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Humans predict liquid dynamics using probabilistic simulation
Christopher J. Bates, Ilker Yildirim, Joshua B. Tenenbaum, Peter W. Battaglia

{cjbates, ilkery, jbt, pbatt}@mit.edu
Department of Brain and Cognitive Sciences, MIT. Cambridge, MA

Abstract

Liquids can splash, squirt, gush, slosh, soak, drip, drain,
trickle, pool, and be poured–complex behaviors that we can
easily distinguish, imagine, describe, and, crucially, predict,
despite tremendous diversity among different liquids’ material
and dynamical characteristics. This proficiency suggests the
brain has a sophisticated cognitive mechanism for reasoning
about liquids, yet to date there has been little effort to study this
mechanism quantitatively or describe it computationally. Here
we find evidence that people’s reasoning about how liquids
move is consistent with a computational cognitive model based
on approximate probabilistic simulation. In a psychophysical
experiment, participants predicted how different liquids would
flow around solid obstacles, and their judgments agreed with
those of a family of models in which volumes of liquid are
represented as collections of interacting particles, within a dy-
namical fluid simulation. Our model explains people’s accu-
racy, and their predictions’ sensitivity to liquids of different
viscosity. We also explored several models that did not involve
simulation, and found they could not account for the experi-
mental data as well. Our results are consistent with previous
reports that people’s physical understanding of solid objects is
based on simulation, but extends this thesis to the more com-
plex and unexplored domain of reasoning about liquids.

Introduction
From a glance at liquid flowing into a glass (Figure 1A), you
can guess so much: it is pouring rapidly, likely from a spout
or small opening; it is not viscous; little will likely splash out,
although if the angle of the glass were lowered slightly, per-
haps much more liquid would escape. These physical judg-
ments are complex, and well beyond the capacity of current
machine vision systems. How do humans, even young chil-
dren (Figure 1B), reason about and manipulate liquids so
effectively and so quickly? How sophisticated is people’s
implicit knowledge of liquid dynamics, and by what mech-
anisms is this knowledge applied to support people’s broad
competency?

A growing body of evidence supports the “Noisy New-
ton” hypothesis (Sanborn, 2014; Sanborn, Mansinghka, &
Griffiths, 2013; Battaglia, Hamrick, & Tenenbaum, 2013;
Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2012;
K. Smith, Battaglia, & Vul, 2013; K. A. Smith & Vul, 2013;
Hegarty, 2004), which suggests that humans have rich im-
plicit knowledge of many aspects of everyday physics, which
inform their predictions, inferences, and planning through a
system of probabilistic reasoning. Battaglia et al. (2013) pro-
posed a specific cognitive mechanism for physical scene un-
derstanding based on “approximate probabilistic simulation”,
in which objects’ spatial geometry and physical attributes, as
well as certain laws of mechanics, are represented approxi-
mately in a way that supports fast efficient probabilistic judg-
ments over short time scales, by running a small number of
simulations based on sampled estimates of the underlying

Figure 1: (A) Fluid dynamics are very complex, yet ubiquitous in
everyday scenes. (B) Humans–even infants–can reason about and
interact with liquids effectively. (C) Virtual rendering of liquid used
for stimuli. (D) Our cognitive model hypothesizes that humans em-
ploy a particle-like representation of fluids.

world state. Their “intuitive physics engine” model explained
people’s physical predictions about stability and support rela-
tionships, and the motion of objects under gravity, across a
wide range of rigid body scenes.

This recent literature may appear to contrast with earlier
studies emphasizing conditions under which people’s intu-
itions about physics do not seem consistent with Newtonian
mechanics (McCloskey & Kohl, 1983). However, even in
those earlier studies, a majority or plurality of participants of-
ten did give judgments consistent with Newtonian principles
or approximate Newtonian simulations, and subsequent work
suggested that people tend to show more accurate physical
knowledge when tested in more natural perceptual or interac-
tive sensorimotor tasks (K. Smith et al., 2013).

Here we present the first computational model extending
the approximate probabilistic simulation approach to a fam-
ily of dynamical scenes that are highly natural but have far
more complex physical dynamics: We model people’s per-
ceptual intuitions about liquid dynamics, and present two ex-
periments comparing this model and a number of alternatives
with people’s predictions about fluid flow under gravity in
complex scenes. This complements previous research that
examined people’s physical intuitions about solid objects and
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Figure 2: Our intuitive fluids engine is based on a smoothed par-
ticle hydrodynamics (SPH) method for simulating fluids. (A) How
SPH approximates a fluid. For any location in the fluid, marked “X”
on the diagram, particles in the local neighborhood are used to ap-
proximate the fluid’s, density, pressure, and dynamics at that point.
The bell-shaped envelope depicts the strength of each neighbor’s in-
fluence on the approximation, which falls off with distance. (B) SPH
simulations can be allocated more resources to achieve more precise
approximations. In the second and third panels, more particles are
allocated than in the first, which will result in more accurate and
stable simulated fluid dynamics. (C) The rules by which particles
interact can be varied to produce different qualitative fluids and ma-
terials. The first three panels show differences in splashing behavior
as a function of viscosity. The fourth panel shows a non-Newtonian
fluid that sticks to rigid surfaces (like honey).

mechanical devices (Hegarty, 2004; Battaglia et al., 2013),
as well as recent work that has probed how people estimate
viscosity from visual cues (Kawabe, Maruya, Fleming, &
Nishida, 2014). Our cognitive model is based on a commonly
used method for simulating fluids via collections of interact-
ing particles, which we chose because it can handle a wide
variety of materials, includes natural methods for adjusting
the computational resource demands by varying the number
of particles and complexity of their interactions, and is rela-
tively simple compared to alternative methods. In graphics,
particle systems are often used to simulate rigid and non-rigid
objects, as well as liquids and gases, in isolation and in inter-
action. Humans have similar versatility, and thus particle-
based simulation may offer a unified explanation of people’s
reasoning across many physical domains.

Our work asks specifically: Can particle-based simula-
tion models account for people’s predictions about how liq-
uids move in complex scenes? How do people’s uncertainty
and computational resource limitations influence their judg-
ments? Can the differences in people’s predictions about dif-
ferent types of liquids be explained by corresponding dif-
ferences in the interaction rules among simulated particles?
We asked human participants to predict how a liquid would
flow through and around complex arrangements of obsta-
cles (Figure 1C) and compared their judgments to a family
of simulation-based cognitive models (Figure 1D), as well
as several non-simulation and non-physical alternatives, and
found that the probabilistic simulation models provided a bet-
ter account of people’s responses.

Models
Simulation
SPH Our simulation-based models use a method from com-
putational fluid dynamics called smoothed particle hydrody-
namics (SPH) (Monaghan, 2005), which is used widely in
physics, engineering, and graphics for approximating the dy-
namics of many types of compressible and incompressible
fluids. The state of the fluid is represented by a set of parti-
cles at discrete time steps. Each particle carries information
about a volume of fluid in a particular locality in space, in-
cluding its position, velocity, density, pressure, and mass.

On each simulation time step, the particles’ densities and
pressures are computed, which are then used to update the
accelerations, velocities and positions. A particle’s density is
calculated by interpolating its neighbors’ densities, weighted

by their distances, ρi =
Ni
∑
j=1

mW (ri j,h), where ρi is the density

at particle i’s location, m is the mass of each particle, W is the
kernel function, and ri j is the distance between particles i and
j (Figure 2A). The weighting is determined by W , which has
a cutoff radius, h, beyond which particles have no influence.
After computing particle i’s density, its pressure is updated,
followed by its viscous damping forces. Its acceleration is a
linear combination of the pressure and viscous damping, the
velocity update is proportional to the acceleration, and the
position update is proportional to the velocity.

The precision of the liquid simulation can be adjusted
by how many particles are used: with more particles, the
simulated liquid’s movement is more closely matched to
that of a real liquid (Figure 2B). But increasing the number
of particles also increases the computational cost of the
simulation, thus effecting a trade-off between efficiency and
accuracy.

Intuitive fluids engine Our cognitive model, the “intuitive
fluids engine” (IFE), is analogous to Battaglia et al. (2013)’s
intuitive physics engine, but is capable of reasoning about a
fluid’s dynamics. It posits that when the brain observes the
initial conditions of a physical scene that contains liquids, it
instantiates a corresponding particle-based simulation (which
we capture using SPH) to predict future states of the scene.
The model’s inputs are the configuration of the scene, includ-
ing the solid elements and the liquid’s spatial state and mate-
rial attributes, such as viscosity and stickiness. The number
of particles that are instantiated can be varied, to adjust the
computational resources demanded by the simulation.

Fluid dynamics can be complex, and we assume that the
brain understands that a fluid’s behavior can be influenced
by many uncertain factors, such as imprecise and incomplete
knowledge about the positions, shapes, and volumes of the
solid and liquid elements of the scene, their underlying phys-
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ical attributes, and the specific rules that govern how the ele-
ments transmit and respond to forces. We express the brain’s
uncertainty in our IFE model by consolidating these poten-
tial sources into a single, catch-all quantity, termed physical
uncertainty. The model’s physical uncertainty was imple-
mented by adding a random offset (in a randomly chosen 2D
direction), whose magnitude was sampled from an isotropic
Gaussian distribution with mean 0 and standard deviation σ,
to all particles’ initial positions. The models ran a set of K
independent simulations, with different random offsets, and
aggregated the results to form a probability distribution over
its prediction about what would happen. The model’s judg-
ments, J, took values between 0 and 1, where 0 represented
all liquid flowing into the left basin, and 1 represented all liq-
uid flowing into the right. That is, J = nright/N, where N
is the total number of particles, and nright is the number that
flowed into the right basin. We also computed predictions
from a ”ground truth” model which did not include uncer-
tainty, and which used a single, deterministic simulation with
a high number of particles and the correct viscosity, to predict
the fluid behavior as accurately as possible.

We created different liquids whose viscosities correspond
to water and oil, respectively, and also a higher viscosity
liquid, with a viscosity typical of honey. This “Newtonian
honey” behaves differently than real honey, because it does
not stick to surfaces (since SPH particles collide with obsta-
cle surfaces as inelastic spheres). Figure 2C reports viscosity
values, α, for each fluid, which correspond to the viscosity
constant in our simulations. The parameter α is not directly
equal to either dynamic or kinematic viscosity, but serves to
show the relative difference in viscosity between the different
liquids. In order to model non-Newtonian, sticky liquids, we
created a different kind of SPH liquid that creates the effect
of stickiness by damping the normal and parallel components
of velocity for particles that are in collision with obstacles
(last panel of Figure 2C). Due to computational limitations,
we only considered one set of parameter values, but the space
of possible sticky SPH liquids could be further explored by
varying the viscosity in combination with the parameters con-
trolling stickiness.

Non-simulation
We contrasted the simulation-based models with two non-
simulation alternatives: one that used shallow geometric
heuristics, comparable to Gardin and Meltzer (1989), and an-
other that used a convolutional neural network (Krizhevsky,
Sutskever, & Hinton, 2012; Jia et al., 2014) trained on thou-
sands of examples similar to our experimental test conditions.
These alternative models are theoretically unappealing be-
cause they are highly specialized to the task, and thus should
not be expected to work in even slightly different conditions,
regardless of whether they depend on the same underlying
physical laws. However, they represent popular competing
perspectives on the general mechanisms of human perceptual
cognition (Gigerenzer, Hertwig, & Pachur, 2011; McClel-
land, 2013), and offer other advantages, such as simplicity of

Figure 3: Heuris-
tic model. Each
panel depicts the
path of a different
particle.

computation and clear statements about the learning process.

Heuristic model The geometric heuristic model used de-
terministic rules that did not directly involve physics. It in-
stantiates “particles” along the midline of the liquid’s starting
position and generates a path straight downward. When an
obstacle is encountered, the path continues along the obstacle
surface until it can go straight down again. The judgments
were calculated by counting the number of “particles” that
end up on each side of the divider, as in the simulation mod-
els (Figure 3).

Convolutional network We tested the possibility that peo-
ple use purely visual cues by implementing a deep learning
model. We replaced the top layer of a widely used convolu-
tional network (Krizhevsky et al., 2012), pre-trained on a very
large collection of images, with a sigmoid output layer, and
performed backpropagation (using Jia et al., 2014) to learn
a regression from images to labels in a supervised fashion.
The dataset consisted of 10,000 randomly generated scenes,
with 101 evenly spaced label values in the range [0,1] that
corresponded to the proportion of water that went to the right
bin (as determined by a deterministic ground truth simulation
with N = 100). The network was not shown any intermediate
fluid positions. Judgments were calculated as the output of
the model for each scene.

Methods

Participants All participants (N=65) were recruited from
MIT Brain and Cognitive Sciences’ human participants
database (whose participant population is composed of
roughly half MIT students and employees, and half local
community members). All gave informed consent, were
treated according to protocol approved by MIT’s IRB, and
were compensated $10/h for participation. All experimental
sessions were one hour long, and each participant ran in one
session in one experiment. All had normal or corrected-to-
normal vision. Stimuli were presented on a liquid-crystal dis-
play, which participants free-viewed from a distance of 0.5-
0.75 m. They indicated their responses by depressing a key on
the keyboard or by adjusting the computer mouse and click-
ing to lock in their choice.

Stimuli and procedure In order to test people’s ability to
predict the behavior of a liquid, participants were presented
with 120 virtual 3D scenes, 1.0 m x 1.50 m in size, that de-
picted a cylindrical volume of liquid positioned above a ran-
domly generated obstacle course composed of fixed, solid ob-
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jects and asked to predict what fraction of the liquid would
flow into each basin below the obstacles under gravity. Par-
ticipants either saw a low-viscosity, water-like liquid (Exper-
iment 1) or high-viscosity, honey-like liquid (Experiment 2).
The automatically generated, 2D scenes (see Random scene
generation) were converted to 3D Blender scenes, by adding
a small amount of 3D depth. The liquid was simulated us-
ing Blender’s Lattice-Boltzmann liquid simulator, and video
frames were rendered with Blender’s Cycles ray-tracer, and
composed into a video with a framerate of 30 Hz. All partic-
ipants saw the same scene order, which was randomly shuf-
fled. The 120 trials were divided into three blocks of 40, with
a short break in between.

Both experiments included a practice and test phase.
During the practice phase, participants received visual feed-
back on all trials (i.e., a video of the liquid simulation, also
rendered with Blender Cycles) in order to familiarize them
with the characteristics of the liquid and the response keys.
On each trial (in both practice and test phases), participants
viewed an image of the scene, with the liquid in its starting
position. They were instructed to predict the proportion of
liquid that would end up on each side of the divider (see
the dark wedge at the bottom of the stimuli in Figure 4C),
moving a virtual slider with the mouse left or right to indicate
their response, and pressing ENTER to submit.

Random scene generation The obstacles in the test scenes
were generated automatically by first dividing a plane into
polygonal cells using 2D Voronoi tessellation, then selecting
a random subset as solid obstacles. Coarse SPH simulations
were run to filter out those scenes in which liquid particles
remained trapped in obstacle concavities or had little interac-
tion with the obstacles.

Intuitive fluids engine parameters The IFE models var-
ied in their physical attributes of viscosity, α, and whether or
not they used ”stickiness”, as well as the magnitude of their
physical uncertainty, σ, and the number of particles, N.

In both the non-sticky and sticky IFE models, the num-
ber of particles used to represent the liquid was varied from
1 to 100. The stochastic noise, which implemented physical
uncertainty, perturbed the initial position of each particle po-
sition in the simulated liquid by a random, additive 2D offset,
sampled from an isotropic Gaussian distribution with mean 0
and standard deviation σ. The value of σ varied from 0 to R,
where R was the radius of the initial disk of water. For each
combination of viscosity, number of particles, and noise level,
the model ran a set of 16 independent simulations, with differ-
ent random offsets. The average prediction over the 16 sam-
ples was taken, such that each unique combination of model
parameters made a single prediction.

In addition to our IFE models, we also compare participant
data to two ground truth models, generated by setting σ = 0
and N = 200 (which was the highest value tested), and be-

haved as similarly as possible to the stimulus liquids in each
experiment.

Results
Our analysis aimed to address three main questions: (1) Are
people’s judgments better accounted for by simulation, rather
than non-simulation models? If so, are people’s simulations
appropriately sensitive to (2) physical attributes of the liquids,
and (3) physical uncertainty about the scenes? To answer
these questions, we calculated the means across participants’
judgments for each scene, and estimated Pearson correlations
between those mean judgments and each model’s predictions
as a measure of how well the model fit the human data. Fig-
ure 4A summarizes these correlations for the best-fitting in-
stances of each model.

All simulation models (at all values of σ and N) outper-
formed the heuristic model, and most outperformed the Con-
vNet model, in both experiments. The heuristic model had
correlations of r = 0.25[0.22,0.27] (the interval in brackets
is a 95% CI, estimated by a bootstrap analysis with 10,000
resamples (Efron & Tibshirani, 1994)) for Experiment 1 and
r = 0.22[0.18,0.26] for Experiment 2 (see Figure 4A). The
convolutional neural net was trained on the Experiment 1
ground truth, and its predictions were compared to subject
responses from both experiments. Correlations with Experi-
ment 1 and Experiment 2 subjects were r = 0.53[0.50,0.55]
and r = 0.30[0.26,0.34], respectively. In both experiments,
all IFE models show peak performance at N ≤ 100. This
could potentially reflect cognitive resource constraints in par-
ticipants, which should be addressed more directly in future
work.

In both experiments, participants were at least partially
sensitive to the physical attributes of viscosity and sticki-
ness of each liquid: the ground truth model whose viscos-
ity and stickiness corresponded to Experiment 1 was a better
fit to Experiment 1’s participants’ responses than the model
whose viscosity and stickiness corresponded to Experiment
2, and Experiment 2’s participants’ responses were better fit
by the ground truth model with Experiment 2’s physical at-
tributes (see Figure 4A). In Experiment 1, the correlations
between the mean participant responses and the non-sticky
and sticky ground truth models were r = 0.76[0.74,0.77]
and r = 0.43[0.40,0.45], respectively. Experiment 2 showed
the reverse effect: r = 0.49[0.45,0.52] for non-sticky and
r = 0.61[0.58,0.64] for sticky.

In both experiments, including uncertainty in the simula-
tion models also improved fits with people’s judgments. In
Experiment 1, best fitting values of N and σ had correlations
of r = 0.84[0.83,0.86] and r = 0.89[0.88,0.90] for non-sticky
and sticky IFE, respectively. Experiment 2 had best fit cor-
relations of r = 0.60[0.56,0.63] and r = 0.83[0.80,0.85] for
non-sticky and sticky, respectively. Figure 4B shows the cor-
relations as a function of physical attributes and N.

An interesting and unexpected interaction between un-
certainty and physical attributes emerged across our experi-
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Figure 4: Stimuli and experimental results. (A) Mean participant data for both experiments is correlated with IFE and ground truth models
(which could be sticky or non-sticky), and non-simulation models. The maximum correlation across N, σ, and α within each of the uncertain
IFE models is plotted. (B) Heat maps of mean participant correlations with a selection of values across the uncertain IFE parameters (N, σ, α)
in both experiments. Only the maximum correlation across all noise magnitudes, σ, is plotted for each combination of N and α. (C) Selected
examples of experimental stimuli, shortly after gravity is turned on.

ments. In Experiment 2, the IFE model that appropriately ac-
counted for both the liquid’s physical attributes and physical
uncertainty fit significantly better than any other model, but
in Experiment 1, participants were slightly better fit by the
sticky IFE model than the non-sticky IFE. The uncertainty
added by the IFE models made their predictions less sensitive
to physical attributes of the liquid than ground truth, making
it more difficult to distinguish between sticky and non-sticky.
This is evidenced by high agreement between sticky and non-
sticky IFE models in both experiments 1 and 2 (r = 0.91 and
r = 0.85, respectively) for best-fitting σ and N, as compared
to correlations between the ground truth models (r = 0.29).
The ground truth model results more strongly suggest that
people capture the correct physical attributes in their judg-
ments, but this issue should be explored further in future re-
search.

In Experiment 1, split-half correlations reveal participants
were highly consistent with each other (r = 0.96[0.94,0.97]).
Experiment 2 participants were less consistent with each
other (r = 0.80[0.72,0.85]) than Experiment 1, which might
be attributable to less familiarity with the liquid, since Ex-
periment 1 participants saw a liquid that behaved similarly to
real water, but the liquid in Experiment 2 was not as similar
to any liquids found in the real world.

Discussion
We found that models based on approximate probabilistic
simulation provided a better quantitative account of people’s
judgments than alternative models which did not include sim-
ulation or did not take into account physical uncertainty. We
also found that people were sensitive to the physical attributes
of each liquid (stickiness and viscosity), and that this sensi-
tivity can be captured, at least in part, by our models.

More generally, the particle-based simulations underlying

our IFE models can potentially explain how people so flex-
ibly and richly reason about the wide variety of liquids they
encounter in everyday life. While there has been some skepti-
cism (Marcus & Davis, 2013) toward Battaglia et al. (2013)’s
hypothesis that many of people’s everyday physical intuitions
can be explained by approximate probabilistic simulation, our
results suggest that this approach may extend beyond the sim-
plest domains of rigid bodies, to more complex domains such
as fluids.

Prominent AI researchers studying physical reasoning have
often pursued qualitative or logical approaches (Forbus,
2011; Davis, 2008), arguing that solving problems similar
to our experimental tasks “to a high degree of accuracy in-
volves computational fluid dynamics” and “it is quite un-
likely that we are capable of performing such a prodigious
feat mentally” (Forbus & Gentner, 1997). Our empirical data
suggest, however, that people may have a richer ability to
make quantitative predictions about the behavior of liquids
than previously assumed, and that these abilities may be ex-
plained by probabilistic simulations that approximate the true
fluid dynamics only very coarsely, but effectively enough for
everyday human purposes. Our work here should be seen
as only a starting point for exploring this idea: We com-
pare a first concrete simulation-based model, which makes
testable predictions for people’s quantitative judgments about
some aspects of liquid dynamics, with concrete (but not
necessarily optimal) implementations of feature-based and
heuristic alternative approaches. We hope future research on
simulation-based approaches, as well as the alternatives, will
yield deeper understanding.

Future work should explore further how people predict
sticky versus non-sticky liquids, and how the precision, tem-
poral duration, and other structural and parametric features
of the simulation are implemented. For example, how does
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the precision vary as a function of how far into the future one
must mentally simulate? How closely do the attributes rep-
resented by the simulated particles correspond to the actual
physical characteristics of a liquid? Physically accurate sim-
ulation models can account for people’s judgments, but are
there simpler particle-based models that can as well? We ex-
plored an alternative model that replaced the SPH rules with
simpler rigid-body (e.g., marble-like) interactions among par-
ticles, and found preliminary evidence that it could fit peo-
ple’s judgments well in many of the situations we study here,
although it clearly fails in others. Can our general approach
extend to capture other classes of physical intuitions that go
beyond rigid-body dynamics? Particle-based models can pro-
vide reasonable simulations for liquids and gases, as well as
collections of solid elements (e.g., piles of sand) and com-
posite materials (e.g., mashed potatoes or Play-Doh) whose
dynamics share similarities with liquids, and we plan to test
probabilistic versions of these models as accounts of peo-
ple’s predictions in these domains. What are the limits of
simulation-based models – what kinds of non-rigid dynam-
ics can people make coherent predictions about, and which
might be better explained by alternative approaches such as
qualitative reasoning? Recent work has presented evidence
that internal forward models in the motor system are in-
volved in predicting dynamics that cannot be reenacted by the
body, such as the motion of ”rolling ocean waves” (Schubotz,
2007). Perhaps establishing a connection between this work
and our probabilistic simulation framework could lead to a
deeper understanding of people’s capabilities and limitations
when reasoning about physics.

Another important question is: How are intuitive physics
engines represented in the brain? A plausible candidate might
be a recurrent neural network with dynamic, parallel, and dis-
tributed structure (Michalski, Memisevic, & Konda, 2014),
but to date these networks have only been able to capture the
very simplest kinds of rigid-body dynamics. A more gen-
eral question for development, and computational cognitive
psychologists is: Where does people’s knowledge of liquids
come from? Five month-olds can distinguish between solids
and liquids in novel contexts after observing their distinct
patterns of movement (Hespos, Ferry, & Rips, 2009), which
suggests either a very data-efficient experience-based learn-
ing process or innate biases. Perhaps our simulation-based
model’s core components can be measured in young children,
or its more complex features can be observed as they emerge
and mature.

In summary, particle-based simulation is a powerful frame-
work that may explain how people understand a wide vari-
ety of complex physical processes they encounter in every-
day life. This work offers the first computational model of
how people reason about liquids, and provides evidence that
a particle-based simulation model can account for reason-
ing about different types of liquids. Our results provide fur-
ther evidence for a probabilistic, simulation-based cognitive
mechanism of physical reasoning, whose particle approxima-

tions can support solids and liquids, and perhaps other mate-
rials as well.
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