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Near Equivalence of Polarizability and Bond

Order Flux Metrics for Describing Covalent Bond

Rearrangements

Lukas Kim and Teresa Head-Gordon∗

Department of Chemistry, University of California, Berkeley

E-mail: thg@berkeley.edu

Abstract

Identification of the breaking point for the chemical bond is essential for our under-

standing of chemical reactivity. The current consensus is that a point of maximal

electron delocalization along the bonding axis separates the different bonding regimes

of reactants and products. This maximum transition point has been investigated previ-

ously through the total position spread and the bond-parallel components of the static

polarizability tensor for describing covalent bond breaking. In this paper, we report

that the first-order change of the Wiberg and Mayer bond index with respect to the

reaction coordinate, the bond flux, is similarly maximized and is nearly equivalent with

the bond breaking points determined by the bond-parallel polarizability. We investi-

gate the similarites and differences between the two bonding metrics for breaking the

nitrogen triple bond, twisting around the ethene double bond, and a set of prototypical

reactions in the hydrogen combustion reaction network. The Wiberg-Mayer bond flux

provides a simpler approach to calculating the point of bond dissociation and formation

and can yield greater chemical insight through bond specific information for certain

reactions where multiple bond changes are operative.
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Introduction

Stable molecules are defined by their unique arrangement of chemical bonds.1 Quantum

mechanical (QM) calculations can provide information about the energetics and electron

density of molecules using methods that can often reach high accuracy, although it is dif-

ficult to conceptualize the chemical bonding within the abstraction of wave function or

density functional theory formulations.2,3 Hence methods of translating the results of QM

computations into the vernacular of a chemical theory of bonding are broadly referred to as

wave function analysis methods. The overarching goal of these methods is to provide better

connections between QM definitions and conceptual chemical properties, such as bond or-

der, atomic charge, and electronegativity in order to understand stable molecules. Different

classes of interpretative chemical tools include the quantum theory of atoms in molecules

(QTAIM) framework of Bader,4 natural bond order analysis of Weinhold,5 and the Wiberg

and Mayer bond indices that have been used qualitatively for many decades to characterize

stable molecular topologies.6–8

During a chemical reaction, however, the bonds of a reactant become partially broken

and/or new bonds form at a transition region that ultimately progresses to a new arrange-

ment of stable chemical bonds in a product molecule. The definition of the breaking point

of the chemical bond is central to the mechanistic interpretation of chemical reactions, and

is still an open question in the theory of chemical bonding and wave function interpreta-

tive tools. It is known that electron delocalization and localization are critical indicators of

bond (de)formation in chemical reactions.9,10 To illustrate, consider a concerted substitution

reaction mechanism in which a bond is simultaneously broken between fragments AB and

formed between fragments BC,

A-B + C ⇔ [A—B—C]‡ ⇔ A+ B-C (1)

The reaction proceeds through a transition state region where the fragments A and C are
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both partially bonded to the transferred fragment B. At the transition state, the electron

density is maximally delocalized due to the elongated and partially formed bonds spanning

across ABC, in contrast to the localized reactant and product states.

Computationally, one principal measure of electron (de)localization is the total position

spread (TPS) tensor, an analytical measure of the spread of the electron density. In short, it

is the variance in the sum total of the electron positions, a property that has been shown to

have a maximum along bond breaking reaction coordinates.10 Recently, Hait and M. Head-

Gordon showed that the static polarizability has a similar maximum along bond dissociation

coordinates marking the breaking (or forming) of a chemical bond.11 For context, the static

or dipole polarizability tensor relates the induced dipole p⃗ of a molecule as proportional to

an applied electric field E⃗

p⃗ =
↔
α · E⃗, where αij =

(
∂pi
∂Ej

)
(2)

where i and j index the Cartesian axes. In our example reaction above, the parallel polariz-

ability, i.e. along the bond axis, is expected to be maximized at the transition state since a

perturbing electric field will bias bond formation in one direction and naturally have a large

effect on the displacement of the electron density, moving electrons located in the partially

formed AB bond to BC bond. This maximum has been shown to appear in both homolytic

and heterolytic bond dissociations, although polarizability is less descriptive when analyzing

π-bond rotations such as for ethene.11

The polarization metric is directly proportional to the TPS tensor along the reaction

coordinate, but is further augmented by a denominator quantity that describes the gap be-

tween bonding and anti-bonding orbitals, a quantity that is minimized for more polarizable

bonds.11 Furthermore, macroscopic polarization and electron localization have been found

to be intimately related in the study of insulating and conducting materials.12 In this paper,

we report that a maximum in the first order derivative of the Mayer/Wiberg orbital-based
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bond indices show excellent correspondence with the bond breaking point of the static polar-

izability maximum. The bond breaking point is characterized by maximal sensitivity of the

bond order to displacement and marks an inflection point, separating the convex and con-

cave regions of the bond order along the reaction coordinate. We show that the Wiberg and

Mayer bond order derivatives are quite robust across multiple reaction channels for hydrogen

combustion, diatomic nitrogen dissociation, and twisting around the ethene bond.

Theory and Methods

Wiberg and Mayer Bond Indices. Within QTAIM, it has been shown that two-body

decomposition of the TPS tensor defines the two-body delocalization index (DI), which relate

to the formal bond orders used for stable molecules.2 Furthermore, the DI has been shown to

be a real space analogue of the orbital-based Wiberg/Mayer bond indices, which we derive

in Appendix A.2,4

The Mayer and Wiberg bond indices are measures of bond order and are computed from

the first order reduced density matrix (1-RDM) P , and the atomic orbital overlap matrix,

S.

ρ(r⃗) =
∑
µ,ν

Pµνχµ(r⃗)χν(r⃗) Sµν = ⟨χµ(r⃗)|χν(r⃗)⟩ (3)

In an atomic orbital basis, the bond indices are obtained by summing the block-off-

diagonal components, corresponding to a sum of the overlap density of each orbital pair

between atom centers.6,7

MBIAB = 2
∑
µ∈A

∑
ν∈B

[
(PαS)µνP

αS)νµ + (P βS)µν(P
βS)νµ

]
(4)

WBIAB = 2
∑
µ∈A

∑
ν∈B

∣∣Pα
µν + P β

µν

∣∣2 (5)

In this way, these simple metrics quantify the number of electrons ‘shared’ by two atom
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centers, analogous to the bonding concepts of classical valence bond theory.

Here we will consider the change in the bond order with respect to the intrinsic reaction

coordinate (IRC) for the various hydrogen and oxygen transfer reactions in the hydrogen

combustion reaction network. The bond order flux is defined as the derivative of the bond

index with respect to a reaction coordinate.

Jb =
∂BIAB

∂ξIRC

(6)

where BIAB is either the MBI or WBI between atoms A and B and ξIRC is the extent of

the reaction along the intrinsic reacction coordinate. Our primary objective is to show that

Eq. 6 is in good agreement with the polarization metric, provides a simpler approach to

calculating the point of bond dissociation and formation, and yields greater chemical insight

into the hydrogen combustion reactions.

Hydrogen combustion data. The polarizability, bond orders, and bond flux metrics were

investigated for 13 reaction channels of hydrogen combustion as a model reactive system.13,14

The set of reactions contains hydrogen and oxygen transfer reactions, substitution, and di-

atomic or bimolecular bond dissociation profiles. The original dataset contains geometries,

energies, and forces from intrinsic reaction coordinate (IRC) scans, ab initio molecular dy-

namics, and normal mode displacements.

Computational Details. Bond indices, bond flux, and static polarizabilities were com-

puted for the 13 reaction channels of hydrogen combustion using the NBO 5.0 Program15

integrated into Q-Chem version 5.4.16 Optimized geometries along the intrinsic reaction co-

ordinate (IRC) were obtained from the benchmark dataset for hydrogen combustion.13 Elec-

tronic structure calculations were carried out at the DFT level, namely the ωB97x-V density

functional17 and Dunning’s triple-zeta correlation-consistent basis set.18 The ωB97x-V func-

tional and cc-pVTZ basis was chosen to be consistent with the level of theory used to gen-

erate the intrinsic reaction coordinate geometries in the hydrogen combustion dataset. The
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bond order, bond order flux, and polarizability profiles were computed with spin-unrestricted

CASSCF16,19 using a (6,6) and (2,2) active space for nitrogen and ethene, respectively. We

used the multi-configurational CASSCF method for the nitrogen and ethane profiles to treat

the large effect of static electron correlation during the bond dissociation processes due to the

near-degeneracy of the singlet and triplet states at large separation. We expect that other

methods that include a dynamic correlation correction, such as CASPT2 or MP2, would not

qualitatively alter the results of the bond dissociation as much as the treatment of static

correlation via a multi-configurational method, such as CAS, compared to single reference

methods.

Table 1: Selected reactions in the kinetic model of hydrogen combustion investigated in this
study. The IRC data developed in Ref. 13,20 were analyzed with the parallel bond-projected
polarizability and bond order and bond flux metrics.

Index Reaction
Substitution
16 H2O2 +H· −−→ H2O+HO·

Oxygen Transfer
1 H· +O2 −−→ HO· +O2·

11 HO ·
2 +H· −−→ 2 ·HO·

12 HO ·
2 +O2· −−→ HO· +O2

Hydrogen Transfer
2 O2· +H2 −−→ HO· +H·

3 H2 +HO· −−→ H2O+H·

4 H2O+O2· −−→ 2 ·HO·

10 HO ·
2 +H· −−→ H2 +O2·

13 HO ·
2 +HO· −−→ H2O+O2

14 2 ·HO ·
2 −−→ H2O2 +O2

17 H2O2 +H· −−→ HO ·
2 +H2

18 H2O2 +O2· −−→ HO ·
2 +HO·

19 H2O2 +HO· −−→ H2O+HO ·
2

In order to imbue the static polarizability with a degree of pair-specificity, we define

a bond-projected polarizability to study the concerted rupture and formation of multiple

bonds.

αAB = (
↔
α · r̂AB) · r̂AB (7)
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where
↔
α is the static polarizability tensor and r̂AB is a unit-length vector in the direction

of the bond of interest. Physically, this quantity is the projection of the induced molecular

dipole in the direction along the bond for a unit applied electric field in its direction. In

this way, the bond projected polarizability captures only the bond-parallel component of

the polarizability tensor. For a linear transition state, the projections in the bond-breaking

and bond-forming directions will be identical and yield identical results to the original, axis-

aligned polarizability metric. By comparing the component of the molecular polarizability

tensor along each bond dissociation or bond association coordinate, we can assess the degree

of non-linearity of the transition state.

Results and Discussion

The hydrogen and oxygen transfer reactions in Table 1 all proceed through a transition

state geometry where the transferred atom is partially bonded to both molecular fragments.

Supplementary Figure 1(a) summarizes the bond-projected polarizability and Mayer and

Wiberg bond indices along the intrinsic reaction coordinate for all 13 hydrogen combustion

reactions summarized in Table 1. In each case, the position at which the polarizability peaks

along the reaction coordinate describes the broken bond transition point, while the Wiberg

and Mayer bond order crossover points are where the slope along the reaction coordinate is

maximized. Hence by taking the derivative of the bond index with respect to the reaction

coordinate, the correspondence of the change in the bond order with the bond-projected po-

larizability becomes even more evident as seen in Supplementary Figure 1(b) for all hydrogen

combustion reactions. In what follows, we discuss 3 of the 13 reactions, each demonstrating

the ability of the bond order and flux to discern unique bond rearrangement cases that are

in excellent agreement with the polarizability metric, while also offering chemical insight.

In the first example, the correspondence between bond order and bond-projected polar-

izability is illustrated via a prototypical σ-to-σ bond rearrangement, representative of most
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reactions in hydrogen combustion, in which one σ-bond is broken and one σ-bond is formed.

The second example is a unique oxygen transfer reaction in which two bond formation steps

occur, corresponding to step-wise σ and π bond formation. The bond-projected polariz-

ability and bond flux capture both bond formation steps. The third example is a similar

oxygen transfer reaction and highlights the sensitivity of the polarizability metric to orthog-

onal contributions unrelated to the bond of interest. This example case contrasts the broad

features of the polarizability with the pair-specific bond flux which reveals a bond activation

contribution hidden in the shoulder of the polarizability peak.

Figure 1: A prototypical example of a σ-to-σ bond transfer reaction. Shown for reaction 2,
a hydrogen transfer reaction. (a) Bond order and (b) bond order flux for the Wiberg (blue)
and Mayer (orange) bond indices plotted alongside the bond projected polarizability (black).
The plots are overlaid and are plotted on separate scales. Solid and broken lines indicate
forming and breaking bonds, respectively.

In Figure 1, the bond order and bond order flux profiles are plotted for hydrogen transfer

reaction 2, in which the hydrogen-hydrogen σ-bond is broken and a hydrogen-oxygen σ-bond

is formed. This σ-to-σ transfer reaction is the simplest non-degenerate bond rearrangement

in hydrogen combustion. The bond-projected polarizability peak correlates with the bond

order crossover point at which the bond order takes a value of one half (Figure 1a). As

expected, the transition state is characterized by equal partitioning of the transferred atom’s

valence, resulting in two partial bonds that span the triplet of atoms. In other words, the

transferred hydrogen is metastable and bonded in equal measure to the other two atoms

at the transition state. As the polarizability indicates the total electron delocalization (i.e.
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across all three atoms), the electron density is maximally delocalized at the transition state.

On the other hand, the bond indices indicate the extent of pairwise electron delocalization

across specific bonds. In this way, the sensitivity of the bond order to structural perturbation

along the IRC (i.e. its first order derivative or bond flux) corresponds to the instability of the

electrons within the bond. The maximum of the bond flux at the transition state indicates

the maximal instability point of the electron delocalization and is in good agreement with

the polarizability (Figure 1b). Hence, the triplet of atoms is maximally polarizable at the

transition state due to the maximal rearrangement of charge and instability of the bond

order due to the active rupture and formation of covalent bonds.

Figure 2: A prototypical example of a reaction revealing two bond formation steps. Shown for
reaction 1, a oxygen transfer reaction. (a) Bond order and (b) bond order flux for the Wiberg
(blue) and Mayer (orange) bond indices plotted alongside the bond projected polarizability
(black). The plots are overlaid and are plotted on separate scales. Solid and broken lines
indicate forming and breaking bonds, respectively.

The reaction 1 oxygen transfer case in Figure 2 shows that two peaks are observed in the

parallel polarizability profile, with the oxygen-oxygen sigma bond forming first, indicated

by the initial rise in the oxygen-oxygen bond order, while the oxygen-hydrogen bond is

relatively undisturbed. Because the oxygen atom is divalent, the O2 σ-bond is able to form

and corresponds to the first polarizability maximum. The second peak in the polarizability is

due to the σ-to-π bond rearrangement, forming a triplet oxygen molecule and a lone hydrogen

atom. The Mayer/Wiberg bond indices correctly capture the bond order of approximately 1.5

for the triplet oxygen molecule due to its pair of two-center three-electron (2c-3e) bonds. This
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step-wise progression is missing from an energetic perspective, since no stable intermediate

is formed at the first peak. The transition state lies on the second peak corresponding to

the σ-to-π bond rearrangement.

Figure 3: A prototypical example of a σ-to-σ and σ-to-π bond transfer reaction. Shown
for reaction 11, a oxygen transfer reaction. (a) Bond order and (b) bond order flux for
the Wiberg (blue) and Mayer (orange) bond indices plotted alongside the bond projected
polarizability (black). The plots are overlaid and are plotted on separate scales. Solid and
broken lines indicate forming and breaking bonds, respectively.

The reaction 11 oxygen transfer in Figure 3 corresponds to a case where the bond flux

finds a step-wise formation of oxygen-oxygen σ- and π-bonds, whereas the parallel polariz-

ability profile is more ill-defined. The bond order profile seems to proceed via a σ-to-σ bond

transfer from the oxygen-oxygen to oxygen-hydrogen bond as seen in Figure 3(a), but unlike

the previous examples which were linear rearrangements, the perpendicular contributions

from other bonds now play a role. This leads to a broadening of the polarizability maximum

and variation between the projection along the breaking and forming bond. The broadness

of the polarizability is explained by a small peak in the bond flux profile along the breaking

oxygen-oxygen bond as seen in Figure 3(b). This increase has little effect on the OH bond

order but manifests as an increase in the oxygen-oxygen bond order. This increase is at-

tributed to the occupied-virtual orbital interaction, or ”charge transfer” interaction, between

the oxygen lone-pair and the newly formed OH anti-bonding orbital. In the reverse reaction,

the increase in bond order is comparable to an activation of the OH bond and is a key feature

of the minimum energy reaction pathway.
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When the OH bond is broken, an oxygen-oxygen bond order of approximately 1.2 forms

in the HOO radical species at equilibrium. To understand this result, we can compare the

oxygen-oxygen bonds in HOO radical to the triplet oxygen molecule. Since the σ-bond

component is constant, the π-bond component of HOO bond order is nearly half of the π-

bond component for the triplet oxygen molecule due to the loss of one of its 2c-3e bonds by

the bonded hydrogen. Additionally, the strength of the oxygen-oxygen bond decreases with

its bond order, evidenced by a 7.7%, or 0.1 angstrom, elongation of the oxygen-oxygen bond

length in HOO compared to O2.

As reported by Hait and M. Head-Gordon, two peaks for σ- and π-bond rupture were

not observed for the diatomic dissociation of the nitrogen molecule, attributed to inadequate

separation of the length scales for the breaking points of the σ- and π-bonds.11 In other

words, the σ- and π-bonds break nearly simultaneously as the two fragments are pulled

apart and not in a step-wise fashion with the π-bonds breaking first and the σ-bond last.

We find this is also the case for the WBI/MBI bond order and bond flux profiles (Figure 4a

and Supplementary Figure 2a). The σ- and π-bonds break simultaneously with an inflection

point at a bond order of half its equilibrium value.

Similar results were found for the bond dissociation of the carbon monoxide triple bond in

Supplementary Figure 3. The equilibrium fractional CO bond order of 2.4 deviates from the

formal bond order of 3 due to its polarity, i.e. the delocalization of electrons in the molecule

is less than an ideal equal sharing of 3 electron pairs. Here, we observe a similar single

dissociation peak in both the Mayer/Wiberg bond flux and bond-projected polarizability as

we saw for N2.

Another purported instance of inadequate length scale separation is the breaking of the

ethene π-bond by rotation (Figure 4b and and Supplementary Figure 2b). In this case,

the polarizability possesses only a small peak due to the small spatial separation of the

radical fragments. However, the bond flux profile predicts a bond breaking point near the

80 degree dihedral rotation. The lack of spatial separation is not an issue for the WBI/MBI
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Figure 4: Nitrogen molecule dissociation and rotation around the ethene double bond. Bond
flux profiles for the Wiberg (WBI) and Mayer (MBI) bond indices, plotted against the
bond-projected polarizability (a) computed with spin-unrestricted CASSCF(6,6)/cc-pVTZ
for nitrogen dissociation and (b) computed with spin-unrestricted CASSCF(2,2)/cc-pVTZ
for rotation around the ethene C=C bond.

and the π-bond breaks as expected due to the lack of p-orbital overlap density, i.e. the

restrictions of atomic orbital symmetry. While the Mayer and Wiberg bond indices have a

close relationship to the polarizability via the total position spread tensor, the bond indices

capture the electronic structure in the space of atomic orbitals rather than real space. This

is a particular advantage in such cases where spatial isolation of the radical fragments is

small.

Stable molecules for more complicated systems have been investigated by others previ-

ously, including those with strong correlation effects during bond breaking, transition metals,

and existence of multiple bond breaking channels. In general we note that the Wiberg/Mayer

bond indices are computable from the 1-RDM independently of the level of theory requiring

only a finite, atom-centered basis set. To illustrate the method for transition metal-carbon

bonds, we have included the bond dissociation profile for a molybdenum-carbon bond in

molybdenum hexacarbonyl in Supplementary Figure 4. We also show reactions beyond the

hydrogen combustion set such as the dissociation of nitrogen tetroxide in Supplementary

Figure 5. In the dissociation, we observe a similar peak in the bond flux and the polariz-
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ability in the direction of the N-N bond. In the compressed bond regime, the bond order

continues to increase as the two nitrogens are forced together. The bond breaking point is

relatively close to the equilibrium bond length indicative of its weak N-N sigma-bond.

Conclusion

In summary, two chemical concepts, the dipole polarizability observable from quantum me-

chanics and the bond flux metric derived as a derivative quantity of bond order indices from

wavefunction analysis, are shown to be directly related quantities for resolving a chemically

intuitive picture of continuous bond rearrangements. We have shown in explicit examples

that the sensitivity of bond order to displacements, i.e. bond flux, is correspondingly max-

imized along with the polarizability. By definition, the covalent bond order is a pairwise

measure of electron delocalization, i.e. it quantifies the number of electrons shared by a

pair of atom centers. Similarly, the close mathematical relationship between the polarizabil-

ity, which is measurable in principle, and the total position spread (TPS) tensor facilitates

its connection to molecular electron delocalization. The TPS is similarly related to the

Mayer/Wiberg indices,2 indicating that polarizability and the bond order flux offer near

equivalence in many bonding scenarios.

Since orbital bond indices are derived from the one-particle reduced density matrix, the

bond indices are computed with negligible additional cost. Additionally, the bond indices

can be computed independent of the level of theory from which the 1-RDM is obtained and

requires no modifications for correlated wavefunctions.7 Orbital-based bond indices also have

additional advantages such as bond specific information and that they are not restricted to

linear dissociative reaction coordinates, as illustrated for rotation around the ethene double

bond.
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Appendix: Exchange Density and Mayer Bond Index

The definition of the exchange density follows from the decomposition of the expectation

value of the pair density operator ρ̂2(r⃗1, r⃗2),

ρ̂2(r⃗1, r⃗2) =
∑
i<j

[δ(r⃗i − r⃗1)δ(r⃗j − r⃗2) + δ(r⃗j − r⃗1)δ(r⃗i − r⃗2)] (8)

where i and j run over individual electrons. Similar to how the expectation of the density

operator, ρ̂(r⃗), yields the probability of finding an electron at a point r⃗, the expectation

of the pair density operator yields the probability of finding an electron at point r⃗1 and

simultaneously another electron at point r⃗2. For a single determinant wave function Ψ built

from orthonormalized spin-orbitals ψi(r⃗, σ) = ϕi(r⃗)γi(σ), we arrive at the following after

expansion:

ρ2(r⃗1, r⃗2) = ⟨Ψ|ρ̂2(r⃗1, r⃗2)|Ψ⟩ =
N∑

i,j=1

(
|ϕi(r⃗1)|2 |ϕj(r⃗2)|2 − ϕ∗

i (r⃗1)ϕj(r⃗1)ϕ
∗
j(r⃗2)ϕi(r⃗2)δγiγj

)
(9)

Since the density ρ(r⃗) =
∑N

i |ϕi(r⃗)|2, the definition of the exchange density is given by

ρ2(r⃗1, r⃗2) =

(
N∑
i=1

|ϕi(r⃗1)|2
)(

N∑
j=1

|ϕj(r⃗2)|2
)

−
N∑

i,j=1

ϕ∗
i (r⃗1)ϕj(r⃗1)ϕ

∗
j(r⃗2)ϕi(r⃗2)

= ρ(r⃗1)ρ(r⃗2)− ρX(r⃗1, r⃗2)

(10)

ρX(r⃗1, r⃗2) =
N∑

i,j=1

ϕ∗
i (r⃗1)ϕj(r⃗1)ϕ

∗
j(r⃗2)ϕi(r⃗2)δγiγj (11)

In this way, the exchange density is the ’correction’ to the product of single particle probabil-

ities due to exchange correlation. These corrections account for the so-called Fermi heap or

Fermi hole, the respective increase or decrease in electron density in the vicinity of another

electron due to exchange symmetry.
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Using the following identities and the definition of exchange density from above,

n =

∫∫
all space

ρX(r⃗1, r⃗2)dr⃗1dr⃗2 Sµν =

∫
χ∗
µ(r⃗)χν(r⃗)dr⃗ Pµν =

N∑
i=1

ciµc
i∗
ν (12)

After the LCAO expansion of each MO, ϕi(r⃗) =
∑

µ c
i
µχµ(r⃗), and integration over r⃗1 and r⃗2,

n =
N∑

i,j=1

m∑
µ,ν,γ,σ=1

(∫
ci∗µ c

j
νχ

∗
µ(r⃗1)χν(r⃗1)dr⃗1

)(∫
cj∗γ c

i
σχ

∗
γ(r⃗2)χσ(r⃗2)dr⃗2

)
δγiγj

=
N∑

i,j=1

m∑
µ,ν,γ,σ=1

ciσc
i∗
µ

(∫
χ∗
µ(r⃗1)χν(r⃗1)dr⃗1

)
cjνc

j∗
γ

(∫
χ∗
γ(r⃗2)χσ(r⃗2)dr⃗2

)
δγiγj

=
N∑

i,j=1

m∑
µ,ν,γ,σ=1

ciσc
i∗
µ Sµνc

j
νc

j∗
γ Sγσδγiγj

=
m∑

ν,σ=1

m∑
µ,γ=1

Pα
σµSµνP

α
νγSγσ + P β

σµSµνP
β
νγSγσ

=
m∑

ν,σ=1

[
(PαS)σν(P

αS)νσ + (PβS)σν(P
βS)νσ

]

(13)

Therefore, the integral of the exchange density is the total of Mayer orbital bond indices.

∫∫
ρX(r⃗1, r⃗2)dr⃗1dr⃗2 =

m∑
ν,σ=1

[
(PαS)σν(P

αS)νσ + (PβS)σν(P
βS)νσ

]
(14)

The quantity inside the summation is the orbital bond index between atomic orbitals, χσ

and χµ. If the orbital-bond index contributions are collected by their corresponding atom

centers, then the Mayer bond index contains the two-body contribution to the integral of

the exchange density. We obtain the total bond order equation.

n =
∑
A,B

∑
µ∈A

∑
ν∈B

[
(PαS)µν(P

αS)νµ + (PβS)µν(P
βS)νµ

]
=

1

2

∑
A

BAA +
∑
A ̸=B

BAB (15)

where A and B index atom centers, µ and ν index atomic orbitals centered on A and B,
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respectively, and the bond order BAB is given by

BAB = 2
∑
µ∈A

∑
ν∈B

[
(PαS)µν(P

αS)νµ + (PβS)µν(P
βS)νµ

]
(16)

The localization and delocalization indices from density-based QTAIM methods are parti-

tioned similarly into a sum over a set of atomic basins, {ΩA}.2

n =

∫∫
all space

ρx(r⃗1, r⃗2)dr⃗1dr⃗2

= 2
∑
A,B

∫∫
ΩA,ΩB

ρx(r⃗1, r⃗2)dr⃗1dr⃗2

=
1

2

∑
A

δ(A,A) +
∑
B ̸=A

δ(A,B)

(17)

where δ(A,B) = 2
∫∫

ΩA,ΩB
ρx(r⃗1, r⃗2)dr⃗1dr⃗2. In this way, the QTAIM delocalization index

(DI) is the two-body contribution to the integral of the exchange density, obtained through

the sixth-order integration over a real space partitioning of the electron density. Formally,

we can see that this can be thought of as the real space analogue of the Mayer bond index.
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