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A B S T R A C T   

During late childhood behavioral changes, such as increased risk-taking and emotional reactivity, have been 
associated with the maturation of cortico-cortico and cortico-subcortical circuits. Understanding microstructural 
changes in both white matter and subcortical regions may aid our understanding of how individual differences in 
these behaviors emerge. Restriction spectrum imaging (RSI) is a framework for modelling diffusion-weighted 
imaging that decomposes the diffusion signal from a voxel into hindered, restricted, and free compartments. 
This yields greater specificity than conventional methods of characterizing diffusion. Using RSI, we quantified 
voxelwise restricted diffusion across the brain and measured age associations in a large sample (n = 8086) from 
the Adolescent Brain and Cognitive Development (ABCD) study aged 9–14 years. Older participants showed a 
higher restricted signal fraction across the brain, with the largest associations in subcortical regions, particularly 
the basal ganglia and ventral diencephalon. Importantly, age associations varied with respect to the cytoarchi
tecture within white matter fiber tracts and subcortical structures, for example age associations differed across 
thalamic nuclei. This suggests that age-related changes may map onto specific cell populations or circuits and 
highlights the utility of voxelwise compared to ROI-wise analyses. Future analyses will aim to understand the 
relevance of this microstructural developmental for behavioral outcomes.   

1. Introduction 

Brain development during childhood and adolescence is associated 
with distributed structural alterations in both gray matter (GM) and 
white matter (WM) that occur concurrently with cognitive and behav
ioral development. WM tracts connect distributed neural networks 
across cortical and subcortical structures that are essential for a multi
tude of cognitive functions that continue to develop into late childhood 
(Baron Nelson et al., 2019; Peters et al., 2012; Simmonds et al., 2014). 
Alterations in reward and affective processing are particularly pertinent 

during adolescence (Casey et al., 2008) and are hypothesized to be 
underpinned by cortico-subcortical circuitry (Casey et al., 2016). The 
precise quantification of the microstructural changes during typical 
development may provide important information for understanding 
individual differences in cognition and the emergence of increased 
emotional reactivity and risk-taking in this period. Diffusion tensor 
imaging (DTI) has frequently been used to probe microstructural 
changes in the brain. Previous studies have shown increases in fractional 
anisotropy (FA) and decreases in mean diffusivity (MD) throughout the 
brain across childhood and into young adulthood, with variability in the 
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trajectory of microstructural development across different brain regions 
(for review see Lebel & Deoni, 2018). Many studies have measured 
developmental changes in DTI metrics within WM (Krogsrud et al., 
2016a; Lebel and Beaulieu, 2011; Pohl et al., 2016), but fewer studies 
have explored DTI changes in deep gray matter structures, in part due to 
the inadequacies of DTI for studying complex cytoarchitecture and the 
lower signal-to-noise ratio (SNR) when estimating FA in particular 
(Farrell et al., 2007). Despite this, in one study, increases in FA from 5 to 
30 years appeared to be larger in subcortical regions compared to the 
WM tracts (Lebel et al., 2008). 

The diffusion tensor model only allows the expression of a single 
principal direction of diffusion and is unable to adequately represent 
mixtures of neurite orientations within a voxel. Recent advances in 
diffusion data acquisition, including multiple b-value acquisitions and 
high angular resolution diffusion imaging (HARDI), have enabled more 
complex models of tissue microstructure, taking into account multiple 
tissue compartments, multiple fiber populations in WM and orientated 
structure of neurites (axons and dendrites) within GM and WM. Re
striction spectrum imaging (RSI; Brunsing et al., 2017; White et al., 
2013a, 2013b, 2014) uses multiple b-value HARDI data to model the 
diffusion-weighted signal as emanating from multiple tissue compart
ments, reflecting free, hindered and restricted water, with different 
intrinsic diffusion properties. The hindered compartment is thought to 
primarily represent extracellular space although may also describe 
diffusion within intracellular spaces with dimensions larger than the 
diffusion length scale (typically, ~10 µm, for the diffusion sequences 
used in human imaging studies). The restricted compartment is thought 
to primarily represent intracellular space, within cells or processes of 
dimensions smaller than the diffusion length scale. Free water diffusion 
primarily represents cerebrospinal fluid (CSF) or intravascular spaces. 
Within each voxel, RSI models the diffusion signal as a linear mixture of 
these different compartments. Spherical deconvolution (SD) is used to 
reconstruct the fiber orientation distribution (FOD) in each voxel for 
each compartment. 

Using RSI, we can quantify the relative proportion of restricted, 
hindered and free water diffusion within each voxel of the brain. The 
signal fraction for each compartment is normalized by total diffusion 

signal across all compartments (restricted normalized total signal frac
tion, RNT; hindered normalized total signal fraction, HNT; free 
normalized total signal fraction, FNT2). Moreover, from the spherical 
harmonic coefficients (SH) from the RSI model, we can estimate the 
signal fraction of restricted normalized directional (anisotropic) diffu
sion (RND) and restricted normalized isotropic diffusion (RNI). By 
dividing RND by RNT we can additionally estimate the relative pro
portion of directional to isotropic diffusion specifically within the 
restricted compartment (restricted directional fraction; RDF), and how 
this changes with age. There are several developmental processes that 
can modulate the relative proportion of restricted to hindered diffusion 
within a voxel (see Table 1). For example, myelination increases RNT 
relative to HNT by both decreasing the extracellular space and 
decreasing the exchange of water molecules across the axonal mem
brane. Dendritic sprouting, arborization and increases in neurite density 
can also increase the RNT by decreasing the proportion of extracellular 
space within a voxel. The relative size and shape of restricted com
partments will then differentially modulate isotropic and anisotropic 
diffusion. 

RSI has been used in several different applications (Carper et al., 
2017; Loi et al., 2016; Reas et al., 2017, 2020), but has not previously 
been used to study developmental changes in late childhood. However, 
similar multi-compartment models, such as neurite orientation disper
sion and density imaging (NODDI), have been shown to be more sensi
tive to developmental changes than DTI metrics (Genc et al., 2017a). 
Neurite density index (NDI), from the NODDI model, which reflects the 
intracellular volume fraction, was positively associated with age across 
all WM tracts in several recent studies (Geeraert et al., 2019; Genc et al., 
2017a; Lynch et al., 2020; Mah et al., 2017). However, the orientation 
dispersion index (ODI), a measure of the degree of dispersion of intra
cellular diffusion, showed no age associations, suggesting that WM 
development across childhood and adolescence is not associated with 
changes in neurite coherence (Genc et al., 2017a; Lynch et al., 2020). 
Increases in the intracellular volume fraction from the NODDI model 
have also been shown to significantly increase with age from 8 to 13 
years in subcortical regions. These results suggest that age related in
creases in restricted diffusion measured with more sensitive 

Table 1 
Outline of how different developmental cellular processes can modulate both the hindered and restricted signal fractions.  

Developmental processes Effect on diffusion Hindered normalized 
total signal fraction 
(HNT) 

Restricted normalized 
total signal fraction 
(RNT) 

Myelination Reduces volume of extracellular space 
Reduces permeability of axonal membranes, resulting in less exchange of 
water molecules between intracellular and extracellular spaces 

Decrease Increase 

Increase in neurite diameter with 
constant neurite density 

Diameter of neurites will not exceed typical diffusion length scale, therefore 
will not alter the magnitude of the measured water displacement, but will 
reduce the volume of extracellular space 

Decrease Increase 

Dendritic sprouting Arborization will reduce the volume of the extracellular space Decrease Increase 
Increase in cell body size with constant 

cell density (<<typical diffusion 
length scale) 

Reduces volume of extracellular space, therefore increasing the restricted 
signal fraction, but will not alter the magnitude of the measured water 
displacement 

Decrease Increase 

Increase in cell body size with constant 
cell density (>>typical diffusion 
length scale) 

Restricted signal fraction will increase until > >typical diffusion length 
scale. Beyond this diffusion will appear hindered 

Increase Decrease 

Increase in number of mature 
astrocytes, with spongiform 
morphologies 

Mature astrocytes have greater permeability relative to neurons causing 
greater exchange of water molecules between intracellular and extracellular 
spaces resulting in less restricted diffusion 

Increase Decrease 

Recruitment/Activation of microglia Activated microglia show reduced elongated processes that become thicker, 
increased cell body size (~8 µm), and greater clustering together. This 
reduces the volume of the extracellular space. 

Decrease Increase  

2 The free normalized total signal fraction (FNT) is equivalent to the free 
normalized isotropic signal fraction (FNI) from Release 4.0 of the ABCD Study. 
These are equivalent because there is no directional component to the free 
water compartment, but was renamed here for consistency with RNT and HNT. 
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multi-compartment models are apparent in both WM and deep GM. 
Although NODDI is a useful model for describing intracellular diffusion, 
NDI is limited in that it represents a measure of the total intracellular 
volume fraction; in contrast, RSI can delineate isotropic and anisotropic 
diffusion within the restricted compartment. For example, in voxels with 
crossing fibers that are oriented perpendicular to one another, ODI will 
be estimated to be very high, whereas RND will provide a more accurate 
estimation of the anisotropy of the two coherent crossing fibers. RSI 
therefore provides differential information about intracellular diffusion 
within each voxel compared to previously explored multi-compartment 
models. 

In the current study, we have used longitudinal data across two time 
points to estimate age-related changes in tissue microstructure in WM 
and subcortical regions. We have used data from Release 4.0 of the 
Adolescent Brain and Cognitive Development (ABCD) Study to measure 
whole-brain voxelwise age associations with the xtotal restricted, hin
dered and free water signal fractions, as well as the restricted isotropic 
and anisotropic signal fractions from the RSI model. The large sample 
size (n = 8086) and small age range at each time point (9–11 years at 
baseline; 11–14 years at follow-up) provides high precision to delineate 
microstructural changes with age across the brain. Many developmental 
processes that increase with age, such as myelination, increase in neurite 
diameter and increase in dendritic sprouting, would increase the 
restricted signal fraction (Table 1), therefore we expect to find positive 
correlations between age and RNT and negative correlations between 
age and HNT across both WM and deep gray matter. 

2. Methods 

2.1. Sample 

The ABCD study is a longitudinal study across 21 data acquisition 
sites following 11,880 children starting at 9–11 years. This paper uses 
baseline and two-year follow up (FU) data from the NIMH Data Archive 
ABCD Collection Release 4.0 (DOI: 10.15154/1523041). The ABCD 
cohort is epidemiologically informed (Garavan et al., 2018), including 
participants from demographically diverse backgrounds, and has an 
embedded twin cohort and many siblings. Exclusion criteria for partic
ipation in the ABCD Study were limited to: 1) lack of English proficiency 
in the child; 2) the presence of severe sensory, neurological, medical or 
intellectual limitations that would inhibit the child’s ability to comply 
with the protocol; 3) an inability to complete an MRI scan at baseline. 
The study protocols are approved by the University of California, San 
Diego Institutional Review Board. Parent/caregiver permission and 
child assent were obtained from each participant. 

All statistical analyses included 14,043 observations with 8086 
unique subjects, such that 5957 participants had data at two time points. 
Participants were aged from 107 to 166 months (8.9–13.8 years). Ob
servations were included in the final sample if the participant had 
complete data across sociodemographic factors (household income, 
highest parental education, ethnicity), available genetic data (to provide 
ancestry information using the top 10 principal components), available 
imaging data that passed all inclusion criteria and available information 
regarding acquisition scanner ID and software version. In the ABCD 
Study, Release 4.0, there are 19,658 available scans with scanner in
formation (12% missingness). Of these scans, 2655 were excluded for 
not meeting the recommended imaging inclusion criteria outlined in the 
Release 4.0 release notes and Supplementary Table 1 (imaging scans 
were included if: imgincl_dmri_include==1 & imgincl_t1w_include==1 
& mrif_score<3), and an additional 90 observations were excluded for 
poor registration defined below (in Atlas Registration). The final sample 
included all remaining observations that had complete data for the 
previously listed information. Table 2 shows the demographics of the 
final sample used for statistical analysis stratified by time-point. Par
ticipants who had completed their 2-year FU in Release 4.0 were more 
likely to have higher household income and have male assigned as their 

sex at birth. This may reflect differences in recruitment procedures over 
the course of recruitment in order to ensure the final sample reflected 
the demographics of the US population as closely as possible. 

2.2. MRI acquisition 

The ABCD MRI data were collected across 21 research sites using 
Siemens Prisma, GE 750 and Philips Achieva and Ingenia 3 T scanners. 
Scanning protocols were harmonized across sites. Full details of struc
tural and diffusion imaging acquisition protocols used in the ABCD study 
have been described previously (Casey et al., 2018; Hagler et al., 2019) 
so only a short overview is given here. dMRI data were acquired in the 
axial plane at 1.7 mm isotropic resolution with multiband acceleration 
factor 3. Diffusion-weighted images were collected with seven b= 0 
s/mm2 frames and 96 non-collinear gradient directions, with 6 di
rections at b= 500 s/mm2, 15 directions at b= 1000 s/mm2, 15 di
rections at b= 2000 s/mm2, and 60 directions at b= 3000 s/mm2. 
T1-weighted images were acquired using a 3D magnetization-prepared 
rapid acquisition gradient echo (MPRAGE) scan with 1 mm isotropic 
resolution and no multiband acceleration. 3D T2-weighted fast spin echo 
with variable flip angle scans were acquired at 1 mm isotropic resolution 
with no multiband acceleration. 

2.3. Image processing 

The processing steps for diffusion and structural MR data are out
lined in detail in Hagler et al. (2019). Briefly, dMRI data were corrected 
for eddy current distortion using a diffusion gradient model-based 
approach (Zhuang et al., 2006). To correct images for head motion, 
we rigid-body-registered each frame to the corresponding volume syn
thesized from a robust tensor fit, accounting for image contrast variation 
between frames. Dark slices caused by abrupt head motion were 

Table 2 
Demographics of the sample.   

Baseline 2 Year FU p 

n 8086 5957   
interview_age (months), mean (SD) 119.21 (7.52) 143.22 (7.76)  < 0.001 
sex ¼ M, n (%) 4158 (51.4) 3203 (53.8)  0.006 
household.income, n (%)    < 0.001 

[< 50 K] 2215 (27.4) 1381 (23.2)   
[> =50 K & < 100 K] 2311 (28.6) 1687 (28.3)   
[> =100 K] 3560 (44.0) 2889 (48.5)   

high.educ, n (%)    0.461 
< HS Diploma 291 (3.6) 215 (3.6)   
HS Diploma/GED 599 (7.4) 462 (7.8)   
Some College 2029 (25.1) 1421 (23.9)   
Bachelor 2197 (27.2) 1612 (27.1)   
Post Graduate Degree 2970 (36.7) 2247 (37.7)   

race.4level, n (%)    0.366 
White 5460 (68.2) 4094 (69.3)   
Black 1042 (13.0) 714 (12.1)   
Asian 171 (2.1) 119 (2.0)   
Other/Mixed 1330 (16.6) 978 (16.6)   

ethnicity, n (%)    0.269 
hisp = Yes (%) 1583 (19.6) 1121 (18.8)   

rel_group_id (twin status), n (%)    0.847 
Singleton (1) 7433 (91.9) 5464 (91.7)   
Twin (2) 643 (8.0) 484 (8.1)   
Triplet (3) 10 (0.1) 9 (0.2)   

Demographic data a shown for age in months (mean, (SD)), sex at birth, 
household income, parental education, self-declared race, endorsement of His
panic ethnicity and self-declared twin/triplet status (n, (%)). These factors are 
stratified by time point: baseline and 2-year FU. There were significant differ
ences in income and sex at birth for those who had 2-year FU data in Release 4.0 
indicative of differences in the demographics of participants as they were 
recruited. Participants recruited earlier in the study were more likely to have 
higher household income and be born male. All of these variables are controlled 
for in all statistical analyses to account for this. Variable names from the tabu
lated data release are included in the table for replication. 
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replaced with values synthesized from the robust tensor fit, and the 
diffusion gradient matrix was adjusted for head rotation (Hagler et al., 
2009, 2019). Spatial and intensity distortions caused by B0 field in
homogeneity were corrected using FSL’s topup (Andersson et al., 2003) 
and gradient nonlinearity distortions were corrected for each frame 
(Jovicich et al., 2006). The dMRI data were registered to T1w structural 
images using mutual information (Wells et al., 1996) after coarse 
pre-alignment via within-modality registration to atlas brains. dMRI 
data were then resampled to 1.7 mm isotropic resolution, equal to the 
dMRI acquisition resolution. 

T1w and T2w structural images were corrected for gradient nonlin
earity distortions using scanner-specific, nonlinear transformations 
provided by MRI scanner manufacturers (Jovicich et al., 2006; Wald 
et al., 2001) and T2w images are registered to T1w images using mutual 
information (Wells et al., 1996). Intensity inhomogeneity correction was 
performed by applying smoothly varying, estimated B1-bias field 
(Hagler et al., 2019). Images were rigidly registered and resampled into 
alignment with a pre-existing, in-house, averaged, reference brain with 
1.0 mm isotropic resolution (Hagler et al., 2019). 

2.4. Microstructural models 

2.4.1. Restriction spectrum imaging (RSI) 
The RSI model was fit to the diffusion data to model the diffusion 

properties of the cerebral tissue (White et al., 2014, 2013a). RSI esti
mates the relative fraction that separable pools of water within a tissue 
contribute to the diffusion signal, based on their intrinsic diffusion 
characteristics. Free water (e.g., CSF) is defined by unimpeded water 
diffusion. Hindered diffusion follows a Gaussian displacement pattern 
characterised by the presence of neurites, glia, and other cells. This in
cludes water both within the extracellular matrix and certain intracel
lular spaces with dimensions larger than the diffusion length scale 
(typically, ~10 µm, for the diffusion sequences used in human imaging 
studies (White et al., 2013a)). Restricted diffusion describes water 
within intracellular spaces confined by cell membranes and follows a 
non-Gaussian pattern of displacement. Imaging scan parameters deter
mine the sensitivity of the diffusion signal to diffusion within these 
separable pools. At intermediate b-values (b=500–2500 s/mm2), the 
signal is sensitive to both hindered and restricted diffusion; whereas, at 
high b-values (b≥3000 s/mm2), the signal is primarily sensitive to 
restricted diffusion. The hindered and restricted compartments are 
modeled as fourth order spherical harmonic (SH) functions and the free 
water compartment is modelled using zeroth order SH functions. The 
axial diffusivity (AD) is held constant, with a value of 1 × 10-3 mm2/s for 
the restricted and hindered compartments. For the restricted compart
ment, the radial diffusivity (RD) is fixed to 0 mm2/s. For the hindered 
compartment, RD is fixed to 0.9 × 10-3 mm2/s. For the free water 
compartment the isotropic diffusivity is fixed to 3 × 10-3 mm2/s. 
Theoretically, any increases in the tortuosity of the hindered compart
ment, for example due to a decrease in the volume of the extracellular 
space, will decrease the effective diffusivity in the hindered compart
ment; however, in our model we are assuming the hindered diffusivity is 
constant. Spherical deconvolution (SD) is used to reconstruct the fiber 
orientation distribution (FOD) in each voxel from the restricted 
compartment. The restricted directional measure, RND, is the norm of 
the SH coefficients for the second and fourth order SH coefficients 
(divided by the norm of all the coefficients across the restricted, hin
dered, and free water compartments). This models oriented diffusion 
emanating from multiple directions within a voxel. The restricted 
isotropic measure, RNI, refers to the spherical mean of the FOD across all 
orientations (zeroth order SH divided by the norm of all the coefficients 
across the restricted, hindered, and free water compartments). The sum 
of these measures is the restricted normalized total signal fraction, RNT. 

In this study we explore associations between age and the rotation- 
invariant features of the restricted compartment FOD. For a detailed 
description of the derivation of the RSI model see (White et al., 2013a, 

2013b). We extracted a measure of the restricted isotropic and restricted 
anisotropic diffusion signal. Within each voxel the total diffusion signal, 
S, can be represented as 

S =
∑

βflmYflm  

where Yflm is a SH basis function of order l and degree m of the FOD 
corresponding to the fth compartment, and βflm are the corresponding 
SH coefficients. The total restricted normalized signal fraction (RNT), 
normalized by all compartments, is defined as follows: 

RNT =
||βfRES ,l,m||2

||βflm||2 

The total hindered normalized signal fraction (HNT), normalized by 
all compartments, is defined as follows: 

HNT =
||βfHIND ,l,m||2

||βflm||2 

The total free water normalized signal fraction (FNT), normalized by 
all compartments, is defined as follows: 

FNT =
||βfFREE ,l,m||2

||βflm||2 

The measure of the restricted normalized isotropic signal fraction is 
given by the coefficient of the zeroth order SH coefficient, βfRES ,l=0,m=0, 
where fRES is the restricted compartment, normalized by the Euclidian 
norm of all βflm and termed RNI: 

RNI =
||βfRES ,l=0,m=0||2

||βflm||2 

The measure of the restricted normalized directional signal fraction 
is given by the norm of βfRES ,l>0,m, where l > 0, and fRES is the restricted 
compartment, and is termed RND: 

RND =
||βfRES ,l>0,m||2

||βflm||2 

These normalized RSI measures are unitless and range from 0 to 1. 
Given that RNI and RND are both normalized by the SH coefficient 
across all compartments, changes in the overall restricted or hindered 
signal fractions can modulate both of these measures similarly. To 
determine the relative contribution of isotropic to anisotropic diffusion 
solely within the restricted compartment we estimated the proportion of 
RND over RNT, termed RDF. 

RDF =
RND
RNT 

The magnitude of diffusion that we are sensitive to is dependent on 
the diffusion scan parameters. Typical diffusion times used in clinical 
DWI scans are approximately 10–50 ms corresponding to average mo
lecular displacements on the order of 10 µm (Mukherjee et al., 2008). 
Any water displacements smaller than this scale would not result in 
detectable dephasing, regardless of b-value, therefore would not lead to 
changes in the measured diffusion coefficient. However, changes in cell 
size < ~10 µm could alter the relative signal fractions of hindered and 
restricted diffusion in a voxel. Diffusion estimated in these compart
ments is also dependent on the permeability of cellular membranes; 
greater exchange across intracellular and extracellular space will mean 
that diffusion will appear more hindered rather than restricted. Table 1 
outlines the expected changes to the hindered and restricted signal 
fractions following example microstructural developmental processes. 

2.4.2. Diffusion tensor imaging (DTI) 
The diffusion tensor model (Basser et al., 1994; Basser and Pierpaoli, 

1996) was used to calculate fractional anisotropy (FA) and mean 

C.E. Palmer et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 53 (2022) 101044

5

diffusivity (MD). Diffusion tensor parameters were calculated using a 
standard, linear estimation approach with log-transformed dif
fusion-weighted (DW) signals (Basser et al., 1994). Tensor matrices were 
diagonalized using singular value decomposition, obtaining three ei
genvectors and three corresponding eigenvalues. FA and MD were 
calculated from the eigenvalues (Basser and Pierpaoli, 1996). 

2.5. Atlas registration 

To allow for voxelwise analysis, subjects’ imaging data were aligned 
using a multimodal nonlinear elastic registration algorithm. At the end 
of the preprocessing steps outlined in Image Processing and described in 
detail in Hagler et al. (2019), subjects’ structural images and diffusion 
parameter maps were aligned to an ABCD-specific atlas, using a custom 
diffeomorphic registration method (Holland and Dale, 2011). The 
ABCD-specific atlas was constructed from n = 17,636 ABCD participants 
aged 9–14 years using an iterative procedure, consisting of an initial 
affine registration, followed by a multi-scale, multi-channel elastic dif
feomorphic registration. Eleven input channels were used for the 
multimodal registration: 3D T1, zeroth and second order SH coefficients 

from the restricted FOD, zeroth order SH coefficient from the hindered 
and free water FODs, WM and grey matter segmentations. After each 
iteration, morphed volumes for each subject were averaged to create an 
updated atlas, and then the process was repeated until convergence. 
Participants with poor registration to atlas were excluded from the 
average and subsequent statistical analyses. Poor registration was 
defined as a mean voxelwise correlation to atlas across channels < 0.8 
(see Sample for number excluded). 

2.6. Labelling regions of interest (ROI) 

Major WM tracts were labelled using AtlasTrack, a probabilistic 
atlas-based method for automated segmentation of WM fiber tracts 
(Hagler et al., 2009, 2019). Unilateral binary masks for each ROI (except 
the CC, Fmaj and Fmin which are interhemispheric) were created by 
thresholding at 0.9 probability across the ROI meaning that in a given 
voxel at least 90% of participants showed that ROI label. A list of WM 
tract ROIs used in this study is listed in Supplementary Table 2. 
Subcortical structures were labeled using the Freesurfer 5.3 segmenta
tion (Fischl et al., 2002). Subjects’ native space Freesurfer parcellations 
were warped to the atlas space and averaged across subjects. Bilateral 
binary masks for each ROI were created using a probabilistic threshold 
of 0.9 with the same meaning as above. Additional subcortical nuclei, 
not available in the FreeSurfer segmentation, were labeled by registering 
readily available, downloadable, high spatial resolution atlases to our 
atlas space. The Pauli atlas was generated using T1 and T2 scans from 
168 typical adults from the Human Connectome Project (HCP) (Pauli 
et al., 2018). The Najdenovska thalamic nuclei atlas was generated using 
a k-means algorithm taking as inputs the mean FOD SH coefficients from 
within a Freesurfer parcellation of the thalamus, using adult HCP data 
from 70 subjects (Najdenovska et al., 2018). Bilateral binary masks were 
created for all ROIs in atlas space. All subcortical ROIs and abbreviations 
are listed in Supplementary Table 3. 

2.7. Statistical analysis 

2.7.1. Voxelwise analyses 
Univariate general linear mixed effects models (GLMMs) were 

applied at each voxel to test the associations between age and diffusion 
metrics (RNT, HNT, FNT, RNI, RND, RDF, FA and MD) as the dependent 
variables. All of the main results shown are from a linear model (model 
below) with age included as a single predictor in long format and the 
longitudinal component modelled as a random effect of subject. Results 
were also compared against a model with an age*sex interaction and are 
reported in the supplementary analyses. Given the genetic relatedness 
within the sample, family relatedness was also controlled for as a 
random effect. Given the demographic diversity in the sample, all sta
tistical analyses controlled for the sociodemographic variables house
hold income, parental education and Hispanic ethnicity and the top 10 
genetic principal components were used to account for ancestry effects 
in lieu of self-declared race. Additional fixed effects included scanner ID, 

MRI software version and motion (average frame-wise displacement in 
mm).   

Whole-brain voxelwise analyses were corrected for multiple com
parisons at an alpha level of 0.05 using a Bonferroni correction across 
156,662 voxels to provide a voxelwise corrected threshold of p = 0.05 / 
156,662 = 3.19e-7, corresponding to |t| = 4.98. This provides a con
servative estimate of significant developmental effects as the true 
number of independent tests is likely to be smaller than this. Unthre
sholded t-statistic maps are presented in the main figures with the 
Bonferroni significance threshold marked on the colorbar. This provides 
a comprehensive description of the continuous distribution of effects 
beyond this conservative boundary. All imaging metrics were rank 
normalized prior to statistical analysis to adhere to normality assump
tions of the linear model. 

2.7.2. Region-of-interest (ROI) analyses 
ROI analyses were also conducted using the same GLMM. The 

dependent variable for each ROI for each diffusion metric was calculated 
by taking the mean diffusion metric across the voxels within each ROI 
mask. Violin plots were generated to show the variability in voxelwise 
effects across all voxels within each ROI mask in order to highlight the 
heterogeneity of developmental effects within each ROI. ROI analyses 
were corrected for multiple comparisons at an alpha level of 0.05 using a 
Bonferroni correction across 49 ROIs to provide an ROI corrected 
threshold of p = 0.05 / 49 = 0.0010, corresponding to |t| = 3.08. All 
ROIs were rank normalized prior to statistical analysis to adhere to 
normality assumptions of the linear model. 

All statistical analyses were conducted using custom code in MAT
LAB v2017a. Code will be available on GITHUB as part of the Fast 
Efficient Mixed-effects Analysis (FEMA) package (Fan et al., 2021). 

2.7.3. Estimation of scanner and software version effects 
Scanner and software effects were estimated across the brain by 

Model : Y ∼ age+ sex+ sociodemographics+ scanner ID+ software version+motion+(1|subject)+ (1|family)+ ε   
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Fig. 1. Voxelwise mean maps of diffusion metrics and T1-weighted images. Top panel: voxelwise mean maps for RSI metrics across different compartments: 
RNT (A,B), HNT (C,D) and FNT (E,F). Middle panel: voxelwise mean maps for RSI metrics within the restricted compartment: RNI (G,H), RND (I,J) and RDF (K,L). 
Bottom panel: voxelwise mean T1-weighted images (M,N). 
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estimating a mean voxelwise change in pseudo-R2 (ΔpseudoR2
) from a 

full model (all predictors) to a reduced model (either no dummy-coded 
scanner or software version predictors).  

Pseudo-R2 was calculated using the below equation where Ŷ is a 
matrix of the voxelwise predicted imaging values for a given modality 
generated by the full or reduced model, and Y is the matrix of voxelwise 
observed imaging values. The variance of Ŷ and Y (across participants) 
was averaged across voxels before dividing to produce the pseudo-R2 

estimate as a mean estimate across voxels. 

Mean voxelwise pseudo R2 =
mean(var(Ŷ ) )
mean(var(Y) )

ΔpseudoR2 was calculated by taking the difference between the 
pseudo-R2 estimates for the full and reduced models. 

ΔpseudoR2 = R2
FULL − R2

RED 

The variance in each imaging metric explained by scanner and 
software version predictors (as defined using ΔpseudoR2) is outlined in 
Supplementary Table 4. 

3. Results 

3.1. Mean voxelwise RSI metrics across participants 

The RSI model estimates diffusion within different compartments 
and these metrics are normalized into signal fractions in order to 
determine the relative proportion of restricted, hindered and free water 
diffusion within each voxel. Fig. 1A-F shows mean voxelwise maps 
across participants of these normalized signal fractions. The restricted 
normalized total signal fraction (RNT) was largest within the WM and 
lowest within the GM. In contrast, the hindered normalized total signal 
fraction (HNT) was largest within the GM and lowest within the WM. 
The free water normalized total signal fraction (FNT) was low in brain 
tissue and high within the CSF. These normalized metrics sum to 1, 
therefore increases in the relative signal fraction of one of these com
partments with age will result in decreases in at least one other 
compartment. Within the restricted compartment specifically we have 
separated the proportion of isotropic and directional diffusion into 
dissociable metrics (Fig. 1G-L). The restricted normalized directional 
signal fraction (RND) shows a much greater contrast between WM and 
GM (with higher values in WM) compared to the restricted normalized 
isotropic signal fraction (RNI). Increases in RNT with age will lead to 
increases in both RNI and RND; however, the specific microstructural 
changes occurring can lead to differential changes in RNI compared to 
RND. We have calculated the proportion of restricted directional over 
the total restricted diffusion (RDF) in order to determine changes in the 
relative proportion of isotropic to anisotropic diffusion with age. Mean 

values of RDF were greater within WM voxels compared to GM voxels 
reflecting the greater contrast in RNI vs RND in WM. These maps can be 
compared to T1-weighted images shown in Fig. 1M,N. 

3.2. Age associations in WM across the different RSI compartments 

Voxelwise associations between age and RNT were positive across 
the brain, such that the proportion of the diffusion signal within each 
voxel that was restricted increased with age (Fig. 2A,B). The largest 
voxelwise effects were found in subcortical regions. Inverse associations 
were found for the hindered signal fraction, as expected given the 
normalization across these metrics (Fig. 2C,D). Voxelwise age associa
tions with FNT were also negative across GM and WM voxels, positive 
within the ventricles and limited with subcortical structures (Fig. 2E,F). 
However, it is important to note that the proportion of free water within 
the brain tissue is very small as highlighted in the mean voxelwise FNT 
maps (Fig. 1E,F), therefore although these age associations are signifi
cant across subjects the relative magnitude of the effect compared to 
changes in RNT and HNT is very low. There were no age associations 
with FNT within the deep GM structures. 

A probabilistic atlas-based method for automated segmentation was 
used to determine ROIs for the major WM fiber tracts. Color coded 
voxelwise FA maps highlight the primary direction of diffusion across 
the brain (Fig. 2G,H) and enable comparison of where the main WM 
fiber tracts are located. Larger versions of the same maps with WM fiber 
tracts labeled are shown in Supplementary Fig. 1. Voxelwise age asso
ciations were extracted for each WM fiber tract in order to determine the 
distribution of effects within these ROIs. Violin plots highlight the het
erogeneity of age-related changes in these RSI metrics within the WM 
fibers (Fig. 2I-K). Moreover, these figures demonstrate the proportion of 
voxels above and below the conservative Bonferroni corrected threshold 
for whole-brain voxelwise statistical significance (red dotted line). ROI 
analyses were also conducted on the mean RSI metric within each fiber 
tract. For RNT and HNT, all WM fiber tracts showed highly significant 
age associations indicative of a global increase in the restricted signal 
fraction with age. Interestingly, WM tracts with voxels near to or over
lapping with subcortical regions appeared to show the greatest hetero
geneity and largest age associations, for example the anterior thalamic 
radiations (ATR), the corticospinal tract (CST), the superior cortico- 
striate (SCS) and the striatal inferior frontal cortex (SIFC) tract. The 
forceps minor (Fmin) and bilateral fornix (Fnx) showed the smallest age 
associations across the RSI compartments. Supplementary Tables 5–7 
show summary statistics for the voxelwise and ROIwise analyses within 
each WM fiber tract for RNT, HNT and FNT. 

There were no significant voxelwise age-by-sex interaction effects for 
RNT, HNT or FNT at the Bonferroni corrected significance threshold. 
Voxelwise age associations in a model without an age-by-sex interaction 
were highly correlated with a model including the interaction term 
(Supplementary Fig. 2A-C). All main effects presented are from models 
without an age-by-sex interaction. 

Full Model : Y ∼ age+ sex+ sociodemographics+ scanner ID+ software version+motion+(1|, subject)+ (1|, family)+ ε  

Reduced Model 1 : Y ∼ age+ sex+ sociodemographics+ software version+motion+(1|, subject)+ (1|, family)+ ε  

Reduced Model 2 : Y ∼ age+ sex+ sociodemographics+ scanner ID+motion+(1|, subject)+ (1|, family)+ ε   

C.E. Palmer et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 53 (2022) 101044

8

Fig. 2. Associations between age and RSI compartment signal fractions. Voxelwise t-statistics for the association between age and RNT (A,B), HNT (C,D) and 
FNT (E,F) across different brain slices. Effects are unthresholded. Voxelwise Bonferroni corrected significance threshold (|t|=4.98) is marked on the colorbar. 
Outlines of the subcortical FreeSurfer ROIs are overlaid for the thalamus, caudate, pallidum, putamen, ventral diencephalon, amygdala and hippocampus to orient 
the reader. G,H) Color coded FA showing the primary diffusion direction in each voxel from the tensor model. Larger versions of the same slices with WM fiber tracts 
labeled are shown in Supplementary Fig. 1. I-K) Violin plots show the distribution of voxelwise t-statistics extracted from each WM fiber tract. Red dotted lines show 
voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROI analyses for the mean RSI metrics from each WM fiber tract. Green dotted 
line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are shown for RNT (G), HNT (H) and FNT (I). WM tract ROI abbreviations described in 
Supplementary Table 2. 
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Fig. 3. Associations between age and RSI metrics within the restricted compartment. Voxelwise t-statistics for the association between age and RNI (A,B), RND 
(C,D) and RDF (E,F) across different brain slices. Effects are unthresholded. Voxelwise Bonferroni corrected significance threshold (|t|=4.98) is marked on the 
colorbar. Outlines of the subcortical FreeSurfer ROIs are overlaid for the thalamus, caudate, pallidum, putamen, ventral diencephalon, amygdala and hippocampus to 
orient the reader. G,H) Color coded FA showing the primary diffusion direction in each voxel from the tensor model. Larger versions of the same slices with WM fiber 
tracts labeled are shown in supplementary Fig. 1. I-K) Violin plots show the distribution of voxelwise t-statistics extracted from each WM fiber tract. Red dotted lines 
show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROI analyses for the mean RSI metrics from each WM fiber tract. Green 
dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are shown for RNI (G), RND (H) and RDF (I). WM tract ROI abbreviations are 
outlined in Supplementary Table 2. 
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3.3. Age associations in WM within the restricted compartment 

Voxelwise associations between age and both RNI and RND were 
positive across the brain reflecting the increase in the total restricted 
signal fraction. Voxelwise age associations with RNI were widespread 
across the brain and largest in deep GM structures (Fig. 3A,B). Voxelwise 
associations with RND were smaller than RNI and more concentrated 
along the center of the main WM tracts (Fig. 3C,D). Voxelwise associa
tions with RDF (the fraction of restricted directional diffusion over RNT) 
were negative across the WM highlighting that the relative proportion of 
directional to isotropic diffusion within the restricted compartment 
decreased with age i.e. the proportion of isotropic restricted diffusion 
increased at a greater rate compared to the proportion of directional 
diffusion (Fig. 3E,F). 

Voxelwise age associations were extracted for each WM fiber tract in 
order to determine the distribution of effects within these regions. Violin 
plots highlight the heterogeneity of age-related changes in these RSI 
metrics within the WM fibers (Fig. 3I-K). Moreover, these figures 
demonstrate the proportion of voxels above and below the conservative 
Bonferroni corrected threshold for whole-brain voxelwise statistical 
significance (red dotted line). ROI analyses were also conducted on the 
mean RSI metric within each fiber tract. For both RNI and RND, all WM 
fiber tracts showed significant positive age associations. The most sig
nificant ROI age effects for RNI were for the bilateral SCS, right SLF, and 
right CgH. The most significant ROI age effects for RND were for the 
bilateral SCS, and right ATR. For RDF, the most significant ROI age as
sociations were found for the forceps major (FMaj), right inferior lon
gitudinal fasciculus (ILF) and the right uncinate fasciculus (UF). 
Supplementary Tables 8–10 show summary statistics for the voxelwise 
and ROIwise analyses within each WM fiber tract for RNI, RND and RDF. 

Reflective of the RNT results, for age associations with RNI in 
particular, WM tracts with voxels near to or innervating subcortical 
regions appeared to show the greatest heterogeneity and largest voxel
wise age associations, particularly the ATR, SCS and SIFC. This can 
clearly be seen for the SCS, where voxels in inferior portions of the tract 
overlapping with the putamen (Pu) ROI showed greater positive asso
ciations than voxels superior to the putamen within the SCS (Supple
mentary Fig. 3A). Voxels that showed greater associations for RNI and 
RND within the SCS and overlaying with the Pu showed diffusion pri
marily in the anterior-posterior (green) direction, whereas more dorsal 
voxels showed diffusion primarily oriented in the dorsal-ventral (blue) 
direction as expected for diffusion along the SCS. This suggests greater 
age-related changes in restricted diffusion in voxels where the SCS 
potentially innervates the Pu. Similarly, along the ATR, age associations 
were greater in voxels overlapping with the thalamus and lower in 
voxels closer to the forceps minor (Fmin) (Supplementary Fig. 3B). The 
difference in age associations between the FMaj and Fmin highlights a 
posterior-anterior gradient of development across the WM. 

There were no significant voxelwise age-by-sex interaction effects for 
RNI, RND or RDF at the Bonferroni corrected significance threshold. 
Voxelwise age associations in a model without an age-by-sex interaction 
were highly correlated with a model including the interaction term 
(Supplementary Fig. 2D-F). All main effects presented are from models 
without an age-by-sex interaction. 

3.4. Age associations in subcortical regions across the different RSI 
compartments 

RNT was positively and highly significantly associated with age 
across subcortical regions, particularly within the basal ganglia. The 
only negative associations were found in voxels along the border be
tween the Pu and globus pallidus (GP) and along the border of the 
caudate (Ca). The inverse relationship was found for HNT, as expected 
given the normalization of the RSI metrics. Voxelwise age effects were 
heterogeneous in magnitude across and within subcortical regions. 
Voxelwise FODs, averaged across participants, show the orientation 

structure of diffusion in each voxel and are colored based on the mean 
diffusion direction (Supplementary Fig. 4). There was clear variability in 
the orientation structure of diffusion within gross subcortical ROIs and 
the surrounding WM, which likely contributes to the variability in 
voxelwise effects within these regions. We registered external subcor
tical atlases to our ABCD atlas in order to create finer subcortical par
cellations to localize age-related effects within large subcortical 
structures. These included midbrain nuclei (Pauli et al., 2018) and 
thalamic nuclei (Najdenovska et al., 2018). 

Voxels in the GP, Pu, the surrounding WM between and ventral to 
these structures, and voxels within the ventral diencephalon (VDC) 
showed the largest age associations with RNT and HNT (Fig. 4A-N). 
Increases in RNT with age were found across the thalamic nuclei 
(Fig. 4A,B,E,F) with the largest associations in more anterior nuclei. 
Voxelwise associations were the most heterogeneous within the VDC 
(Fig. 4E,L). Within the VDC, voxels showing the largest RNT age asso
ciations were found within the substantia nigra pars compacta (SNpc), 
substantia nigra pars reticulata (SNpr) and the red nucleus (RN) (Fig. 4C, 
D,G). ROI analyses, reflecting age associations with mean RSI metrics 
within each region, showed significant associations across all ROIs for 
RNT and HNT (except for the age association with HNT in the mamillary 
nucleus). There were limited age associations with FNT across subcor
tical regions (Fig. 4O-U). Supplementary Tables 5–7 show summary 
statistics for the voxelwise and ROIwise analyses within each subcortical 
ROI for RNT, HNT and FNT. 

3.5. Age associations in subcortical regions within the restricted 
compartment 

RNI was positively associated with age across all subcortical regions 
with the largest effects within the basal ganglia, particularly the GP, Pu 
and SN (Fig. 5A-G). Voxelwise age associations within the thalamus 
(Thal) were largest in more anterior nuclei particularly along the lateral 
edge of the ventral anterior (VA) and ventro-lateral-ventral (VLV) nuclei 
(Fig. 5A,B). ROI analyses showed a similar magnitude of effects across 
the thalamic nuclei for RNI (Fig. 5F). Age-related changes in RND were 
smaller in magnitude than RNI and more heterogeneous across voxels 
within and around subcortical regions (Fig. 5H-N). The largest voxelwise 
age associations were primarily in voxels in the midbrain region, 
particularly the SN and RN, as well as the Pu, GP and Thal. Those regions 
also showed the largest ROI age associations. Negative age associations 
with RND were found in voxels along the border between the Pu and GP 
and along the border of the Ca (Fig. 5H,I); these effects were also seen for 
RNT. Within the Thal, there were a number of voxels within the anterior 
(A), VLV and pulvinar (P) nuclei that showed no significant age asso
ciation. The largest positive age associations were found in the A, VA 
and medial dorsal (tMD) nuclei (Fig. 5M). The heterogeneity in age ef
fects across the Thal was particularly clear when looking at the ROI 
analysis for each nucleus. Across the Thal and VDC, the largest effects 
seemed to occur in voxels with diffusion occurring primarily within the 
anterior-posterior direction (Supplementary Fig. 4). The most signifi
cant associations with RDF were in the GP, posterior nuclei of the 
thalamus, the substantia nigra pars reticulata, the hypothalmus and 
voxels along the border between the Pu and GP(Fig. 5O-U). These were 
the regions that showed the largest difference in age associations be
tween RNI and RND highlighting that the relative proportion of direc
tional to isotropic diffusion within the restricted compartment 
decreased with age in these regions. Supplementary Tables 8–10 show 
summary statistics for the voxelwise and ROIwise analyses within each 
subcortical ROI for RNI, RND and RDF. 

Supplementary Fig. 5 shows images of the most significant voxelwise 
age associations zoomed in on specific ROIs in order to highlight ex
amples of how these associations occurred in voxels with particular 
diffusion orientation. Supplementary Fig. 5A shows a coronal view of an 
area of RNI age associations extending ventral to the GP with diffusion 
occurring primarily in the lateral-medial (L-M) direction, which is likely 
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Fig. 4. Age associations across diffusion compartments within subcortical regions. Voxelwise t-statistics for the association between age and RNT (A-D), HNT 
(H-K) and FNT (O-R) across different axial brain slices moving from superior (top) to inferior (bottom). Effects are unthresholded. Voxelwise Bonferroni corrected 
significance threshold (|t|=4.98) is marked on the colorbar. Outlines of the Aseg, Pauli and Najdenovska ROIs are overlaid. Violin plots show the distribution of 
voxelwise age associations in each ROI for each RSI metric. Red dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics 
from ROI analyses for the mean RSI metrics from each subcortical ROI. Green dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are 
shown for RNT (E-G), HNT (L-N) and FNT (S-U). Subcortical ROI abbreviations are outlined in Supplementary Table 3. 
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Fig. 5. Age associations within the restricted compartment across subcortical regions. Voxelwise t-statistics for the association between age and RNI (A-D), 
RND (H-K) and RDF (O-R) across different axial brain slices moving from superior (top) to inferior (bottom). Effects are unthresholded. Voxelwise Bonferroni 
corrected significance threshold (|t|=4.98) is marked on the colorbar. Outlines of the Aseg, Pauli and Najdenovska ROIs are overlaid. Violin plots show the dis
tribution of voxelwise age associations in each ROI for each RSI metric. Red dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t- 
statistics from ROI analyses for the mean RSI metrics from each subcortical ROI. Green dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). 
Plots are shown for RNI (E-G), RND (L-N) and RDF (S-U). Subcortical ROI abbreviations are outlined in Supplementary Table 3. 
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to represent the anterior commissure; however, this location is difficult 
to distinguish from the ventral pallidum (VP), which sits below the 
anterior commissure. When looking in the sagittal view (supplementary 
Fig. 5B), we can see that these associations extend through the ventral 
striatum and head of the caudate. These effects appear to occur in voxels 
with diffusion in both the L-M and anterior-posterior (A-P) direction. 
The largest RNI and RND age effects in the VDC were seen in voxels with 
diffusion primarily in the A-P direction (Supplementary Fig. 5C). Across 
the Thal, RNI and RND effects were larger in anterior nuclei where 
diffusion was also primarily in the A-P direction and along the inter
section between the A, VA and VLV nuclei with diffusion in multiple 
directions (Supplementary Fig. 5D,E). 

3.6. Age associations with DTI metrics 

Supplementary Figs. 6–7 show the voxelwise and ROIwise age as
sociations with MD and FA from the diffusion tensor model. Supple
mentary Tables 11–12 show summary statistics for the voxelwise and 
ROIwise analyses within each WM fiber tract and subcortical ROI for MD 
and FA. In general, there was a strong, but inverse, correspondence 
between the MD and RNI age associations across the WM and subcortical 
regions. However, there were subtle differences in the magnitude of 
effects across ROIs highlighting the different models used to estimate 
these measures. There were larger differences between the FA and RND 
associations. Namely, the magnitude of the FA associations was much 
smaller than RND, such that a larger sample would be required to detect 
age-related FA associations. However, the pattern of associations across 
the brain was similar. 

4. Discussion 

In this study, we have shown highly statistically significant age 
associated increases in restricted (primarily intracellular) diffusion 
across WM and subcortical GM in a large sample (n = 8086) of children 
from 9 to 14 years. This is the largest study to date measuring age as
sociations in diffusion metrics at this age and utilizing novel RSI mea
sures. Across both gray and WM, increasing age was associated with an 
increase in the proportion of restricted diffusion, RNT, and a decrease in 
the proportion of hindered, HNT, and free water, FNT. The largest age- 
related changes were found within the basal ganglia, namely the GP, and 
the VDC. Within the restricted compartment, the proportion of restricted 
isotropic diffusion, RNI, increased at a greater rate with age than 
directional diffusion, RND, resulting in a relative increase in the 
isotropic compared to directional signal fraction across the brain. These 
differences were most pronounced in the GP, posterior nuclei of the Thal 
and the midbrain nuclei. Voxelwise age associations were highly vari
able within subcortical regions and WM fiber tracts. Within subcortical 
regions in particular, the pattern of age associations appeared to follow 
changes in the orientation of the diffusion. This suggests that we can 
identify distinct age associations within subcomponents of subcortical 
structures that may be associated with differing functional circuits as 
indicated by differences in cytoarchitecture. This highlights the benefit 
of measuring voxelwise compared to ROI-wise associations and utilizing 
high resolution parcellations of subcortical structures that reflect known 
histologic and functional subdivisions within deep gray matter nuclei 
such as the Thal. 

4.1. White Matter associations with age 

There was a robust increase in the proportion of restricted to hin
dered and free water diffusion from 9 to 14 years across the WM, which 
was associated with an increase in both isotropic and directional diffu
sion. In general, RNI showed more widespread effects across the WM 
compared to RND, which showed larger age associations along the 
centers of WM tracts where axonal coherence is highest. In many voxels, 
increases in both RNI and RND reflected increases in the overall 

proportion of the restricted signal fraction relative to the hindered and 
free water compartments. To tease apart differences in the magnitude of 
the RNI and RND associations with age we estimated the relative pro
portion of restricted directional diffusion over the total restricted signal 
fraction, RDF. The negative voxelwise associations between RDF and age 
highlighted that the proportion of restricted directional diffusion within 
the restricted compartment was decreasing with age i.e. directional 
diffusion was increasing with age at a lower rate than isotropic diffusion. 
This was seen in both GM and WM. There were some regions, such as the 
Pu, that showed limited RDF effects, highlighting that there were similar 
increases in the restricted isotropic and directional fractions in this re
gion. Increases in isotropic diffusion can be driven by both an increase in 
the size or number of structures with a spherical or compact shape, and 
multiple cylindrical structures in the same voxel oriented such that 
anisotropic diffusion is occurring in all directions appearing as isotropic. 
Therefore, an increase in the complexity of neuronal connections and 
crossing fibers at angles smaller than can be resolved could lead to an 
increase in the relative contribution of isotropic compared to directional 
diffusion within the restricted compartment with age. This is in contrast 
to previous work using the NODDI model in which orientation disper
sion (a measure of the degree of dispersion of neurites) was not found to 
increase with age (Chang et al., 2015; Genc et al., 2017b; Mah et al., 
2017). This may reflect increased statistical power in this study to detect 
an association or key differences in the diffusion model and metrics 
estimated. Future work comparing multiple multi-compartment diffu
sion models using large developmental samples will be required to tease 
apart these differences. 

The largest and most heterogeneous voxelwise effects across WM 
fibers, particularly for RNI, were within the ATR, SCS and SIFC, such 
that significant ROI associations appeared to be driven by voxels within 
or near subcortical structures. The tractography used to generate the SCS 
tract ROI included termination points in the striatum (Hagler et al., 
2019), therefore the overlap of the SCS ROI and the Pu ROI is likely 
indicating voxels in which the SCS is innervating the Pu. The greater age 
associations in this region suggests there may be greater age-related 
changes in WM microstructure at this innervation point. Similarly, in 
the original tractography all streamlines for the ATR were set to 
terminate on one end of the thalamus and not pass through the thal
amus. The greater age-related associations in anterior thalamic nuclei 
innervated by the ATR may highlight specific refinement of particular 
circuits involving these nuclei. These analyses highlight the importance 
of measuring voxelwise associations to avoid the misleading impression 
of homogeneity of effects across the entirety of WM tracts. This has been 
eloquently shown previously using a similar model of intracellular 
diffusion (Lynch et al., 2020). 

In the corpus callosum (CC), RNI and RND both increased with age, 
however, the magnitude of the age associations differed along the 
posterior-anterior axis. Voxels in the Fmaj showed a greater age effect 
than voxels in the Fmin, which connects the lateral and medial surfaces 
of the frontal lobes and is the frontal portion of the CC. Our results 
support previous evidence from other developmental samples showing a 
greater age effect of intracellular diffusion metrics in the splenium or 
forceps major compared to the genu or forceps minor (Geeraert et al., 
2019; Genc et al., 2017b; Mah et al., 2017) and the more extended 
development of frontal-temporal connections (Genc et al., 2017b; Lebel 
et al., 2008; Lebel and Beaulieu, 2011; Tamnes et al., 2010). This mirrors 
the posterior-anterior sequence of myelination in developing infants 
(Bird et al., 1989; Kinney et al., 1988), suggesting differences in the 
time-course of myelination across the CC may be contributing to the 
effects here. In addition, Genc et al. found that from 4 to 19 years, age 
showed a greater positive association with apparent fiber density (a 
measure of the intracellular volume fraction) in posterior relative to 
anterior portions of the CC (Genc et al., 2018). This suggests that 
changes in axonal diameter and/or myelination, that can contribute to 
increases in the restricted volume fraction, likely occur at a different rate 
depending on the location in the CC. Different sections of the CC connect 

C.E. Palmer et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 53 (2022) 101044

14

different cortical regions within distinct functional networks. Nonuni
formity in the development of these interhemispheric connections may 
reflect age-dependent maturation of cognitive and behavioral processes. 
This could reflect more protracted developmental changes in frontal 
circuitry, which may underpin the later development of cognitive con
trol in adolescence (Casey et al., 2008). 

4.2. Subcortical associations with age 

Previous studies have highlighted significant changes in FA and MD 
across subcortical regions (Baron Nelson et al., 2019; Lebel et al., 2008; 
Simmonds et al., 2014), with regions of the basal ganglia showing 
greater percentage change from 5 to 30 years than many WM tracts 
(Lebel et al., 2008), in agreement with the results reported here. From 
8–13 years, Mah et al. (2017) found that NDI from the NODDI model, a 
measure of the intracellular volume fraction, showed the largest percent 
increase in the GP (10–13% change) followed by the Pu, hippocampus, 
amygdala and Thal (3–7% change) and found no age association in the 
Ca. Although the RSI and NODDI models are very different, NDI, similar 
to RNT, captures the total intracellular volume fraction in a voxel. As the 
intracellular volume fraction increases in a voxel, the magnitude of 
water displacement reduces, thereby decreasing MD. Indeed, NDI has 
previously been shown to correlate negatively with MD (Zhang et al., 
2012), and in the current study MD showed age associations in the 
opposite direction to RNT (as expected). Indeed, our RNT results were 
very similar to the NDI effects reported by Mah et al., apart from a 
significant age association in the caudate. This may reflect the greater 
sensitivity of the RSI model parameters to age-related changes in 
cytoarchitecture of the caudate and/or increased statistical power in this 
study to detect an association. 

By using voxelwise analyses we were able to measure the heteroge
neity of developmental effects within subcortical regions highlighting 
the benefit of using voxelwise compared to ROI-wise analyses. There 
was a clear pattern of age associations across the different thalamic 
nuclei, particularly for RND. Najdenovska et al. (2018) generated the 
thalamic nuclei ROIs by clustering contiguous voxels with similar 
orientation microstructure (determined by the FODs) validating their 
results against a histological atlas (Najdenovska et al., 2018). When 
overlaying these ROIs on the average FODs measured in our sample 
(Supplementary Fig. 4), we could see that the boundaries of the different 
nuclei indeed adhered to changes in the primary orientation of diffusion. 
Within anterior nuclei (A, VA, tMD), where age associations were 
greatest for RNI and RND, diffusion primarily occurred in the 
anterior-posterior orientation (green), whereas within posterior nuclei 
(VLV, VLD, C, P), diffusion primarily occurred within the lateral-medial 
(red) orientation. The tMD nucleus of the thalamus is reciprocally 
interconnected with the prefrontal cortex and receives input from 
striatal, medial temporal, midbrain and basal forebrain structures 
(Groenewegen, 1988; Groenewegen et al., 1993; Ray and Price, 1993; 
Tanaka, 1976; Tobias, 1975; Vertes et al., 2015). It is well positioned to 
play a modulatory role within fronto-striatal-thalamo-cortical circuits 
thought to be important for several cognitive and emotional processes 
(Haber and Calzavara, 2009; Mitchell and Chakraborty, 2013; Ouhaz 
et al., 2018). Structural and functional connectivity of these 
thalamo-cortical connections has been shown to increase across child
hood and adolescence (Alkonyi et al., 2011; Fair, 2010), and is thought 
to underpin behavioral changes in cognitive control and emotional 
reactivity during adolescence. Moreover, there were highly significant 
age associations with RNI in the region ventral to the GP and Ca, which 
encompasses both the ventral pallidum, ventral striatum (nucleus 
accumbens and olfactory tubercle) and bed of the nucleus stria termi
nalis (often referred to as the extended amygdala), as well as the anterior 

commissure (Zaborszky et al., 2015). These regions are highly inter
connected with subcortical and cortical regions, particularly in frontal 
cortex, creating circuits integral for incentive-based learning, reward 
processing and decision-making (Barkley-Levenson and Galván, 2014; 
Delgado, 2007; Haber and Knutson, 2010). Microstructural changes 
within the thalamus and the ventral forebrain may be indicative of the 
refinement of these circuits in late childhood. 

There were also statistically robust and heterogeneous associations 
within the VDC. The VDC is a group of structures that are poorly defined 
on T1w imaging, however, by calculating the mean voxelwise FODs 
across subjects, we could clearly see variability in the orientation of 
diffusion within this large region highlighting the presence of poten
tially distinct cytoarchitecture. Changes in the orientation of the FODs 
also appeared to adhere to estimated outlines of finer subcortical par
cellations that include many of the nuclei within the VDC from the Pauli 
atlas (Pauli et al., 2018). Indeed, the strongest and most significant as
sociations between age and RNI and RND were in voxels oriented pri
marily in the anterior-posterior direction within and around the SN 
adjacent to the ventral tegmental area (VTA), which may reflect 
microstructural changes within the extensive dopaminergic projections 
from these regions to the basal ganglia and medial forebrain. Fibers from 
the SN and striatum also directly innervate the lateral edge of the VA 
nucleus where we see high isotropy and crossing diffusion orientations 
(Kultas-ilinsky and Ilinsky, 1990; Sakai et al., 1998). Our findings may 
signal increased innervation of the Thal from the SN and/or striatum 
and/or increased myelination of axons in these pathways. This further 
suggests that these findings may reflect maturation of 
cortico-striatal-thalamic pathways that may be important for processes 
of motor control, cognition and self-regulation that are developing in 
this age range. Indeed, FA in the internal capsule, basal ganglia and Thal 
has been shown to partially mediate improved performance on partic
ular cognitive tasks with increasing age from 9 to 12 years (Baron Nelson 
et al., 2019). 

Voxels within the GP showed the largest age associations with RNI, 
followed by the Pu. These basal ganglia regions form part of parallel 
frontal, temporal and parietal cortical circuits that are involved in a 
number of cognitive and motor functions (Alexander et al., 1986; Mid
dleton and Strick, 2000). Overall mean restricted isotropic diffusion 
across subjects was much larger in the GP than other subcortical regions, 
which may reflect higher myelin content in the GP compared to the Pu 
(Lanciego et al., 2012). Moreover, throughout adolescence, there is a 
large increase in iron concentration, estimated by increased suscepti
bility on T2 * weighted imaging, within the GP (Larson et al., 2020). 
This iron related effect has been shown to correlate with DTI metrics in 
these deep GM structures (Pfefferbaum et al., 2010); therefore, 
increasing iron accumulation may be contributing to the RNI develop
mental effects that we observe in this region. Further research is 
required to determine the extent to which iron content effects the esti
mation of diffusion metrics. 

4.3. Microstructural changes underlying alterations in restricted diffusion 

There are several biological processes that may increase restricted 
diffusion in WM, such as increasing myelination, neurite density and/or 
axon coherence. Increasing myelination reduces the permeability of 
myelinated axons and decreases the volume of the extracellular space in 
a voxel increasing the restricted signal fraction. Previous studies using 
NODDI have shown age-related changes in NDI (a measure of the 
intracellular volume fraction similar to RNT) in a similar age range in 
the WM (Chang et al., 2015; Genc et al., 2017b; Mah et al., 2017) and 
increases in NDI have been associated with both increases in the myelin 
volume fraction using MRI (Geeraert et al., 2019) and post-mortem 
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histology from patients with demyelination (Grussu et al., 2017). In 
general, there has been a lack of evidence for increasing myelination in 
late childhood as measured with magnetization transfer (Geeraert et al., 
2019; Moura et al., 2016; Pangelinan et al., 2016). However, given 
histological findings that myelination continues into adulthood (Benes, 
1989; Yakovlev and Lecours, 1967), these myelin changes may be very 
subtle, and require large sample sizes and/or longitudinal studies, such 
as this, to detect. Little is known about how changes in myelination 
directly impact RSI measures specifically; however, in a demyelinated 
genetic mouse model, regions with reduced myelin showed reduced 
intraneurite volume fraction, estimated using a similar spherical 
deconvolution method (Kaden et al., 2016). Increased myelination with 
development may underlie the age effects observed here; however, this 
is only one of many biological processes that can alter restricted diffu
sion, as described in Table 1, therefore further work is needed to 
elucidate the exact neurobiological processes contributing to the effects 
reported here. 

Subcortical gray matter has a more complex cytoarchitecture than 
cortical gray matter and WM fiber bundles consisting of many cell bodies 
of stellate shape, dendrites, terminal arbors and synapses that do not 
follow a coherent structure. Nevertheless, examination of the mean 
estimated FODs from the RSI model showed complex orientation 
structure within these regions. Developmental increases in the restricted 
signal fraction within the deep gray matter nuclei could be driven by 
increases in myelination, neurite density, dendritic sprouting or in
creases in cell size less than the typical diffusion length scale. These 
microstructural possibilities are outlined in Table 1. As mentioned pre
viously, increases in restricted isotropic diffusion measured by RSI can 
be modulated by both structures with a spherical or compact shape less 
than the diffusion length scale, such as neuronal cell bodies or microglia, 
within which diffusion is isotropic, and also by multiple cylindrical 
structures in the same voxel oriented such that anisotropic diffusion is 
occurring in all directions. By using RSI we can detect differences in 
diffusion orientation at a much finer resolution than with the tensor 
model allowing us to more precisely understand the underlying micro
structural changes occurring during late childhood and adolescent 
development. 

4.4. DTI vs RSI 

In the current study, age-related changes in RNT were very similar 
(but opposite in sign) to those observed in MD, estimated from the 
diffusion tensor model. As diffusion becomes more restricted, MD within 
a voxel will decrease. Our analyses showed greater age-related changes 
in MD compared to FA from 9 to 14 years, whereas previous studies have 
shown relatively greater percent changes in FA compared to MD across 
WM tracts in particular (Krogsrud et al., 2016b; Lebel et al., 2008). 
These studies are difficult to compare directly due to different sample 
sizes and age ranges. Furthermore, most studies estimate MD using 
diffusion MRI data acquired at lower b-values (below b=2000 s/mm2) 
than the current study (which includes many directions at 
b=3000 s/mm2). At higher b-values, around b≥ 3000 s/mm2, the signal 
from the hindered compartment is attenuated and the measured diffu
sion signal is dominated by the restricted compartment. If maturational 
changes are predominantly occurring within the restricted compartment 
our DTI measures may be more sensitive to age-related changes than DTI 
metrics from studies with lower b-value acquisitions. Further work 
empirically comparing age-related changes on DTI metrics calculated 
with different acquisition parameters is required. 

4.5. Limitations 

Although the effects in this study are highly significant due to the 
large sample size, the magnitude of the voxelwise effects is very small. 
This has been observed across large-scale imaging studies making it 
clear that published effects are inflated by small sample sizes and pub
lication bias (Dick et al., 2021). Using large sample sizes we are now able 
to estimate effect sizes with much greater precision. Small effects are 
perhaps not surprising given that causal associations among variables 
are highly complex and a single association is unlikely to be very large. 
These large sample studies can provide new norms for expected effect 
sizes. Moreover, the data in the current study only included two time
points, therefore we were unable to disentangle regional differences in 
the developmental trajectory of these RSI metrics from 9 to 14 years. 
Imaging data were also rank normalized to make the assumptions of 
normality in the statistical analysis valid, therefore we did not measure 
non-linear age associations as the non-linear aspect of the rank 
normalization could introduce apparent non-linearities. With future 
ABCD Study data releases with more longitudinal time-points, future 
work should aim to map the shape of developmental trajectories of these 
RSI metrics. Finally, given the increased T2 shortening of the diffusion 
signal with increased iron concentrations, future work should aim to 
understand the implications of this for diffusion models. 

4.6. Conclusions 

This is the largest study to date measuring longitudinal age associ
ations with diffusion metrics across the brain. We have demonstrated 
highly significant increases in the proportion of restricted diffusion 
across the WM and within deep gray matter nuclei. The heterogeneity of 
effects along WM tracts and within subcortical GM structures highlights 
the importance of voxelwise analyses to provide a more fine-grained 
understanding of how the brain is changing with age. Given the 
importance of both subcortical-subcortical and subcortical-cortical cir
cuitry in the development of multiple cognitive and behavioral di
mensions during this period (Casey et al., 2016), robust microstructural 
changes occurring in subcortical regions and associated WM tracts may 
indicate important refinement of these developing circuits. Under
standing whether individual differences in the age-related structural 
covariance of these measures associates with differential behavioral 
profiles will provide a promising new avenue for future research. 
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