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ABSTRACT: Regional climate modeling addresses our need to understand and simulate climatic 
processes and phenomena unresolved in global models. This paper highlights examples of current 
approaches to and innovative uses of regional climate modeling that deepen understanding of the 
climate system. High-resolution models are generally more skillful in simulating extremes, such as 
heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-
scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can 
substantially influence a region’s climate and its response to changing forcings. Regional climate 
simulations explicitly simulating convection are now being performed, providing an opportunity 
to illuminate new physical behavior that previously was represented by parameterizations with 
large uncertainties. Regional and global models are both advancing toward higher resolution, 
as computational capacity increases. However, the resolution and ensemble size necessary to 
produce a sufficient statistical sample of these processes in global models has proven too costly 
for contemporary supercomputing systems. Regional climate models are thus indispensable tools 
that complement global models for understanding physical processes governing regional climate 
variability and change. The deeper understanding of regional climate processes also benefits 
stakeholders and policymakers who need physically robust, high-resolution climate information 
to guide societal responses to changing climate. Key scientific questions that will continue to 
require regional climate models, and opportunities are emerging for addressing those questions.
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Regional climate modeling has been developed to understand processes affecting climate 
that are not resolved well by global models, particularly those that may be important for 
climate change in regions. A further motivation has been to provide policymakers and 

other stakeholders information about changing climate for their specific regions that is salient, 
credible and legitimate (Cash et al. 2003). High-quality simulation of regional processes is 
vital for satisfying this need. The scale of targeted regions is generally subcontinental, such 
as an agricultural or water-resource region (i.e., a few tens of kilometers).

Although global models can (and have) been run at resolutions fine enough to simulate 
regional processes, with grid spacings of a few to tens of kilometers, the cost of performing 
extensive simulation and experimentation with different assumptions about forcing scenarios 
and relevant Earth system processes has been prohibitive. Knowledge about the scientific 
value of high-resolution global modeling is emerging, but it is expected to evolve slowly given 
unprecedented data storage and analysis requirements, and lingering issues with model tun-
ing and validation at unfamiliar scales; intuition for such issues is more easily drawn from 
regional benchmarks.

Beside computational considerations, one can tailor regional models to focus on climatic 
processes that are especially germane to a targeted region, such as sea ice in the Arctic or 
mesoscale convective systems where they prevail. Several such climatic processes that are 
highly relevant in the context of regional modeling are depicted in Fig. 1. With fine resolution, 
users of regional models can also exploit high-spatial-resolution observations to evaluate and 
refine the model performance.

There are several approaches to producing regional climate information. Obtaining regional 
climate from numerical models is often referred to as “dynamical” because the climate dy-
namics are explicitly simulated. Limited-area numerical models derived from forecast models 
or developed ab initio have yielded regional climate models (RCMs; Giorgi and Mearns 1991; 
Wang et al. 2004; Giorgi 2019), which are the focus of this article. Other numerical-model ap-
proaches have used global climate models (GCMs), either with uniform finescale grid spacing 
(Zhao and Held 2012; Bacmeister et al. 2014) or with variable resolution that has finescale grid 
spacing over a targeted region (Fox-Rabinovitz et al. 2008; Zarzycki et al. 2014; Sakaguchi et al. 
2015). Here, finescale refers to resolutions of 50 km grid spacing or smaller as grid spacing 
of 100–150 km is still common for GCMs used in historical simulations and long-term projec-
tions. Statistical approaches under the general descriptor of empirical statistical downscaling 
(ESD) have also provided regional information. ESD covers a wide range of methods; Maraun 
and Widmann (2018) assess these approaches. Finally, hybrid approaches combine dynami-
cal and statistical approaches to expand (Mearns et al. 2013), refine (Walton et al. 2015), or 
bias-correct (Wood et al. 2004) the output from numerical simulations.
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As computing power has increased, the resolutions used by both global and regional models 
have tended to increase, though other simulation goals have also competed for the increased 
power, such as producing ensembles of simulations or adding more processes (carbon cycle, 
ecosystems, etc.) to make models more representative of Earth’s climate system. For RCMs, the 
advances in computing power have allowed climate simulations at grid spacings of 1–4 km, 
for which a parameterization of atmospheric deep convection is no longer used, simulations 
termed “convection permitting” (see Prein et al. 2015, and references therein). These simula-
tions cross a threshold into direct simulation of a process heretofore parameterized, and they 
show advantages over RCM simulations at coarser resolution (e.g., Yang et al. 2017). Higher 
resolution in RCMs permits better representation of key climate processes and features, as 
depicted in Fig. 2.

Fig. 1. Key features of the climate system where finescale regional climate modeling will likely be 
important for advancing our understanding.

Fig. 2. The horizontal grid spacing employed in regional and global atmospheric models and the approxi-
mate horizontal grid spacing required to capture key atmospheric features. Regional climate modeling 
has the greatest potential to improve our understanding of processes where grid spacing less than 50 km 
resolution is needed.
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RCM simulation relies on good input data for its boundary conditions, and so it can be sensi-
tive to GCM biases. As resolutions for GCMs have increased, they have demonstrated potential 
for improving boundary conditions for RCM simulations (Roberts et al. 2018). The increase in 
supercomputer performance over the past 30 years has been approximately exponential, with 
performance doubling every 1.2 years (TOP500 2019), facilitating increased GCM resolution. 
However, the cost of global simulation can be substantial as resolution increases. Assuming 
model complexity and vertical resolution are held constant, the growth in computing perfor-
mance would correspond to a feasible doubling of horizontal resolution every 3–4 years. The 
actual rate has been closer to 8–10 years (e.g., Cubasch et al. 2013), partly because of the other 
uses of increased computing power identified above. In fact, since the fourth IPCC assessment 
report was published in 2007, the nominal GCM resolution has remained at ~1°, although 0.25° 
simulations are now being conducted as part of the HighResMIP program (Haarsma et al. 2016). 
With this past experience in mind, it is expected that nominal grid resolution for GCM production 
simulations will be on the order of tens of kilometers for at least the next decade. This resolu-
tion places them clearly in the hydrostatic regime (typically grid spacing greater than 10 km).

Roberts et al. (2018) discuss the current and future capabilities of global high-resolution 
climate simulation, especially in the context of assessing climate risks associated with the 
hydrological cycle. This paper complements Roberts et al. (2018) in highlighting current 
capabilities of high-resolution climate modeling for regions by RCMs and pointing a direction 
for future development that complements and adds value to high-resolution GCM simulation. 
Although there is substantial RCM activity around the world (Giorgi and Gutowski 2015), we 
focus here primarily on North America in order to use a succinct set of regional processes for 
illustrating the benefits of high-resolution regional simulation of climate.

Overview of experimental designs and scientific questions addressed
RCMs have played an important role over the past three decades in advancing regional climate 
science for several reasons: 1) their low computational cost, relative to uniform-resolution 
GCMs; 2) their high level of configurability, which permits selection of physics options and 
calibration of model parameters to focus on domains and regional phenomena of interest 
and reduce regional climate biases; and 3) the unique experimental designs enabled through 
manipulation of lateral boundary conditions. The low computational cost arises simply be-
cause they operate over a limited area of the globe, with areal coverage—and therefore their 
computational cost relative to GCMs—typically not exceeding approximately 15% of the global 
surface area (e.g., the area of a quadrangle bounding a continent). This efficiency enables long 
integrations on university-scale computing clusters, and even desktop computers, worldwide 
(Schaller et al. 2018). For a fixed level of computational resources, RCMs thus enable higher 
model resolution, model complexity, and ensemble size (Fig. 3).

RCMs typically offer a higher level of atmospheric and land model configurability than 
GCMs. This is partly because RCMs, such as the Weather Research and Forecasting (WRF) 
Model, often offer a wide variety of parameterization choices. In addition, a regional model’s 
flexibility in domain size and location can allow it to target specific regional processes (and 
choose appropriate parameterizations as needed). Further, the regional models’ smaller 
domains and the grid nesting they often contain allow substantial flexibility in grid-spacing 
choices. This flexibility has important implications for regional climate-science experiments, 
as one can configure RCM experiments from a suite of subgrid parameterizations to ensure 
that processes important for regional phenomena are well represented in a given simulation: 
for example, cloud–radiation–turbulence interactions for coastal clouds (O’Brien et al. 2013; 
Jousse et al. 2016) and microphysics for mesoscale convective systems (MCSs; Squitieri and 
Gallus 2016; Feng et al. 2018). In addition to WRF’s potential for optimizing parameterization 
choices for regional climate, WRF has spawned specialized variants, such as WRF-Chem (Grell 
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et al. 2005), WRF-Hydro (Go-
chis et al. 2013), WRF-Parflow 
(Maxwell et al. 2011), and Polar 
WRF (Hines and Bromwich 
2008).

There are three broad classes 
of experimental design that 
make RCMs a unique and in-
valuable tool for building our 
understanding of regional cli-
mate, which we describe be-
low: lateral boundary condi-
tion modification experiments, 
dynamical downscaling ex-
periments, and pseudo-global-
warming experiments.

Lateral boundary condition modification. Regional climate models require prescribed 
lateral boundary conditions (LBCs). The LBCs are a controllable constraint on the simula-
tion, providing an opportunity for unique experimental designs. Regional models are thus 
well suited for performing hypothesis-driven, mechanistic experiments to understand how 
transient wave activity propagating from one region can influence downstream atmospheric 
phenomena and climate. For example, experiments in which the midlatitude storm track 
was seeded by high-frequency atmospheric waves through the LBCs have demonstrated 
relationships between wave breaking and the North Pacific storm track (Orlanski 2005) and 
the North Atlantic Oscillation (Rivière and Orlanski 2007). This approach has also unraveled 
the causality between Atlantic tropical cyclones (TCs) and their typical precursor, African 
easterly waves (AEWs), on seasonal time scales. By designing a regional domain that included 
the TC genesis region and excluded the AEW genesis region, and applying a 2–10-day filter 
to the LBCs to remove any AEWs, Patricola et al. (2018) demonstrated that seasonal Atlantic 
TC number is not limited by AEWs.

Although LBCs provide opportunities for mechanistic experiments, they can pose a 
hindrance for addressing some types of scientific questions. The tropical-channel model is 
another configuration option, which uses periodic zonal LBCs, prescribed meridional LBCs, 
and a domain covering at least the entire tropical band. It is therefore well suited for under-
standing teleconnections between ocean variability and the weather and climate within the 
tropics, as the model design allows the atmospheric response to ocean forcing to propagate 
throughout the tropics uninhibited by zonal lateral boundary constraints. The tropical-
channel configuration of the WRF Model has been used to understand MJO initiation (Ray 
et al. 2011) and the influence of the spatial patterns and magnitude of El Niño events on TC 
activity (Patricola et al. 2016). It is unique in demonstrating skill at representing interannual 
TC variability across Northern Hemisphere basins and the MJO (Fu et al. 2019).

Dynamical downscaling. Most uses of RCMs can be classified as dynamical downscaling. 
However, here we refer to “dynamical downscaling experiments” as experiments whose 
primary purpose is to produce high-resolution climate information from low-resolution 
boundary conditions. A large body of literature exists describing individual and coordinated 
(multimodel) downscaling experiments, such as the Coordinated Regional Downscaling 
Experiment (CORDEX; Giorgi and Gutowski 2015, and references therein). There are two main 
applications of dynamical downscaling: downscaling of output from atmospheric reanalyses, 

Fig. 3. A depiction of the allowed state space for modeling experiments 
given a prescribed limit on computational resources. Reducing the domain 
extent allows for more options for model resolution, ensemble size, and 
model complexity.
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and downscaling of output from 
GCM simulations. With reanal-
ysis-driven RCM simulations, 
synoptic state information 
from the LBCs, and possibly 
from scale-selective “spectral 
nudging” over the simulation 
domain (e.g., Kanamaru and 
Kanamitsu 2007a), drives the 
RCM such that its time-evolving 
synoptic state approximates 
the observed synoptic state. 
There is good evidence that 
this approach effectively al-
lows an RCM simulation to be 
used like a regional reanalysis, 
achieving higher resolution 
than would otherwise be practi-
cal via global reanalysis (Kana-
maru and Kanamitsu 2007b). 
For example, a 27 km WRF 
simulation with lateral bound-
ary conditions prescribed from 
2.5° reanalysis can reproduce 
the characteristics of atmo-
spheric rivers compared with 
a reanalysis at ~0.5° resolution 
(Patricola et al. 2020); see Fig. 4 
and the associated animation 
ES1 in the online supplemental 
material (https://doi.org/10.1175 
/BAMS-D-19-0113.2). Reanalysis-
driven RCM simulations are also 
commonly used in configuring 
and assessing a model with 
respect to the mean climate 
and phenomena of interest in a 
region (e.g., Booth et al. 2018).

Reanalysis-driven simulations, often referred to as hindcasts, are often a preparatory step 
for GCM-driven experiments (Fig. 5). These experiments typically involve boundary conditions 
from GCM simulations of both historical climate and climate projections based on scenarios 
of future climate forcings. The former serves as a method for revalidating the RCM simulation 
and as a baseline for future climate simulations. Evaluating the performance of the histori-
cal GCM-driven RCM simulations is also important for assessing large-scale biases that the 
RCM may inherit from the driving GCM that can compromise results from accompanying 
climate change simulations. The biases could include, for example, incorrect midlatitude jet 
stream position or sea surface temperature (Giorgi and Gutowski 2015). The GCM-driven RCM 
simulations of future climate are then examined relative to their historical counterparts to 
understand how regional climate, and associated regional phenomena, might change with 
future climate forcing.

Fig. 4. An atmospheric river as shown by precipitable water (shaded; mm) 
at 1200 UTC 17 Jan 2017 from (top) the NCEP CFSRv2 (Saha et al. 2014) 
and (bottom) a 27 km resolution WRF simulation (Patricola et al. 2020). 
Lateral boundary conditions for the WRF simulation were prescribed 
from the 6-hourly 2.5° × 2.5° NCEP-II reanalysis. (See animation ES1 for 
an animation of this event.)

https://doi.org/10.1175/BAMS-D-19-0113.2
https://doi.org/10.1175/BAMS-D-19-0113.2
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The historical GCM-driven simulations also allow assessing the added value from improved 
resolution of a region’s climate processes that the RCM simulation contributes to the GCM 
output (Di Luca et al. 2016; Rummukainen 2016). For example, Bukovsky et al. (2017) noted 
that an ensemble of RCM simulations at 50 km grid spacing over North America produced 
improved baseline simulations and projected more consistent future summer drying in the 
central United States than their GCM counterparts. The drying was traced to mechanistically 
credible processes involving strengthening of the North American monsoon high, an earlier 
springtime poleward shift of the upper-level jet, strengthening of the Great Plains low-level 
jet converging moisture poleward, and land–atmosphere interactions that amplify the drying 
initially set up by the large-scale and mesoscale circulation changes.

Pseudo global warming. An alternate approach to direct dynamical downscaling of GCMs is 
pseudo global warming (PGW; Schär et al. 1996; Kimura and Kitoh 2007). The PGW approach 
utilizes reanalysis-driven RCM simulations as a baseline. Future climates are represented by 
modifying greenhouse gas concentrations, aerosols, and/or landcover in the regional model 
and using initial, surface, and lateral boundary conditions from reanalysis, with adjustments 
to add a mean climate change signal estimated from one or more GCMs. The synoptic and 
interannual variability from the present climate is maintained in these experiments. In ad-
dition, this treatment of surface and lateral boundary conditions attempts to mitigate any 
GCM biases (e.g., Richter 2015; Zuidema et al. 2016) that would be prescribed in the direct 
downscaling method and that can substantially degrade the quality of simulated extreme 
events such as tropical cyclones (e.g., Hsu et al. 2019).

The PGW approach can be applied for both continuous, decades-long simulations and 
event-scale experiments. It is particularly useful for addressing how climate change could 
influence the magnitude of specific historical events, conditional on the occurrence of simi-
lar synoptic or seasonal–interannual conditions in different climate scenarios. However, the 
approach is unable to inform changes in the frequency of events. An additional limitation of 
the approach is that it does not consider changes in transient eddy activity that may occur, 
for example, with changes in the midlatitude storm track. Nonetheless, the configurability 
provided by regional models is advantageous for producing simulations of historical events 
under conditions altered by climate change. The PGW approach has been used to quantify 
the influence of climate change (from preindustrial to present to future) on extreme synoptic 
events, including floods (Pall et al. 2017), extreme precipitation and convective storms (Prein 
et al. 2017a,b), and tropical cyclones (Patricola and Wehner 2018; Wehner et al. 2019), as well 
as multiyear drought (Ullrich et al. 2018).

Fig. 5. Relationships among common RCM experimental designs and their associated scientific 
questions.
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Highlights of accomplishments to date
The finescale simulation provided by RCMs has allowed them to support the goal of advancing 
understanding of regional processes and their role in regional climate and climate change 
impacts. This success derives from their ability to resolve finescale atmospheric phenomena 
and finescale heterogeneity of surface properties, adding value not only by producing more 
spatial detail, but, more important, improving the overall simulation quality and enabling 
investigation of the role of finescale atmospheric phenomena and finescale surface hetero-
geneity in regional climate variability and change.

Finescale atmospheric phenomena. RCMs provide significant capabilities in resolving 
finescale atmospheric phenomena that are too computationally expensive to resolve in GCMs. 
Especially important examples of finescale atmospheric phenomena are different types of 
convection ranging from isolated and organized mesoscale convection to severe convective 
storms and hurricanes. Cumulus parameterizations have been a major source of uncertainty 
in climate modeling, with consequential impacts on many aspects of climate simulations 
through their direct influence on clouds, precipitation, and water vapor, and their indirect 
effects on radiation and atmospheric circulation.

Mesoscale convective systems (MCSs), for example, contribute over 50% of warm season 
precipitation in the central and midwestern United States. Failing to simulate MCSs, most 
GCMs exhibit dry and warm biases in those regions, accompanied by errors in the precipitation 
diurnal cycle and intensity (Lin et al. 2018; Van Weverberg et al. 2018). In contrast, convection-
permitting RCMs with grid spacing of a few kilometers are able to simulate MCS behavior, 
allowing investigations of how large-scale environments and convection–circulation interac-
tions may influence MCS characteristics such as lifetime and propagation (Yang et al. 2017; 
Feng et al. 2018), as in Fig. 6 (animated in animation ES2). By tracking and compositing MCSs 
that are explicitly simulated by a climate model, one can evaluate changes in storm character-
istics to advance scientific understanding and provide important user-relevant information. 
Consistent with the observed changes in MCSs (Feng et al. 2016), MCSs in future warming 
scenarios produce a 15%–40% increase in maximum precipitation rates that also spread over 
larger rain areas (Prein et al. 2017a). Furthermore, as warming increases both the convective 
available potential energy (CAPE) and convective inhibition (CIN), convection-permitting RCM 
simulations project a shift of convective storms from weak-to-moderate convection to more 
frequent intense convection (Rasmussen et al. 2020). Global warming may also influence the 
characteristics of hazardous convective weather (HCW) such as hail, tornado, lightning, and 
strong winds. While resolving these processes requires modeling at subkilometer grid spacing, 
a model proxy based on the simulated updraft helicity and radar reflectivity factor has been 
used to study tornado characteristics in convection permitting simulations (e.g., Hoogewind 
et al. 2017). Future projections of hazardous convective weather may also be diagnosed from 
predictors such as wind shear, CAPE, freezing-level height, and storm relative helicity for 
hail (Prein and Holland 2018) and microphysical processes for lightning (Wilkinson 2017) in 
high-resolution simulations.

While decadal convection-permitting simulations can provide more robust statistics of 
signal to noise for analysis of climate response, their computational cost has limited their use 
to a relatively small number of studies (e.g., Rasmussen et al. 2011; Kendon et al. 2014; Prein 
et al. 2017a,b; Hoogewind et al. 2017). An alternative to continuous dynamical downscaling is 
to composite severe storms in short initialized simulations of specific storm events. This ap-
proach has been used to study storms in the present climate (e.g., Trapp et al. 2011; Robinson 
et al. 2013) and their future changes (e.g., Mahoney et al. 2013). Focusing on hailstorms in the 
Rocky Mountains, Mahoney et al. (2013) found that future warming may increase the height of 
the melting level, leading to a reduction in hail reaching the surface during the warm season. 
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Fig. 6a. An MCS and its large-scale environment at ~0400 UTC 15 Apr 2011 from (top left) observations and 
three MPAS simulations at grid spacing of (top right) 4 km, (bottom left) 12 km, and (bottom right) 25 km 
in a regionally refined domain over the United States. The MCS is depicted by its cloud shield (red shading, 
defined as a contiguous area with brightness temperature <241 K; Feng et al. 2018) and precipitation (color 
shading varying from yellow to dark blue). The MCS large-scale environment is indicated by the 500 hPa 
geopotential height (black contours) and 900 hPa wind vectors (vectors with color shading). At 4 km grid 
spacing, the MCS developed under the strong baroclinic forcing of a frontal system. MPAS produced the 
most realistic simulation compared to observations. (See animation ES2 for an animation of this event.) 

Patricola and Wehner (2018) used a PGW approach to evaluate anthropogenic influence on 
major tropical cyclones. Comparing an ensemble of short RCM convection-permitting simula-
tions of 15 major tropical cyclones in the historical record with and without anthropogenic 
forcing, they found that in 11 of the tropical cyclones simulated, future anthropogenic warming 
would robustly increase the storms’ wind speed and rainfall. Convection-permitting resolution 
was necessary to reproduce the observed category 5 intensity of Hurricane Katrina (Fig. 2d of 
Patricola and Wehner 2018), and it captures finer-scale storm characteristics compared with 
9 and 27 km grid spacing; see Fig. 7 and the associated animation in animation ES3.

Finescale heterogeneity of surface properties. Finescale heterogeneity in surface properties 
is another key source of spatial variability in weather and climate unresolved by GCMs. Eleva-
tion fluctuations in regions of complex topography are one important source of this finescale 
heterogeneity. Regional models have demonstrated added value over GCMs in resolving the 
significant spatial variations in temperature, circulation, and precipitation in such regions.
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Complex topography produces variations in temperature simply because of lapse rate effects, 
and when regional models such as WRF are driven by reanalysis, they reproduce these variations 
with a reasonable degree of realism (e.g., García-Díez et al. 2013; Walton et al. 2017). In addition, 
topography produces temperature anomalies due to the nighttime pooling of cool, dense air 
masses in valleys and other depressions. Reanalysis-driven regional models, with appropriate 
boundary layer modeling, can simulate the phenomenon realistically (Zängl 2005; Pagès et al. 
2017). In climate change experiments using regional models, resolution of the snow line in areas 
of complex topography produces credible localized intensification of warming due to snow albedo 
feedback. This phenomenon has been demonstrated in many regions, including the U.S. Rocky 
Mountains (Letcher and Minder 2015; Minder et al. 2016), the U.S. Pacific Northwest (Leung et al. 
2004; Salathé et al. 2008), California’s Sierra Nevada (Walton et al. 2017), the Canadian Rockies 
(Pollock and Bush 2013), and the European Alps (Winter et al. 2017). In contrast, global models 
often put the snow–albedo–feedback warming in the wrong place because of a poorly resolved 
and often displaced snow line (Walton et al. 2017). This affirms the need for regional modeling 
techniques to produce credible warming projections in regions of complex topography.

Regional models can also resolve the intricate circulation patterns prevalent in areas of 
complex topography. For example, a reanalysis-driven regional model simulated the influence 

Fig. 6b. As in Fig. 6a, but for an MCS and its large-scale environment at ~1800 UTC 1 Aug 2011. The MCS 
developed under weak forcing associated with midtropospheric short waves on the poleward fringes of 
a high pressure system over the central United States. Only the simulation at 4 km grid spacing captured 
the MCS, despite being weaker than observed. (See animation ES3 for an animation of this event.)
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of coastal mountains and capes on the spatial structure of nearshore winds crucial for up-
welling (Boé et al. 2011; Renault et al. 2016; Patricola and Chang 2017) and coastal circulation 
(Steele et al. 2015). Hughes and Hall (2010) demonstrated that a regional modeling framework 
is necessary to produce the critical offshore wintertime flow pattern known as the Santa Ana 
winds in Southern California that is due to topographic pooling of desert air masses and 
downslope channeling of the winds through mountain passes to the coast. Mountain–valley 
circulations, characterized by thermally driven upslope flow during the day and downslope 
flow at night, are also very realistically simulated by regional models (e.g., Jin et al. 2016; 
Junquas et al. 2018)

Topographically induced variations in both temperature and circulation lead to a variety 
of climatologically important effects, such as orographic uplift yielding precipitation, rain 
shadows, and barrier jets. The skill of regional models in simulating these signals has been 
recognized for more than two decades through studies on multiple continents (e.g., Marinucci 
et al. 1995; Leung and Qian 2003, 2009; Insel et al. 2010; Cardoso et al. 2013). Improving the 
representation of orographic forcing also improves simulations of extreme precipitation in 
mountains, such as that induced by atmospheric rivers (e.g., Leung and Qian 2009; Chen et al. 
2018). In fact, in mountainous regions, well-configured regional models may produce better 

Fig. 7. Hurricane Katrina as shown by outgoing longwave radiation (shaded; W m–2) at 1600 UTC 28 Aug 
2005 from hindcasts simulated with WRF at (a) 3 km resolution, (b) 9 km resolution without cumulus 
parameterization, (c) 9 km resolution with cumulus parameterization, and (d) 27 km resolution (Patricola 
and Wehner 2018). (See animation ES4 for an animation of this event.)
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estimates of total annual rain and snow than current observational estimates (Lundquist et al. 
2019) and improve understanding of processes driving surface hydrologic extremes associated 
with landfalling atmospheric rivers in mountainous areas (Chen et al. 2019).

Regional models are also capable of simulating more subtle orographic precipitation ef-
fects, such as the blocked flows that develop parallel to mountain chains on the windward 
side in low Froude number flow configurations. Such blocked flows produce more gradual 
forced ascent in advance of the topographic barrier. The corresponding reduction in pre-
cipitation gradients normally associated with orography on the windward side has been 
successfully simulated for California (Hughes et al. 2009) and the Andes (Viale et al. 2013). 
On the lee side, where rain shadows are found, regional models have also demonstrated the 
inverse relationship between the static stability of the large-scale flow and rain shadow in-
tensity (Lorente-Plazas et al. 2018). Finally, regional models have been used to illustrate the 
interannual mesoscale precipitation signals that result when ENSO cycles drive systematic 
changes in the orientation of moist flows. This shifts the mountainsides driving orographic 
uplift (Leung et al. 2003).

Variations in surface properties themselves (apart from elevation) also produce spatial vari-
ability in weather and climate variables. These variations include transitions from open water 
to land along complex coastlines and around lakes, and variations in land cover and land use. 
Thus, regional models can simulate land–sea breezes and lake breezes with a high degree of 
realism, along with the localized suppression of the land–water temperature gradient in the 
coastal zone that results (Hughes et al. 2007; Vishnu and Francis 2014). Regional models also 
provide much more realistic distributions of “lake effect” precipitation through resolution of 
local coastlines and topography than is possible with global models (e.g., Wright et al. 2013). 
Finally, when given urban–rural land-use differences, regional models can simulate urban 
heat island impacts on local energy flows and atmospheric circulation (Sharma et al. 2017; 
Hai et al. 2018). These capabilities underscore the relevance of regional modeling techniques 
for credible climate change projections in regions where surface properties vary significantly.

Future promise and directions
Continued advances in computing and algorithms for regional climate modeling have the 
potential to greatly advance understanding of key processes and features in the Earth system. 
Upcoming major changes in GPU-enabled supercomputing capacity have the potential to be 
transformative for cloud-resolving simulations (Fuhrer et al. 2018). However, new hardware 
architectures do require a substantial rethinking of traditional model design, with more 
computation needed per memory access or parallel exchange (e.g., a convection superparam-
eterization applied on one compute node per grid point). Similarly, machine-learning emula-
tion of turbulent physics (Brenowitz and Bretherton 2018; O’Gorman and Dwyer 2018) could 
be transformative, especially if it can be made robust and stable (Rasp et al. 2018). Further, 
by pursuing traditional strategies like limiting the geographic extent of the high-resolution 
region, computational resources can be better leveraged to enhance model complexity, local 
resolution, simulation length and ensemble size. Growth in conventional computing power 
has already enabled several promising approaches for modeling at regional scales, includ-
ing further development of regional convection-permitting and finer scale modeling, use of 
unstructured meshes, and regional integrated assessment modeling. In this section, we focus 
on the value of these approaches, while also noting briefly several other promising pathways 
for modeling at regional scales, all of which could enable the development of more valuable 
models for scientific discovery.

Regional climate modeling at convection-permitting and smaller scales. As discussed 
above, MCSs are an important part of the water cycle, and improving their representation in 
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models has implications for many stakeholders. Simulations at resolutions of 1–4 km, far from 
the scale employed by GCMs for decadal simulations, can unlock some of the critical questions 
posed by MCS research. For example, how do cloud microphysical processes, surface fluxes, 
and convection–circulation interactions influence MCS properties and life cycle? How do 
MCS precipitation impact the surface water balance, surface temperature, and runoff? Even 
at convection-permitting resolutions, convective updraft characteristics can be artificially 
constrained as a result of insufficient resolution to resolve entrainment effects from turbulent 
motions (Lebo and Morrison 2015). There also remains a reliance on parameterization of sub-
kilometer turbulent mixing, which requires even finer scales to resolve well (~5–100 m). Such 
scales of turbulence matter. They are key, for example, to recent understanding of vegetation-
induced drying in the Amazon (Kooperman et al. 2018; Langenbrunner et al. 2019), in which 
ecophysiological responses to CO2 force the PBL through repartitioning of sensible and latent 
heat fluxes. Likewise, near-surface eddies on subkilometer scales sustain stratocumulus 
dynamics (Wood 2012), including turbulence-induced transitions between various forms of 
low-level cloud organization that impact their mean optical properties.

Parameterizations of processes at the smallest scales, such as cloud microphysics, also 
strongly impact the structure and lifetime of MCSs (Feng et al. 2018), but these sensitivities 
can be small relative to natural variability (Elliott et al. 2016), necessitating multiyear simu-
lations. Investigation across all relevant scales, in the context of natural variability, thus 
presents a computational challenge that regional modeling can approach through technical 
advances (GPU computing and machine learning), creative solutions for complexity trade-
offs (embedded cloud-resolving models and variable resolution), and explicit large-eddy 
simulation models.

Unstructured meshes for targeted studies in RCMs. Downscaling via RCMs can build on 
efforts in the global modeling community to use unstructured grids (Abiodun et al. 2008; 
Tomita 2008; Walko and Avissar 2011; Zarzycki et al. 2014; Skamarock et al. 2018). One way 
this has been implemented is via a GCM with relaxation of the far-field atmospheric state to 
a specified driver, such as a reanalysis (Kooperman et al. 2012; Tang et al. 2019). The strong 
advantage of unstructured grids within RCMs is that the transition between typical RCM 
resolutions (10–50 km) to much finer resolution in targeted regions is seamless in terms of 
model column physics, though it does require careful consideration of parameterizations’ 
resolution dependency, such as for cloud and convection processes.

RCMs with an unstructured grid can attain much finer resolution in targeted regions 
to resolve coupling of land–atmosphere or ocean–atmosphere process where surface and 
atmosphere features vary on scales of kilometers. For example, studies have demonstrated 
the importance of subsurface processes such as groundwater table dynamics in regulating 
land–atmosphere interactions (e.g., Gutowski et al. 2002; Maxwell and Kollet 2008). Finescale 
heterogeneity in surface fluxes induced by finescale heterogeneity in topographically modu-
lated subsurface processes may influence atmospheric boundary layer processes and cloud 
formation (Rihani et al. 2015). Such tight coupling at extremely high resolution, becoming 
achievable in regional models, has opened the door for modeling finescale effects of irriga-
tion and water management, and their feedback to local and regional atmospheric and water 
cycle processes.

Regional integrated human–Earth system modeling. There has been extensive growth in 
the development of integrated human–Earth system models (IHESMS), which incorporate 
representations of both the physical system and multisector dynamics, and scenarios of 
future emissions and land-use changes (O’Neill et al. 2017). These developments have in-
cluded increased regional resolution, increased process detail, and increased coupling with 
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detailed subsystem models, such as models of marine and terrestrial ecosystems or water 
resources management (Monier et al. 2018; Weyant 2017). Nonetheless, many outstanding 
research questions remain that can be addressed by this new generation of models (Calvin 
and Bond-Lamberty 2018).

The push toward a higher-resolution representation of atmospheric, oceanic and land 
processes in RCMs opens a pathway for parallel and concerted effort in the IHESM commu-
nity for two major reasons. First, changes in climate are local as are many human-system 
processes. To adequately capture human responses to those changes, higher resolution IAMs 
are needed. For example, changes in water availability may vary from one grid cell to the next 
(Hanasaki et al. 2013). Without sufficient regional resolution, those changes may be averaged 
away, obscuring their implications for energy and land use (Hejazi et al. 2015; Cui et al. 2018). 
Second, the local and regional climate is strongly influenced by land management practices 
that impact land characteristics like albedo, surface roughness, and soil moisture. For ex-
ample, irrigation practices (Lobell and Bonfils 2008; Qian et al. 2013) and land-use change 
(Brovkin et al. 2013; Hallgren et al. 2013) can influence land–atmosphere fluxes, impacting 
local and regional temperature and precipitation patterns. For these reasons, a coordinated 
effort between the regional climate modeling and the integrated assessment modeling com-
munities can explore regional and local implications of coupling between human decisions, 
climate evolution, and impacts.

Further opportunities for regional modeling. In addition to the opportunities for RCMs 
discussed above, there are several further important pathways for advancing RCM applica-
tions; we describe some briefly here.

1)	 Better simulation of finescale processes and their interactions: There are extensive, ongoing 
efforts to build comprehensive, fully coupled regional models that contain not only atmo-
sphere, land, and ocean models, but fully integrated ocean surface, hydrology, and eco-
system models with sophisticated physics, chemistry, and biology. For example, coupling 
regional models of atmosphere, land, ocean, and waves (e.g., Chen and Curcic 2016) may 
improve their representation of tropical storm climatology by accounting for the impacts of 
hurricane winds on the cold wakes that modulate the surface enthalpy flux, a major energy 
source for hurricane intensification. Adding wave models to an atmosphere–ocean RCM 
(e.g., Warner et al. 2010) is also important for improving the modulation of surface winds 
by ocean waves and for assessing hurricane-induced storm surges. Shallow-water polar 
ocean eddies, sea ice deformation, and dust lofting over the Sahara, all critical to broader 
climate, are areas that would benefit from reduced assumptions of how scale interactions 
in the momentum budget occur in the planetary boundary layer. Such issues are currently 
slave to unrealistic assumptions of eddy isotropy in both GCMs and RCMs and an ideal 
focus of RCM process study to improve modeling of coupled processes at regional scale.

2)	 Addressing questions of uncertainty: Climate models hold great promise to inform deci-
sions and increase our understanding of fundamental processes but also have known or 
unknown errors and biases from various sources such as uncertain parameters, structure, 
initial and lateral boundary conditions (e.g., Qian et al. 2016, 2018). RCMs offer a promis-
ing framework for identifying and quantifying these errors and their sources, ultimately 
improving both RCMs and GCMs (e.g., Yang et al. 2012). For example, Xu et al. (2019) 
used RCMs with observation-based boundary conditions and a wide range of GCMs to 
separate regional-scale errors from large-scale errors, quantify how the large-scale errors 
propagated to regional scales, and map regional errors back to their upstream drivers. 
One can also conduct climatic parameter-sensitivity tests at process level (e.g., different 
cloud regimes) and develop new parameterizations of local-to-regional-scale phenomena 
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at the native scales of those phenomena (Yan et al. 2014). Further, climate measurements 
and observations at local scales and the process level can be more appropriately utilized 
for model validation and calibration.

3)	 Subseasonal to seasonal (S2S) forecasting: Credible forecasts on S2S time scales are of grow-
ing value to a wide range of stakeholders. In regions where global S2S forecasting systems 
are skillful at capturing large-scale teleconnection modes [e.g., the NCEP Climate Forecast 
System version 2 (CFSv2)], dynamical downscaling, especially at convective-permitting 
resolutions, may improve forecasts. Efforts such as the Multi-RCM Ensemble Downscaling 
(MRED) project demonstrated that RCMs are highly relevant to forecasting on these time 
scales. Advances in modeling at convection-permitting scales can provide an improved 
representation of storm-scale structures and have the potential to substantially improve 
S2S forecasts, which have historically performed on par or worse than climatology (Castro 
et al. 2016). Further, ongoing RCM-centric efforts to evaluate and compare modeling ap-
proaches, develop scale-aware physical parameterizations, and simulate at nonhydrostatic 
scales will be essential in improving forecast quality (Leung and Gao 2016).

4)	 Ensembles and climate variability: The relatively low computational cost of regional mod-
els enables development of large ensembles at resolutions capable of capturing finescale 
processes (e.g., Mearns et al. 2017) and their role in internal climate variability (Nikiéma 
et al. 2018, and references therein). Given that the challenges and costs associated with 
convection-permitting models are still high, ensembles of regional simulations at mod-
erately high resolutions (~10 km) will remain relevant and useful in the future. At these 
scales, models have demonstrable value over coarser resolutions in, for example, complex 
terrain (Torma et al. 2015); can perform equally as well as convection permitting simula-
tions where convection is not forced by the boundary layer; and may project similar futures 
in precipitation regimes where changes are primarily forced by the large scale (e.g., Fosser 
et al. 2017).

Assessing internal variability in RCMs requires acceptable LBCs and sea surface temperatures 
that are broadly sampled from large-scale, low-frequency drivers (e.g., PDO, AMO) that future 
high-resolution GCM simulations are expected to provide (Roberts et al. 2018). In addition, an 
increasing number of single-GCM large ensembles now allow RCM ensembles to address the 
uncertainty that results from natural variability (e.g., von Trentini et al. 2019). Multiple realiza-
tions are also relevant for studying extreme events, which are rare by definition.

Concluding remarks
Regional and global climate modeling have been simultaneously advancing toward higher 
resolution along complementary paths. These advancements have provided—and will continue 
to provide—a deeper understanding of the processes that govern climate and its change in a 
region. The ability of higher resolution GCMs to provide improved representation of processes, 
such as storm tracks, that feed into boundary conditions for RCMs, allows better simulation 
by the RCMs of targeted regions (Roberts et al. 2018). Together, the two approaches can cross 
thresholds in simulating climate for regions, opening the door to potentially transformative 
advances such as convection-permitting regional modeling. The opportunities provided by the 
complementary development of both modeling approaches argues for developing seamless 
models, as occurring at the Hadley Centre (Lewis et al. 2018; Williams et al. 2018) and devel-
oping at NCAR (NCAR 2019). Such efforts would support the development of modeling tools 
that can be tailored for targeted problems, for example, high-resolution GCMs for studying 
storm tracks, in conjunction with finer-resolution RCMs for climatological study of mesoscale 
convective systems with cloud-permitting dynamics and local coupling of land–atmosphere 
hydrologic processes.
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The configurability of RCMs allows for a wide range of studies that help disentangle the 
local climatic response to global versus regional processes. By better resolving land surface 
heterogeneity stemming from complex topography, land use and coastlines, regional models 
capture critical phenomena such as orographically influenced variations in precipitation, 
wind, and surface energy balance, as well as details of other regional phenomena such as 
irrigation, atmospheric aerosols, and urban heat islands. Regional models are thus indispens-
able tools for understanding drivers of regional climate variability and change in complex 
terrain, including hydrologic response; they can demonstrate when and where regional climate 
response to finescale forcing is significant.

Finally, regional models can show substantial skill in simulating extreme events such as 
heavy precipitation, tropical storms and strong winds, including their spatial and temporal 
variability, by virtue of their ability to represent regional atmospheric behavior, such as 
atmospheric circulation, orographic uplift, atmospheric instability, vertical and horizontal 
gradients, etc. Extreme events, in particular, have substantial societal impact. Insights gained 
from regional modeling can and will continue to provide stakeholders important information 
about changing climate in their regions of interest that satisfies the need for information that 
is salient, credible, and legitimate.
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