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ABSTRACT

Accurate maps and DNA sequences for human sub-
telomere regions, along with detailed knowledge
of subtelomere variation and long-range telomere-
terminal haplotypes in individuals, are critical for un-
derstanding telomere function and its roles in hu-
man biology. Here, we use a highly automated whole
genome mapping technology in nano-channel ar-
rays to analyze large terminal human chromosome
segments extending from chromosome-specific sub-
telomere sequences through subtelomeric repeat re-
gions to terminal (TTAGGG)n repeat tracts. We es-
tablish detailed maps for subtelomere gap regions
in the human reference sequence, detect many new
large subtelomeric variants and demonstrate the fea-
sibility of long-range haplotyping through segmen-
tally duplicated subtelomere regions. These features
make the method a uniquely valuable new tool for im-
proving the quality of genome assemblies in complex
DNA regions. Based on single molecule mapping of
telomere-terminal DNA fragments, we provide proof
of principle for a novel method to estimate telom-
ere lengths linked to distinguishable telomeric haplo-
types; this single-telomere genotyping method may
ultimately enable delineation of human cis elements
involved in telomere length regulation.

INTRODUCTION

Telomere-adjacent DNA is crucial for telomere
(TTAGGG)n tract length regulation and telomere in-
tegrity. The non-coding telomeric repeat-containing

RNA (TERRA) is transcribed from the subtelomere
into the (TTAGGG)n tract (1–3) and forms an integral
component of a functional telomere; perturbation of
its abundance and/or localization causes telomere dys-
function and genome instability (1,4). DNA elements cis
to the (TTAGGG)n tract regulate both TERRA levels
and haplotype-specific (TTAGGG)n tract length and
stability (4–8), with accumulating evidence for specific
epigenetic modulation of these effects (8–11). More ex-
tended subtelomere regions contain both coding and
non-coding transcripts, the abundance and regulation of
which are likely to depend upon the specific haplotypes
and copy number of the DNA encoding them. While some
of these transcripts are clearly functional, most are not
well-characterized (12–16). Large structural variations
in subtelomere DNA exist, and the altered juxtaposition
of subtelomeric sequence elements and 1-copy DNA
relative to the telomere may affect gene expression and
the packaging of telomeric chromatin. De novo deletion
of subtelomeric duplications can cause disease in some
contexts (17), and long-range interactions of telomeres
with subtelomeric genes can regulate the expression of
specific subtelomeric genes in a telomere length-dependent
fashion (18,19). Accurate maps and DNA sequences for
human subtelomere regions, along with detailed knowledge
of subtelomere variation and long-range telomere-terminal
haplotypes in individuals, are critical for understanding
telomere function and its roles in human biology. The
distal 500 kb of each chromosome arm encompasses all
known multi-telomere duplications and is defined as the
‘subtelomere’ for our purposes.

Genomic regions of high segmental duplication content
and/or structural variation have led to gaps and misas-
semblies in the human reference sequence. Ambiguities in
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sequence localization because of duplication content, as
well as the presence of alternative haplotypes differing by
relatively large insertions, deletions and more complex se-
quence organization differences, contribute to these gaps
and misassemblies. Human subtelomere regions are en-
riched in both segmental duplication content and structural
variations. In spite of these complications, specific individ-
ual haplotypes of subtelomere/telomere regions of human
chromosomes were successfully mapped, sequenced and in-
corporated into the human reference sequence by (i) using
specialized yeast artificial chromosome (YAC) clones span-
ning subtelomeric segmental duplication regions to connect
terminal (TTAGGG)n tracts with chromosome-specific se-
quences; the YAC clone-specific copies of the subtelomeric
segmental duplications were sequenced individually (20);
and (ii long-range PFGE-based mapping studies done to
demonstrate physical proximity of BAC clone-based se-
quence assemblies to telomeres (16,21). While contributing
substantially to the human reference sequence, these studies
were labor-intensive and incomplete, leaving small gaps ad-
jacent to some (TTAGGG)n tracts as well as entire alterna-
tive subtelomeric haplotypes detected but uncharacterized.
Telomere clones from a fosmid structural variation resource
(22) have been used to fill in relatively small (TTAGGG)n-
adjacent sequence gaps (23), but the sequence content and
organization of larger alternative subtelomeric haplotypes
are largely unexplored. All of these studies were dependent
on a few large-insert clone libraries, precluding their exten-
sion to a large number of genomes.

We have recently developed a highly automated whole
genome mapping technology in nano-channel arrays
(24,25), which has been applied in assisting de novo
genome assembly and structural variation analysis (26,27).
In this report, we use this novel, highly accurate, high-
throughput, single-molecule mapping technique to ana-
lyze large terminal human chromosome segments extending
from chromosome-specific subtelomere sequences through
subtelomeric repeat regions to terminal (TTAGGG)n re-
peat tracts. We establish detailed maps for subtelomere gap
regions in the human reference sequence, detect many novel
large subtelomeric variants and demonstrate the feasibil-
ity of long-range haplotyping through segmentally dupli-
cated subtelomere regions. Based on single molecule map-
ping data, we are also able to estimate telomere length for
each mapped telomere. High-throughput single molecule
mapping opens the door to the detailed characterization
of difficult genomic regions using long uncloned single ge-
nomic DNA molecules.

MATERIALS AND METHODS

High molecular weight DNA extraction

Mammalian cells were embedded in gel plugs and high
molecular weight DNA was purified as described in a com-
mercial large DNA purification kit (BioRad #170-3592).
Plugs were incubated with lysis buffer and proteinase K
for 4 h at 50◦C. The plugs were washed and then solubi-
lized with GELase (Epicentre). The purified DNA was sub-
jected to 4 h of drop-dialysis. It was quantified using Quant-
iTdsDNA Assay Kit (Life Technology), and the quality was
assessed using pulsed-field gel electrophoresis.

DNA labeling

The DNA was labeled with nick-labeling (28) as described
previously using the IrysPrep Reagent Kit (BioNano Ge-
nomics). Specifically, 300 ng of purified genomic DNA was
nicked with 7 U nicking endonuclease Nt.BspQI (New Eng-
land BioLabs, NEB) at 37◦C for 2 h in NEB Buffer 3.1.
The nicked DNA was labeled with a fluorescent-dUTP nu-
cleotide analog using Taq polymerase (NEB) for 1 h at
72◦C. After labeling, the nicks were ligated with Taq ligase
(NEB) in the presence of dNTPs. The backbone of fluores-
cently labeled DNA was stained with YOYO-1 (Invitrogen).

Data collection

The DNA was loaded onto the nano-channel array of Bio-
Nano Genomics IrysChip by electrophoresis of DNA. Lin-
earized DNA molecules were imaged using a custom made
whole genome mapping system. The DNA backbone (out-
lined by YOYO-1 staining) and locations of fluorescent la-
bels along each molecule were detected using an in-house
image detection software. The set of label locations relative
to the DNA backbone for each DNA molecule defines an
individual single-molecule map. A commercial version of
this whole-genome mapping and imaging system (Irys) is
available from Bionano Genomics.

De novo genome map assembly

Single-molecule maps were assembled de novo into consen-
sus maps using software tools developed at BioNano Ge-
nomics, specifically Refaligner and Assembler (26). Briefly,
the assembler is a custom implementation of the overlap-
layout-consensus paradigm with a maximum likelihood
model. An overlap graph was generated based on pairwise
comparison of all molecules as input. Redundant and spuri-
ous edges were removed. The assembler outputs the longest
path in the graph and consensus maps were derived. Con-
sensus maps are further refined by mapping single molecule
maps to the consensus maps and label positions are recal-
culated. Refined consensus maps are extended by mapping
single molecules to the ends of the consensus and calcu-
lating label positions beyond the initial maps. After merg-
ing of overlapping maps, a final set of consensus maps was
output and used for subsequent analysis. The map assem-
blies are very robust to the relatively small errors in label-
ing (10% false positive, due to extra nickings at wrong sites
and 10% false negative, due to missing nicks). This does not
affect the maps and haplotype calls as the haplotypes are
both are based on multiple nicking sites and multiple single
molecules.

Structural variation detection

Structural variants (SVs) were found by identifying outlier
alignments between single-molecule maps/genome maps
from a sample and the reference maps (26).

Telomere length estimate

Single DNA molecules aligned to the consensus map in the
subtelomeric regions were used for the telomere length mea-
surements. We specifically selected molecules that were long
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enough to extend into 1-copy subtelomere regions in or-
der to ensure the uniqueness of the alignment and local-
ization to a specific subtelomeric region. We excluded any
molecule with an alignment confidence score <20 based
on Realigner’s results (26). The strategy of estimating the
telomere length through single DNA molecule mapping is
based on the following facts: (i) the origin of the refer-
ence sequence starts from the beginning of subtelomeric se-
quences (p-arm) and the end of the reference sequence stops
at the end of subtelomeric sequences (q-arm). (ii) The ref-
erence sequences lack significant stretches of (TTAGGG)n
repeat (16,23). (iii) There is no nicking motif in the telomere
repeats. In estimating the telomere length, we first determine
the first or last nicking site of a single DNA molecule that
is aligned to the human reference genome (p-arm or q-arm
respectively), then we calculate the extra length of the DNA
molecules beyond the origin or the end of the reference se-
quence; this length corresponds to telomere repeats (Figure
5). While clearly more expensive at its current stage of de-
velopment than conventional methods for measuring aver-
age telomere lengths, this new method provides qualitatively
different datasets that link single telomere lengths with spe-
cific subtelomeres and subtelomere haplotypes; the proof
of principle we demonstrate for this novel single-telomere
genotyping method may ultimately enable delineation of
previously inaccessible human subtelomeric cis elements in-
volved in telomere length regulation.

RESULTS

Individual subtelomeric consensus maps containing large
SRE regions

Subtelomeric repeat element (SRE) regions are located in
the most distal stretches of human subtelomeres. Long SRE
regions of about 300 kb have been identified in some alleles
of the 1p, 8p and 11p telomeres, whereas 7 telomeres have
minimal or no SRE content (16,20,23,29). Most SRE re-
gions are 40–150 kb in size (23). Physical linkage of 1-copy
regions with telomeres on single large DNA molecules capa-
ble of spanning SRE regions is required for assembling indi-
vidual subtelomeric consensus maps. Read lengths of >50–
300 kb would be required for assembling these regions using
single-molecule sequencing, which is beyond the capabil-
ity of current technology (30). However, recently-developed
high-throughput single-molecule genome mapping meth-
ods may be well-suited for this challenge. In this method,
genomic DNA is labeled at sites recognized by a sequence
motif-specific Nicking endonuclease, long genomic DNA
fragments are isolated and imaged in nanochannel arrays to
a high depth of coverage and contigs of these large genomic
DNA fragments are assembled from these data. In our case,
these maps are then compared with in silico-generated maps
of subtelomeric reference sequences.

Figure 1 shows the consensus maps of the 19p, 15q and
6p subtelomeres from the NA12878 genome, aligned with
the subtelomere assemblies of Stong et al. (23). The human
19p, 15q and 6p subtelomeres share some SREs but differ
in others, as shown in Figure 1A. 19p and 15q share du-
plicons 1–5 of 120 kb. 6p, which contains a gap between
the telomere and the beginning of the reference sequence,
shares a partial duplicon 3 as well as duplicons 4–8 with

19p (Figure 1A). 19p, 15q and 6p of NA12878 were de novo
assembled into unique consensus maps from the mixture of
single long DNA molecules (Figure 1B). 15q of NA12878
has two different haplotypes, and one of the haplotypes has
extra telomere-adjacent subtelomeric sequences compared
to the reference (the purple bars in Figure 1B). However,
both haplotypes of 15q share the same patterns of about
120 kb with 19p (the red bars of Figure 1B), which are
nearly identical (98–99.5% similarity) in the reference se-
quences of 19p and 15q from 1 to 120 kb. As indicated in
the blue bars in Figure 1B, the consensus maps of 19p and
6p support that they share duplicons 4–8. The subtle differ-
ence of lacking duplicons 6–8 in 15q, compared to 19p and
6p, is also demonstrated in Figure 1B (green bars from 120
to 140 kb). Since all the single molecules used in the con-
sensus maps in Figure 1 are longer than 300 kb, and con-
tain 1 copy unique segments centromeric to the SREs (gray
bars in Figure 1A), this mapping method can clearly distin-
guish individual SRE regions within a genome. Thus, this
genome mapping method with long DNA molecules pro-
vides a unique tool to track and study individual SRE vari-
ants from within families of SREs by their physical linkage
to 1-copy DNA on single molecules.

Discovery of novel subtelomeric structural variants, resolu-
tion of sequence gaps and delineation of long-range subtelom-
eric haplotypes

Encouraged by our initial results with the NA12878
genome, we next analyzed in-depth the mapping data from
NA12878 as well as data acquired in a similar fashion
from five additional genomes, two of which form a family
trio with NA12878. Figure 2 shows single-molecule con-
sensus maps of the 15q subtelomeric region in genomic
DNA from a maternal grandmother (NA12892), mater-
nal grandfather (NA12891) and mother (NA12878) fam-
ily trio from the CEPH collection. Based on the alignment
of these maps with the reference sequence, NA12892 and
NA12878 are heterozygous, while NA12891 is homozygous.
NA12892 and NA12878 share the same SV (haplotype 1),
which has about 50 kb more DNA (purple bars in Figure
2) than the completed 15q reference sequence. The consen-
sus maps of NA12892 (haplotype 2) and NA12878 (hap-
lotype 3) are similar, but haplotype 2 of NA12892 is miss-
ing a nicking site (green ticks indicated by red arrow in Fig-
ure 2). The homozygous NA12891 has the same consensus
map as haplotype 3. Clearly, NA12878 inherited the longer
haplotype 1 from NA12892, and the shorter haplotype 3
from NA12891. The molecules shown in Figure 2 are all
longer than 300 kb, and extend into the 1- copy unique re-
gion of the 15q subtelomere. This excludes the possibility
of molecules from different chromosomes but with similar
duplicon structures obfuscating the consensus maps. Fig-
ure 3 shows long-range subtelomeric haplotypes of 6p from
the same CEPH trio. In this case, two haplotype-resolved
consensus maps are confirmed, and the 6p subtelomere gap
region in the current reference sequence is shown to contain
a large subtelomeric SV.

Many additional large subtelomeric SVs (over 20 kb),
new gap-filling DNA regions and novel long-range sub-
telomeric haplotypes were found in the six genomes ana-
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Figure 1. Consensus genome maps of individual subtelomeric regions containing SRE regions of NA12878. (A) Human subtelomere reference assemblies
as described in Stong etal. (23) for 19p, 15q and 6p. Subtelomeric Repeat Element (SRE) paralogy blocks are shown in colors, with the gray line segments
indicating adjacent 1-copy subtelomere DNA. The 19p and 15q assemblies extend to the start of the telomere terminal repeat (TTAGGG)n tract on the left
(T), whereas there is a gap of indeterminate size between the start of the 6p reference sequence and the telomere. (B) Consensus single-molecule maps from
the NA12878 genome aligning to the 19p, 15q and 6p telomeres of the Stong etal. (23) reference assemblies. In the consensus map for each subtelomere,
nicking sites are represented by dark blue vertical lines within the light blue rectangles above the single DNA molecule maps. Each yellow row represents a
single mapped large genomic DNA molecule, with the green ticks on each yellow row showing the labeled nicking sites imaged on that molecule. Lighter
green ticks indicate nicking sites that did not match to the reference sequence. The numbers above the 19p consensus map indicate distance in megabases
(Mb). The red bars in Panel B show SRE paralogy region blocks 1–5 from panel A that are shared by 19p and 15q. The dark blue bars in Panel B show
SRE paralogy region blocks 4–8 from Panel A that are shared between 19p and 6p as well as part of 15q. The green bars in Panel B show a DNA segment
shared between 19p and 6p but not 15q. The purple bar in Panel B shows a structurally variant segment of the 15q subtelomere, an insertion of about 50 kb
immediately adjacent to the telomere relative to the reference sequence. The black bar in Panel B indicates the 6p gap region delineated by the consensus
map.

lyzed (Table 1). For 3q, all six genomes have the same con-
sensus map with 130 kb telomere-adjacent sequences (Sup-
plementary Figure S1) filling the gap in the reference se-
quence to the start of the 3q telomere sequence (23). Sim-
ilarly, the consensus map of 11p fills an existing gap in the
reference sequence with a defined mapping pattern for an
additional 93 kb of DNA (Supplementary Figure S1), and
a small amount of DNA is added to the gap region of 8p
for all six genomes (data not shown). 7p has 91 kb of ad-
ditional sequence with a defined mapping pattern for all
six genomes; however, in this case the existing reference se-
quence defines a complete 7p, indicating a large, more com-
mon SV 7p allele in the 6 genomes (Supplementary Figure
S1). The consensus maps of 9q and 20q show 25 and 56 kb
of additional telomere-adjacent sequences beyond the cur-
rent reference sequence, respectively (Supplementary Fig-
ure S1).

16q and 20p show variable lengths of telomere-adjacent
sequences among different individuals (Supplementary

Figure S2). The consensus maps of 16q of NA12892,
NA12891,NA12878 and HG02490 are identical to the com-
pleted 16q reference sequence of (23), whereas 16q of
HG02522 and HG02603 extend 110 kb beyond this refer-
ence sequence (Supplementary Figure S2A). The consen-
sus maps of 20p show three variable lengths of telomere
adjacent sequences from 98 to 238 kb between individu-
als (Supplementary Figure S2B), suggesting a very high
level of structural variation at this subtelomere, as had been
noted previously (29,31,32). The polymorphism of 14q con-
sensus maps consists of multiple insertions (green bars in
Supplementary Figure S3) and deletions (orange bars in
Supplementary Figure S3) between different individuals, as
might be expected from the variable IgG heavy chain locus
which can become somatically rearranged in white blood
cell clones immortalized during lymphoblastoid cell line
generation.

Interestingly, the 4q consensus maps not only show the
expected variable lengths of the subtelomeric macrosatel-



PAGE 5 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 9 e73

Figure 2. Haplotype-resolved subtelomeric variants of 15q. SRE paralogy blocks from Stong et al. reference assembly (23) are shown in colors, with
the gray line segments indicating adjacent 1-copy subtelomere DNA. The 15q assembly begins at the centromeric end of the telomere terminal repeat
(TTAGGG)n tract on the left (T). The hg38 representation of this assembly, which is identical to that of Stong et al. (23) except for the addition of a 10
kb gap adjacent to the telomere to represent unsequenced (TTAGGG)n (see supplementary materials), has been in silico nicked with the Nicking enzyme
Nt.BspQI used for genome-wide mapping (represented by dark blue vertical lines within the light blue rectangles). Consensus single-molecule maps from
the NA12892, 12891 and 12878 genomes aligning to the 15q telomeres are represented as described in Figure 1, and positioned beneath the hg38 reference
map. Each yellow row represents a single molecule, with nicking sites shown in green. NA12892 contains haplotypes 1 and 2, while NA12891 has a third
haplotype and NA12878 has haplotypes 1 and 3. The red arrows indicate the position of a nicking site that is present in the third haplotype but absent in
the first and second haplotypes.

lite D4Z4 array (33) among different individuals, but also
have adjacent 35 kb deletions relative to the reference se-
quence for some individuals (Supplementary Figure S4).
The 10q consensus maps also indicate variable lengths of
the D4Z4 macrosatellite array among different individuals
(Supplementary Figure S5), with HG02603 having two hap-
lotypes, showing distinctly different lengths of D4Z4 tracts
of 40 and 62 kb. In addition, the 10q consensus maps of the
related NA12878, NA12891 and NA12892 genomes have a
large 139 kb insertion (green bar) 400 kb upstream from the
telomere, apparently unrelated to the D4Z4 repeat array.

Internal structural variants in subtelomeric regions

Based on the single molecule assembled contigs, we as-
signed specific consensus maps to subtelomere haplotypes,
resolved existing gaps in the subtelomere reference sequence
and identified large SVs in the distal subtelomere regions.
However, using the same six datasets, we were also able to
identify new conventional SVs in more internal regions of

the subtelomere maps. Typical examples of these are shown
in Figure 4. For the six genomes studied in this report, the
single molecule mapping evidence for internal subtelom-
ere regions was consistent with the current reference se-
quences for 5q, 6q, 8q, 18q and 19p. However, we used
our single-molecule maps and consensus maps to detect
33 insertion and 14 deletion loci located in internal sub-
telomeric regions (Supplementary Table S2) for HG02603,
HG02490 and HG02522. All of these insertions and dele-
tions were carefully verified by manual inspection of the raw
single-molecule mapping data to confirm supporting evi-
dence. The SVs of NA12878, NA12891 and NA12892 were
reported previously (26).

Telomere length estimate by single molecule DNA mapping

There is currently no good method for comprehensive
molecular analysis of single telomere lengths in the human
genome, which can quantify a critically important biologi-
cal parameter currently masked in all experimentally scal-
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Figure 3. Gap characterization and subtelomeric haplotype structures of 6p. SRE paralogy blocks from Stong etal. (23) are shown in colors, with the gray
line segments indicating adjacent 1-copy subtelomere DNA. The 6p subtelomere assembly contains a gap of indeterminate size between the telomere and
the start of the assembly. This gap is omitted in the Stong etal. (23) reference, and represented in the hg38 reference by a telomere (TTAGGG)n gap (10
kb) plus a clone gap (50 kb) on the telomeric side of the 6p assembly start position (see Supplementary Data); the hg38 reference is otherwise identical to
the Stong etal. (23) reference sequence. Insilico nicking of the hg38 reference with the Nicking enzyme Nt.BspQI used for genome-wide mapping is shown
(represented by dark blue vertical lines within the light blue rectangles); note that the subtelomere gap region of hg38, a 60 kb string of NNN’s in the
sequence itself, has no nicking sites represented in the electronic digest. Consensus single-molecule maps from the NA12892, 12891 and 12878 genomes
aligning to the 6p telomere are represented as described in Figure 1, and positioned beneath the hg38 reference map. The position of the gap region of
the hg38 reference sequence is represented above each consensus map by a black rectangle. NA12892 shows two structurally variant haplotypes, as does
NA12891, but NA12878 has inherited only haplotype 1 from each parent. While structurally variant within the gap region of 6p, the two haplotypes clearly
diverge ∼120 kb from the telomere within SRE paralogy region 5.

able analyses of telomeres; the relative global fraction and
identities of very short telomeres in a given sample of ge-
nomic DNA (34).

The ability to accurately map individual DNA molecules
to discrete subtelomere regions provides a unique method
of estimating telomere lengths, and ultimately connecting
telomere length measurements with individual subtelomere
haplotypes. Figure 5A and B show a schematic diagram of
our single-molecule telomere length estimation strategy. It
identifies the subtelomere of a single DNA molecule (yel-
low line) by aligning its sequence motif pattern (green dots)
to the in silico-nicked subtelomere reference sequence (blue
line). In Figure 5A, the single DNA molecule of 205 kb in
length entered the nano-channel with the telomere end (red
dotted line) first. The three fluorescent labels were localized
from the telomere end (red dotted line) at 25, 50 and 175
kb, which were mapped to the reference at 12, 37 and 162

kb respectively. Since the subtelomere starts from 0 on the
reference sequence and the first nicking motif at 25 kb of
the DNA molecule matches to the reference at 12, 13 of 25
kb (25–12 kb) of the single molecule is the telomere (dotted
red line). There should be no fluorescent labels of this 13 kb,
except random false positive labels, as telomere repeats do
not contain any nicking motifs. Figure 5B displays the same
molecule entering the nano-chanel from the non-telomere
end first. The three fluorescent labels were localized at 30,
155 and 180 kb, which were aligned to the reference at 162,
37 and 12 kb respectively. In this case, the telomere length is
calculated to be 13(205-180-12 kb). In Figure 5C, many sin-
gle molecules are aligned to the reference to estimate the sin-
gle telomere lengths from chromosome 5p of NA12878 and
NA12891. It is visually clear that NA12878 has the longer
average telomere length than NA12891.
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Figure 4. Detection of internal subtelomeric structural variations. The in-silico nicked 2p subtelomere region of the hg38 assembly is shown directly above
consensus single-molecule maps of this region (represented by the yellow bar with green ticks) for each of the HG02490, HG02606 and HG02522 genomes.
Note the 10 kb gap region represented at the start of hg38 (see Supplementary Data). Both HG02490 and HG2606 show an insertion at coordinate 0.2Mb.
The blue bar here is the reference, hg38 and the yellow bar represents the consensus map of the molecules. Light gray lines connect the green dashes, which
indicate nicking sites, to their locations on hg38. At 0.2Mb an insertion occurs on both HG02606 and HG02490.
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Figure 5. Telomere length measurement. The strategy of telomere length estimation through single-molecule mapping is shown in (A and B). Panel A
shows a single DNA molecule (yellow line) that is aligned to the reference sequences (blue line). The telomere end (dotted red line) of the DNA molecule
entered the nano-channel first. The three fluorescent labels (green dots on the yellow line) on the DNA molecule are mapped to the sequence motifs on the
reference (green dots on the blue line). Panel B shows the same molecule that entered the nano-channel in a different orientation, with the telomere end
entering the last. Panel C shows the single molecules used to estimate the telomere lengths from chromosome 5p of NA12878 and NA12891.
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Table 1. Subtelomere gaps (g), haplotypes (h) and structural variants (sv) characterized

Tel NA12878 NA12891 NA12892 HG02603 HG02490 HG02522
Large-scale
variationa

1p g g, h, sv g nd nd nd Hi
1q - - - - - - Lo
2p - - - - - - Lo
2q - - - - - - Lo
3p - - - - - nd Lo
3q g g g g g g Lo
4p - - - - - - Lo
4q sv sv sv sv sv sv Hi
5p - - - - - - Lo
5q - - - - - - Lo
6p g g, h, sv g, h, sv g nd nd Hi
6q - - h Lo
7p sv sv sv sv sv sv Hi
7q - - - - - - Lo
8p g g g g g g Hi
8q - - - - - - Lo
9p h h h - - - Lo
9q g g g g g nd Hi
10p - - - - - - Lo
10q h, sv h, sv h, sv h, sv sv sv Hi
11p g g, sv, h g nd g g Hi
11q - - - - - - Lo
12p - - - - - - Hi
12q - - - - - - Lo
13q - - - - - - Lo
14q sv sv sv sv sv sv Hi
15q sv, h h sv - - - Lo
16p nd nd nd nd nd nd Hi
16q h h h sv - sv Hi
17p nd nd nd nd nd nd Hi
17q - - - - - - Lo
18p - - - - - - Lo
18q - - - - - - Lo
19p nd - - - - - Hi
19q nd nd nd nd nd nd Hi
20p g g g g, sv g g, sv Hi
20q sv sv sv sv sv sv Hi
21q - - - - - - Lo
22q nd nd nd nd nd nd nd
Xp/Yp nd nd nd nd nd nd nd
Xq/Yq - - - - nd - Lo

aTelomeres with a frequency of >10% large variant alleles in the small populations sampled are considered to have ‘Hi’ polymorphism in the context of
this paper, and those with less than 10% large variant alleles are considered to have ‘Lo’ polymorphism. For the telomeres listed as ‘nd’, no molecular
data are available with respect to large-scale variations and the available FISH data are inconclusive with respect to potential large-scale variation. The
polymorphism frequencies detected by FISH are minimum numbers, since detection depends upon the variable presence/absence of only one specific FISH
probe at the telomere. The size(s) of the polymorphisms cannot be determined by FISH, but are assumed to be at least the size of the probe used (based
upon similar FISH signal intensities at all sites). Data on polymorphic telomeres are from: (21,29,31,32,39–45), Riethman, Unpublished results, and this
paper.
g = gaps
h = haplotypes
sv = structural variants
‘-’ = no difference compared to Stong etal. (23) reference sequence
nd = no data

Table 2 summarizes the telomere length estimates of
three samples in the NA12878 trio family. A total of 36
out of 46 possible telomeres were measured. Five acrocen-
tric short-arm telomeres and five poorly mapped telom-
eres lack telomere length estimates. The haplotype 2 of 16q
(NA12891) has the shortest average telomere length of 1.5
kb, while 4q of NA12892 has the longest average telom-
ere length. It is important to note that the standard de-
viations reflect biological differences as well as measure-
ment differences; since the measurements are made on sin-
gle molecules, and the sample is a large collection of cells

each having a different population doubling trajectory, true
single-cell fluctuations in telomere lengths about a mean
at single telomeres are expected (Baird et al. (35)). Stan-
dard deviations for molecular length measurement of sim-
ilarly sized single molecules lacking telomeres using single-
molecule mapping are typically ±250 bp (36).

Differences in telomere lengths of different haplotypes
are observed. The 10q telomere of NA12878 has 16.6
kb telomere length for haplotype 1, whereas the other
NA12878 haplotype of 10q possesses only 4.8 kb telom-
ere length. The 10q of samples NA12891 and NA12892
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Table 2. Telomere length estimate by single molecule measurement

NA12878 NA12891 NA12892 NA12878 NA12891 NA12892
Chr-parm Length in kb:Mean ± Std (number of telomeres) Chr-qarm Length in kb:Mean ± Std (number of telomeres)

1p* 17.7 ± 3.9 (62) 12.7 ± 4.9 (14) 17.7 ± 6.4 (31) 1q 8.7 ± 5.3 (52) 4.5 ± 2.3 (21) 9.8 ± 5.1 (21)
2p 8.7 ± 3.7 (94) 2.8 ± 1.8 (21) 10.4 ± 3.9 (18) 2q 9.2 ± 4.0 (48) 4.7 ± 3.0 (13) 9.5 ± 4.0 (25)
3p 9.5 ± 3.8 (20) 5.2 ± 3.5 (11) 14.3± 7.7 (14) 3q* 14.5 ± 1.5 (3) 9.0 ± 1.7 (6) 19.7 ± 1.3 (3)
4p 8.8 ± 4.0 (34) 5.0 ± 3.7 (17) 16.5 ± 5.8 (19) 4q nd nd 34.4 ± 4.3 (2)
5p 10.6 ± 4.0 (24) 7.9 ± 4.9 (10) 11.7 ± 4.8 (13) 5q 8.7 ± 6.0 (81) 4.6 ± 3.7 (24) 8.4 ± 3.8 (17)
6p(haplo-type-1)* 14.8 ± 3.3 (29) 11.2 ± 1.3 (14) 19.0 ± 3.5 (18) 6q 3.6 ± 3.2 (47) 3.6 ± 2.8 (7) 4.8 ± 3.6 (20)
6p(haplo-type-2)* no haplotype-2 10.7 ± 2.5 (10) 18.2 ± 4.5 (16) 7q 8.5 ± 4.0 (28) 3.2 ± 1.6 (37) 12.1 ± 4.9 (26)
7p* 16.0 ± 4.0 (13) 13.9 ± 5.75 (12) 18.8 ± 14.9 (12) 8q 9.4 ± 3.5 (56) 4.9 ± 1.9 (13) 11.6 ± 3.3 (22)
8p* 9.1 ± 4.0 (59) 3.1 ± 1.8 (23) 7.6 ± 4.3 (17) 9q* 12.4 ± 1.7 (31) 12.4 ± 1.7 (31) 10.4 ± 4.8 (15)
9p 9.6 ± 5.0 (44) 4.0 ± 2.2 (17) 7.9 ± 4.2 (17) 10q(haplo-type-1) 16.6 ± 2.0 (24) 11.8 ± 2.5 (20) 17.6 ± 2.8 (19)
10p 8.6 ± 4.2 (39) 4.6 ± 2.1 (28) 10.4 ± 3.6 (42) 10q(haplo-type-2) no haplotype-2 no haplotype-2 9.7 ± 3.9 (12)
11p* 15.6 ± 4.5 (5) 12.0 ± 1.4 (13) 17.5 ± 2.9 (10) 10q(haplo-type-3) 4.8 ± 1.8 (16) 3.2 ± 2.2 (7) no haplotype-3
12p 8.9 ± 6.4 (18) 2.3 ± 1.9 (13) 11.8 ± 5.8 (22) 11q 9.7 ± 4.6 (78) 4.1 ± 2.0 (36) 10.6 ± 5.2 (54)
13p nd nd nd 12q 7.6 ± 3.2 (77) 2.7 ± 1.6 (29) 9.8 ± 4.5 (79)
14p nd nd nd 13q 9.6 ± 5.1 (67) 3.8 ± 1.4 (36) 11.7± 7.2 (32)
15p nd nd nd 14q 9.3 ± 4.7 (39) 4.9 ± 2.3 (16) 8.8 ± 3.5 (15)
16p nd nd nd 15q(haplo-type-1)* 19.5 ± 9.5 (33) nd 15.1 ± 5.4 (18)
17p nd nd nd 15q(haplo-type-2) 15.0 ±5.5 (21) 4.9 ± 2.1 (20) 10.2 ± 5.5 (18)
18p 9.6 ± 6.6 (42) 4.4 ± 1.6 (15) 13.0 ± 5.2 (28) 16q(haplo-type-1)* 7.8 ± 3.1 (77) 6.0 ± 1.7 (28) 7.0 ± 3.5 (28)
19p 7.1 ± 3.8 (121) 3.7 ± 2.6 (32) 10.1 ± 4.9 (23) 16q(haplo-type-2) 6.1 ± 2.7 (39) 1.5 ± 1.1 (17) 9.1 ± 5.8 (10)
20p* 17.0 ± 3.2 (23) 6.0 ± 2.0 (10) 13.1 ± 5.5 (7) 17q 7.1 ± 2.9 (43) 5.6 ± 4.4 (20) 10.9 ± 3.6 (23)
21p nd nd nd 18q 9.3 ± 4.4 (43) 3.3 ± 3.7 (36) 9.6 ± 5.1 (36)
22p nd nd nd 19q nd nd nd
Xp/Yp nd nd nd 20q 2.2 ± 1.9 (64) 13.4 ± 2.0 (23) 3.5 ± 1.3 (17)

21q 8.9 ± 3.8 (70) 5.2 ± 3.6 (25) 8.8 ± 6.6 (47)
22q nd nd nd
Xq/Yq 7.9 ± 4.3 (14) 2.6 ± 1.6 (15) 8.5 ± 3.4 (20)

* = Gap-filling alleles and structurally variant haplotypes characterized only by single-molecule mapping data.

also show the telomere length differences between haplo-
types. On the other hand, the 16q of NA12878 shows lit-
tle difference in telomere length between the two haplo-
types. While haplotype-dependent telomere length differ-
ences have been observed previously (5–7,35), the effec-
tiveness and throughput of this single molecule measure-
ment technique in distinguishing telomere length haplo-
types globally provides proof-of-principle for the method
and demonstrates its potential for routine tracking of this
rarely-investigated modality of telomere biology.

NA12891 has the shortest telomeres for almost every
chromosome among the trio, reflecting shorter average
telomere length genome-wide for this lymphoblastoid cell
line relative to the other two. Lymphoblastoid cell line
differences in average telomere length likely reflect differ-
ences in the extent of lymphocyte clonal proliferation prior
to Epstein-Barr Virus (EBV) mediated immortalization as
well as other unknown factors in the EBV transformation
process; cell line-specific differences are not necessarily ex-
pected to reflect the normal telomere lengths in the progeni-
tor lymphocytes used for immortalization. Similar telomere
measurements of DNA from leukocyte populations derived
directly from blood samples are required for telomere length
heritability studies that will combine allele-specific telomere
length measurements with linked long-range haplotypes.

Since our telomere length estimate is based on map-
ping single molecules back to the reference sequence, know-
ing the complete reference sequence from the centromeric
end of the (TTAGGG)n tract through the subtelomere re-
peats into 1-copy DNA is important. For the telomeres
with gaps and structurally variant haplotypes characterized
here only through single-molecule mapping (Table 2, telom-
eres with asterisks), the exact subtelomeric start site for the
(TTAGGG)n tract on the mapped molecules is unknown
relative to the most distal recognition site for the Nicking
enzyme Nt.BspQI. This site occurs on average every 9.3 kb

in the human genome, so the (TTAGGG)n lengths at these
telomeres as measured by this single-molecule method will
be overestimated (explaining their generally longer than av-
erage estimated (TTAGGG)n tract lengths (Table 2)). This
mapping method for telomere length measurement may
also slightly overestimate some telomere lengths due to hy-
pervariable telomere-like sequences sometimes adjacent to
(TTAGGG)n tracts (37). However, even with these caveats,
this method is uniquely powerful for analyzing haplotype-
resolved changes in telomere length (delta TL) that oc-
cur within individual genomes. For example, longitudinal
studies of telomere lengths in individuals are amenable
to this approach, and are expected to reveal haplotype-
resolved age and environment-associated telomere delta TL
over time and exposures, respectively. Similarly, the method
will enable experimental studies of haplotype-resolved delta
TL as they relate to biology and genetics in cultured cell
lines, including detailed analyses of cis-effects on delta TL
at individual telomeres. Ultimately, optimization of a new
CRISPR/Cas9 directed telomere labeling protocol (38) may
be combined with our method to provide a more direct
readout of telomere length on these single molecules, re-
moving this potential limitation entirely.

DISCUSSION

In this study, we applied a highly automated single-molecule
mapping technology in nano-channel arrays (24,25) to use
high molecular weight genomic DNA molecules for de
novo map assembly in six human genomes: a CEPH trio
(NA12878, NA12891 and NA12892) and three additional
unrelated genomes HG02490, HG02603 and HG02522.
(Table 1). We prepared long DNA molecules and collected
single-molecule data (>150 kb) to a minimum of 71× depth
of coverage for each individual. The assembled contigs were
compared and aligned separately with either human ref-
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erence genome hg38 or with updated subtelomere refer-
ence assemblies (23). A total of 36 of 46 subtelomeric re-
gions were successfully mapped and analyzed. The 13p, 14p,
15p, 21p and 22p subtelomeres were not studied due to
the lack of reference sequences for these acrocentric short-
arm telomeres. Two of six genomes have continuous Xp/Yp
contigs, but none covered the 200 kb telomere-adjacent se-
quences of the XpYp subtelomere reference, possibly due
to the many gaps in available reference sequences near
this subtelomere. Inverted nick pair (INP) sites, where two
closely-spaced nicking enzyme sites (in this case Nt.BspQI
sites) are found on opposite strands of the DNA and thus
cause double-strand breaks in molecules to be mapped, pre-
cluded the assembly of long continuous contigs for 16p, 17p,
19q and 22q. Additional data sets with different nicking-
enzymes are required to bridge these INP gaps in single-
molecule maps.

Particular strengths of this mapping method are its abil-
ity to precisely delineate genomic sequence gaps, detect and
track new SVs and connect individual duplicated genome
segments and SVs with adjacent long-range haplotypes.
Each of these strengths were demonstrated in our analy-
sis of these six genomes, revealing new information on hu-
man subtelomere gap size and features, structural varia-
tions and long-range subtelomere haplotypes. These fea-
tures make the method a uniquely valuable new tool for im-
proving the quality of genome assemblies in complex DNA
regions, and especially important for incorporating next-
gen sequence data for these regions into current genome as-
semblies. While particularly valuable for human subtelom-
eric regions, where the number and organization of SREs
can contribute to very large polymorphisms and alternative
haplotypes for single telomeres (38–45), these methods can
find wide application for improving the assembly quality of
complex regions of any genome.

Telomere length estimates by single-molecule genome
mapping, as described here, have the potential to link allele-
specific single telomere lengths to SRE organization and
long-range haplotypes. Even with the current caveats to
this method, it is already uniquely amenable to haplotype-
resolved studies of delta TL within individual genomes over
time or in response to environmental exposures and/or ex-
perimental manipulations. This may provide, for the first
time, a tractable method for mechanistically deciphering
long-range cis effects on telomere length regulation and
stability. Future improvements incorporating direct TL de-
tection strategies into single molecule mapping (38) may
broaden the applicability to haplotype-resolved TL com-
parisons between genomes.
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