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S U M M A R Y
Convection in Earth’s core can sustain magnetic-Archemedes-Coriolis (MAC) waves through
a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion,
together with the effects of magnetic induction. We develop a quantitative description for
zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The
largest sources at conditions accessible to the dynamo model are due to buoyancy forces and
magnetic induction. However, when these sources are extrapolated to conditions expected in
Earth’s core, the Lorentz force emerges as the dominant generation mechanism. This source
is expected to produce wave velocities of roughly 2 km yr−1 when the internal magnetic field
is characterized by a dimensionless Elsasser number of roughly � ≈ 10 and the root-mean-
square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred
model has a radially varying stratification and a constant (radial) background magnetic field.
It predicts a broad power spectrum for the wave velocity with most power distributed across
periods from 30 to 100 yr.

Key words: Composition and structure of the core; Geomagnetic induction; Rapid time
variations.

1 I N T RO D U C T I O N

Detection of low-frequency magnetic-Archemedes-Coriolis (MAC)
waves in a stratified layer at the top of Earth’s core conveys infor-
mation about deeper processes inside the core. Convection is likely
the main source of wave excitation, either through buoyant parcels
rising into the layer or through electromagnetic disturbances asso-
ciated with the magnetic field in Earth’s core. The amplitude of the
response for a given source depends on the damping of the waves.
Because MAC waves are damped primarily by molecular rather than
turbulent processes (Braginsky 1993), a simple relationship can be
established between the excitation source and the wave amplitude
(Houdek et al. 1999). Wave amplitudes of a few km yr−1 are inferred
from observations at long wavelengths (Buffett 2014), establishing
the required level of excitation and providing valuable insights into
the nature of convection.

Wave generation by turbulent motion is commonly represented
as a stochastic process (Farrell & Ioannou 1993). Realizations of
the stochastic process can be used as an explicit forcing in the
governing equations (e.g. Gillet et al. 2017). Alternatively, the sta-
tistical properties of the excitation source can be related directly to
the statistical properties of the waves. The latter approach is most
tractable in the Fourier transform domain because it is straightfor-
ward to accommodate general descriptions of the excitation source
(Rice 1954). In this study we use numerical dynamo models to de-
velop a statistical description of the excitation sources associated

with convection and magnetic-field generation in the core across the
MAC-wave frequencies. We then use the resulting power spectra to
assess the expected wave amplitudes.

A question that naturally arises in using numerical dynamo mod-
els is whether the numerical models provide an adequate description
of processes in Earth’s core. It is often assumed that the models
capture the relevant dynamics once the fluid motion evolves into a
three-way force balance between magnetic, Archimedes (buoyancy)
and Coriolis forces (Christensen et al. 2010; Yadav et al. 2016).
However, there is no assurance that the amplitudes of the indi-
vidual forces achieve Earth-like values. A recent study of Aubert
et al. (2017) confronts this question by formulating a strategy for
extrapolating numerical solutions to Earth-like conditions while
maintaining the so-called MAC force balance. A surprising out-
come of applying this general approach to the problem of MAC
waves is that the dominant source terms from the dynamo model
have a greatly reduced role once the results are extrapolated to
more realistic conditions for Earth’s core. Instead, the weakest
source term (due to magnetic stresses) emerges as the primary
mechanism for wave generation because it decreases less rapidly
than the other sources over the extrapolation. With reasonable es-
timates for parameters at core conditions, the predicted level of
magnetic stress is sufficient to explain the observed amplitude of
the waves. Thus the detection of MAC waves offers an independent
and unexpected constraint on magnetic-field generation inside the
core.

C© The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1523
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This paper is organized as follows. We begin in Section 2 with a
description of MAC waves generated by a combination of buoyancy
and electromagnetic disturbances. In Section 3 we use a numerical
dynamo model to construct a simple stochastic description of the
source terms. We use this stochastic model in Section 4 to predict the
amplitude of MAC waves. In Section 5 these results are extrapolate
to Earth-like conditions. Section 6 outlines the main conclusions.

2 G E N E R AT I O N O F M A C WAV E S

MAC waves arise from an interplay between magnetic, buoyancy
and Coriolis forces in a region of stable stratification. Convection
and magnetic-field generation in the interior of the core is expected
to serve as the main source for the waves. These waves can be repre-
sented as small perturbations in density, ρ ′, pressure, p, velocity, v,
and magnetic field, b, which are superimposed on background fields,
ρ̄, P̄ , V̄, and B̄. The complete fields are defined by V = V̄ + v, etc.
When the region of stable stratification is thin compared with the
characteristic length scale of the background fields, we can assume
that V̄ · ∇v � v · ∇V̄. Similar approximations are adopted for the
other nonlinear terms. With these assumptions the linearized equa-
tions for v and b become

D̄v

Dt
+ 2� × v = − 1

ρ̄
∇ p + 1

ρ̄μ
B̄ · ∇b + ρ ′

ρ̄
g, (1)

D̄b

Dt
= B̄ · ∇v + η∇2b, (2)

∇ · v = ∇ · b = 0, (3)

where

D̄()

Dt
= ∂()

∂t
+ V̄ · ∇(), (4)

denotes the material derivative associated with the background
flow. Here � is the rotation vector, μ is the magnetic permeability,
g = −gr̂ is the acceleration due to gravity, and η is the magnetic
diffusivity. Adopting a Boussinesq approximation in the comple-
mentary equations for convection (e.g. Jones 2011) means that ρ̄ in
(1) can be replaced with a constant reference density ρ0.

Density variations are necessarily retained in the buoyancy force.
For the wave problem, the density perturbation in (1) arises solely
from motion of fluid parcels through the background density profile.
In an incompressible fluid we require

∂ρ ′

∂t
+ v · ∇ρ̄ = 0, (5)

where the gradient in the background density is primarily in the
radial direction (i.e. ∇ρ̄ ≈ ∂r ρ̄ r̂). Convective fluctuations also con-
tribute to the local density perturbation, but these variations are
treated separately as part of the source term for the waves.

A quantitative description of source mechanism depends on the
details of the background flow. Lighthill (1952) addressed this ques-
tion by writing the governing equations for the complete fields in
terms of the linear (wave) equations from (1) to (3) for a fluid that is
otherwise at rest (V̄ = 0) plus a correction term. For example, the
momentum equation for V in the Boussinesq approximation can be
written as

∂V

∂t
+ 2� × V = − 1

ρ0
∇ P + 1

ρ0μ
B̄ · ∇b + ρ ′

ρ0
g + �, (6)

where � represents the correction term. Both ρ ′ and b should inter-
preted as terms due solely to wave motion (e.g. ρ ′ should obey eq. 5).

In order for (6) to accurately describe the momentum equation for
V we require

� =
(

∂V

∂t
− DV

Dt

)
+

(
ρ

ρ0
− ρ ′

ρ0

)
g + 1

ρ0μ
(B · ∇B − B̄ · ∇b),

(7)

where D/Dt is the conventional material derivative defined in terms
of the complete velocity field. The first term in (7) (denoted �R)
represents the influence of Reynolds stresses

�R = −V · ∇V, (8)

whereas the second term describes the buoyancy force due to con-
vective fluctuations in density

�T =
(

ρ

ρ0
− ρ ′

ρ0

)
g. (9)

The final term in (7) represent the influence of magnetic stresses;
the leading-order term (relative to the small perturbations) is

�M = 1

ρ0μ
B̄ · ∇B̄. (10)

Since inertial effects are expected to be very small in Earth’s core
(Davidson 2013), we focus on the role of buoyancy and magnetic
forces from the underlying convection.

An additional source term emerges from the induction equation
for B. Writing the induction equation for B in terms of the wave
equation plus a correction gives

∂B

∂t
= B̄ · ∇v + η∇2B + �I , (11)

where v denotes the part of the velocity associated with wave mo-
tion. The correction term is

�I =
(

∂B

∂t
− DB

Dt

)
− B · ∇V − B̄ · ∇v, (12)

which can be written to leading order as

�I = ∇ × (V̄ × B̄). (13)

In summary, we focus on three source mechanisms for MAC waves:
buoyancy forces, magnetic (Lorentz) forces and magnetic induction.
We subsequently refer to these threes sources as thermal, magnetic
and induction mechanisms.

An assumption inherent to the approach of Lighthill (1952) is that
the waves do not influence the background flow or magnetic field.
There is support for this approximation in the original application to
sound waves generated by turbulence (Wang et al. 2006). However,
it is reasonable to question the assumption in the context of MAC
waves. One line of support comes from Lecoanet et al. (2015),
which uses numerical models to establish the validity of Lighthill’s
approach for internal waves due to convection in an underlying
region (e.g. Stein 1967). Their assessment of Lighthill’s approach
was based on a comparison of its predictions with fully coupled
solutions for convection and wave generation. A similar test of
MAC waves is not feasible because these waves are over damped at
the conditions accessible to dynamo models. Instead we appeal to
the notion that waves in a thin layer at the top of the core have only
a small influence on the deeper dynamics when the wave motion is
small compared to the interior flow. Current estimates suggest that
the wave motion is about 10 per cent of the large-scale convective
flow (Buffett 2014).
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2.1 Nearly geostrophic MAC waves

Planetary waves in a relatively thin layer ensure that radial motion
is small compared with the horizontal motion (e.g. Pedlosky 1987).
Weak radial accelerations imply a nearly hydrostatic balance. In
addition, we can discard the horizontal component of the rotation
vector in the Coriolis force. The resulting horizontal motion is
described to a first approximation by a geostrophic balance between
the meridional pressure gradient, r−1∂θ P, and the Coriolis force
associated with azimuthal flow (denoted vφ). There is no pressure
gradient in the φ direction for zonal waves, so the Coriolis force
associated with meridional flow, vθ , is balanced by magnetic forces.
Writing these force balances in spherical coordinates (r, θ , φ) gives
(Braginsky 1993)

g(ρ ′/ρ0) + 1

ρ0

∂ P

∂r
= r̂ · (�T + �M ) (14)

2	 cos θ vφ − 1

ρ0r

∂ P

∂θ
= −θ̂ · �M (15)

2	 cos θ vθ − Br

ρ0μ

∂bφ

∂r
= φ̂ · �M , (16)

where we tentatively retain all components of the thermal �T and
magnetic �M sources as forcing terms. The form of the Lorentz
force on the left-hand side of (16) relies on the fact that radial
gradients in the perturbations are large compared with horizontal
gradients and with gradients in the background field. In fact, we
will subsequently assume that Br does not vary across the layer,
so that Br∂ rbr in (16) can be replaced with ∂ r(Brbr); this permits
simplifications in the derivation of a wave equation.

Numerical dynamo models show that φ̂ · �M is the largest com-
ponent of the magnetic forcing term. It also causes the largest dis-
turbance to the fluid layer because the hydrostatic and geostrophic
balances in (14) and (15) dominate the dynamics and are much
less affected by the addition of r̂ · �M and θ̂ · �M (Jaupart &
Buffett 2017). Consequently, we limit our attention to fM ≡ φ̂ · �M

and write the thermal source as fT ≡ r̂ · �T = αT δT̄ g, where δT̄
is the temperature anomaly due to convection and αT is the coeffi-
cient of thermal expansion. For convection driven by compositional
anomalies, δC̄ , we would replace αT δT̄ with αCδC̄ , where αC is the
coefficient of expansion for composition.

Wave motion is most conveniently expressed in terms of the time
dependence of the magnetic perturbation bφ . This component of the
perturbation is governed by

∂bφ

∂t
− η

∂2bφ

∂r 2
− Br

∂vφ

∂r
= φ̂ · �I (17)

where �I is the induction source associated with the background
magnetic field. For the sake of consistency of notation we let f I ≡
φ̂ · �I . A scalar wave equation for bφ is derived by expressing vφ in
terms of the magnetic perturbation in (17). The original treatment by
Braginsky (1993) was restricted to a dipolar background magnetic
field, but the approach can be extended to more general background
fields. We defer the details to Appendix A and give the final form
of the wave equation for bφ , including the forcing terms due to
convection in the core. From Appendix A we have

∂2bφ

∂t2
− η

∂3bφ

∂r 2∂t
−

(
Br N 2

4	2 R2

)
L2

θ

(
Br bφ

ρ0μ

)
= ST + SM + SI (18)

where the operator L2
θ is defined by

L2
θ (·) = 1

cos θ

∂

∂θ

(
1

sin θ

∂

∂θ

(
sin θ (·)
cos θ

))
(19)

and the source terms are

ST =
(

Br gαT

2	R

)
1

cos θ

∂2(δT̄ )

∂θ∂t
≈ −

(
Br gαT

2	R

)
1

cos θ

∂

∂θ
(V̄ · ∇ T̄ )

(20)

SM =
(

Br N 2

4	2 R2

)
L2

θ FM (21)

SI = ∂

∂t
(∇ × V̄ × B̄) · φ̂. (22)

The effects of thermal diffusion have been dropped in (20) because
of the long wavelengths and relatively short periods. The buoyancy
frequency, N, in (18) is defined by

N =
√

− g

ρ̄

∂ρ̄

∂r
(23)

and the quantity FM in the definition of the magnetic source in (21)
is related to fM by

FM (r, θ ) =
∫ r

R
fM (r ′, θ ) dr ′. (24)

(see Appendix A for details). The wave equation in (18) and the
sources in (20)–(22) are the main focus of this study. We use a
dynamo model to characterize the source terms and we integrate
the wave equation numerically using these sources to quantify the
amplitude of MAC waves at the surface of the core.

2.2 Numerical solution for MAC waves

Solutions to (18) are obtained numerically using the finite difference
method. A thin layer at the top of the core is discretized with an
evenly spaced grid in r and x = cos θ . (The choice of x rather than θ

permits some simplifications in the discretization of L2
θ .) The time

dependence is eliminated from the problem by taking the Fourier
transform of (18). We define the Fourier transform by

b̃φ( f, r, x) =
∫ ∞

−∞
bφ(t, r, x)e−2π i f t dt, (25)

where f is the frequency in cycles per unit time. The Fourier trans-
form of the wave equation becomes

−4π 2 f 2b̃φ − 2π i f η
∂2b̃φ

∂r 2
− Br N 2

4	2 R2
L2

x

(
Br b̃φ

ρ0μ

)
= S̃T + S̃M + S̃ I , (26)

where

L2
x (·) =

√
1 − x2

x

∂2

∂x2

(√
1 − x2

x
(·)

)
. (27)

Derivatives in both x and r are evaluated to second-order accuracy
using central differences.

Solutions for b̃φ( f, r, x) are subject to boundary conditions at the
top and bottom of the layer. We expect b̃φ to vanish at the interface
with the insulating mantle (r = R). We also expect b̃φ to vanish
below the magnetic skin depth at the base of the layer. We account
for the skin depth in the solution by retaining a small region of
neutral stratification below the layer. Setting N2 = 0 below the layer
in the absence of forcing yields

η
∂2b̃φ

∂r 2
= 2π i f b̃φ (28)
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which admits solutions

b̃φ(r ) = b̃φ(Rb)e±(1+i)(r−Rb)/δ (29)

where bφ(Rb) is the magnetic perturbation at the base of the stratified
layer (r = Rb) and

δ =
√

η

π f
, (30)

defines the skin depth. Consequently, we include a region of neutral
stratification below the layer with a thickness of several δ, based
on the nominal wave frequency, and set b̃φ = 0 at the base of this
expanded domain. We also impose b̃φ = 0 at the poles (x = ±1) by
incorporating these conditions into the discretization of L2

x .
The discrete form of the unforced wave equation (i.e. S̃ = 0) can

be written as a standard eigenvalue problem for an expanded solu-
tion vector y(t) = [bφ , ∂ tbφ]T. In effect, a second-order differential
equation for bφ is converted into two first-order equations for bφ

and ∂ tbφ . The eigenvalue problem for the waves becomes

(A − 2π i f In) ỹ = 0, (31)

where In is an identify matrix of size n × n (where n is the length
of ỹ) and A has the structure

A =
[

0 In/2

D2
x D2

r

]
. (32)

Here D2
x represents the discretization of L2

x and D2
r defines the

second-order derivative in r. Solutions for the waves are val-
idated using both analytical (Braginsky 1993) and numerical
(Buffett et al. 2016) solutions. Wave frequencies for the case of
a dipolar background magnetic field converge toward the analytical
(diffusion-free) solutions of Braginsky (1993) when the effects of
magnetic diffusion are reduced. Lowering η by a factor of four in the
numerical calculations from our preferred value of η = 0.8 m2 s−1

(Pozzo et al. 2012; Gomi et al. 2016) reproduces the analytical
solution to within 0.1 per cent. Numerical convergence is achieved
with a resolution of 80 × 80 grid points in the x and r coordinates.
(The radial resolution is set by the need to resolve the magnetic skin
depth.) We also reproduce the numerical solution of Buffett et al.
(2016) to within 1 per cent for the case of a constant background
field. These results are notable because the previous numerical solu-
tion retained a full description of the dynamics, including the effects
of local inertia, the horizontal component of the rotation vector, as
well as the θ component of the magnetic induction and the asso-
ciated Lorentz force in the momentum equation. Good agreement
with the current solution means that the approximations introduced
in Section 2.1 are reasonable.

Generation of MAC waves with an imposed source can be repre-
sented by

(A − 2π i f I) ỹ = S̃, (33)

where S̃ = [0, S̃k]T and S̃k represents one or more of the various
source terms in the Fourier domain. Each S̃k( f, r, x) has a known
spatial form. For example, the dynamo model gives estimates for the
x dependence in terms of Legendre functions Pm

l (x). Similarly, the
radial dependence of all source terms in the dynamo model is found
to decrease across the layer and vanishes at the core–mantle bound-
ary (CMB; r = R). For our purposes it suffices to adopt a linear de-
pendence in r, although we revisit this assumption in Section 5. The
frequency dependence is computed by taking a Fourier transform
of the time-dependent output of the dynamo model. Thus we define
the time dependence of the source using Sk(t, r, x) = sk(r, x)hk(t)

and compute the Fourier transform as S̃k( f, r, x) = sk(r, x)h̃( f ).
Setting h̃( f ) = 1 for the source in (33) defines a Green’s function,
G̃k( f, r, x), for the response to a source with a specified spatial
distribution (e.g. sk(r, x)). A general time-dependent response is
obtained by convolution or by multiplication in the Fourier domain.
Consequently, the jth component of the solution vector ỹ is written
as

ỹ j = G̃ j h̃, (34)

where we use G̃ j = (G̃k) j to simplify notation. It follows that

ỹ j ỹ∗
j = G̃ j G̃

∗
j (h̃h̃∗). (35)

For a long time series, the power spectrum of h(t) is approximated
by

Phh ≈ h̃h̃∗

T
, (36)

where T is the duration of the record. As a result the power spectrum
for an individual element of the response is given by (Rice 1954)

Pyy ≈ G̃ j G̃
∗
j Phh . (37)

In other words, we arrive at a statistical description of the response
in terms of the statistical description of the source. When other
quantities of interest (like ṽφ) are linearly related to ỹ by

z̃i = Ci j ỹ j = Ci j G̃ j h̃, (38)

we compute the associated power spectrum using

Pzz = Ci j C
∗
ik G j G

∗
k Phh . (39)

We now seek an estimate for Phh using the output of a dynamo
model.

3 E S T I M AT I O N O F S O U RC E T E R M S

3.1 Numerical dynamo model

We use the dynamo model Calypso (Matsui et al. 2014) to evaluate
the source terms in (20)–(22). The model setup includes a uniform
heat sink in the temperature equation to represent the influence
of conduction down the adiabatic gradient (e.g. Olson et al. 2017).
Stable stratification develops at the top of the core when the volume-
integrated heat sink exceeds the heat flow through the lower (inner-
core) boundary (at r = Ri). This setup is intended to approximate the
effects of a subadiabatic temperature gradient at the CMB (Gubbins
et al. 1982).

The governing equations are written in non-dimensional form
using the diffusion-free scales of Christensen & Aubert (2006). We
adopt the thickness of the fluid shell L = R − Ri as a characteris-
tic length scale and 	−1 as the characteristic timescale. Velocity is
scaled by 	L, the magnetic field is scaled by

√
ρμ	L , and temper-

ature is scaled by the fixed temperature difference 
T between the
top and bottom boundaries. Solutions are specified by the amplitude
of the heat sink Q and by four additional dimensionless parameters:

E = ν

	L2
, Pr = ν

κ
, Pm = ν

η
, Ra∗ = αT g(R)
T

	2 L
(40)

which include the Ekman number, E, the Prandtl number, Pr, the
magnetic Prandtl number, Pm, and a modified Rayleigh number,
Ra∗. Here αT is the coefficient of thermal expansion, g(R) is the
gravitational acceleration at the CMB, ν is the viscosity and κ is
the thermal diffusivity. Both the mantle and inner core (r < Ri)
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Table 1. Numerical solutions used in study.

# E Pm Pr Ra∗ Q Rm � N(	) Source

1 5 × 10−5 0.45 1 0.070 −3.0 × 10−4 84 0.69 0.20 This study
2 10−5 0.20 1 0.032 −1.2 × 10−4 105 0.43 0.14 This study
3 10−5 0.50 1 0.032 −1.2 × 10−4 236 1.89 0.14 This study
4 10−5 0.50 1 0.035 0 228 4.37 0 C&A2006
5 10−5 1.44 1 0.070 0 970 31.0 0 A+2017

Figure 1. Time-averaged radial temperature profile from Calypso dynamo
model (Solution 2). A region of stable stratification develops at the top of
the core when the volume-integrated heat sink in the temperature equation
exceeds the heat flow across the lower boundary.

are assumed to be electrically insulating. An Earth-like geometry is
adopted by setting r = 1.5385 and r = 0.5385 for the dimensionless
radius of the core-mantle and inner-core boundaries.

The source terms are evaluated using several different numerical
solutions (see Table 1). The bulk of the results are computed using
Solution 2 from Table 1. We also consider a lower resolution solution
(higher E) to assess the influence of changing control parameters
away from Earth-like conditions. We also include a third solution
(#3 in Table 1) to illustrate the dependence on Pm. Two important
diagnostics of the solutions include the magnetic Reynolds number,

Rm = Vrms L

η
, (41)

and the Elsasser number

� = B2
rms

ρμ	η
, (42)

which characterize, respectively, the vigor of convection and the
strength of the magnetic field. We also define a dimensionless
strength of stratification in the layer using N/	. Numerical solutions
without a stratified layer are assign a value N/	 = 0.

A uniform heat source of Q = −1.2 × 10−4 in our main nu-
merical solution corresponds to a dimensionless volume-integrated
heat sink of −0.0018. By comparison, the time-averaged heat flow
across the lower boundary is q = −4π R2

i E Pr−1dT/dr = 0.0016.
The imbalance causes a heat flow into the top of the core to satisfy
the time-averaged the energy budget. A positive radial temperature
gradient develops at the CMB, producing a thin region of stable
stratification (see Fig. 1).

The dimensionless temperature gradient at the CMB for Solu-
tion 2 is dT/dr = 0.62, which corresponds to a dimensionless

stratification N/	 = √
Ra∗ dT/dr = 0.14. Values for the other

solutions are listed in Table 1. These values are roughly four to six
times smaller than the value N/	 = 0.84 proposed by Buffett et al.
(2016). On the other hand, the thickness of the layer is greater than
the preferred estimate of 140 km by roughly a factor of two. For
example, the time-averaged temperatures in Solutions 2 and 3 reach
a minimum value at r = 1.41, corresponding to a region of stable
stratification in the top 290 km of the core. Increasing the heat sink
would strengthen the stratification, but it would also increase the
layer thickness. Our choice of model parameters represents a com-
promise for the properties of the stable layer. The consequences of
stronger stratification (relevant for more Earth-like conditions) are
examined in Section 5.

Fig. 2(a) shows buoyant fluid rising from the inner-core boundary
and penetrating into the region of stable stratification. These anoma-
lies account for the generation of MAC waves due to the thermal
source. We also find Lorentz forces permeating into the stratified
layer from the interior of the core (see Fig. 2b). These forces tend to
be symmetric about the equator, although the value on the equator
nearly vanishes. In general, the Lorentz forces are weaker toward the
outer boundary, but they still contribute significantly to the genera-
tion of MAC waves, and may even dominant the generation process
when these sources are extrapolated to Earth-like conditions.

The role of thermal stratification on the generation of magnetic
field is revealed by comparing our higher Pm solution (#3) with a
very similar solution from Christensen & Aubert (2006) (#4). These
solutions have identical E and Pm and similar values for Ra∗ and
Rm. Larger differences are evident in �. Including a heat sink in
solution #3 lowers the value of � by more than a factor of two. Thus
the style of convection can have an important influence on both the
magnetic field and the magnetic source for MAC-wave generation.
Stratification is also expected to reduce the complexity of the ra-
dial magnetic field at the core mantle boundary (e.g. Jaupart &
Buffett 2017).

3.2 Time dependence of sources

MAC waves are not directly detected in the dynamo model because
the accessible parameters causes excessive damping of the waves.
However, we can evaluate the source terms using the expressions
given in (20)–(22). We begin with the case of thermal forcing due
to ST. Fig. 3(a) shows the l = 2 and m = 0 part of −V̄′ · ∇′T̄ ′

as a function of time in the vicinity of the stratified layer. (Here
we use primes to indicate dimensionless fields from the dynamo
model; recall that the bar over V or T denotes a background field.)
Positive and negative temperature fluctuations are largest below the
stratified layer, although many of these fluctuations extend up into
the stratified region. The largest fluctuations begin with a warming
phase (positive source) as hot, buoyant parcels rise into the boundary
region. Warming is followed by cooling (negative source) as the
warm parcels pass through the region and the temperature returns
to the time-averaged value.
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Figure 2. (a) Snapshot of temperature in the equatorial plane from Solution 2. Warm plumes rise from the inner-core boundary and penetrate into base of
stratified layer (dashed line). (b) Snapshot of φ component of Lorentz force, fφ , in a meridional plane. The colour scale is saturated in the interior of the core
to emphasize the structure of fφ in the stratified layer. An opaque mask covers the convecting region of the core.

Figure 3. (a) Thermal fluctuations due to degree 2 part of −V · ∇T in the vicinity of the stratified layer. Positive (negative) sources corresponds to warming
(cooling). (b) Magnetic fluctuations due to degree 3 part of FM reveal low frequency fluctuations inside the stratified layer. Both of these fluctuations contribute
to the generation of MAC waves.
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The source due to the Lorentz force is shown in Fig. 3(b). We
specifically show the l = 3 and m = 0 part of FM, which was defined
in (24) as the radially integrated Lorentz force. The dimensionless
Lorentz force in the dynamo model is

f ′
M (r, x) = φ̂ · (B̄′ · ∇′B̄′) (43)

so

F ′
M (r, x) =

∫ r

R
f ′

M (r, x) dr. (44)

We focus on the l = 3 part of f ′
M and F ′

M because L2
x F ′

M contributes
most to the l = 2 MAC wave (see Appendix B). This makes the out-
come directly comparable to the thermal forcing at l = 2. However,
the relative magnitudes of F ′

M and −V̄′ · ∇′T̄ ′ do not fully convey
the importance of these sources for wave generation because we
need to include the pre-factors in the definitions of SM and ST from
(20) and (21). For example, the pre-factor for the magnetic source,
SM, depends on the strength of stratification, whereas the pre-factor
for ST does not. This does not mean the effects of stratification
are unimportant for the thermal source. Penetration of convective
anomalies into the stratified layer depends strongly on the strength
of stratification and this will have a substantial influence on the
efficiency of the thermal source. Because we consider a range of
parameter values for N and B̄r , we treat the pre-factors separately.
Nevertheless, qualitative differences in the time dependence of the
two sources are evident in Fig. 3, which will affect the frequency of
waves that are generated.

Dimensionless time in the dynamo model is converted to years
by making a particular choice for the rotation rate, 	, in the model.
Using Earth’s rotation rate of 	 = 0.729 × 10−4 s−1 in the numer-
ical calculations gives a root-mean-square (rms) velocity of about
0.037 mm yr−1. This value is about an order of magnitude smaller
than the rms velocity, Vrms = 0.38 mm s−1, inferred from core-
surface flow (Holme 2015). By adjusting the rotation rate in the
model to 	 = 7.383 × 10−4 s−1 we produce an rms velocity that
matches the core-surface flow. An comparable approach relies on
the observed timescale for fluctuations in the potential field outside
the core (Lhuillier et al. 2011; Christensen et al. 2012). It has be-
come customary (e.g. Bouligand et al., 2016) to assume that the
secular variation time, τ sv, is about three times the overturn time
τ u = L/Vrms. In this case the adjusted rotation rate gives τ u = 188 yr
and τ sv = 564 yr, which is not too far from the value τ sv = 415 yr,
inferred from magnetic-field observations by Lhuillier et al. (2011).
It is not our intent to exactly reproduce the time dependence of the
present-day magnetic field. Instead, we seek to adjust the timescale
of the source terms relative to the expected wave periods. A sep-
arate question concerns the amplitude of those fluctuations (see
Section 5).

3.3 Power spectra of sources

Power spectra for the thermal, magnetic and induction sources are
shown in Fig. 4 for several spherical harmonic degrees (l = 2, 3,
4). Each l defines how the source sk(r, x) varies with x. Thermal
and induction sources with l = 2, 3, 4 are primarily responsible for
exciting MAC waves at l = 2, 3, 4, whereas the magnetic force at a
particular l tends to excite waves at a lower degree (e.g. l′ = l − 1).
To facilitate comparisons between the various sources, we report
the results in Fig. 4 according to the primary degree of the ex-
cited waves. Each source is evaluated at the base of the stratified
layer, r = 1.41, using dimensionless quantities from the dynamo
model. These quantities must be converted to physical dimensions

Figure 4. Power spectra for (a) thermal, (b) magnetic and (c) induction
sources computed from Solution 2 as a function of frequency (in cycles
yr−1). Degrees l = 2, 3, 4 refer to the primary degree of the waves generated
by these sources. Even degrees represent waves with symmetric vφ about the
equator. A parameter fit (model) is based on the nominal corner frequency of
the spectra and the standard deviation of the input time-series. A distinction is
made between even and odd waves in the induction sources. Discrepancies
between the model and computed spectra are not significant outside the
frequency range of MAC waves (f = 0.01 to 0.1 cycles yr−1).
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to solve the (dimensional) wave equation in (18). Alternatively, we
could convert the wave equation to dimensionless form and use
the dimensionless sources directly from the dynamo model. Both
approaches are equivalent, and we adopt the second approach here.
However, for the purposes of presentation it is helpful to tabulate
the dimensionless sources from the dynamo model as a function
of time in years. The resulting power spectra computed from these
time series have units yr−1. Use of dimensionless time instead would
simply alter the frequency axis without changing the shape of the
power spectra. In either case we recover the variance of the dimen-
sionless sources in the dynamo model by integrating the spectra
over the relevant frequency.

Power spectra for the thermal and magnetic sources have broadly
similar structure. A useful parametric representation has the general
form

Phh( f ) = 4α3σ 2
hh

(α2 + 4π 2 f 2)2
(45)

where σ hh defines the standard deviation of the source and α speci-
fies the corner frequency in the spectra. This specific form is chosen
to give constant power at low frequency and a f−4 decrease at high
frequency, similar to the frequency spectrum of Gauss coefficients
for the non-dipole field (Bouligand et al. 2016). Taking the inverse
Fourier transform gives the autocovariance function,

Chh(t) = σ 2
hh(1 + |αt |)e−|αt |, (46)

which shows that α is related to the correlation time. Since the corre-
lation drops by a factor e−1 when |αt| = 2.15, we define an effective
correlation time using τ c = 2.15/α. The effective correlation times
for the thermal and magnetic sources are nominally τ c = 9 and
34 yr, respectively.

Systematic differences in σ hh are evident for even and odd l.
The standard deviations for the thermal source at even degrees are
σ hh = 6.3 × 10−5 and 7.8 × 10−5, whereas the odd degree gives
σ hh = 3.2 × 10−5. Similarly the magnetic source has standard de-
viations σ hh = 1.0 × 10−7 and 0.70 × 10−7 at even degrees, and
σ hh = 0.44 × 10−7 at the odd degree. Both the thermal and mag-
netic sources have more power in even degrees, meaning that even
degree waves are preferentially generated (Jaupart & Buffett 2017).
Such waves are associated with symmetric vφ about the equator.
Departures of the odd sources from the model in (45) is not sig-
nificant because we confine our attention to even waves. Similarly,
departures at high frequency are not a concern because we are inter-
ested in waves with frequencies between f = 0.01 to 0.1 cycles yr−1.
Waves at higher frequencies would be difficult to detect at Earth’s
surface due to their short wavelengths.

The spectrum for the induction source (Fig. 4c) is qualitatively
different than either the thermal or magnetic source spectrum. The
computed spectra for l = 2, 3, 4 suggest a distinct functional form
for even and odd l. A useful representation for the even degrees is

Pe
hh = 6π 2α3σ 2

hh f

(α2 + 4π 2 f 2)5/2
, (47)

while the odd degree is described by

Po
hh = 64π 2α3σ 2

hh f 2

(α2 + 4π 2 f 2)3
. (48)

Both spectra share a common corner frequency, α = 0.45 yr−1, cor-
responding to an effective correlation time τ c = 2.15/α = 4.8 yr,
although we note that the covariance functions associated with (47)
and (48) are not the same as that given in (46). Nevertheless, the in-
duction source produces higher frequency fluctuations than either of

the other two sources. Standard deviations for the induction source
are not too different for even and odd l. Even degrees are slightly
larger with σ hh = 2.1 × 10−7 and 2.2 × 10−7 versus σ hh = 1.9 × 10−7

for the odd degree. However, spectra over the relevant frequencies
for MAC waves (f ≈ 0.01 to 0.1 yr−1) are nearly equal. This sug-
gests that even and odd waves should be excited equally by this
mechanism.

4 S T O C H A S T I C F O RC I N G O F M A C
WAV E S

What do the power spectra tell us about the amplitude of the gen-
erated waves? To answer this question we must first to relate the
dimensionless source terms from the dynamo model to the physical
quantities that appear in the wave equation in (18). It is convenient
to write the wave equation in dimensionless form using the charac-
teristic scales from the dynamo model. The resulting wave equation
becomes

∂2b′
φ

∂t2
− Eη

∂3b′
φ

∂r 2∂t
− 1

4
B̄ ′

r N ′ 2

(
L

R

)2

L2
x

(
B̄ ′

r b′
φ

)
= 1

	2B (ST + SM + SI ) (49)

where N′ 2 = N2/	2 is the dimensionless buoyancy frequency and

Eη = η

	L2
(50)

is the magnetic Ekman number. It is important to note that Eη is
evaluated for the waves using realistic physical properties. Taking
η = 0.8 m2 s−1, L = 2.259 × 106 m and 	 = 0.729 × 10−4 gives
Eη = 2.15 × 10−9. On the other hand, the sources ST, SM and SM

on the right-hand side of (49) have been evaluated from a dynamo
model with unrealistic parameters. This difference will affect the
way that we interpret the resulting wave amplitude.

Source terms ST, SM and SI in (49) are still expressed in their di-
mensional form (with units T s−2), although the factor 	2B makes
the overall equation dimensionless. Consequently, our final step is
to express the sources in terms of dimensionless quantities from the
dynamo model. For example, the dimensional temperature fluctua-
tion in the definition of ST can be written as

V̄ · ∇ T̄ = 	
T (V̄ ′ · ∇′T̄ ′). (51)

Substituting (51) into ST from (20) gives

ST

	B = 1

2
B̄ ′

r Ra∗
(

L

R

) √
1 − x2

x

∂

∂x
(V̄′ · ∇′T̄ ′) (52)

which defines the thermal source for the dimensionless wave equa-
tion. The other dimensionless sources are

SM

	2B = 1

4
B̄ ′

r N ′ 2 L2
x F ′

M , (53)

SI

	2B = ∂

∂t ′
[∇′ × (V̄′ × B̄′)

] · φ̂. (54)

Power spectra from the previous section characterize the fluctu-
ations in these dimensionless sources. The sources also depend on
B̄ ′

r and N′, which are treated as adjustable parameters. Two specific
cases are considered. In one case B̄ ′

r is assumed to be a dipole and
N′ is constant across the layer. In the other case we take B̄ ′

r to be
constant over the surface of the core and allow N′ to vary linearly
across the layer with a maximum value at the CMB. Numerical
solutions for the waves are first obtained using Phh = 1 (e.g. h̃ = 1)
and the resulting power spectrum for the waves is multiplied by the

Downloaded from https://academic.oup.com/gji/article-abstract/212/3/1523/4628047
by University of California, Berkeley/LBL user
on 19 January 2018



Stochastic generation of MAC waves 1531

power spectrum of the source from the dynamo model to define
the wave amplitude. A solution for vφ is computed from the induc-
tion equation for bφ by integrating ∂r (B̄rvφ) over radius assuming
that the velocity vanishes at the base of the extended domain (i.e.
including a narrow region below the stratified layer).

Fig. 5 shows the power spectra for vφ at the top of the core in
m2 s−2 yr−1. Striking differences are found for solutions with a
dipolar B̄r and constant N (column 1) versus a constant B̄r and a
linearly varying N (column 2). Consider the solutions for the thermal
source in the first row of Fig. 5. The thermal source for a dipolar field,
B̄r (x) = Bd x , can be represented by a single Legendre function
P1

l (x). Similarly, the spatial structure of the wave is described by a
single Legendre function (also P1

l (x)). Orthogonality of Legendre
functions means that the source at a given l produces a single peak
in the response. The quality factor of these waves increases with
l, so the amplitude of the response initially increases. However, at
high l (and f) the power in the source decreases and the amplitude
of the response decreases accordingly.

The response to thermal forcing in a layer with linearly varying N
and a constant B̄r (column 2) is different for two reasons. First, the
waves and the forcing are no longer represented by a single Legendre
function. As a result, thermal forcing at a single l (corresponding
to the degree of V̄′ · ∇′T̄ ′) excites waves with a range of spatial
patterns. Second, the radial overtones have different frequencies and
quality factors. By contrast, the overtones in a layer with constant N
have the same frequency. This additional complexity in the structure
of the overtones produces a more broadly distributed response.

Magnetic forcing exhibits some important differences from ther-
mal forcing. The spatial structure of the magnetic source is specified
by L2

x F ′
M , which is not characterized by a single Legendre function

(see Appendix B). Even though the waves for a dipolar B̄r are still
represented by a single P1

l (x), the complexity of the source pro-
duces several peaks for a single l in the source term. Moreover, the
amplitude of L2

x F ′
M increases roughly as l(l + 1), which is reflected

in the response at larger l. Eventually, the response at high l and f
decreases because the power in the source drops off sharply with
frequency. A diffuse response is predicted for a constant B̄r and
linearly varying N, as before, but the largest response is predicted
at the largest l.

Magnetic induction produces a response that is broadly similar to
thermal forcing, although the power spectrum for induction source
increases with frequency below about 0.04 cycles yr−1. This ex-
plains the increase in the response with f and l. For the case of a
layer with linearly varying N and constant Br, we continue to see
similarities with thermal forcing, but the response at higher l is
more prominent because of the shape of the power spectrum for this
source.

Integrating the power spectra for vφ over frequency determines
the mean square velocity at the top of the core. We focus on a layer
with linearly varying N and constant B̄r because this case has pre-
viously been used to explain historical variations in the magnetic
field (Buffett et al. 2016). The amplitude of waves inferred from the
observations is a few km yr−1 or about 3 × 10−5 m s−1. By com-
parison, the thermal, magnetic and induction sources produce wave
velocities of 0.34, 0.075 and 5.7 m s−1, respectively, when contribu-
tions from l = 2 to 10 are included. These values are substantially
larger than those inferred from observations. These velocities are
also much larger than those recovered from the dynamo model.
Neither of these results is very surprising. We used a realistic value
for Eη = 2.15 × 10−9 in the wave equation, whereas the value in
the dynamo model is Eη = E/Pm = 5 × 10−5. Adopting the value
from the dynamo model in the wave equation would cause heavy

damping of the waves and reduce the wave amplitudes. We also note
that the fields from the dynamo model greatly exceed the expected
values at core conditions. For example, the dimensionless velocity
can be interpreted as a Rossby number, V/	L ≈ 5 × 10−3, which
would be much lower at realistic conditions. Similar arguments ap-
ply to T̄ ′ and B̄′. Consequently, the sources computed from these
fields are substantially overestimated relative to values expected in
the core. We now turn to the question of what the sources would be
if we could run the dynamo models at realistic conditions.

5 E X T R A P O L AT I O N O F P R E D I C T I O N S
T O C O N D I T I O N S I N T H E C O R E

General trends in the amplitude of the source terms can be assessed
using the results of other dynamo solutions. For example, Solution
1 has higher values for E, Pm and Ra∗, all consistent with less
Earth-like conditions. The source terms from this solution are sys-
tematically higher than those from Solution 2 by nearly a factor of
five. In detail, the ratios of thermal, magnetic and induction sources
are 4.80, 4.88 and 4.75, respectively. This result implies that shift-
ing the model parameters in the other direction toward Earth-like
conditions would produce smaller source terms.

Quantifying the change in the source terms requires an under-
standing of how this change arises. We begin with the thermal source
in (52). When the value for the radial field, B̄ ′

r , is prescribed, we
expect the thermal source to depend on Ra∗, V̄ and ∇ T̄ ′ because the
ratio L/R and derivatives with respect to x are the same for a given
source (say l = 2). The amplitude of the temperature field is con-
strained to lie between 0 and 1, whereas the temperature gradient,
∇ T̄ ′ ≈ T̄ ′/d ′

T , is characterized by a length scale, d ′
T . Consequently,

we predict that the dimensionless thermal source varies as

S′
T ∝ Ra∗ Ro/d ′

T (55)

where the Rossby number, Ro, is used to characterize the amplitude
of the dimensionless velocity.

A similar treatment of the magnetic source suggests a depen-
dence on B̄′ 2 and a length d ′

M , which describes the gradient in the
magnetic field. The parameters B̄ ′

r and N′ are treated as known quan-
tities, which are held fixed during the extrapolation. In this case the
dimensionless magnetic source is expected to vary as

S′
M ∝ �Eη/d ′

M (56)

where we have used the Elssasser number, �, to characterize B̄′ 2.
Finally, the induction source depends on V̄′ and B̄′, as well as a
length scale d ′

I and a time scale τ ′
I = d ′

I /V ′, which is taken to be
an advective timescale. Combining these results gives

S′
I ∝ Ro2�1/2/d ′

I
2
. (57)

Aubert et al. (2017) argue that the length scales in (55)–(57)
(denoted collectively as d⊥) are nearly invariant once the dynamo
solution reaches a MAC force balance with realistic values for Rm
and �. Fixing these length scales allows us to predict the change
in the amplitude of the sources from Solution 2 to Solution 1 using
only the values from Table 1 (with Ro = RmEPm−1). The results can
be compared with direct calculations noted above. According to
(55)–(57) the dimensionless thermal, magnetic and induction
sources increase by 3.79×, 3.56× and 3.82×, respectively. While
these changes are somewhat smaller than the actual change in
the source terms, we might attribute the discrepancy to a modest
change in the length scales. If these length scales cease to change as
much in a magnetostrophic balance when E is reduced, it might be
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Figure 5. Power spectra for predicted wave velocity vφ at the top of the core. Thermal, magnetic and induction sources are considered in rows 1, 2 and
3, respectively. Two different models for the layer properties are adopted in the calculations. Column 1 shows results for a layer with constant stratification
N = 0.84 	 and a dipolar radial field B̄r with a peak amplitude of 0.62 mT. Column 2 shows results for a layer with linearly varying N and a constant radial
field B̄r = 0.62 mT. Even degree forcing l = 2, 4, 6, 8, 10 is responsible for symmetric vφ about the equator. The mean square velocity (in m2 s−2) is obtained
by integrating the power spectra over frequency.

reasonable to assume that these discrepancies will become less im-
portant as Earth-like conditions are approached.

Another test of the prediction is afforded by the results of Solution
3, where only Pm is changed in the input parameters. We observe

a small change in the output for Rm (and hence Ro), whereas a
large change occurs in �. Using the values from Table 1 to scale
the sources, we predict changes of 0.90×, 1.74× and 1.87× in the
thermal, magnetic and induction terms. By comparison, the actual
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change in the sources computed from the dynamo model is 0.97×,
1.51× and 2.90 ×. The largest discrepancy occurs in the induction
source, which is most sensitive to a change in length scale.

We proceed by assuming that changes in the length scales are
small. The resulting proportionalities from (55) to (57) are then
used to extrapolate to Earth-like conditions. A representative state
for the core is defined by setting V̄rms = 0.38 mm s−1 (Holme 2015),
B̄rms = 2.5 to 4 mT (Buffett 2010; Gillet et al. 2010) and 
T = 10
mK (King et al. 2010). These values correspond to dimensionless
parameters Ro = 2 × 10−6, � = 10 to 20 and Ra∗ = 8 × 10−5.
Using � = 10 along with the other estimates for the state of the core
in (55) to (57) suggest that the source terms from Solution 2 should
be reduced by 1.8 × 10−6, 1 × 10−3 and 1 × 10−6 at Earth-like
conditions. It follows that the rms amplitude of waves produced by
thermal, magnetic and induction sources become 6 × 10−7 m s−1,
8 × 10−5 m s−1 and 6 × 10−6 m s−1. The largest wave amplitude
is due to the magnetic source, and it yields an amplitude of roughly
2 km yr−1. This result is remarkably consistent with observations.

Several things could alter the preceding estimates. First, con-
vective temperature anomalies are predicted to become smaller as
conditions become more realistic (Aubert et al. 2017). Such small
anomalies would not penetrate as deeply into the stratified layer
and the source would be confined to the lowermost region of the
stratified layer. As a consequence, we expect a substantial decrease
in the amplitude of the predicted wave due to the thermal source.
This change would make the thermal source even weaker than our
initial estimate. By comparison, magnetic and induction sources
are more likely to penetrate deeply into the layer because of the
influence of horizontal flow inside the layer on the radial magnetic
field. A second consideration concerns the uncertainty in estimates
for �. Numerical models that achieve realistic values for Rm = 103

often produce values for � between 20 and 30 (Aubert et al. 2017),
depending on the nature of the convective forcing (see Solution 5).
Larger values for � (relative to our choice of � = 10) would imply
a larger wave amplitude for both magnetic and induction sources,
although the greatest increase occurs in the magnetic source. Thus
the magnetic source would remain the largest of the three sources.
Allowing for larger � might increase the predicted wave amplitude
by a factor of three larger relative to the value given above. However,
this change is likely within the uncertainty of the extrapolation.

6 C O N C LU S I O N S

We examine the influence of convection and magnetic-field gener-
ation on the excitation of MAC waves in Earth’s core. Three viable
source mechanisms are identified in this study, including the effects
of thermal buoyancy, Lorentz forces and magnetic induction. Each
of these sources is evaluated using a dynamo model and the results
are represented using a simple parametric description of the power
spectrum. All of these source spectra produce unrealistically large
wave velocities when we adopt realistic physical properties in the
wave equation. This inconsistency arises because the source terms
are computed from a dynamo models that necessarily relies on un-
realistic physical properties. When estimates of the source terms are
extrapolated to Earth-like conditions, we find that the Lorentz force
emerges as the primary excitation source. This source is expected to
produce wave velocities of ≈2 km yr−1 when the Elsasser number
is � ≈ 10 and Rm ≈ 103.

Power spectra for the predicted wave velocities depend on the
nature of stratification at the top of the core. A layer with a con-
stant stratification and a dipole magnetic field yields sharply peaked

power spectra at frequencies corresponding to individual MAC
waves and their radial overtones. By comparison, a layer with linear
varying stratification and a constant background magnetic field pro-
duces a broader, more distributed spectrum with most of the power
between periods of 30 and 100 yr. Waves at shorter periods would
have shorter wavelengths and would be more difficult to detect in
magnetic-field variations at Earth’s surface. Much of the difference
in wave behaviour can be attributed to a more complex wave struc-
ture when the strength of stratification varies across the layer. The
absence of sharp peaks in estimates of core-surface flow at periods
below 100 yr (Jackson 1997; Gillet et al. 2009) would seem to ar-
gue against a constant layer stratification and a simple dipolar radial
magnetic field. On the other hand, a more diffuse spectrum associ-
ated with a radially varying stratification and a constant radial field
is compatible with layer properties inferred by fitting MAC waves
to estimates of core-surface flow (Buffett et al. 2016).
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A P P E N D I X A : D E R I VAT I O N O F WAV E
E Q UAT I O N

Braginsky (1993) derived a scalar wave equation for zonal MAC
waves from the nearly geostrophic equations of motion in (14)–(16).
The original treatment was restricted to a dipolar background mag-
netic field, but the approach can be extended to other background
fields. The starting point is the solenoidal condition ∇ · v = 0, which
can be approximated in a thin layer as

∂vr

∂r
+ 1

R sin θ

∂(sin θ vθ )

∂θ
= 0, (A1)

where R is the radius of the CMB. Substituting for vθ from (16) and
integrating over radius yields

vr = −
(

1

2	Rρ0μ

)
1

sin θ

∂

∂θ

(
sin θ Br bφ

cos θ

)

− 1

2	R sin θ

∂

∂θ

(
sin θ FM

cos θ

)
, (A2)

where

FM (r, θ ) =
∫ r

R
fM (r ′, θ ) dr ′ (A3)

and the integration constant is evaluated using the boundary condi-
tions vr = bφ = 0 at r = R.

Eliminating pressure P from (14) and (15) relates the azimuthal
flow vφ to the buoyancy force g ρ ′. Substituting for vφ in the φ

component of the induction in (17) gives

∂bφ

∂t
− η

∂2bφ

∂r 2
=

(
Br

2	R cos θ

) [
∂ f T

∂θ
− 1

ρ0

∂(g ρ ′)
∂θ

]
+ f I , (A4)

where g can be approximated as a constant. Taking the time deriva-
tive of (A4) and substituting for the time derivative of ρ ′ from (5)
gives

∂2bφ

∂t2
− η

∂3bφ

∂r 2∂t
=

(
Br

2	R cos θ

)
∂

∂θ

[
ḟ T − N 2vr

] + ḟ I , (A5)

where ḟ T and ḟ I represent time derivatives of the forcing terms
and

N 2(r, θ ) = − g

ρ0

∂ρ̄

∂r
(A6)

is the squared buoyancy frequency. The final step is to substitute for
vr into (A5) to obtain

∂2bφ

∂t2
− η

∂3bφ

∂r 2∂t
−

(
Br N 2

4	2 R2

)
L2

θ

(
Br bφ

ρ0μ

)
= ST + SM + SI ,

(A7)

where the operator L2
θ is defined in (19) and the source terms ST, SM

and SI are given in (20)–(22). The specific form of (A7) depends on
N2 being independent of colatitude θ . Retaining the θ dependence
would require a straightforward modification of the operator L2

θ .

A P P E N D I X B : S PAT I A L F O R M O F
S O U RC E T E R M S

Expressions for the source terms are dictated by the use of spherical
harmonic expansions in the dynamo model. For example, the ther-
mal source involves V̄′ · ∇′T̄ ′, which can be expanded in Legendre
polynomials, P0

l (x), as

V̄′ · ∇′T̄ ′ =
∑

l

sl (r, t)P0
l (x), (B1)

where sl(r, t) is the known amplitude from the dynamo model. We
confine our attention to Legendre functions with m = 0 because the
waves are zonal. Substituting (B1) into the definition of the thermal
source in (52) defines the dependence on x as

B ′
r (x)

√
1 − x2

x

∂

∂x
(V̄′ · ∇′T̄ ′) = B̄ ′

r (x) sl (r, t)

(
P1

l (x)

x

)
. (B2)

This source is well defined for even l (and hence symmetric waves),
but it exhibits a singularity at the equator x = 0 for odd l. This
singularity arises because the Coriolis force vanishes at the equator.
Adopting a dipole radial magnetic field, B̄ ′

r (x) = Bd x , eliminates
this singularity because the Lorentz force vanishes together with
the Coriolis force at the equator (see eq. 16). Apart from this rather
special case, the magnetic perturbation bφ must vanish at the equa-
tor. This outcome is borne out by numerical solutions of the wave
equation. Consequently, the singularity in the source corresponds
to a node in the waves; the projection of the source onto the wave
leads to a well-defined response.

Another point of elaboration arises in the description of the mag-
netic source. The Lorentz force in the dynamo model is represented
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by a toroidal vector field

f ′
M (r, x, t) = φ̂ · (B̄′ · ∇′B̄′)

= −
∑

l

tl
r
∂θ P0

l (cos θ ) ≈
∑

l

tl (r, t)

R
P1

l (x), (B3)

where tl(r, t) are the toroidal coefficients. Integrating f ′
M over r to

define F ′
M retains the same spatial dependence on P1

l (x), so the
magnetic source term in the wave equation is specified by L2

x P1
l (x).

Odd values for l in f ′
M and F ′

M produce symmetric forces and
symmetric zonal flow (defined by vφ). Evidence for this symmetry in
f ′

M within the stratified layer is seen in Fig. 2(b), particularly at low
latitudes. Fig. 2(b) also shows that the Lorentz force is quite weak
on the equator. However, P1

l (x) for an odd l does not vanish on the
equator. Instead, a superposition of several harmonic components
is needed to create a weak Lorentz force at the equator. A more
convenient choice of basis functions for the source term is defined
by writing f ′

M as

f ′
M (r, x, t) ≈

∑
l

tl (r, t)

R

[
P1

l (x) − P1
l (0)

] +
∑

l

tl (r, t)

R
P1

l (0).

(B4)

Each term in the first summation now vanishes at the equator, while
the second sum of terms is independent of x. Any non-zero value for
f ′

M at the equator is accommodated by the constant term, which does
not effectively excite waves. Consequently, we define the spatial
structure of the magnetic source using L2

x [P1
l (x) − P1

l (0)]. Fig. B1

Figure B1. Thermal (l = 4) and magnetic (l = 5) sources as a function of
x = cos θ . The amplitudes are normalized to facilitate comparison. Both
sources are primarily responsible for generating l = 4 waves.

shows the spatial structure of the magnetic source at l = 5 and the
thermal source at l = 4 for the case of a constant background field.
Similarities between these sources suggests that both are capable of
exciting l = 4 waves.
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