostic Product Ions Are
Asymmetrically Distributed between the Component Pep-
tides—Protein Prospector’s complementary mass modifica-
tion algorithm was used to search over 111,000 HCD spectra
from DSS cross-linked RNA pol II against a database consist-
ing of 52 sequences of the yeast preinitiation complex plus
520 decoy sequences (10 randomized versions of each target
sequence). This resulted in 9204 spectral matches to potential
cross-linked peptides with an overall Prospector score � 20.
Of these, 3885 matched both peptides to the target database,
and the remaining 5319 matched at least one peptide to the
decoy database and were therefore regarded as decoy
matches. Approximately one-third of the cross-linked spectral
matches were unique identifications, and the rest matched to
two to four cross-linked sequences (these are typically highly
related). Linear peptides are discovered in the same search
but reported separately. For the analyses presented here, only
cross-linked spectral matches were considered.

Protein Prospector calculates a number of metrics describ-
ing the quality of the spectral match to the cross-linked se-
quences. Among these are scores that reflect the number of
observed product ion signals matching the database se-
quence. Prospector reports scores for each of the component
peptides of the cross-link, as well as an overall score that
describes how many total product ions are attributable to the
entire cross-link. These scores are weighted by the overall
frequency of a particular product ion type using the same
fragmentation method (33).

Fig. 1C shows a high-quality product ion spectrum
matched to a DSS cross-linked pair. In this case, the cross-
link spanned K1350 of the Rpb1 subunit to K201 of the Rpb5
subunit of Pol II, which is consistent with both the geometry of
the cross-linking reagent (Fig. 1A) and the crystal structure of
the enzyme complex (Fig. 1B). As is frequently observed, one
peptide of the pair scored much higher (77.5) than the other
(16.3). Prospector assigned an overall score to the cross-link
of 90.0. Thus, one peptide accounts for much more of the
observed fragment ions than the other. This situation was
found to apply to the entire dataset. Fig. 1D shows the distri-
bution of scores for the more weakly fragmented peptide of a
pair (peptide 2) compared with the more strongly covered
peptide (peptide 1), as well as the overall cross-link score for
the 3885 matches to the target database. It is clear that these
distributions are different (p �� 0.001) and that the distribution
of overall cross-link scores (black line) more closely reflects
the distribution of the higher scoring peptide, with only minor
contributions from the lower scoring peptide.

We determined the number of peptide bonds cleaved for
each cross-link match by counting whether at least one b- or
y-ion corresponding to a given bond position was observed.
This revealed that on average, peptide 1 accounted for twice
as many bond cleavages relative to the total number of pep-
tide bonds in each cross-link (Figs. 2A and 2B). We next
examined whether this trend could be explained solely by
differences in the lengths of the component peptides or
whether the two halves of the cross-link fragment had differ-
ent efficiency. The more confident peptide (peptide 1) was
typically 37% longer than its counterpart (supplemental Fig.
S1). Therefore, the 2-fold increase in observed fragment ions
was not fully explained by the 37% increase in peptide length.

Percent fragmentation, defined as the number of observed
bond cleavages divided by the number of bonds in each
component peptide, was calculated for each cross-link
match. An inverse relationship between fragmentation and
peptide length was observed for both peptide 1 and peptide
2 (Fig. 2C). Linear regression of these data showed essentially
parallel trends, but with peptide 1 fragmenting consistently
more efficiently for a given length than peptide 2. Peptide 1
was estimated to fragment 36% more effectively based on the
trend lines. Adding a correction to compensate for the effect
of length on fragmentation and then comparing the ratios of
corrected fragmentation efficiency for the two peptides within
each crosslink also gave a median ratio corresponding to
35% increased efficiency in the fragmentation of peptide 1
(Fig. 2D). Thus the 2-fold difference in observable fragments is
mostly accounted for by a combination of increased peptide
length and increased fragmentation efficiency of the higher
scoring peptide (137% * 135% � 185%).

In addition to cleavages along the peptide backbone, Pro-
tein Prospector scores cross-linker specific product ions from
the modified lysine residues (Fig. 3). These dissociations take
place either at the amide bond joining the lysine �-amine to
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the cross-linking reagent (resulting in ions that we refer to as
P ions and PL ions) or at the peptide bonds joining a modified
lysine to adjacent residues (29, 30). This second process,
which is similar to the formation of lysine immonium ions,
results in tetrahydropyridine cross-linked to the other peptide
(termed PLK). These dissociations are common among DSS
and bis(sulfosuccinimidyl) suberate cross-linked peptides. Of
the 3885 spectral matches to the target database, 71.9%
matched at least one of these diagnostic ions (Table I).

As with regular y- and b-ions resulting from peptide back-
bone dissociations, these cross-link specific product ions
were unevenly distributed between the two peptides of a
cross-linked pair, but in a manner opposite that of backbone
ions: diagnostic ions were more common for the lower scoring
peptide than for the higher scoring peptide. 64.3% of the
cross-linked matches had at least one diagnostic ion match-
ing the lower scoring peptide, whereas only 24.4% had at
least one of these ions originating from the other peptide. PLK
type ions were the most common type (65.2% of cross-linked
matches contained at least one), followed by PL ions (50.3%),
and then P ions (11.9%).

The Lower Scoring Peptide Is the Best Classifier of Cross-
linked Spectral Match Reliability—The metrics reported by
Protein Prospector describing the quality of the spectral
match were assessed for their ability to discriminate between
target and decoy hits. As mentioned, of the 9204 spectra
annotated as cross-link matches, 3885 had both peptides
matched to the target database, and the remainder were
classified as decoy hits. Hits to the target database consist of
both correct and incorrect matches, whereas essentially all
hits to the decoy database can be considered incorrect. So as
to better model the distribution of incorrect cross-linked
matches, the decoy database searched was 10 times larger
than the target database, consisting of 520 randomized ver-
sions of preinitiation complex protein sequences (versus 52 in
the target database).

The distributions of 18 Prospector parameters were com-
pared between hits to the target and decoy databases (Table II,
supplemental Fig. S2). These parameters included Prospec-
tor score for each peptide and for the entire cross-linked
product, expectation values for each of these, length of the
peptides, rank of the individual peptide hits in the mass mod-

B

FIG. 1. HCD product ions from DSS cross-links are unevenly distributed between the two component peptides. 3885 cross-link
spectral matches from RNA pol II analysis matched by Protein Prospector. A, structure of DSS cross-link illustrating maximal C� distance. B,
C� distances measured against PDB:1WCM. The cross-link between K1350.Rpb1 and K201.Rpb5 spans 14.0 Å. C, example spectrum
identifying the cross-link in B and illustrating the origin of the product ions. The more highly covered peptide (in red) scores 77.5, whereas the
weaker peptide match (blue) scores 16.3. The overall score assigned to the entire cross-link is 90.0. The numbers in parentheses are the mass
modification matched by Prospector. Unmatched ion signals are in black. For this spectrum, 87.5% of the TIC was matched. D, distributions
of individual peptide scores for the more confident (red) and less confident (blue) peptides. The distribution of overall cross-link scores is shown
in black.
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ification search, and percentage of the product ion intensity
explained by the cross-linked assignment. The Prospector
parameter “score difference,” representing the difference in
score between the top cross-linked match and the top linear
peptide match, was the most strongly correlated with a hit to

the target database, having a point biserial correlation coef-
ficient of 0.544. This was followed by metrics describing the
quality of the lower scoring peptide (peptide 2)—“pExp”
(�log10 of the expectation value for this peptide), “score”
(calculated after the first mass modification search and before

FIG. 2. The number of bonds cleaved from DSS cross-links are unevenly distributed between the two component peptides. 3885
cross-link spectral matches from RNA pol II analysis matched by Protein Prospector. A, the higher scoring peptide (red) contributes twice as
many cleaved bonds as the lower scoring peptide (blue) relative to the number of bonds in the crosslink. B, for each cross-link, peptide 1
contributes twice as many cleaved bonds as peptide 2 (median log2 ratio � 1.0). C, the percentage of bonds cleaved within each peptide has
an inverse relationship to peptide length, with peptide 1 fragmenting 36% more efficiently at a given length. D, within each cross-link, peptide
1 fragments 35% more efficiently than peptide 2 (median log2 ratio � 0.44). Percent fragmented figures in D were corrected for peptide length
using the slope of the regression line in C.
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the elemental composition of the other peptide is determined),
and “low score” (calculated after putative cross-linked prod-
ucts have been assigned and elemental composition is
known)—which had correlation coefficients above 0.430. Ad-
ditionally, the expectation value for the total cross-match (“XL
pExp”) had a strong association with matches to the target
database.

Prospector searches for cross-linked peptides by examin-
ing the top 1000 linear peptide matches in a mass modifica-
tion search for complementary modification masses. For
cross-linked assignments, very frequently, one of the compo-
nent peptides is the top-ranked hit in the linear search, and it
is nearly always ranked within the top 10 (median rank of
better scoring peptide is 1 and 75% of all cross-link matches
have the peptide ranked � 2). Thus, in practice, the “score
difference” parameter is also a measure of how much peptide
score is attributable to the less confident peptide assignment.
Score difference and the score of peptide 2 are in fact highly
correlated parameters (r � 0.766) (supplemental Fig. S3).

The target-decoy strategy allows modeling of the distribu-
tion of incorrect hits and provides a means to estimate the
specificity of a given scoring regime (e.g. the number of decoy
hits that are correctly classified as decoy). However, because
hits to the target database consist of both incorrect and
correct matches, it is more problematic to estimate the sen-
sitivity. To evaluate the performance of different scoring mod-
els, thresholds for each parameter were chosen such that the
specificity of the analysis was as near 0.925 as possible. The
total numbers of hits to the target database were compared at
these levels. Table II again demonstrates that “score differ-
ence” was the most effective single measure of cross-linked
assignment quality. A score difference threshold of 8.5 clas-
sifies 92.5% of the decoy database hits as incorrect and
classifies 2258 target database matches as correct. All of the

metrics reflecting the score of the worse peptide identification
(peptide 2) were better classifiers than metrics reflecting the
better peptide match (peptide 1) or the entire cross-linked
product, giving greater numbers of target database matches
at equal specificity thresholds. For instance, XL score, the
best classifier based on the whole cross-link, annotated 1122
hits as correct at the 92.5% sensitivity level. Therefore, score
difference predicted over twice as many cross-links as XL
score at the same specificity level.

P+LK

O

N

O

P+L ion

C
O

O

P-ion

NH3

FIG. 3. Structures of cross-link specific product ions derived from DSS and bis(sulfosuccinimidyl) suberate cross-linking reagents.

TABLE I
Frequency of diagnostic P, PL, and PLK ion signals in cross-link

spectral matches

0
diagnostics

At least 1
P, PL, PLKa Pa PLa PLKa

Peptide 1b 2937 948 244 637 599
Peptide 2b 1388 2497 279 1671 2240
Per cross-link 1093 2792 464 1954 2532

a Number of peptides matching at least one of these ion types.
b Peptide 1 is defined as the higher scoring of the two peptides

comprising a cross-link, and peptide 2 is the lower scoring of the pair.

TABLE II
Effectiveness of Protein Prospector metrics as classifiers of target

versus decoy cross-link matches

Parameter r coefa # Targetb Specificity Threshold

SVM dvalc 0.581 2349 0.927 0.0
scorediffd 0.544 2258 0.923 8.5
pep2.pExpe 0.441 1405 0.926 �0.2
XL pExpf 0.439 1045 0.926 9.9
pep2.score 0.439 1621 0.925 13.6
Low score 0.430 1785 0.924 15.9
XL score 0.408 1122 0.926 58.3
% TIC matchedg 0.390 1092 0.926 79.6%
pep2.norm_scoreh 0.297 733 0.926 2.4
pep1.pExp 0.280 425 0.924 9.2
pep1.score 0.275 532 0.925 55.3
pep1.norm_score 0.143 342 0.924 4.7
pep1.lengthi 0.104 375 0.926 24
ppm 0.086 NA NA NA
z 0.067 NA NA NA
mz 0.004 NA NA NA
pep2.length �0.024 NA NA NA
pep1.rankj �0.204 NA NA NA
pep2.rank �0.308 NA NA NA

a Point biserial correlation coefficient between Prospector metric
and matches to the target database.

b Number of spectral matches classified as positive cross-link hits
at the given score threshold, chosen to achieve equal specificity (see
text).

c Score of final SVM classifier. Model was trained as described in
the text; reported here is the result of the final classification.

d Difference in score between the top cross-linked match and the
top linear match.

e �log10(Exppep2), where Exppep2 � expectation value of weaker
peptide.

f �log10(ExpXL), where XL refers to the complete cross-link.
g Percentage of total ion current intensity in the peaklist that can be

explained by the cross-link.
h Score normalized by length of peptide.
i Length of peptide in amino acids.
j Rank of individual peptide match (e.g. rank 1 indicates top match

to spectrum).
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To assess whether this increase in positive outcomes was
due to incorrectly classifying matches from the target data-
base, we examined the C� distances of the cross-linked
lysine residues against the crystal structure of the 12 subunit
pol II complex (pdb:1wcm (36)). Fig. 4 plots the Lys-Lys dis-
tances for all target database matches that were resolved in
the crystal structure, as well as all the decoy database hits,
which were assigned random distance values sampled from
the set of all possible Lys-Lys distances in pol II. 92.3% of the
hits with score difference � 8.5 (the 0.925 sensitivity level) had
interlysine distances less than the 25-Å span of DSS. The
crystal structure contains some positional uncertainty and the
actual protein assembly is a dynamic entity in solution. Thus,
even more of these hits were likely correct (98.3% were within
35 Å). Most of the additional positive hits classified by the
score difference metric were thus probably true positives.
Furthermore, score difference is much better at discriminating
between positive and negative outcomes than XL score or
other measurements matching the fit to the entire cross-
linked product, which are the types of scores used by other
cross-linking analysis software.

Analysis of RNA pol II Cross-link Sites—The 9204 cross-link
spectral matches to RNA pol II were split into equally sized
training sets and test sets. Linear SVM classification models
were built using multiple combinations of Protein Prospector
metrics and evaluated similarly to the methods described for
single variable classifiers above. The major difference was

that the SVM models were trained on half of the data, and the
number of positive classifications was evaluated on the other
half of the dataset at a specificity of 0.925. SVM models were
evaluated in this way for different combinations of two and
three Prospector parameters at different cost and tolerance
values. Few models offered much better performance than
simply using score difference as a stand-alone classifier. The
final classification score was built on Prospector parameters
“Score Difference” and “% TIC matched” (supplemental Fig.
S4). This model classified 2349 cross-linked spectra from the
target database at a sensitivity of 0.927 versus 2258 cross-
links classified using score difference as a stand-alone clas-
sifier (Table II). Three-parameter models offered no improve-
ment over two-parameter models. Normalizing the number of
decoy hits by a factor of 10 to account for the increased
relative size of the decoy database led to an estimated FDR of
1.6%.

The utility of the SVM model is demonstrated in Fig. 5. This
shows two cross-linked spectra with high and low (but both
positive) SVM decision values. In one case, the cross-link is
matched by comprehensive backbone fragmentation of both
peptides but has a large unmatched peak. This results in a
score difference of 42.1, but only 58.3% of the ion signal
intensity is matched. However, the low percentage match to
the TIC is not sufficient to classify the spectrum as negative in
the SVM model. In the second case, despite matching most
of the y-ions from the weaker peptide, the score difference for
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FIG. 4. The Protein Prospector parameter “score difference” is the best single classifier of cross-link spectral matches. Cross-linking
of RNA pol II by DSS resulted in 2535 spectral matches to the target database, which also corresponded to measurable C� distances on the
crystal structure (blue). 5319 hits to the decoy database (green) were assigned random distance measurements sampled from the set of all
possible Lys-Lys distances on the PDB:1WCM structure. The vertical line indicates 25 Å, the nominal span of DSS. The horizontal line indicates
a score threshold that classifies 92.5% of decoy matches correctly. A, classification based on XLScore misclassifies many seemingly correct
cross-link identifications (those with distance � 25 Å). B, classification based on score difference results in better discrimination between target
and decoy matches and leaves fewer apparently true positives misclassified.
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this match is quite small (5.8), as it is a short peptide and the
y1 ion is in common between both peptides. Using score
difference as a stand-alone classifier would result in a nega-
tive classification for this spectrum. However, because most
of the ion intensity is matched (85%), the final SVM score
classifies this hit as correct, thereby rescuing it. This spectrum
is assigned to a crosslink between K201 on Rpb5 and K941
on Rpb1 corresponding to a distance measurement of 13.2 Å,
and is therefore likely correct.

The 2349 cross-linked spectral matches were then filtered
for redundancy. Keeping only spectral matches with an SVM
decision value at least 0.3 points greater than the next highest
hit and accounting for redundant cross-links (defined by the
positional numbers of the adducted lysine residue pair) led to
157 positionally unique sites of cross-linking within the pol II
complex (supplemental Table S1, sheet 1). An additional 53
cross-links could not be unambiguously localized to a single
lysine (supplemental Table S1, sheet 2), although many of
these sites were redundant with sites from the unambiguous
list.

Of the unique cross-linked position combinations, 112 cor-
responded to distances that could be measured on the pol II
crystal structure (36). The vast majority of these were consis-
tent with both the geometry of the DSS cross-linking reagent
and the expected distances from the crystal structure. 99 of
112 corresponded to measured C� distances of less than 25
Å, and 107 of 112 measured less than 35 Å. Furthermore, the
overall distribution of measured C� distances was different

from the distribution of all Lys-Lys distances (supplemental
Fig. S5).

Comparison of Protein Prospector to Other Software—The
performance of Protein Prospector cross-link searching was
compared with two previously published analyses: cross-
linked UTP-B complex and cross-linked E. coli whole cell
lysate (25). The UTP-B complex contains six proteins (37).
Searching cross-linking data from this complex with Protein
Prospector and employing a global 5% FDR threshold led to
the reporting of 77 unique cross-links. Calculating separate
thresholds for intraprotein and interprotein results led to 58
intraprotein matches and 26 interprotein. Thus, using these
results, 84 unique cross-links were discovered by Protein
Prospector with an estimated FDR of 5% (supplemental Table
S2). Calculating separate intra- and interprotein crosslink
FDRs resulted in six extra intraprotein results and one extra
interprotein result.

In a previous publication analyzing this data, pLink re-
ported 71 high-quality and a total of 78 cross-links from the
same data (25). Table III presents a comparison of the
cross-linked residue combinations identified by Protein Pro-
spector and pLink. The overlap in identifications was 67,
showing good agreement between the two types of soft-
ware. pLink reported single cross-link identifications be-
tween five pairs of subunits (UTP1:UTP6, UTP1:UTP12,
UTP1:UTP18, UTP6:UTP13, and UTP12:UTP21). Protein
Prospector found an additional cross-link for two of these
(UTP1:UTP12 and UTP12:UTP21), whereas for the other

FIG. 5. Examples of cross-linked spectra from RNA pol II with (A) high SVM decision value (6.8) and (B) low SVM decision value (0.1).
The number in parentheses represents the mass modification identified by Protein Prospector, which corresponds to the complementary
peptide plus the cross-linker bridge. The “score difference” parameter is the difference between the overall score for the cross-link (in black)
and the best scoring linear peptide linear hit, which in both of these cases is equal to the score in red of the strong peptide. The spectrum in
A has a high score difference of 42.1 but matches only 58.3% of the ion intensity due to a large unmatched signal. The spectrum in B has a
low score difference (5.8) but matches 85.0% of the ion intensity. The SVM classifier integrates both of these parameters to rescue hits that
would otherwise be misclassified.
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three, Protein Prospector did not report any significant as-
signments. Thus, the Protein Prospector results increased the
confidence in two of the direct protein interactions while flag-
ging the other three as likely to be incorrect. Indeed, in the
manuscript accompanying these results, two of the three
cross-links in question were described as being of low con-
fidence, and the other as mid-confidence, when the authors
examined the spectra manually.

The first major publication to describe large-scale cross-
linking software utilized a dataset consisting of cross-linked
E. coli whole cell lysate (20), and this same study design has
been used since in other software-development efforts (22,
25). An E. coli whole cell lysate cross-linking dataset was

created to assess pLink performance (25), and the present
study used the same raw data to benchmark Protein Prospec-
tor performance. Assessing interprotein and intraprotein re-
sults together, Protein Prospector reported 195 unique
cross-link identifications at an estimated 5% FDR, the value
used in the pLink study. However, examining only intrapro-
tein results, Protein Prospector reported a total of 406 in-
traprotein matches, with one decoy intraprotein identifica-
tion. Thus, the estimated FDR for the intraprotein results was
0.2%. Among the interprotein matches, only eight results for
the target portion of the database scored higher than the first
decoy match. Thus, with an FDR as close to 5% as possible,
only 8 interprotein results and overall 414 unique cross-linked
peptide identifications were reported by Protein Prospector
(supplemental Table S2). In comparison, pLink reported 390
unique cross-links.

Fig. 6 shows Venn diagrams of the overlap in results for
intra- and interprotein cross-links reported by the two pro-
grams. Reassuringly, the majority of cross-links reported by
the two software programs are intraprotein, and for these
results there is a respectable overlap in identifications, al-
though Protein Prospector reported significantly more intra-
protein assignments. Of the 44 intraprotein matches unique to
pLink, 9 were peptides reported linked to themselves through
the same residue in each peptide. In this situation, it is unlikely
that any fragment ions were specific for identifying the second
peptide (as all single bond cleavages could be explained as a
fragment from the first peptide). Therefore, these matches
were almost certainly based on precursor mass alone, and are
of questionable reliability.

However, for the interprotein matches there was a dramatic
difference in the number of matches reported, with pLink
reporting roughly 15 times more identifications than Protein
Prospector. This raises the question of whether pLink is too
liberal or Prospector is too conservative in its assessment of
FDR. Half of the eight Protein Prospector results were also
reported by pLink. Table IV lists the eight interprotein identi-
fications reported by Protein Prospector. The pLink study

TABLE III
Cross-linked residues identified between members of the UTP-B

complex

Intra-Protein Inter-Protein

PP pLink

173 233 44

PP pLink

4 4 119

FIG. 6. Overlap in cross-linked peptide identifications between
Protein Prospector (PP) (pink) and pLink (blue). There is high
overlap in identifications for intraprotein matches, although Protein
Prospector reports many more. There is some overlap in identifica-
tions of interprotein cross-links, but pLink reports dramatically more
hits than Protein Prospector.
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reported that 21 out of the 123 interprotein cross-links corre-
sponded to a protein complex that had a structure in the PDB.
Furthermore, 10 of these 21 mapped to C� distances within
the range of the cross-linker. Interestingly, the four interpro-
tein cross-links that were agreed upon by both software pro-
grams included 3 of these 10 cross-links that were validated
by PDB measurement. Thus, the small overlap in interprotein
cross-links reported is heavily biased toward results for which
there is independent, corroborating evidence. The four inter-
protein matches unique to Protein Prospector included a sec-
ond cross-link between aspartate carbamoyltransferase and
aspartate carbamoyltransferase regulatory chain (in addition
to the one reported by both programs), a cross-link between
ribosomal RNA small subunit methyltransferase D and elon-
gation factor Tu, which are known to interact (38), and two
other cross-links between ribosomal subunits. Thus, there is
independent evidence to suggest all of these results could be
reliable. In contrast, of the 123 pLink interprotein results, 31
were supported by corroborating evidence from yeast two-
hybrid, affinity purification mass spectrometry, or the exis-
tence of a structure in the PDB (25).

This same dataset was also searched against a restricted
database constructed from a list of the protein accession
numbers that were confidently identified by Protein Prospec-
tor based on the identification of unmodified peptides in these
samples (756 proteins total). The results of this search iden-
tified 464 unique intraprotein matches, including 3 decoy
intraprotein matches (estimated FDR 0.6%), and 10 interpro-
tein matches that were more significant than the first interpro-
tein decoy match (see supplemental Table S2). Thus, from this
search, 474 unique cross-links could be reported at an FDR
less than 5%, a 14% increase over the Protein Prospector full
database search and a 22% increase over the pLink results.

DISCUSSION

The identification of a cross-linked peptide complex is
based on the identification of two peptides. It is often the case
that one of the peptides in the complex fragmented more
extensively than the other in the tandem mass spectrum.
The most typical result is an extensive y-ion series from one
peptide and several cross-linker specific PL and PLK ions
identifying the weaker peptide mass, along with a more lim-
ited y-ion series (Figs. 1 and 2, Table I). Note that although
cross-linker ions help identify the less confident peptide, they
result from dissociation of backbone amides in the more
confidently identified peptide, further demonstrating the
asymmetry of fragmentation. Although the longer peptide is
generally the more extensively fragmented peptide, length
alone is not enough to explain the difference in collision-
driven bond dissociation.

The confidence with which one can identify the better frag-
menting peptide should not contribute to the assessment of
the reliability of identifying its partner peptide. Many current
cross-linking studies are analyzing complexes consisting of
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only a few proteins. In these instances, if one peptide is
identified confidently, then knowing the mass of the second
peptide alone may be sufficient to identify it; this approach
has previously been employed using Batch-Tag and MS-
Bridge (23). In data searches with a 20-ppm precursor mass
accuracy and allowing for up to two missed trypsin cleavage
sites and the most common modifications, on average there
will be a match to a given peptide mass in about 1 in 80
proteins, with low mass fragments more likely to be matched
(e.g. about 1 in 70 proteins match a given peak around mass
800, whereas �1 in 100 will match a given peak around mass
3000). Thus, when searching the UTP-B dataset considering
seven proteins (and decoy versions of these sequences), if
one peptide was confidently identified, the mass of the sec-
ond peptide alone was most of the time sufficient to match it.
However, for the E. coli dataset, when considering 5967 pro-
teins and their decoy sequences, there will have been on
average 150 possible matches to the second peptide based
on mass alone. Thus, if the evidence for matching the second
peptide is not independently assessed, then many results will
be reported where one peptide is correctly determined but the
other identification is ambiguous and often wrong.

Given that in collisional dissociation, one peptide produces
twice as many bond cleavages as the other, and that the more
strongly fragmented peptide is nearly always correctly iden-
tified, it follows that most incorrectly identified cross-links
come from misidentification of the other peptide. Thus, pa-
rameters reflecting only the score of the less confident pep-
tide assignment should correlate well with correct cross-link
identifications. Indeed, this was found to be the case in the
present analyses, in which all metrics reflecting the quality of
the match to the less confident peptide outperformed other
metrics in their ability to discriminate correct cross-linked
matches from incorrect matches based on both a decoy
database strategy and comparison to the pol II crystal struc-
ture (Table II, Fig. 4).

The Prospector parameter “Score Difference” was found to
be a particularly effective classifier. Although this is not ex-
plicitly a measure of peptide 2 score (the less confident pep-
tide), given that more often than not peptide 1 is the highest
scoring linear peptide hit, it ends up reflecting the score of
peptide 2 closely, as shown in supplemental Fig. S3. Score
difference can differ from peptide 2 score in several ways.
Firstly, they differ when peptide 1 does not have the highest
linear peptide match score. Secondly, if product ion peaks
can be attributed to both peptides, then the score for that
peak is counted only once, so score difference is a measure
of additional peak matches rather than simply matches to
peptide 2. Nevertheless, the improved classification perform-
ance of score difference relative to explicit measures of pep-
tide 2 score is probably mostly due to the cases (�50%) in
which peptide 1 is not the highest scoring linear hit. In these
cases, score difference reflects the increased confidence in
the cross-link assignment relative to other interpretations of

the spectra. Furthermore, XL score is determined indepen-
dently and is not simply the sum of the peptide 1 and peptide
2 scores. Thus there are technical differences that make score
difference subtly different from peptide 1 score and “low
score,” another measure of peptide 2 reliability.

Modest improvement in classification efficiency could be
obtained by using the SVM supervised learning model to allow
linear combinations of multiple metrics (Table II). The most
successful SVM models combine score difference with one
other Prospector parameter (typically either log10(ExpXL) or %
TIC matched). However, score difference alone is an effective
classifier, as shown by the striking difference in distributions
of incorrect decoy hits when classified by total XL score
versus score difference (Fig. 4).

The use of separate inter- and intraprotein FDR thresholds
is also an efficient means of improving reliability. When Pro-
tein Prospector grouped inter- and intraprotein results to-
gether for calculating a 5% FDR from the E. coli results, it
reported 10 target–decoy matches and no decoy–decoy
matches. This suggests that possibly all of the target-decoy
matches are not truly random—that is, that one of the peptide
identifications is correctly matched. The estimated number of
completely incorrect matches among the target–target results
should equal the number of decoy–decoy matches; that is,
there are probably no results where one of the peptide iden-
tifications is not correct, whereas the number of identifications
where one peptide is incorrect should equal about 10. Using
a global FDR threshold, there were 21 interprotein matches
reported, and if 10 of these were probably wrong, that means
there was a 48% FDR among these results. This highlights the
danger of using a global FDR threshold and then assuming
that specific subsets of data have the same level of reliability
(39). As highlighted earlier, the top eight interprotein matches
may have been correct based on other supporting informa-
tion. If they were, then of the 13 additional interprotein
matches reported when a global FDR was used relative to
separate FDR thresholds, approximately 3 were true posi-
tives. Thus, when a global FDR is used very few extra inter-
protein matches are being discovered at the expense of losing
232 intraprotein cross-link matches. Although from a biolog-
ical perspective intraprotein matches are generally less inter-
esting than interprotein ones, this does represent a large loss
of information, and it also allows a very high error rate in the
data that is of most interest to researchers.

Protein Prospector, to the best of our knowledge, is unique
among software in identifying both peptides from a single
cross-linked product spectrum but independently assessing
the reliability of the least confident peptide identification for
setting an acceptance threshold. This is the most accurate
measure of whether a reported cross-linked complex is reli-
able that we have found. Thus, one would expect it to produce
more reliable results than alternative software, particularly for
analyses of more complex mixtures, where more information
about the second peptide is required for identification. The
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effect of this was stark in comparisons to pLink for analysis of
the E. coli data. Prospector reported dramatically fewer inter-
protein cross-links than pLink, but many more intraprotein
cross-links. We suspect that many of these extra interprotein
cross-links reported by pLink were instances where one of the
peptides was correctly identified, but not the other. The lack
of experimental data to support most of these identifications,
despite the existence of a high-quality database of E. coli
interactions (40), adds weight to this argument.

The use of different thresholds for subsets of data within a
single search has previously been employed. For example,
this approach was used for estimating phosphopeptide and
unmodified peptide FDR identification rates from within a
single search (33). In this instance the reasoning was that
when searching allowing for phosphorylation, the search en-
gine considers many more phosphorylated peptides than un-
modified, so the majority of the false identifications are to
phosphopeptides. The justification employed here for sepa-
rate assessment of inter- and intraprotein identifications was
identical, and this approach has previously been used for
cross-linked data analysis (27).

The combination of the reported Protein Prospector E. coli
results and the above discussion about reliability portrays a
disturbing prognosis for large-scale identification of interpro-
tein cross-links in complex samples. One could argue that
E. coli is not the best choice of organism for identifying large,
multimeric protein complexes: it produces a lot of homomul-
timeric complexes in instances when, for example, human
cells will produce a complex with different subunits to form
more interprotein interactions. Changes to cross-linking pro-
tocols could improve the situation. It should be noted that
isotope-labeled cross-linkers were employed in the two stud-
ies employed here to compare software. This was done by the
data creators to allow comparison to the xQuest software,
which only works with labeled cross-linkers (20). However, for
both Protein Prospector and pLink there is no need for iso-
topic labeled linkers. Indeed, they actually make identification
more difficult, as their use requires considering two types of
cross-linkers for every spectrum, doubling the search space.
It also creates two peaks in the MS spectrum for every cross-
linked product, splitting the signal intensity for the cross-
linked products in half and increasing the number of redun-
dant MS/MS spectra of the same cross-linked product that
are acquired, rather than selecting new products.

Producing tandem mass spectra in which both peptides are
extensively fragmented will remove some of the ambiguity in
results. In this respect, the use of electron transfer dissocia-
tion fragmentation instead of collision-induced dissociation
could be important, and the development of new cross-linkers
that benefit electron transfer dissociation performance may
have an impact (41). The use of MS-cleavable cross-linkers
should also better guarantee fragments from both peptides in
MS3 spectra (14–18). Nevertheless, more targeted cross-
linking analysis, in which a level of protein purification prior to

cross-linking is employed, is likely to be the most effective
approach: if a sample can be defined as containing only tens
or even hundreds of proteins, then the lower confidence pep-
tide identification is greatly simplified.

In summary, Protein Prospector is very robust software for
analyzing cross-linking data of varying complexity and out-
performs equivalent tools, especially when the number of
proteins that need to be considered expands. However, be-
cause of the low amounts of cross-linking that are generally
achieved in a complex heterogeneous mixture, questions are
raised as to whether this is a sensible experimental approach;
more focused studies are likely to provide significantly more
useful biological insight.

Protein Prospector is freely available online. Access to an-
notated spectra for all spectral assignments in this manuscript
is described in the supplementary material.
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