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Abstract

Data generated from a system of interest typically consists of measurements on many

covariate features and possibly multiple response features across all subjects in a desig-

nated ensemble. Such data is naturally represented by one response-matrix against one

covariate-matrix. A matrix lattice is an advantageous platform for simultaneously accommo-

dating heterogeneous data types: continuous, discrete and categorical, and exploring hid-

den dependency among/between features and subjects. After each feature being

individually renormalized with respect to its own histogram, the categorical version of mutual

conditional entropy is evaluated for all pairs of response and covariate features according to

the combinatorial information theory. Then, by applying Data Could Geometry (DCG) algo-

rithmic computations on such a mutual conditional entropy matrix, multiple synergistic fea-

ture-groups are partitioned. Distinct synergistic feature-groups embrace distinct structures

of dependency. The explicit details of dependency among members of synergistic features

are seen through mutliscale compositions of blocks computed by a computing paradigm

called Data Mechanics. We then propose a categorical pattern matching approach to estab-

lish a directed associative linkage: from the patterned response dependency to serial struc-

tured covariate dependency. The graphic display of such a directed associative linkage is

termed an information flow and the degrees of association are evaluated via tree-to-tree

mutual conditional entropy. This new universal way of discovering system knowledge is

illustrated through five data sets. In each case, the emergent visible heterogeneity is an

organization of discovered knowledge.

Introduction

Nearly all scientific researches are geared to acquire knowledge and understanding on systems

of interest. So data generated from a target system typically consists of measurements on many

covariate features and possibly multiple response features belonging to subjects, who
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constitute a representative ensemble of the system. As such a system data set typically consists

of one response data matrix against a covariate data matrix. These two matrices share the com-

mon ensemble of subjects, which are arranged along its row-axis, while their own features are

arranged along their own column-axis, respectively. The matrix lattice is indeed an advanta-

geous platform for revealing patterned structures, particularly for dependency within response

or covariate sides. Moreover these two platforms become the joint foundation for all the

directed associative linkages going from response side to covariate side.

It is known that, among these subjects, whether they are human, animal or plants or even

cells, are likely interconnected, and among these relevant features, no matter they are on either

response or covariate sides, are interrelated. Such interconnections and interrelatedness also

weave interacting relations between subjects and features. Thus, as a rule, each system data set

is expected to contain these three fronts of dependency, which have unknown detailed struc-

tures, and wait to be explored and discovered. Further we conceive the system understanding

and knowledge as the linkages going from response’s dependency structures to covariate’s

dependency constructs.

A guideline for successfully extracting system understanding and knowledge was indeed

laid more than four decades ago in physics. The Physics Nobel laureate P. W. Anderson [1], in

his Science paper with title “More is different”, has pointed out that the task of “synthesis”

upon a complex system is all but impossible. Given that almost all systems of scientific interests

are complex, any endeavor of data analysis in line with the task of synthesis, such as any super-

vised version of learning or modeling, is likely futile in gaining system understanding or

knowledge. Therefore, a truly beneficial system data analysis should embrace a protocol that

build upon strategies by giving up the concept of “synthesis via modeling” completely.

In this paper we propose a protocol for analyzing any system data set. A quick overview of

this protocol is given as follows. First, we adopt unsupervised data-driven computing, which is

free from any unrealistic structural or distributional assumptions, in order to effectively cap-

ture authentic information of dependency structures and constructs. Secondly, we employ a

graphic display platform to arrange and represent extracted information in order to stimulate

understanding and explore knowledge regarding the system under study. The guiding princi-

ple underlying such a graphic display platform is appealing to the formidable capability of

visual processing in man [2].

Our protocol embraces a simple, but distinctive concept: a system likely contains multiple

system mechanisms in both response and covariate sides. To embrace this concept in a natural

fashion, a nonlinear association measure is evaluated upon each pair of features on the

response and covariate sides. We then apply an Ultrametric clustering algorithm to partition

the collection of covariate features into a composition of synergistic feature clusters (or

groups). Likewise the collection of response features are partitioned. Each synergistic feature

group functionally reveals a distinctive pattern of dependency, so indeed represents a distinct

mechanism of the target system. Therefore, we need to seek for interpretation pertaining to a

single response mechanism through its linkages to a series of covariate mechanisms. A compu-

tational algorithm coupled with a graphic display platform is developed to make such linkages

explicitly interpretable and pictorially visible. It is worth emphasizing that system understand-

ing and knowledge involved with multiple mechanisms in multiple different ways. Also it is

evident to note that this composite-level concept fundamentally and contrastingly distin-

guishes this data analysis protocol from statistical modeling and supervised learning.

In contrast, traditional statistical modeling and popular supervised learning share three

common key characteristics: 1) primarily accommodate only one single response feature at a

time, which destroys the entire response dependency; 2) utilizes conditioning argument on

covariate features, which ignores covariate dependency and potential involvements of multiple

Categorical-pattern-matching
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mechanisms; 3) and imposes independence among subjects, which imposes unrealistic homo-

geneity. At the end, data-analysis results are pushed through the likelihood principle or an

optimizing process with respect to a man-made criterion.

Further model-based techniques only accommodate selective data types, in others words, a

data type often becomes the decisive factor in choosing models. For a binary response feature,

the logistic regression model is the definite choice. For a continuous response feature, the lin-

ear regression is the definite choice. The logistic and linear modeling frameworks break down

when the response feature has more two categories. When two or more response features are

of interest, statistical modeling break down as well. The latter, so-called multiple response

issue, was raised more than half century by John Tukey [3]. Up to today there exist no satisfac-

tory solutions in literature. At this era of big data, aforementioned shortcomings of statistical

modeling and supervised learning certainly would be exposed further and wider than ever

before.

Current state of lacking a universal platform for building directed associative linkages from

response side to covariate side needs to be changed. In this paper we envision that our protocol

for system data analysis embraces such a universal platform, which can accommodate all data-

types and multiple response features. The computational developments of this protocol begin

with a rather unconventional approach: basically re-normalizing all features into categorical

ones sharing a common digital-coding range. A real-valued feature is re-normalized into a

digital-categorical via its own possibly-gapped histogram [4]. We believe that digital-categori-

cal is the most fundamental data type. This categorical nature makes possible for employing

combinatorial information theory to define the mutual conditional entropy, which is the most

basic and reliable evaluation of possibly nonlinear nonsymmetric association. Since it basically

relies only on counting. Unlike the linear correlation, this entropy-based nonlinear association

is meaningful by having no hypothetical assumptions.

Also it is equally important to note that the purpose of such a re-normalization is to make

all features digitally comparable. This comparability paves a valid foundation for computing

and representing structural dependency via similarity on response and covariate sides. That is,

upon a matrix constituted by a group of renormalized synergistic features arranged along the

column axis against all subjects along its row axis, the computing for structural dependency is

primarily performed through the application of Data Mechanics (DM), an unsupervised learn-

ing algorithm developed in [5] and [6]. Data Mechanics algorithm merely carries out permuta-

tions on row- and column-axes of such a matrix in order to achieve the nearly minimum total-

variation, or energy, on the matrix-lattice. This tremendous amount of computations for the

minimization task was surprisingly achieved by iteratively applying the Data Cloud Geometry

(DCG), an Utrametric clustering algorithm developed in [7] and [8], to build one clustering

tree upon subjects on its row axis and another clustering tree upon features on its column axis.

When these two marginal clustering trees resulted from the DM computations are superim-

posed respectively on the two axes of the matrix, visible multiscale patterned-blocks emerge on

the permuted matrix lattice, which is consequently termed heatmap. This heatmap collectively

reveals a detailed version of mechanism-specific structural dependency by showing the three

fronts of information contents contained in the data matrix: 1) how and why some subjects

group closely together, and how and why they are far away from other clusters of subjects; 2)

how and why the Ultrametric tree on features represents and constitute a map of key factors of

the system; 3) how and why the multiscale block-patterns bring out the heterogeneity in a col-

lective fashion through the interacting relational characteristics between subject and features.

We further construct a directed associative linkage from one heatmap pertaining to a

response mechanism to another heatmap pertaining to a covariate mechanism. The construc-

tion via a graphic display exhibits that such a linkage maps the memberships of a clustering

Categorical-pattern-matching
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composition taken from the response’s clustering tree on subjects (row-axis) onto a clustering

composition taken from the covariate’s clustering tree on subjects. That is, based on the two

trees, each subject is encoded with a pair of categorical code: one from response side and the

other from the covariate side. Therefore, the strength of such a linkage is again evaluated by

the directed conditional-entropy based on the combinatorial information theory. This graphic

display in fact facilitates the interpretation of the linkage by matching multiscale block-pat-

terns of the response mechanism to the multiscale block-patterns of the covariate mechanism.

So the interpretation is explicit, visible and readable. This graphic linkage is called categorical-

pattern matching. We then extend this platform of graphic display to accommodate a series of

a covariate mechanisms, and term it an Information flow.

Materials and methods: Conceptual and computational

foundations in data analysis

Evaluation of amount of information conveyed by X with regard to Y. In his 1965 paper [9]

with title “Three approaches to the quantitative definition of information,” A. N. Kolmogorov

said that

“‥ It is only important for me to show that the mathematical problems associated with a

purely combinatorial approach to the measure of information are not limited to trivialities.”

Indeed the combinatorial approach has been well known in Information Theory since C. E.

Shannon’s pioneer works [10] [11]. However, outside of Communication and Information

Theories, its use in real world data analysis is not yet evident, neither popular nor widespread.

This is not because it is not useful, but rather because it has been overshadowed by the concept

of “correlation” in Statistics, which is nothing but an inner product of two unit vectors in

mathematics without the rigorous checking on the bivariate Normality assumption.

In this paper we discuss that the combinatorial approach of information in fact gives us an

universal measure of associative relation between two variables. Based on conditional entropy,

this relational association concept will be seen as especially suitable for unsupervised machine

learning and its inferences, in which the “sample-to-population” sense is not involved. Along

the developing process, we also reflect why the linearity backbone of correlation can cause

invalid and even often misleading interpretations on real data. Before introducing such a mea-

sure of entropy based associative relation, it is beneficial to review this combinatorial approach

of Information.

Consider and denote the amount of uncertainty, say AðNÞ ¼ H 1

N ; :::::;
1

N

� �
, of choosing one

subject with uniformly equal potentials among N(= m × n) subjects contained within an

ensemble. If these N subjects are divided in m sub-ensembles of size n, then the equal-potential

sampling scheme on N subjects is equivalent to first sampling with equal potentials from the

collection of m sub-ensembles, and secondly sampling one subject with equal potentials from

the chosen sub-ensemble of n subjects. This so called composition rule [12], implies that the

uncertainty A(N) = A(n ×m) = A(m) + A(n). Shannon has determined that such A(N) = C ×
logN up to a constant C [10]. Let’s choose a C, such that

AðNÞ ¼ �
XN

1

log 2

1

N
¼ log 2 N:

In general, if N subjects are marked by numbers and partitioned in K color-coded sub-

ensembles possibly unequal sizes (N1, . . .NK), that is, two variables are defined upon this

ensemble of N subjects: let the variable Y be the number-coding from 1 to N, and X be the

color-coding. Let the K color-coded sub-ensembles have their proportion being denoted as

Categorical-pattern-matching
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pk ¼
Nk
N

� 	K

k¼1
, then the entropy of discrete variable X pertaining to sampling with probability

fPkg
K
k¼1

is generically calculated and denoted as

HðXÞ ¼ �
XK

k¼1

pk logpk ¼ AðNÞ �
XK

k¼1

pkAðNkÞ:

This equation says that the amount of information conveyed by variable X with regard to the

variable Y, say I[Y: X], is exactly equal to H(X) [9]. Here we use the notation for the above

equation as

E½Y ! X� ¼ HðYÞ � HðYjXÞ ¼ HðYÞ �
XK

k¼1

pkHðYjX ¼ kÞ:

Based on such combinatorial information theory, the mutual conditional-entropy for two

clustering compositions is pictorially illustrated in S1 Box of Supporting Information, while

their formulas are contained in S2 Box. Specifically the tree at bottom of S1 Box is a subset of

X-covariate tree for Y(color coding) given X = a and its corresponding conditional entropy is

developed at the beginning of S2 Box.

Factors and mechanisms in a system of interest. When a system is under study, it is uni-

versal that many dimensions of feature-specific measurements are observed or measured from

subjects, which are constituents of the system. Unless they are coordinated according to tem-

poral, spatial or other known axes, these features are typically unorganized with respect to a

known framework. Nonetheless, just as coordinated features likely manifest evolving system

states along the axes, these unorganized features also likely comprised of various distinct

mechanisms of dependency. As such, system states and mechanisms as system’s major compo-

nents are popularly called factors in many scientific fields, especially in psychology and eco-

nomics and many other social sciences.

The popularity of factor analysis is based more on computational convenience than on

meaningful interpretations [3]. Specifically these factors are conveniently computed via princi-

ple component analysis (PCA), singular value decomposition (SVD) and their dynamic vari-

ants based on covariance matrices. Hence, factor analysis is mainly used as a way of achieving

linearity based dimension reduction and retaining major proportion of information contents

under normality. However, since intricate patterns of dependency among features potentially

go far beyond dyadic correlations, such factor analysis often incurs information loss and

unnatural representations of underlying system mechanisms. That was partly why John Tukey

strongly discouraged applications of factor analysis [3].

In order to naturally and explicitly reveal system mechanisms, it becomes necessary to dem-

onstrate structural dependency among all features included in the data. Given that distinct

mechanisms involve with distinct feature-groups of different sizes, the issue of how to re-

group features to show distinct mechanisms becomes a pressing issue in any system study.

One universal concept of dependency considered here is based on E[Y! X] and E[X! Y] of

two features denoted by X and Y, that is, if X is capable of conveying a non-negligible amount

of information in relation to Y, or vice versa, then X and Y are dependent. After building a

mutual conditional-entropy matrix, subsequently, as will be demonstrated in sections blow, an

unsupervised learning algorithm is applied to perform the task of feature regrouping. That is, a

synergistic group of features is seen as constituting a mechanism, while two synergistic groups

being antagonistic would be seen as two separate mechanisms. Unlike the logistic and linear

regression models in statistics, our proposed computational protocol will link one synergistic

response-feature group to one or several synergistic covariate-feature groups. This proposal

Categorical-pattern-matching
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interestingly fulfills Tukey’s postulation of appealing to Taxonomy and classification method-

ologies on the multiple response issue [3].

System knowledge In a system study, the primary goal of data analysis is to compute and

organize visible knowledge pertaining to the linkages from a response’s mechanism to covari-

ate’s mechanisms. Since all system’s mechanisms on both sides share the common space of

constituent subjects belonging to the system under study. The linkages are supposed to be seen

and built through this common space of subjects.

To be more specific, the simplest, but most important form of system knowledge linkage is

prescribed with heterogeneity as: One serial uniform pattern-blocks framed by a serial syner-

gistic covariate-feature groups and a cluster of subjects nearly exclusively explain one part of

one whole pattern-block framed by a synergistic response-feature group and a larger cluster of

subjects.

Here a block-pattern is taken as a knowledge locus, and a linkage via the exclusiveness is

meant to be equipped with an extreme conditional entropy (E[Y! X]) of being near zero. Via

this heterogeneity, scientists specifically figure out how the measurements of a synergistic

response-feature group upon a subject-cluster can be explained collectively by multiple distinct

series of block-patterns manifested by serial synergistic covariate-feature groups upon a parti-

tion of the original subject-cluster. From this perspective, our data analysis is clearly funda-

mentally distinct from convention statistical modeling and supervised learning methods,

which heavily rely on the hypothesized sample-to-population homogeneity.

Unsupervised learning paradigms and combinatorial approach, as will discussed in the

Method section, are ideal for computing and discovering knowledge representations and

achieving the constructions of such linkages. In fact this computational paradigm and repre-

sentational approach provide a means to safe guard against such apparent dangers of man-

made inconsistency and fallacy. That is, system knowledge derived from this approach will

necessarily reveal patterns of multiple scales that are realistically available from data.

Computing methods

Motivations and goals Before introducing our computational paradigms for extracting infor-

mation contained in a system data set, we motivate our developments by explaining why

modeling methodologies in statistics have limited merits in many system studies. Here we use

the popular Logistic regression as an illustrating example. We explicitly demonstrate why this

modeling is not expandable mathematically, that is, this modeling is constrained strictly by the

underlying homogeneity assumption, which goes against the heterogeneity naturally embed-

ded within almost all systems of scientific interest. It is worth emphasizing that similar expla-

nations would be applicable to the linear regression model as well.

A non-classical view of a Logistic regression model is expressed in Fig 1(A) with two hori-

zontal half-lines being designated for the binary response categories: Y = 1 and Y = 0, while lin-

ear combinations of covariates βX are correspondingly marked on these two half-lines. With

respect to this display, the optimal β is seen to achieve the least overlapping between the two

ranges: Re [1] = [min{βXi|Yi = 1}, max{βXi|Yi = 1}] and Re[0] = [min{βXi0|Yi0 = 0}, max{βXi0|Yi0

= 0}]. This non-classical view is indeed fundamental because its expanded version of display

can accommodate the setting of response variable Y having more than two categories. With

such a fundamental view, why the Logistic regression model is still not expandable? The

answer essentially lies with the simple fact that even the straight forward overlapping evalua-

tion among all induced ranges can’t afford a single smooth functional form of β.

Apart from being not able to accommodate a response variable beyond binary response var-

iable, a Logistic regression also critically suffers from its linearity imposed constraint of

Categorical-pattern-matching
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homogeneity. It can’t accommodate heterogeneity such as shown in the Fig 1(B). The hierar-

chical clustering tree of b̂ðMLEÞX at its 4-cluster tree-level is capable of revealing heterogeneous

information contents. That is, instead of counting the overlapping Re[1] and Re[0], indeed we

can extract more information by breaking the range Re[1]
S
Re[0] into pieces in a natural way.

Informative patterns are observed upon these four clusters (from the left to the right) as fol-

low:1) primarily dominant by Red color-coded subjects (Y = 0); 2) purely Blue color-coded

subjects (Y = 1); 3) primarily dominant by Blue color-coded subjects (Y = 1); 4) a mixture of

Red and Blue color-coded subjects. It is surprising that by allowing heterogeneity, the misclas-

sification result of a Logistic regression with a given threshold can be very much improved and

more precisely understood. This hierarchical clustering tree provides an extra advantage that

there is no need to choose an ad hoc threshold to count for the false-positive (FP) and false-

negative(FN).

However, the heterogeneity through the hierarchical clustering tree of b̂ðMLEÞX provides

only one limited aspect of intrinsic heterogeneity contained within the data because of being

limited by one specific direction of covariate features pertaining to b̂ðMLEÞ. Hence, it is realistic

to expect that, if data’s whole intrinsic heterogeneity is properly computed and suitably repre-

sented and visualized, then the full information contents contained within data should be

seen. Here such intrinsic heterogeneity is taken as system knowledge. In order to reveal such

heterogeneity fully, as the ultimate goal of our data driven computations in this paper, we

advocated unsupervised learning and computing paradigms, as would be briefly described

below. It is worth emphasizing that the importance and essence of such paradigms is to make

Fig 1. An expandable logistic regression setup and possibly heterogeneity. (A) Binary horizontal layout with respect to b̂Xi with MLE b̂ .; (B) Histogram of b̂Xi with

calculated entropies for each cluster. A high degree of overlapping between the two horizontal layout in (A) indicates inefficiency of Logistic regression. In contrast, the

heterogeneity within each gender categories in (B) gives rise to precise results in clusters of b̂Xi with low entropies.

https://doi.org/10.1371/journal.pone.0198253.g001
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all computed results free from man-made constraints or distortions via invalid modeling

assumptions. This important and essential point is particularly relevant to data analysis in the

age of big data.

Possibly-gapped histogram based re-normalization Let M0 be an observed n ×m data

matrix with n subjects being arranged along the row-axis and m features along the column-

axis. Each feature specific column has to undergo a digital re-normalization procedure based

on a data-driven possibly-gapped histogram as illustrated in Fig 2, see detailed computations

and algorithmic programs in [4]. Such a possibly-gapped histogram based re-normalization is

designed to achieve three goals of making:1) all columns free from their idiosyncratic measure-

ment scales; 2) all features’ ranges comparable; 3) digital coding naturally reflecting the 1D

data-structural geometry. In summary, a feature’s possibly-gapped histogram has to effectively

approximate its empirical distribution function, which may have horizontal gaps. That is, no

continuity assumption is implicitly imposed here. By doing such a re-normalization, all fea-

tures involved could possibly be able to contribute nearly equally to the similarity or distance

measurements of all feature-pairs as well as all subject-pairs.

However, when the m features are mixed in data-types: continuous, discrete and categori-

cal, as would be seen in the Heart data below, the re-normalization becomes a rather tricky

issue to be resolved in order to achieve a large degree of uniformity. Here we suggest a guide-

line: two features with relatively low mutual conditional-entropy should be similarly digi-

tally coded. Denote the n ×m re-normalized data matrix be M1.

Fig 2. Two features’ hierarchical clustering trees and corresponding empirical distributions and possibly-gapped histograms. (A)Brain weight’s hierarchical

clustering tree marked with 7 clusters; (B)Head size’s hierarchical clustering tree marked with 8 clusters; (C)The empirical distribution of head size superimposed with

an 8-piece linear approximations showing with possibly-gaps; (D) The possibly-gapped histogram with 8 bins colored with gender proportions. (E)The empirical

distribution of brain weight superimposed with a 7-piece linear approximations showing with possibly-gaps; (F) The possibly-gapped histogram with 7 bins colored

with gender proportions. It is noted that the both histograms in (D) and (F) have two visible gaps separating the far-left and far-right bins. This is the strong evidence of

dependency between these two features. The Red color code is for female and Blue for male.

https://doi.org/10.1371/journal.pone.0198253.g002
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Synergistic-vs-antagonistic feature grouping via Data Cloud Geometry (DCG) algo-

rithm. Upon this n ×m re-normalized data matrix M1, we can compute a m ×m mutual con-

ditional-entropy matrix, say X, for all feature-pairs (Y, X), which is generic bivariate digital

coding, i.e. two separate columns of M1, as follows:

2E½Y()X� ¼
E½Eð0Þx ðY ! XÞ�

Eð0ÞðYÞ
þ

E½Eð0Þy ðX ! YÞ�
Eð0ÞðXÞ

¼ E½Y ! X� þ E½X ! Y�;

with x 2 {a, b, c, ‥} and y 2 {A, B, C, . . .} according to notations in S2 Box. It is noted that the

conditional entropy E½Eð0Þa ðY ! XÞ�, also conventionally denoted by H(Y|X), is evaluated with

respect to the discrete distribution of X, while the entropy E(0)(Y), also conventionally denoted

by H(Y), is calculated with respect to the discrete distribution of Y.

Then the m ×m mutual conditional-entropy matrix X can be taken as a distance matrix for

feature-grouping computations. The Data-Cloud-Geometry (DCG) computing algorithm

employed here aims at building an Ultrametric clustering tree, say T ½X�. The key concept

underlying DCG algorithm is to discover multiple essential scales, to which clustering rela-

tional patterns are evident. The DCG computing is heuristically analogous to the microscope

operating in the process of finding out multiple scales of cell-structures: we need to tune to

one right resolution in order to see one particular scale of structure, then we tune to another

right resolution for another scale of structure. As such natural clustering compositions must

be scale-dependent and need to be discovered. When they are synthesized with respect to

decreasing identified scales, an Ultrametric clustering tree is built with one scale correspond-

ing to one tree level. A version of DCG algorithm is given below for convenience of readers,

see detailed algorithmic computing in [7] [8].

DCG algorithm: We begin with taking mutual the conditional entropy matrix X = [dij] as a

distance matrix. In general a distance matrix is derived through a distance measure, which is

typically an empirical choice of system scientists.

Step-1 With respect to a temperature (or scale) T, which is typically chosen with respect to the

histogram of all entries of X = [dij], a similarity matrix is generated as STðDÞ ¼ ½sTij � with

sTij ¼ e
� dij
T .

Step-2 Then each row of ST(X) is normalized by its row sum. So ST(X) becomes a transition

probability matrix PT(X).

Step-3 PT(X) gives rise to a regulated Markov random walk, which starts randomly from a

leaf-node, and then removes a leaf-node, when its number of visits by this Markov ran-

dom walk has gone beyond a threshold. When a leaf-node is removed, the transition

matrix PT(X) is regenerated by deleting the corresponding row and column. This step

is designed to keep the Markov random walk from being trapped in a local region of

the data cloud.

Step-4 A trajectory of a regulated random walk will give rise to a leaf-node-removal recurrence

time series, which is equipped with several spikes, which indicating the random walk

has just enters a new, unexplored local region. Therefore, all leaf-nodes removed

between two successive spikes are taken as being in the same cluster with respect to the

temperature T.

Step-5 So a trajectory will give rise to a binary matrix: its (i, j) entry is coded 1 if the i–th and j-
th leaf-nodes are in the same cluster. An ensemble of such trajectories will give rise to

an ensemble of such cluster-sharing matrices, which is then summarized into a matrix
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of cluster sharing probability, denoted as En[PT(X)]. (It is noted that this ~1~1T �

En½PTðXÞ� is nearly an Ultrametric, which satisfies the super-triangular inequality: d(x,

y)�max d(x, z), d(y, z).)

Step-6 The number of significantly non-zero eigenvalues of En[PT(X)] is taken as the number

of clusters, say N(T), being present in the temperature scale T, while the explicit cluster-

ing composition can be extracted by applying HC algorithm, or other clustering algo-

rithm based on ~1~1T � En½PTðXÞ� as a distance matrix. Denote the resultant clustering

composition as CMðTÞ, which contains the memberships of the N(T) clusters.

Step-7 Plot N(T) against T (on horizontal axis). We choose a temperature Ti from each level-

ing-off or constant segment of this plot. (Typically we choose the middle point.) Denote

this set of selected temperatures as {T1, . . ., TK} and their corresponding clustering

compositions fCMðT1Þ; :::; CMðTKÞg. This set of clustering compositions are synthesized

into a Ultrametric clustering tree. This tree is called Data Could Geometry (DCG) tree,

say T ½X�.

By superimposing this Ultrametric tree on row and column axes of X, its framed matrix lat-

tice will naturally show multiscale block-patterns, as illustrated in panel(A) of S3 Box with four

color-coded synergistic feature groups. The blocks on diagonal of various sizes are blocks con-

sisting of relative small mutual conditional-entropies, so they are synergistic feature-groups

with various degrees. In contrast, off-diagonal blocks having large mutual conditional-entro-

pies indicate antagonistic relations between feature-groups. In summary, the chief merit of

mapping out synergistic feature-groups against antagonistic ones upon a mutual conditional

entropy matrix is to discover which features will group with which features to constitute

potential complex nonlinear dependency structures, and at the same time to figure out which

feature-groups are potentially related upon a higher level, and which are antagonistic.

Here it is worthy clarifying and reiterating the conceptual nature of two features or feature-

groups being “synergistic vs antagonistic”. These two contrasting concepts simply refers to

increasing or decreasing “potentials” of pattern formation of dependency between the two fea-

tures or feature-groups. As “dependency” is naturally revealed through “categorical” correspon-

dence, which is typically visible when two features or feature-groups are put together side-by-

side under an unsupervised learning setting. The strong categorical correspondence is exactly

the phenomenon conveyed by being synergistic, and is precisely captured and measured by hav-

ing low mutual conditional entropy. Specifically they are “categorically” corresponding to each

other in a way that, by knowing a category of one feature upon a subject, we can predict very

well about which category of the other feature upon the same subject will belong to.

In contrast, this good predictability disappears when two features are indeed antagonistic.

That is, two antagonistic features are lacking “categorical” correspondence, so not only pat-

terns of dependency can hardly emerge when they are put together side-by-side, but also they

in fact tend to destroyed patterns of individual feature or feature-groups. This potential of

destroying patterns is what “antagonistic” is referring to.

Furthermore we remark that the synergistic and antagonistic correspondences can be

highly non-linear. However, if such correspondences are in fact linear, then the synergistic

correspondence is equivalent to correlations going either highly positive or highly negative,

while the antagonistic correspondence is equivalent to nearly zero correlation.

Data mechanics on matrix data Features sharing a synergistic feature-group are highly

dependent because they potentially share the same mechanism within the study system. Such

dependency will allow unsupervised learning algorithms to more effectively reveal fine scale

interacting relational patterns between subject-clusters and feature-clusters. That is, the row-
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axis of M1 should be partitioned according to the hierarchy of T ½X�, so that different involv-

ing mechanisms are discovered and visualized, as seen in panel(A) of S3 Box.

The unsupervised learning algorithm employed here is called Data Mechanics (DM), see

Fushing and Chen (2014) and Fushing et al. (2015). Data Mechanics is an iterative algorithm

that build one DCG-based Ultrametric tree on row-axis and one on column-axis alternatingly.

In each iteration, distance metrics are updated with respect to the tree structure obtained

from the previous step on the other axis. Denote the final two Ultrametric trees T ½M1�R
and T ½M1�C on row- and column-axes, respectively. The overall goal of DM computing is to

permute rows and columns such that multiscale blocks framed by the two marginal trees

T ½M1�R and T ½M1�C are as uniform as possible. A version of DM algorithm is given below

for convenience of readers, see detailed algorithmic computing in [5] [6].

Data Mechanics:

Step-1 We adopt the Euclidean distance measure on all m rows of M1, and construct a dis-

tance matrix Dð0ÞR ¼ ½d
ðR0Þ

ij �. We then apply DCG algorithm to build an initial version of

Ultrametric tree, say T ½M1�
ð0Þ

R on the row axis.

Step-2 Select a tree level on T ½M1�
ð0Þ

R . Extract the corresponding clustering composition

CðT�jT ½M1�
ð0Þ

R Þ with N� clusters. Consider each column being extended with N� extra

dimensions of average among member-rows of clusters of CðT�jT ½M1�
ð0Þ

R Þ. Define a

distance matrix Dð1ÞC ¼ ½d
ðC1Þ

i0 j0 � among the n column with dðC1Þ

i0j0 being calculated as the m
+ N� dimensional Euclidean distance.

Step-3 Based on distance matrix Dð1ÞC , a DCG tree T ½M1�
ð1Þ

C is calculated on column axis.

Step-4 Based on one selected level of the tree T ½M1�
ð1Þ

C , an adopted distance measure, say

dðR1Þ

ij , on row vectors are devised as in Step 2, and a new distance matrix Dð1ÞR ¼ ½d
ðR1Þ

ij � is

also computed. We then apply DCG algorithm to build a new Ultrametric tree, say

T ½M1�
ð1Þ

R on the row axis.

Step-5 Repeat the Step-2 to Step-4 for two or three times, or until both trees T ½M1�
ðkÞ
R and

T ½M1�
ðkÞ
C are stable.

Step-6 Let the final two marginal trees are denoted as T ½M1�R and T ½M1�C. The final result

of Data Mechanics computations is a heatmap described by superimposing the two

marginal Ultrametric trees T ½M1�R and T ½M1�C of the row and column axes of M1.

These two tree jointly frame the multiscale block patterns on the lattice of M1, which

is termed a heatmap of coupling geometry. Ideally all blocks on the finest scale embed

with uniformity.

The uniformity within each of the finest scale block collectively forms the stochastic struc-

tures contained within M1, while the multiscale blocks framed by two marginal trees

T ½M1�R and T ½M1�C constitutes the deterministic structures contained within M1. These

two coupled structural components are taken to be the information content and termed cou-

pling geometry of M1. The DM and its coupling geometry are illustrated through panels (B)

and (C) of S3 Box with three heatmaps corresponding to three iterations, respectively. The

heatmap from 1st iteration of DM is apparently very much improved by that of 2nd and 3rd

iterations. The later two are exactly the same. This fact indicates that the number of iterations

needed is in general small.
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Organization of knowledge via information flows Now consider a n ×mRe response data

matrix, MðReÞ
0

, and one n ×mCo covariate data matrix MðCoÞ
0

. The ultimate computing goals are

to identify all essential system mechanisms involving both response and covariate sides, and

then discover all related knowledge through directed associative patterns that link a response

mechanism to a serial covariate mechanisms. The computations for achieving such goals are

carried out in the following steps.

[Algorithmic steps for discovering and confirming information flows:]

1. [Re-normalizing all features]: Matrices MðReÞ
0

and MðCoÞ
0

will undergo their column-by-

column re-normalization, as described in the above paragraph. The resultant digital-coding

matrices are denoted as MðReÞ
1

and MðCoÞ
1

, respectively.

2. [Re-grouping synergistic features]: Upon MðReÞ
1

, its mRe ×mRe mutual conditional-entropy

matrix XRe is computed, so is mCo ×mCo mutual conditional-entropy matrix XCo based on

MðCoÞ
1

. Then essential mechanisms on response and covariate sides are identified through

DCG-based Ultrametric clustering trees T ½XRe� and T ½XCo�, respectively. Hence, synergistic

feature-groups on response and covariate sides are collected respectively.

3. [Discovering block-patterns via Data Mechanics]: Each data submatrix of M1;i corre-

sponding to each synergistic feature-group would undergo Data Mechanics computations,

and its row-marginal tree T ½M1;i�R is collected.

4. [Exploring information flows via Categorical-pattern matching]: Each row-marginal

tree T ½MðReÞ
1;i �R on the response side will be paired with one row-marginal tree T ½MðCoÞ

1;j �R

on the covariate side, and compute the directed response-to-covariate conditional entropy

as E[Y! X]. A low value of such directed conditional entropy implies that there exist

strong associative patterns. Specifically a strong associative pattern is identified as a cluster

or branch of T ½MðCoÞ
1;j �R being nearly exclusively belonging to one particular cluster or

branch of T ½MðReÞ
1;i �R. Such a graphic display of associative pattern has the capability of fos-

tering understanding, so is taken as a locus of system knowledge.

5. [Information flows]: Organize all associative patterns with respect to a series of coupling

geometries via a series of heatmaps. This graphic display is called Information flow, which

is taken as a representation of knowledge from one response mechanism to a series of

covariate mechanisms.

Confirming an information flow and calculating its error rate. Due to the exploratory

nature of an organization of directed associative patterns, a result of categorical-pattern match-

ing, needs a formal confirmation, and then its error rate has to be evaluated. All these compu-

tations are scale-dependent, but rather simple and elementary. Here the scale-dependence is

referring to a clustering composition of subjects pertaining to a chosen tree level of the row-

marginal tree T ½MðReÞ
1;i �R coupled with a clustering composition of subjects pertaining to a cho-

sen tree level of row-marginal tree T ½MðCoÞ
1;j �R.

Given a pair of clustering compositions respectively coming from response and covariate

sides, observed directed conditional entropies are evaluated on each individual cluster of the

clustering composition on the covariate side, as illustrated in S2 Box. To confirm any pattern

contained in an information flow, we apply the simple random sampling without replacement

(with respect to the proportions of subjects in the clustering composition on the response side)

to calculate a simulated entropy distribution and accordingly the P-values with respect each

observed entropy.
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For an error rate of an information flow with only one covariate synergistic feature-group,

either majority rule or randomized rule can be applied within each cluster on the covariate

side to calculate individual cluster’s error rates, and then a weighted overall version is calcu-

lated with respect to sizes proportions of the covariate clustering composition. The reason

underlying this simplicity is given as follows. Randomly select one subject and remove its clus-

ter membership on the response side. The key is that based on the semi-unsupervised learning

paradigm, this subject’s row covariate vector needs to participate in the construction of row-

marginal tree T ½MðCoÞ
1;j �R. Thus, this row-marginal tree T ½MðCoÞ

1;j �R is invariant with respect to

any random choice of subject. That is, the selected subject keeps its original position in the

clustering composition on the covariate side. Therefore, by repeating this random selection for

a large number of times, the majority rule or any randomized rule will eventually give the

expected error rates within each cluster and its overall one equal to their observed ones.

For an error rate of an information flow on serial covariate synergistic feature-groups, the

overall error rate is calculated in a weighted fashion. The weighting should be inversely pro-

portional to their individual conditional-entropies. Such simplicity is one significant advantage

of adopting an unsupervised learning paradigm. That is, here there is no need to perform the

cross-validation as needed in supervised learning paradigms.

Results

In this section we analyze five simple system data sets from UCI Machine Learning Repository

(https://archive.ics.uci.edu/ml/datasets.html). Each data set is chosen for idiosyncratic rea-

sons and characters: 1) the 1st data set with 1D binary response feature is to show why an

information flow is more advantageous over Logistic regression model; 2) the 2nd data set

with 1D continuous response feature is to recognize the fact that a data set can only sustain

limited, not full spectrum, of resolutions of information content as implied by a linear regres-

sion model; 3) the 3rd and 4th data sets deal with multiple response features with distinct data

types; 4) the 5th data set consists of covariate features of all types: from continuous, discrete to

categorical ones, in which all features need to be properly digitally coded.

Here all results of the five data sets presented via information flows are meant to advance

our system knowledge with concise and vivid pictorial visualizations. Such an organization of

associative patterns has the potential to take human and machine learning to the next technical

level.

Brain weight and head size data The first data set from [13] consists of two covariate fea-

tures: 1)brain weight (grams); 2) and head size (cubic cm), for 237 adults classified by two

response features: binary gender and age groups: 1) Gender: 1 = Male, 2 = Female; 2) Age

Range: 1 = 20 * 46, 2 = 46+. Data can be found via links: http://users.stat.ufl.edu/~winner/

data/brainhead.dat, and http://users.stat.ufl.edu/~winner/data/brainhead.txt.

An extended version of Logistic regression of gender on brain weight and head size is

reported in Fig 1(A) with b̂Xi on the horizontal axis. Here b̂ is the maximum likelihood esti-

mates (MLE) based on Logistic regression model. The evident high degree overlapping

between Re[1] and Re[0] confirms the inefficiency of Logistic regression on these data. The

error rate is 28.3% with threshold at 0.5. This inefficiency due to the artificially imposed homo-

geneity structure is further contrasted with the four-cluster composition based on the HC tree

of b̂Xi. The three clusters (from the left to the right), except the 4th one, have rather low

entropy.

The two possibly-gapped histograms of brain weight and head size are constructed and

color-coded with gender-counts into each bin, as shown in Fig 2(A) and 2(B), respectively.

Each histogram reveals obvious gaps on the two sides of extreme. The heterogeneity
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manifested through the color-coding and presence of gaps strongly indicates that any homoge-

neity based on a single distribution assumption is not valid, and more importantly, goes

against the true nature of data. Hence, such evidence indicates that Logistic regression is not

correct for this data set.

The mutual conditional-entropy E[Y, X] of the two response features: gender and age, is

calculated as being nearly equal to 1. This large entropy value indicates that these two response

features represent two separate mechanisms. Thus, two separate information flow are reported

in Fig 3.

As shown in Fig 3(A), the gender’s information flow reveals very evident associative pat-

terns: a) one extremely small brain weight and head size cluster(C1) is exclusively female; b) an

extremely large brain weight and head size cluster(C2) is exclusively male; c) a cluster(C6) of

large brain weight and large head size is dominant by male; d) a cluster(C4) of small brain

weight and small head size is dominant by female; e) a cluster(C5) median brain weight and

head size is mixed. Here we demonstrate that an information flow based on patterned depen-

dency among covariate features can reveal the full spectrum of heterogeneity.

As shown in Fig 3(B), no signs of heterogeneity are seen in the age’s information flow,

except the cluster(C1) of extremely smallest brain weight and head size. It is clear to see that

this information flows can easily adapt to the setting of having more than two age-categories.

That is, this information flow platform not only resolves the shortcomings of Logistic regres-

sion, but also provides a framework to substitute MNOVA and avoids the required unrealistic

distribution assumption, its limitations and ambiguous interpretations altogether.

Fig 3. Information flows; (A)for binary-gender; (B)for binary-age. The information flow (A) shows rather evident associative patterns from the gender-tree with male-

and female-specific clusters to the DCG-tree based on head size and brain weight with 6 clusters. Except one, all clusters have extremely or relative low entropies. This

result shows the effectiveness of information flow over classic logistic regression. The information flows (A) and (B) share a cluster with extreme low values of the two

features.

https://doi.org/10.1371/journal.pone.0198253.g003
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One of the original objectives of the investigation as reported in Gladstone (1905) was to

obtain a series of reconstruction formulas to predict brain weight given measurement of head

size. It is clear that, based on associative patterns of the three features via in the information

flow shown in Fig 3(A), such a prediction would have heterogeneous degrees of precision by

taking subject’s gender and cluster membership of head size into consideration.

As another demonstration of how dependency structures work, we classify the association

between gender and head size into four groups (ranking from all female and extremely small

head size to nearly all male and extreme large head size):1) G4; 2) G8; 3) G5-G7; and 4)

G1-G3, as shown in panel (F) of Fig 2. Throughout these four groups, the information flow

Fig 3(A) demonstrates that females’ categorical predictions of brain weight are all correct with-

out ambiguity, while categorical predictions of brain weights for males in the 4th group

(G1-G3), who have extremely large head size, can be either extremely heavy or just median

heavy. Except such ambiguity on male’s prediction, other categorical predictions are rather

precise.

Electricity data The data from [14] represents electricity Consumption of 42 provincial

town in Great Britain in 1937-1938. In each town one single response feature was observed:

Average total expenditure on electricity, while there were 12 covariate features measured rang-

ing from Average number of consumers(V1), percentage of consumers with two-part tariffs in

1937-38(V2), Average income of consumers(V3), prices on domestic tariffs in 1933-34(V4),

1935-36(V5), 1937-38(V6), Marginal price of gas 1935-36(V7), 1937-1938(V8), Average hold-

ings of heavy electric equipment bought (V10) and per two-part consumer consumption 1937-

38(V10), 1935-36(V11) and 1933-34(V12). Here we report information flows according to two

scales of clustering on the response feature: one fine-scale (with 5 clusters and one extreme

outlier) and one coarse-scale (with two clusters) clustering compositions of the response fea-

ture, as shown in Fig 4(A) and 4(B) respectively. Data can be found via links: http://users.stat.

ufl.edu/~winner/data/gbelec.dat, and http://users.stat.ufl.edu/~winner/data/gbelec.txt.

Fig 4. Response hierarchical clustering trees: (A) the fine-scale with 6 color-coded clusters; (B)the coarse-scale 2 color-coded clusters. It is intuitive that the task of

successfully differentiating among the 6 fine-scale clusters of (A) would need much more covariate information than the task of differentiating between the two coarse-

scale clusters of (B).

https://doi.org/10.1371/journal.pone.0198253.g004
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Fig 5. Information flows from response’s fine-scale perspective. (A) Mutual conditional-entropy matrix superimposed with DCG tree with 4 synergistic feature-

groups; The information flows from the response to (B) #2 synergistic feature-group; (C) #1&#2; (D) #1&#2&#3 synergistic feature-groups. The misclassified subjects’

ID numbers are attached to the right side of each heatmap.

https://doi.org/10.1371/journal.pone.0198253.g005
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The heatmap of mutual conditional-entropy of 12 covariate features, which is superim-

posed by a DCG tree, shows four synergistic feature groups in Fig 5(A). Three information

flows from response’s fine-scale perspective are reported in three panels in Fig 5(B)-5(D). The

information flow from the response to the synergistic feature-group#2 (V2, V3, V10-V12), as

shown in Fig 5(B), demonstrates that each branch of the three-cluster level of DCG tree

T ½MðCoÞ
1;2
�R is coupled with rather clear dependency structures marked by uniform and evident

block patterns in the heatmap.

Though each of these three cluster indeed consists of mixed color-coded memberships of

the three response’s clusters, two out of three of them are significantly non-random. Their

observed conditional-entropies are calculated (with P-values in parenthesis) as (0.65(0.0), 1.39

(0.38), 1.05(0.004)) (from top to bottom on the 3-cluster level) in relative to the entropy on the

response side calculated as 1.62. The p-values are evaluated through the simulation scheme of

simple random sampling without replacement on the subject space with respect to the

response’s 6 color-coding. Hence, we conclude that the presences of relative low entropy-val-

ues with extremely low p-values strongly indicate that response-to-covariate associative pat-

terns are evident, but not exclusive.

Similar conclusions can be made for the other two information flows: 1) one union of #1

and #2 synergistic feature groups having 8 features, as shown in Fig 5(C); 2) and one union of

#1, #2 and #3 synergistic feature groups having 10 features, as shown in Fig 5(D).

It is important, but not difficult to see that such non-exclusiveness in the middle covariate

cluster of information flow in Fig 5(B), the bottom one in Fig 5(C) and the top one in Fig 5(D),

is primarily due to the presence of three response categories with relative large values. This fact

critically points out that this data set can’t sustain such a fine resolution on the response fea-

ture. Hence, we conclude that overall the fine scale structure with 6 clusters chosen for the

response feature is supported only in part. In other words, this data set can’t afford such a fine

scale separation on response features. How about the coarse-scale one?

Two information flows from response’s coarse-scale perspective are reported in Fig 6.

Through the DCG tree T ½MðCoÞ
1
�R (including all 12 features) superimposed upon a block-pat-

terned covariate matrix, the information flow, as shown in Fig 6(A), reveals four major clusters

are coupled with clear block patterns. Three of them have zero conditional-entropies by having

exclusive memberships belonging to one of the two response clusters. However, the fourth one

is a mixed.

In contrast the second information flow, as shown in Fig 6(B), the DCG tree T ½MðCoÞ
1;2
�R

based on #2 synergistic feature group pertaining to the first of the serial heatmaps on the right

reveals a tree level with three clusters: 1) two exclusively contains members from the cluster of

small-value cluster (in black) of response; 2) one is nearly exclusively dominated by members

of the cluster of large-responses. That is, the exclusiveness of the linkage between response on

coarse scale and covariate on three cluster scale is established.

Correspondingly two aspects of system understandings are derived as follows. The first

aspect is that the small-value cluster of response contains heterogeneity caused by two block-

patterns of covariate features: a) extremely large V2-value and extremely small (V3, V10 −
V12)-values; b) median V2-value and median (V3, V10 − V12)-values. The second aspect is

that the large-value cluster of response is attributed to extremely small V2-value and extremely

large (V3, V10 − V12)-values. These two aspects spell out the first important part of associative

patterns based on the clear dependency structures of synergistic covariate feature-Group #2.

More associative patterns are available along the 2nd through 4th heatmaps of this information

flow. These associative patterns can be used to further correct, or at least update and improve

the misclassifications made in the 1st heatmap as follows.
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Fig 6. Information flows from response’s coarse-scale perspective. The information flows from the response to (A)

#1&#2&#3&#4 synergistic feature-groups; (B) serial #2, #3, #1 and then #4 synergistic feature-groups.

https://doi.org/10.1371/journal.pone.0198253.g006
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Predictions are made and conformed via “majority rule” within each cluster identified

across different heatmaps on the right. As illustrated in Fig 6(B), as if those number-marked

subjects were missing their response feature measurements, then each heatmap gives rise to a

set of predicted values. A final decision for each individual would be reached by simply con-

ducting weighted averaging of the four predicted values with weights inversely proportional to

the four corresponding conditional-entropy values. This is an error-correcting mechanism

provided by using information flow with serial DM-computed heatmaps.

At the end of this example, it is strongly emphasized that the information flow in Fig 6(B) is

much more proper and informative than the one in Fig 6(A) because the four synergistic

covariate feature groups are somehow antagonistic to each other. Therefore, a platform for

them to show their idiosyncratic dependency is needed. The information flow is designed to

provide such a platform.

The original goal of this example according to [14] was two-fold: analyzing electricity

demand and investigating monthly fluctuations. The hope was to incorporate results from

these two parts to achieve a comprehensive study of the various features on electricity con-

sumption. Yet this goal could not be realized in the original study due to insufficient informa-

tion from the data as stated by the author. However, on the coarse scale of the response feature

here, this goal can be achieved via our information flows. They indeed provide very compre-

hensive system understanding on the electricity consumption during the two year period from

the 42 provincial towns in Britain.

Patterns of Bird Species in Andes Mountains In Ecology during 1970s, biogeographers

assumed that continental biota found on high mountain tops are as isolated from one another

as true islands. In order to test whether high mountain biota have insular distribution patterns,

data of bird species was collected among “island” of mountain tops in 15 regions of the páramo

vegetation in the Andes of Venezuela, Colombia and northern Ecuador [15]. Data can be

found via links: http://users.stat.ufl.edu/~winner/data/brainhead.dat, and http://users.stat.ufl.

edu/~winner/data/brainhead.txt.

There are 3 response features: Total Number of Species(V2), Number of species of South

American origin(V3) and Number of endemic taxa(V4), and 7 covariate features: Area(V6),

Base altitude(V7), Elevation(V8), Distance from Paramo(V9), Distance to nearest island of

vegetation(V10), Distance to nearest island in south(V11) and Distance to nearest large island

(V12), see details in [15].

Two mutual conditional-entropy matrices for the response and covariate features are sepa-

rately computed, as shown in Fig 7(A) and 7(B). The response’s heatmap on left hand side of

Fig 7(C) from DM clearly shows two patterned blocks that indicates strong joint dependency:

largeness-vs-smallness, among response features. In contrast, the covariate’s heatmap on the

right hand side of Fig 7(C) also clearly shows the joint dependency of 7-dim covariates in two

scales: 1) two patterned blocks; 2) each block is intricately divided into two sub-blocks.

The first information flow linking the structural dependency on both sides, as shown in

Fig 7(C), reveals a perfect linkage of heterogeneity from the response’s two blocks to the covar-

iate’s 4 sub-blocks. This resulted perfect linkage of heterogeneity is surprising in the sense that

the largeness-vs-smallness of response features is determined by rather intricate differences

between sub-block belonging to each of the two block of covariate features. The second infor-

mation flow in Fig 7(D) from 2-dim responses (V2 and V3) to a couple of 3-dim and 4-dim

covariates also reveals the same kind of heterogeneity as clear as the first one.

Such splitting heterogeneity seen in the information flows conclude that the clearly bifur-

cated linkages from the response features to the covariate features strongly indicate that the

high order dependency among covariate features is the driving forces underlying this
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Fig 7. Mutual conditional entropy matrices and two information flows on bird data. (A) Mutual conditional

entropy matrix of 3 response features divided into two synergistic groups; (B) 7 × 7 mutual conditional entropy matrix

of covariate features with two color-coded synergistic groups; (C) Information flow from the response heatmap to the

covariate heatmap showing heterogeneity; (D) Information flow from two response features v2 and V3 to two

covariate heatmaps pertaining to the two synergistic groups.

https://doi.org/10.1371/journal.pone.0198253.g007
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biogeographic system, on one hand. On the other hand, it interestingly undermines the linear

regression reported in the original paper.

The original investigation in [15] employed stepwise linear regression of one response fea-

ture at a time and reported very well statistical modeling fitting. Here we like to point out the

fact that such statistical results likely were caused by over-fitting. The a linear hyper-plan based

on 7 covariate features can easily over-fit the small number (15) of data points.

This example very well demonstrates the essence and importance of computing joint

dependency among response and covariate features in order to discover evident heterogeneity

through an information flow as shown in the Fig 7(C). Thus, it is worth emphasizing that the

associative patterns contained in this data are organized on the fine, not coarse, scale of blocks.

Since heterogeneity hardly can be accommodated by homogeneous linearity as assumed in the

regression model, the results of linear regression analysis become misleading and dubious.

Height and Various Stature Measurements Data The fourth data set from [16] is consist-

ing of 33 female police-department applicants. Each applicant has her standing Height(V2)

and sitting height(V3) measured as two response features, and upper arm length (V4), forearm

(V5), hand (V6), upper leg (V7), lower leg (V8), foot (V9), forearm/upper arm (V10), lower

leg/upper leg (V11) are measured as seven covariate features. Mutual conditional-entropies on

response and covariate sides are computed and shown in Fig 8(A) and 8(B), respectively. Two

synergistic covariate feature-groups are identified:Group#1 = {V4, V5, V6, V7, V8} and

Group#2 = {V9, V10, V11}. Data can be found via links: http://users.stat.ufl.edu/~winner/data/

police_height.dat, and http://users.stat.ufl.edu/~winner/data/police_height.txt.

The response’s heatmap resulted from DM, as shown on the left hand side of Fig 8(C),

clearly reveals three clusters coupled with evident block patterns. Thus, it is not only reason-

able, but necessary to take both two dimensional features as response simultaneously. One

information flow from the 2-dim response features to #1&#2 covariate features groups is car-

ried out and reported in Fig 8(C). Also two major and one small covariate clusters are also sup-

ported by clear block patterns. One major covariate cluster is dominated by one response

cluster members (Green color-coded) with a few coming from the the other two response clus-

ters. We perform simple random sampling without replacement similar to permutation test to

conform this pattern formation. The observed entropy is relatively small 0.87 comparing with

1.09 the overall entropy from response with the p-value 0.01. The other major covariate cluster

primarily has mixed memberships of two response clusters (blue and orange color-coded).

The observed entropy is 0.84 with its p-value 0.008.

The second information flow from the 2-dim response features to a serial of #1 and then #2

covariate feature-groups is shown in Fig 8(d). The first heatmap on the right hand side of

information flow reveals two covariate clusters. These two clusters have mixed memberships

of three response clusters like the manifestation in the first information flow. The observed

entropies with their p-value in parenthesis are calculated as 0.94(0.008) (for green-dominant

one) and 0.89(0.019) (for the mixture of blue and orange), respectively.

Through pattern confirmations with small p-values are resulted in both two information

flows, the 2nd information flow clearly indicates that extreme small standing and sitting

heights are associated particularly with small values of features belonging to #1 feature-group;

in contrast large standing or sitting heights are highly associated large values of the same five

features in #1 group. Again we demonstrate that these associative patterns are displayed

through the linkages between response’s and covariate’s dependency structures. This and the

above examples nicely illustrate the exploratory nature of our proposed categorical pattern

matching and the resolutions to the issue of multiple response.

The original investigation in [16] was concerned about the issues arising from multicolli-

nearity among the 8 covariate features, including the sitting height, in linear regression

Categorical-pattern-matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0198253 June 14, 2018 21 / 28

http://users.stat.ufl.edu/~winner/data/police_height.dat
http://users.stat.ufl.edu/~winner/data/police_height.dat
http://users.stat.ufl.edu/~winner/data/police_height.txt
https://doi.org/10.1371/journal.pone.0198253


Fig 8. Information flow of height data. (A) and (B) for the mutual conditional-entropy matrices for response and

covariate features; (C) Information flow to all covariate features; (D) Information flow to #1 feature-group and then #2

feature-group.

https://doi.org/10.1371/journal.pone.0198253.g008
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analysis with the standing height as the response feature. Again it is rather unnatural that two

highly related features: sitting and standing heights, as seen in the Fig 8(A), are separated by

the divide between response and covariate. This certainly was done due to the fact of lacking

statistical methodology for accommodating Multiple response.

The principle component analysis (PCA) was used to convert the 8 features into a few inde-

pendent “factors” to alleviate effects of multicollinearity. Again such linearity based artificial

factors made the regression results very hard for interpretation. In contrast, our information

flow clearly and naturally reveals patterns of response features and links them with associative

patterns based on groups of synergistic covariate features with evident heterogeneity.

Heart disease This dataset taken from UCI machine learning repository contains 13 fea-

tures and 270 human subjects. Among 13 features, there are 5 continuous ones: Age(V1), Rest-

ing Blood Pressure(V4), Serum Cholestorol(V5), Maximum Heart Rate Achieved(V8),

Oldpeak(V10); 3 binary Variables: Sex(V2), Fasting Blood Sugar(V6)(> 120 mg/dl), Exercise

Induced Angina(V9); and 5 categorical ones: Chest Pain Type(V3, with values 1, 2, 3, 4), Rest-

ing Electrocardiographic results (V7, with values 0, 1, 2), Slope of the Peak Exercise ST seg-

ment(V11, with 1: upsloping; 2:flat; 3:downsloping), Number of Major Vessels colored by

Fluoroscopy(V12, with 4 values from 0 to 3), thal (V13, with 3 = normal; 6 = fixed defect;

7 = reversable defect), see details in [17]. This example illustrates how to handle digital coding

for mixed data types. Data can be found via link:http://archive.ics.uci.edu/ml/datasets/Statlog+

%28Heart%29.

Each binary and categorical features are digitally coded for making the digital coding more

comparable with continuous features. The coding scheme for a categorical one is based on its

closest non-categorical feature. [Digital Coding for binary and categorical features:]

1. Binary: {0}! 0 and {1}! 5;

2. Categorical-V3: being close to binary V9, {1, 2, 3}! 0; {4}! 5;

3. Categorical-V7: being close to continuous V8, {0}! 9; {1}! 3; {2}! 7;

4. Categorical-V11: keep ordinal order with {1}! 3; {2}! 6; {3}! 9;

5. Categorical-V12: keep ordinal order with {0}! 0; {1}! 3; {2}! 6; {3}! 9;

6. Categorical-V13: being close to binary V2, {3}! 0; {6, 7}! 5.

The mutual conditional-entropy matrix shows two synergistic feature groups in Fig 9(A).

The heatmap of involving all covariate features, as shown in Fig 9(B), reveals their joint depen-

dency via two scales of pattered blocks: 1) the fine scale having 9 clusters, denoted by G1

through G9; 2) the coarse scale having 3 conglomerate clusters, (G1, G2), (G3, G4) and (G5,

G6, G7, G8, G9). The information flow from response’s patient and healthy subject clusters to

involving all covariate features, as shown in Fig 9(B), discovers high degrees of heterogeneity

of covariate patterns within the patient as well as healthy subject clusters. It is noted that we

also explore information flows based on either of the two synergistic feature-groups. They are

not as effective as the one involving with all covariate features.

Further, via simple random sampling without replacement scheme, the classification per-

formance pertaining to two scales of clustering compositions: 3 clusters (Yellow color-coded

boxes) and 9 clusters (Black color-coded bars), in the information flow are evaluated through

1000 simulations and presented in box-plots of 95%, as shown in Fig 10. We see that observed

entropies (Blue for 3-cluster scale and Red for 9-cluster scale) below their corresponding boxes

indicate significant results, that is, the clusters with non-random compositions of patients and
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healthy subjects with P-values less than 5%. It is noted that a smaller cluster size would render

a longer 95% box.

Conclusion

In this paper we develop one universal platform: algorithmic computing protocol plus graphic

display techniques for system data analysis. Our computing protocol is developed under the

guiding principle of having multiple synergistic mechanisms contained in a system. Our goal

is geared to first extract authentic information contents contained in a system data set. And

secondly our categorical-pattern-matching via graphic display is to stimulate proper under-

standing of computed information, and thirdly to discover pertinent knowledge about the sys-

tem under study. The resultant system knowledge on one single response mechanism is visible

and explainable through a series of covariate mechanisms. Such knowledge is organized and

represented through one single information flow. And a system is likely better understood by

multiple information flows.

An information flow functionally maps the response’s structural dependency into covari-

ate’s patterned dependency. These dependency patterns and structures are computed through

Data Mechanics on data matrix, and are collectively revealed through multiscale blocks framed

by a clustering tree superimposed on a group of synergistic features and another clustering

tree on the ensemble of subjects. That is, the dependency patterns and structures summarize

essential information contents on response and covariate data matrices, respectively, without

involving potential distortions possibly caused by unrealistic modeling or distribution

Fig 9. Heatmaps via DM on heart disease data. (a) Mutual entropy matrix of all features with two synergistic groups; (b) Coupling geometries of all features. Red

color for patients, Black for healthy subjects.

https://doi.org/10.1371/journal.pone.0198253.g009
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assumptions. In this era of big data, we are confident that our universal platform of system

data analysis has high potential merits in sciences.

In contrast to our universal platform, it is worth mentioning and discussing the narrow per-

spective tied to model selection techniques in statistics. On top of employing ad hoc and nar-

rowly focused criterions, like sum of squared error (SSE), all model-selection techniques

choose only one set of covariate features from a fixed ensemble of potential models, and ignore

all potential groups of features, which might result in a just slightly larger SSE than the mini-

mum one. It seems like that no extra information can be offered from the second best sets of

Fig 10. Classification performances of an information flow on two scales. 95% Box-plots of the three-cluster scales is in Yellow color with

observed entropy being marked in Blue, while the nine-cluster scale one in Black with observed entropies being marked in Red. The clusters from the

left-to-right are arranged exactly to correspond to clusters from bottom-to-top in Fig 9(B). Each box is built based on 1000 simulated entropy values

via simple random sampling without replacements.

https://doi.org/10.1371/journal.pone.0198253.g010
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covariate features. This is likely totally not true. Since there might exist several distinct and

meaningful mechanisms simultaneously associating with one single dimensional response fea-

ture. For instance, consider a study on causes of a behavioral disorder, such as autism or obe-

sity. Wouldn’t the potential causes of a disorder become more and more complex when more

than more subjects are included into the study? More subjects certainly will bring in more

diverse and different psychological factors, environmental conditions, cultures and genetic

makeups and many others. These causal factors surely tightly tangle together as multi-faces of

the disorder.

Further all model selection techniques assume an implicit fundamental assumption that the

ensemble of potential models is invariant with respect to the number of involving subjects.

Like the conditioning argument in all regression analysis, this invariance assumption is

another strong evidence of ignorance of structural dependency on the covariate side. To be

more specific, as the ensemble of observed system subjects becoming larger, the subject’s

“community structure” would be more fully exposed. That is, distinctions and gaps among

these communities are to be more evidently expressed through block patterns due to large and

fine scales dependency among covariate features. The presence of finer and finer scales depen-

dency structures is exactly the reason underlying the fact that no models are correct when the

sample size is really big. But this invariance assumption imposed by all model selection tech-

niques strictly require practitioners to blindly give up the truth that there are potential multiple

mechanisms behind trends of one single response feature. On the other hand, this critically

unreasonable assumption of fixed ensemble of potential models disregarding sample sizes also

reflects the impossibility of the issue of how to properly grow the ensemble as sample size

increase.

At the end, we remark that our directed associative linkage expressed through graphic dis-

play can fundamentally resolve the recent issue of reproducibility of research results for publi-

cations in major scientific journals. The reason is that, even though this reproducibility

concern has pressured scientists to be more vigilant and rigorous when they conduct and

report their data analysis, unintentional or careless mistakes or human fallacies can still creep

into the modeling and affect summarizing parameter values. Requirement of submitting the

original data in the submission process for journal publication would only prevent potential

human errors to some limited extents. Since effects of man-made assumptions, particularly

involved in complicate modeling, are still hard to be filtered out and prevented from contribut-

ing to implications made from reported statistical results.
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