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Summary

Covert motor learning can sometimes transfer to overt behavior. We investigated the neural 

mechanism underlying transfer by constructing a two-context paradigm. Subjects performed 

cursor movements either overtly using arm movements, or covertly via a brain-machine interface 

that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks 

helped evaluate if and how cortical changes resulting from “covert rehearsal” affect overt 

performance. We found that covert learning indeed transfers to overt performance, and is 

accompanied by population-level changes in motor preparatory activity. Current models of motor 

cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent 

movement-period neural dynamics. We found that covert and overt contexts share these initial 

conditions, and covert rehearsal manipulates them in a manner that persists across context changes 

thus facilitating overt motor learning. This transfer learning mechanism might provide new 

insights into other covert processes like mental rehearsal.
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eTOC

Vyas et al. ask if learning “covertly,” without physical movements, can transfer to overt behavior. 

By using visuomotor perturbations, they show that covert and overt movements derive from a 

common neural substrate consisting of motor cortical preparatory activity that facilitates transfer 

of learning.

Introduction

Understanding motor-related covert mental processes, such as imagined or intended 

movements, and mental rehearsal, is tantalizing as these internal behaviors have been shown 

to exhibit varying degrees of motor learning transfer (Denis, 1985; Papaxanthis et al., 2002). 

Decades of human behavioral studies have shown that mental rehearsal can improve motor 

skills such as throwing darts or making free throws (Feltz and Landers, 1983), and mental 

rehearsal has also been shown to sometimes aid in rehabilitation (Warner and McNeill, 

1988; Buch et al., 2008; Saposnik et al., 2010; Silvoni et al., 2011). Working theories posit 

that motor learning transfer is a result of covert learning engaging neural population activity 

similar to that employed during overt practice. In support of this, “mirror neurons” in ventral 

premotor cortex have been shown to discharge both when actions are overtly performed and 

when they are observed (Rizzolatti, Fogassi and Gallese, 2001). These results, however, are 

still debated (Hickok, 2009), and do not propose mechanistic hypotheses about why neural 

similarity is helpful for learning transfer.

This debate stems primarily from the fact that mental rehearsal, and covert processes in 

general, are difficult to define, and even more challenging to experimentally study. They are 

open-loop hidden processes, where experimenters cannot directly observe the internal 

process or the trial-by-trial progression of learning. In this study, we present a covert process 

that enables a direct and real-time probe into this evolution, by “closing the loop.” We use a 

brain-machine interface (BMI) which takes as input neural activity from dorsal premotor and 

primary motor cortex. This neural activity is mapped through a fixed mathematical function, 

i.e., “decoder,” to produce a two-dimensional cursor movement. This defines a closed-loop 

system by which subjects receive visual-feedback of the on-screen cursor, and the 

experimenters observe both the behavior and the evolving neural activity on a trial-by-trail 

basis. The BMI context elicits internal motor processes that share an end-goal with overt 

processes because subjects use the decoder (i.e., neural activity without overt movements) to 

make the same cursor movements as they will perform subsequently using arm movements. 

We constructed the decoder by associating the kinematics of automated cursor movements 

with neural activity recorded while subjects observed these movements (Gilja et al., 2012). 

This was done in contrast to using neural activity measured during overt movements. 

Previous findings have shown that neural signals involved in watching cursor movements are 

engaged in mental rehearsal and involve many of the same cells as when generating 

movement (Cisek and Kalaska, 2004).

The BMI paradigm is a powerful tool for studying learning because the decoder establishes a 

causal link between behavior (i.e., cursor movements), and all the neurons directly 

responsible for producing that behavior. Thus, the only way to modify the behavior is to 
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causally modify the input neurons to the decoder. Several groups have used BMIs to dissect 

a variety of sensorimotor and learning processes; recent germane studies include 

(Jarosiewicz et al., 2008; Ganguly and Carmena, 2009; Ganguly et al., 2011; Orsborn et al., 
2014; Sadtler et al., 2014; Golub, Yu and Chase, 2015; Athlaye et al., 2017; Prsa, Galiñanes 

and Huber, 2017). Here, we use BMIs to establish a “covert rehearsal” paradigm whereby 

subjects can “practice” or in a sense “rehearse” a motor task using directly their neural 

activity without movement (i.e., covertly). We can then evaluate the degree of learning 

transfer by having the subjects repeat the same task using overt movements.

In this non-human primate study, we cannot definitively equate covert rehearsal to imagined 

movements or mental rehearsal (though this may well be what the monkeys are doing). 

Critically, covert rehearsal differs from mental rehearsal in that it provides the monkeys with 

real-time visual feedback of the onscreen cursor. This design, however, is intentional as it 

provides a first-ever direct probe into studying the single-trial neural (and behavioral) 

correlates of covert learning. Thus, the goal of this study is to use the covert rehearsal 

paradigm to evaluate two key scientific questions underlying most covert processes: (i) Can 

covert processes (which covert rehearsal is a type of) facilitate overt motor learning? (ii) If 

so, what neural mechanism mediates this transfer? If covert processes can facilitate overt 

learning, we expect to observe that neural changes resulting from learning in one context 

would result in behavioral changes in the other. This would suggest that covert learning does 

transfer, and the corresponding neural activity would provide a glimpse at its mechanism. 

We note, however, that in this study learning is measured through the lens of motor 

adaptation; monkeys learn to adapt to a visuomotor rotation. Adaptation is used here, as is 

commonly done in the literature as one simple subset of motor learning (Jarosiewicz et al., 
2008; Huang et al., 2011; Chase, Kass and Schwartz, 2012; Ranganathan et al., 2014; 

Mathis, Mathis and Uchida, 2017). Thus, a conservative interpretation of our claims 

concerning motor learning and its transfer, including any relation to mental rehearsal, should 

be restricted to the transfer of adaptation. Nonetheless, recent evidence, e.g. (Churchland et 
al., 2012), suggests that the dynamical systems based mechanism that we describe in this 

study could generally be at work for other more complex motor behaviors. The present 

experiments thus set the stage for future studies of motor learning transfer in skilled motor 

tasks.

In the present study, we provide key evidence that covert learning does indeed transfer to 

overt performance. Concomitantly, we propose a dynamical systems mechanism for motor 

learning transfer. In particular, our analyses will reveal that overt and covert movements 

derive from a common neural substrate, which consists of motor preparatory activity. Our 

analyses will also reveal that learning is consistent with manipulating this preparatory 

activity, and the common substrate enables persistence of these changes, hence facilitating 

learning transfer. Furthermore, we find that this substrate is also common to neural activity 

recorded during contexts previously shown to be engaged in mental rehearsal. While this 

does not prove that our covert rehearsal paradigm is the same as mental rehearsal, the neural 

and behavioral results suggest that our proposed neural mechanism could generally be at 

work in other covert processes. We will also argue that our covert rehearsal paradigm can 

serve as a valuable tool for motor learning (and potentially rehabilitation) in and of itself. 

Lastly, our results add to a growing body of evidence that suggest a dynamical systems 
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interpretation of motor cortex (Gallego et al., 2017), where in particular, we now argue for a 

more fundamental role of motor preparation in learning.

Results

Two monkeys were trained to move a computer cursor from the center of a virtual reality 

workspace to one of eight radially arranged targets. Monkeys performed this task either 

overtly using arm movements or covertly using a BMI (Fig. 1A; Fig. S1). The task appeared 

visually similar in both contexts as the virtual reality setup occluded the monkey’s view of 

his reaching arm. To directly test whether covert rehearsal can affect overt performance, we 

used the degree of transfer of motor adaptation to visuomotor rotations (VMR) as an assay 

to study the relationship between covert and overt movements (Krakauer et al., 2000; 

Tanaka, Sejnowski and Krakauer, 2009; Krakauer and Mazzoni, 2011).

We first measured VMR adaptation behavior in the overt context (i.e., “overt-to-overt 

transfer”) and then separately in the covert context (i.e., “covert-to-covert transfer”) to 

confirm that our experiments replicated expected VMR adaptation. We focus on VMR after-

effects because this will subsequently be a key measure of across-context learning transfer. 

When VMRs were applied in the overt context, monkeys learned to move their arm at an 

angle (45°, 60°, or 90° relative to the non-rotated condition) in order for the cursor to 

directly reach the target (Fig. 1B, task-flow). After adaptation, we removed the VMR and 

measured cursor movement errors (i.e., after-effects). We observed the well-known post-

VMR adaptation after-effect: monkeys initially reached in the opposite direction of the 

VMR, took longer to reach the target, and had large angular errors with respect to the 

straight-line direction to the target (Fig. S2A–D). For VMRs introduced during the covert 

context, monkeys had to modulate neural activity to generate velocity commands at an angle 

in order to move the cursor directly towards the target. In this context, we ensured that no 

physical movements were made by ensuring that the correlation between any measured 

movement and the cursor movement (i.e., the task) was negligible, i.e., ρ < ±0.1 (Fig. S1). 

Results during this covert context were also consistent with VMR adaptation (Fig. S2E–H). 

Thus, both overt and covert VMRs exhibit well-established motor adaptation after-effects.

Motor adaptation transfers between covert and overt contexts

Next, we tested whether motor adaptation would transfer across contexts by applying a 

VMR in the covert context, and after adaptation, switching to the overt context without 

rotation (i.e., “covert-to-overt transfer”; Fig. 1B, bottom, cyan). Previous studies suggest that 

VMR adaptations do not typically generalize across contexts (e.g., reaching plane, direction, 

etc.) (Krakauer et al., 2000; Taylor, Tillery and Schwartz, 2002; Tanaka, Sejnowski and 

Krakauer, 2009). However, we found that monkeys’ overt reaches initially erred in the 

opposite direction of the preceding covert context VMR (Fig. 1C). The corresponding error 

angles (Fig. 1D–E) were significantly larger than a control condition where arm reaches 

followed a no-VMR covert block (Fig. 1B, bottom, orange). This indicates that VMR 

adaptation during the covert context did transfer to the overt context.

While this behavioral effect was robust, its magnitude was smaller than VMR adaptation 

observed within the overt-only context, both in terms of the error angle, and the rate of 
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washout (Fig. S3A–B). This suggests that while there was reliable transfer, it wasn’t 

“complete” transfer. We found no significant relationship between the covert VMR angle 

and the magnitude of the subsequent transfer to the overt context as measured by initial error 

angle (Fig. S3C). We did find that greater adaptation during the covert context led to longer 

washout both for subsequent covert and overt blocks (Fig. 1F). Interestingly, this 

relationship was similar regardless of which context the learning occurred (covert and overt 

points lie along the same line). This raises the possibility that covert and overt adaptations 

could engage a similar neural process. Independent from degree of adaptation, we also found 

that decoders with higher absolute performance led to longer washouts (Fig. S3C). This 

suggests that decoders more similar to the “manual decoder,” i.e., overt reaches, result in 

greater transfer of learning. Taken together, these findings suggest that covert rehearsal has 

strong effects on subsequent overt motor behavior (and vice versa, i.e., “overt-to-covert 

transfer”; Fig. S2I–L).

Learning systematically changes motor preparatory activity

Having established that transfer occurs, we investigated the neural correlates of this 

behavior, in hopes of discovering a potential mechanism. We were motivated to examine 

preparatory neural activity because of a growing body of behavioral (Johnson et al., 2002; 

Sheahan, Franklin and Wolpert, 2016) and neural (Paz et al., 2003; Stavisky et al., 2017b) 

evidence showing a link between motor preparation and adaptation. Concretely, we asked 

whether adaptation transfer from the covert context was reflected in the overt context 

population-level motor preparatory activity.

This activity is high-dimensional, so we visualized it after dimensionality reduction 

(Cunningham and Yu, 2014). We found a low-dimensional state-space capturing over 80% 

of the co-modulation in the data (Fig. 2B). We used this state-space to visualize the delay 

period activity of overt trials following the switch from a VMR adaptation covert block (Fig. 

1B cyan shows experimental condition, Fig. 2A shows behavior, Fig. 2C shows neural 

projections for one example target). A striking feature of these trials is that early after the 

switch, preparatory states are shifted towards the neural state corresponding to preparing to 

move towards the adjacent target (i.e., the ‘anti-VMR’ target). In other words, the monkey’s 

motor plan is oriented in a direction that opposes the VMR from the previous block. We 

interpret this shift as evidence of residual adaptation reflected in the preparatory neural state. 

Quantifying the preparatory states without dimensionality reduction confirmed that 

immediately following the shift from the covert VMR block (Fig. 1 cyan condition), these 

states were biased in the direction of preparing reaches to the anti-VMR target (Fig. 2C). 

Over the course of the washout, preparatory states gradually realigned with the baseline 

states corresponding to reaches to the cued target (Fig. 2D–E). Consistent with these 

population results, we found that single neuron preferred directions (PD) rotated during 

learning in the direction corresponding to the VMR. During the washout epochs, PDs 

reoriented back to baseline (Fig. S3D).

These results demonstrate that: (i) Adaptation to the VMR systematically changes motor 

preparatory activity towards a pattern known to prepare movements angled away from the 

VMR. These changes enable the subjects to presumably adapt to the VMR, i.e., neural and 
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behavioral changes are strongly correlated on a trial-by-trial basis (Fig. 2E). (ii) The 

preparatory changes persist after switching from covert to overt contexts. (iii) This neural 

transfer effect washes out gradually rather than exhibiting a sudden “reset” of the motor 

circuit, despite visual and proprioceptive feedback (Shadmehr, Smith and Krakauer, 2010) 

and the explicit context change of the experimenter removing the monkey’s arm restraint.

Covert and overt movements share a common neural substrate

Taken together with previous findings (Cisek and Kalaska, 2004; Sobierajewicz et al., 2016), 

our population analyses suggest that covert rehearsal may involve “practicing” the 

appropriate motor system preparatory state, whereby behavioral improvements due to 

learning are accompanied by corresponding changes to the motor plan. This evidence 

dovetails with recent work arguing that motor cortical preparatory activity functions as 

advantageous initial conditions for subsequent peri-movement neural dynamics that generate 

the desired movement (Churchland, Afshar and Shenoy, 2006; Afshar et al., 2011; 

Churchland et al., 2012; Shenoy, Sahani and Churchland, 2013; Ames, Ryu and Shenoy, 

2014). We therefore hypothesized that VMR adaptation transfer was due to covert and overt 

contexts engaging a similar dynamical system, where in particular both contexts utilized 

similar initial conditions.

To test this, we first projected baseline overt context preparatory activity into the baseline 

covert context preparatory activity neural state-space. We found that population covariance 

patterns explaining most of the preparatory activity was shared between the covert and overt 

contexts (Fig. 3A). Furthermore, the neural states corresponding to preparing either covert or 

overt movements to each target were well-aligned (Fig. 3B). We quantified this for full-

dimensional population activity, and found that covert and overt neural states, when 

preparing movements to a given target, were significantly more similar to each other than to 

any other target (near-zero diagonal in Fig. 3C). Finally, we also found that the degree to 

which the covert and overt states overlapped (on a session-by-session basis) significantly 

predicted the magnitude of learning transfer for that session, where greater overlap led to 

greater transfer (Fig. 3D).

Previous findings have demonstrated that monkeys watching cursor movements elicit neural 

activity consistent with mental rehearsal. Since we trained our decoders using this neural 

activity, we compared preparatory activity during this cursor-observation period to 

preparatory activity recoded during covert rehearsal, and overt movements. We found that 

just as covert and overt movements shared preparatory states, observed movements also 

derive from that common subspace (Fig. 3A, ‘watch’ condition). These results suggest that 

at least at the preparatory level, overt behavior shares neural operation with both covert 

rehearsal, and putative mental rehearsal.

Together these findings suggest the following potential mechanism for VMR transfer. 

During covert movements in the presence of a VMR, the sensorimotor system gradually 

shifts the delay period initial conditions to align with the direction opposing the VMR. We 

suspect these changes contribute to the observed VMR adaptation. When the behavioral 

context switches from covert to overt, two key properties are preserved: (i) the sensorimotor 

system uses the same neural subspace to prepare cursor movements, and (ii) changes in 
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which preparatory state is associated with which cued target persist across the context 

change. This persistence likely causes subsequent arm movements to be rotated in the 

direction opposing the VMR, i.e., learning transfer. As monkeys continue to make 

movements without any VMR, a similar adaptation process reorients the preparatory neural 

activity back to baseline. The corresponding arm kinematics return to normal once their 

preparatory initial conditions have reoriented.

This mechanism makes two testable predictions: (i) covert rehearsal should “pre-train” a 

motor task, and thus require fewer overt trials to learn, and (ii) covert rehearsal should 

achieve this in part by “pre-rotating” the preparatory states to align with the cued target. We 

tested these predictions by evaluating if monkeys adapted to a VMR in the overt context 

faster if they first covertly rehearsed the VMR (Fig. 4A, top). Compared to overtly adapting 

(i.e., no rehearsal), we found that covert rehearsal resulted in significantly straighter 

subsequent arm trajectories (Fig. 4A–B). The neural correlates of this process were also 

consistent with our prediction: covert rehearsal rotated the preparatory states part way to the 

fully adapted states, such that overt motor learning required fewer trials to approach the 

adaptation asymptote (Fig. 4C). We observed strong and significant trial-by-trial correlation 

between the post-rehearsal preparatory state and the behavioral error angle, suggesting that 

the magnitude of neural changes achieved by rehearsal predicts subsequent improvements in 

overt motor function (Fig. 4C inset).

The neural mechanism proposed here for the transfer of learning raises an important 

question: if the preparatory states (i.e., the initial conditions) are similar between overt and 

covert contexts, shouldn’t the underlying dynamical system also be similar? This would 

suggest a mechanism by which transfer of initial conditions results in movement behavior 

differences. To test this, we started by repeating the analysis from Fig. 3A for the ‘during 

movement’ epochs, and found that population covariance patterns explaining most of the 

movement period neural activity were shared between the covert and overt contexts (Fig. 

S4A). Next, we explicitly fit a linear dynamical system to covert cursor movement data, and 

used the initial condition from the overt context to predict the trial-averaged neural trajectory 

during subsequent reaching. We found the predicted neural trajectories to be highly similar 

to overt context trajectories (Fig. S4B). Finally, we found that the brief but strong oscillatory 

component in the neural population responses observed during overt reaches (Churchland et 
al., 2012) were also present in the covert data, albeit predominantly the low frequency 

components. Together, these findings lend support for an interpretation that overt and covert 

movements not only are generated by a common neural substrate, but also potentially 

engage a similar dynamical machine.

Discussion

In this study, we investigated whether learning in a covert paradigm, where no movements 

are made, can transfer to overt performance. Concomitantly, we studied the neural 

mechanism that mediates such transfer. Our experiments revealed that learning in a BMI-

guided covert context does indeed transfer to overt performance, both in terms of post-

adaptation after-effects, as well as “pre-training” a motor skill in order to accelerate overt 

improvements. Our analyses also revealed a dynamical systems mechanism for motor 
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learning transfer. We note that our data shows correlation, not causation, in support of this 

mechanism. However, we believe the significant correlation we observed on a trial-by-trail 

basis between the degree of preparatory state rotation and the kinematic error angle (Fig. 2E, 

Fig. 4C), the overlap between covert, overt, and observation-only preparatory states (Fig. 

3A–C), as well as the significant correlation between the preparatory state overlap and the 

subsequent magnitude of transfer (Fig. 3D) point to the preparatory states likely being 

necessary for motor learning transfer. This causality could be evaluated in future studies by 

inactivating preparatory activity prior to movement onset and measuring its effect on 

learning transfer.

Our preparatory activity findings also touch upon a more fundamental role of motor 

preparation (Allen et al., 2017; Chen et al., 2017; Makino et al., 2017). The current 

dynamical systems view of motor cortex ascribes motor preparation to setting the initial 

state from which neural activity naturally evolves (i.e., guided by lawful rules), presumably 

to cause movement. This interpretation argues different initial states as being used to 

produce different movements (Shenoy, Sahani and Churchland, 2013). Moreover, previous 

results found that the natural variability in the setting of the preparatory state correlates with 

reaction time (Afshar et al., 2011). That is, a state “closer” to the desired movement results 

in faster movements. While the causality of these initial conditions has not yet been 

established, recent results show that incorrect motor preparation needs to be “corrected” 

before executing desired movements, albeit not by complete re-planning (Ames, Ryu and 

Shenoy, 2014). Taken together with our present findings, perhaps a major part of learning 

can be viewed as the process by which the motor system finds the optimal set of initial 

conditions that produces the best possible subsequent movement. The fact that we observe 

motor learning transfer suggests that motor cortex has the ability to perform this 

manipulation even in the absence of muscle activity. This view is consistent with studies 

arguing that motor cortex performs important work in “muscle-null” neural dimensions 

(Kaufman et al., 2014; Stavisky et al., 2017a). Furthermore, recent human results 

demonstrate that motor preparation, and not execution, helps separate interfering motor 

memories (Sheahan, Franklin and Wolpert, 2016). The neural correlates of this process 

could be consistent with the mechanism described in the present study, especially given 

recent findings that the dynamical systems features of motor cortex are conserved between 

humans and non-human primates (Pandarinath et al., 2015).

Our study also presents evidence that a similar dynamical machine is in operation for both 

overt and covert movements (Fig. S4). While on one hand this could explain why 

preparatory activity plays a central role for learning transfer, on the other hand it raises 

questions about the precise role of M1 (Miri et al., 2017). Why should a dynamical system 

for a context where no overt movements are made be largely similar to one which generates 

strong activity for overt movements? One explanation is that these brain regions are 

primarily concerned with high-level movement intentions, which are shared between the 

tasks (i.e., directing the cursor to the target). Certainly, the prosthetics community has 

benefitted from using the strong velocity-related signals present in M1 (Kao et al., 2014). 

Future studies recording from other and/or deeper areas could reveal more pronounced 

differences between overt and covert movements and help contextualize the present results. 

Another possibility is that our undoubtedly simplified model of motor cortex as a low 
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dimensional linear dynamical system does not capture differences between the contexts that 

explain a relatively low fraction of the variance but have important effects upon the true, 

nonlinear dynamical system.

Another contribution of this study is the use of BMIs to describe a “covert rehearsal” 

paradigm. While we cannot directly assert that covert rehearsal is the same as mental 

rehearsal, or any other covert process for that matter, we believe this paradigm is a 

reasonable strategy for studying motor-related internal processes. First, the fact that covert 

rehearsal enhances overt performance suggests that, at the very least, it engages some 

common subset of motor skills and their associated neural machinery, without the need for 

overt practice.

Second, we found that the performance of the BMI decoder strongly correlated with degree 

of learning transfer (Fig. S3C). This resonates with reports of mental rehearsal being more 

effective when performed with more vivid imagery (Ryan and Simons, 1982), and more 

realistic rehearsal results in better transfer (Hwang, Bailey and Andersen, 2013). In 

particular, we found that even in rare cases of poor decoding performance, monkeys were 

still able to learn the rotation, albeit with a small degree of learning transfer. Our results 

suggest that the reduction in the magnitude of transfer is likely a result of the poor 

performing decoder causing the monkeys to practice a noisier version of the true neural 

pattern, while still allowing adaptation; increasing the trial counts to overcome this noise 

could potentially boost the magnitude of transfer. This is consistent with the view that the 

decoder was still built in a ‘biomimetic’ fashion (Shenoy and Carmena, 2014). A non-

biomimetic decoder, on the other hand, would likely result in the monkeys cognitively 

learning the rotation, but the rehearsed pattern would fundamentally differ between contexts, 

thus resulting in a small degree of transfer regardless of trial count. Future studies could 

readily investigate this prediction. This would also reconcile the difference between our 

study and those that find that learning does not generalize across certain contexts, e.g., reach 

direction (Krakauer et al., 2000). We speculate that in those studies, the learning focused on 

rehearsing patterns of activity that were not common to the new context. If so, even with a 

predominantly biomimetic decoder, no transfer should be expected if the rehearsed physical 

movement differs. In contrast, in our study, the same task was presented and performed in 

both contexts, and our analyses revealed that generalization likely occurred due to a similar 

dynamical machine being engaged during both contexts.

Third, we found that not only do covert and overt movements share a large degree of 

preparatory activity variance, but the same holds for neural activity recorded during 

observation of cursor movements. Previous findings defined such observation as mental 

rehearsal (Cisek and Kalaska, 2004). Thus, at least at the preparatory level, covert 

movements, overt movements, and mental rehearsal derive from a common substrate. 

Finally, we constructed our decoders using neural activity from the observation epochs. The 

fact that monkeys could use decoders to make successful cursor movements implies that 

during covert rehearsal they engage neural activity similar to that during decoder training 

(i.e., putative mental rehearsal), albeit with visual feedback. Taken together, this evidence 

suggests that mental rehearsal could engage a similar dynamical systems mechanism to the 

one described here, even if only at the motor preparation level, for facilitating motor learning 
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transfer. Of course, learning could just be a process of refining motor preparation (via above-

mentioned argument). From this view, the covert rehearsal paradigm provides a much-

needed new avenue for studying covert processes. We note however that in contrast to 

classical mental rehearsal, the covert rehearsal paradigm is closed-loop. Thus, subjects use 

visual feedback to help guide producing neural activity patterns associated with overt 

movements. Future studies will need to evaluate the role of such feedback (Liu and Scheidt, 

2008; Shabbott and Sainburg, 2010), both in terms of its relation to mental rehearsal, and in 

terms of how best to take advantage of covert rehearsal to guide overt improvement.

One important caveat in this study is that we used VMR adaptation as a specific instance of 

motor learning because it is amenable for reductionist experiments and has a rich prior 

literature. It is possible that VMR adaptation is learned and potentially transferred by a 

different mechanism than complex skilled movements, and thus the generalization of our 

results to other forms of motor learning remains an open question. However, previous 

studies have implicated motor preparatory activity as initializing peri-movement neural 

dynamics in more complex arm reaching behavior, e.g., (Churchland et al., 2012). Thus, we 

speculate that complex motor skill learning, including learning from covert rehearsal, also 

involves changes in preparatory activity, as seen in VMR adaptation. Future studies could 

compare whether motor preparatory state is the substrate for learning transfer for more 

complex skilled movements.

BMI tasks designed to be similar to desired overt motor skills can also be valuable tools in 

and of themselves with a variety of translational applications. For example, in a 

rehabilitation application, a patient could be instructed to imagine or attempt to make 

movements. The patient would receive sensory feedback about how accurately they are 

modulating their neural activity, perhaps by their arm being moved by external means 

(Ajiboye et al., 2017), and could iteratively refine subsequent attempts. A second application 

could use covert rehearsal as a tool to accelerate motor skill learning (for example, a surgical 

or flight simulator) by allowing safe, targeted, and frequent practice, augmenting existing 

simulators that provide feedback only on the movement output, rather than the neural output 

associated with the motor skill. In summary, we used BMIs as a window into previously 

inaccessible covert mental processes to discover a common neural substrate between covert 

and overt movements that facilitates motor learning transfer.

STAR Methods

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Mucacca 
mulatta)

Wisconsin and Yerkes 
Primate Centers

N/A

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

Simulink RealTime Mathworks https://www.mathworks.com/products/simulink-real-time.html

Other
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-products/neural-data-acquisition-systems/cerebus-daq-system/

Utah microelectrode arrays Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-products/low-noise-ephys-electrodes/blackrock-utah-array/

Polaris optical tracking 
system

Northern Digital https://www.ndigital.com/medical/products/polaris-family/

Contact for Reagents and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Saurabh Vyas (smvyas@stanford.edu).

Experimental Model and Subject Details

Recordings were made from motor cortical areas of two male adult monkeys (Macaca 
mulatta), R (15 kg, 12 years old) and J (16 kg, 15 years old), while they performed an 

instructed delay cursor task in one of two contexts (Fig. 1A). Use of two animals is standard 

practice in the field. Each monkey had two chronic 96-electrode arrays (1 mm electrodes, 

spaced 400 μm apart, Blackrock Microsystems), one implanted in the dorsal aspect of the 

premotor cortex (PMd) and one implanted in the primary motor cortex (M1). The arrays 

were implanted 5 years and 7 years prior to these experiments for monkey R and J 

respectively. Voltage signals were band-pass filtered from each electrode (250 Hz – 7.5 

KHz). These signals were processed to detect multi-unit “threshold crossing” spikes. We 

detected spikes whenever the voltage crossed below a threshold of −4.5 times the root-mean-

square voltage. In this study, we do not spike sort, or assign spikes to individual neurons. In 

our view, this is justified due to three reasons: first, multi-unit spike trains are the standard 

signal used in the BMI literature; second, our scientific claims rely on the motor-cortical 

population activity, which includes both single- and multi-unit activity; finally, decoding 

both multi-unit spikes as well as well-isolated single units can potentially increase the 

amount of information available on chronically implanted electrode arrays (Pandarinath et 
al., 2015, 2017; Oby et al., 2016; Stavisky et al., 2017a). Animal protocols were approved by 

the Stanford University Institutional Animal Care and Use Committee.

Method Details

Task design—Monkeys performed instructed-delay movements in one of two contexts as 

described in Fig. 1A. Our standard methods have been previously described (Gilja et al., 
2012; Shenoy, Sahani and Churchland, 2013; Ames, Ryu and Shenoy, 2014). In the ‘overt’ 

context, both monkeys performed a Radial 8 Task, where they reached using their 

contralateral-to-arrays arm in order to move a computer cursor in virtual reality (latency of 7 

± 4 ms). Eight targets were arranged radially in a 2D circle, along with an additional target 

at the center of the circle. Monkeys started by holding the cursor on the central target 

continuously for 500 ms. After a variable instructed delay period (sampled uniformly from 

400 – 800 ms), monkeys moved the cursor within a 4 × 4 cm acceptance window of the cued 

target. This target also had to be held continuously for 500 ms. The target changed color to 

signify the hold period. If the cursor left the acceptance window, the timer was reset, but the 

trial was not immediately failed. Monkeys had 2 s to acquire the target. Success was 

accompanied with a liquid reward, along with a success tone. Failure resulted in no reward, 
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and a failure tone. Regardless, the center target was then presented, which the monkeys had 

to acquire in a similar fashion as above. The period starting from the instructed delay and 

ending with the target acquisition (or failure) constituted a trial.

In order to train monkeys to perform the instructed-delay task, we used the following 

protocol. First, we jittered the cued target during the entire instructed delay period as a 

means to indicate the beginning and end of the period. Second, monkeys were required to 

limit cursor velocity to a maximum of 1 mm/s during the delay period. Violating this 

condition automatically resulted in a failure. During training, we increased the time between 

a failed trail and the beginning of the next trial to 5 s to discourage failures. By comparison, 

the time between a successful trail and the subsequent trial was 20 ms. In the ‘covert’ 

context, the same task design was used, with the exception that monkeys’ arms were 

restrained and they had to control the cursor velocity using a BMI by modulating their 

neural activity.

The key manipulation on the Radial 8 Task was to introduce a visuomotor rotation (VMR), 

parametrized by angle θ. This consisted of rotating the cursor position θ degrees counter-

clockwise around the workspace origin. In order to acquire targets in these cases, monkeys 

had to move their arm (overt context) or modulate neural activity (covert context) in a 

fashion that would ordinarily move the cursor at an angle −θ relative to the cued target. 

Thus, monkeys had to apply e.g. a clockwise rotation in order to counter the effect of the 

counter-clockwise VMR. Monkeys received constant visual feedback, so they could correct 

their cursor trajectories during learning. We used four VMR angles in this study: −45°, 45°, 

60°, and 90°.

In order to encourage the monkeys to “try hard” to adapt to the VMR (rather than accepting 

making highly curved and inefficient movements to targets), we employed the following 

strategy. First, we decreased the maximum reach time every 500 trials (on average) from 10 

s initially to 1.5 s in the last 500 trial block. In later sessions, we started from 3 s. Second, 

we introduced a path efficiency check, where we automatically failed a trial if the maximum 

orthogonal deviation (relative to the straight-line distance to the cued target) exceeded a 

bound. The experimenter manipulated this bound, making it more challenging, as a function 

of time. This factor in particular played a critical role in eliciting precise behavior which led 

to the effects described in Fig. 1.

In order to perform the experiments described in Fig 1 (experimental flow in Fig 1B), we 

used the following protocol. For the control conditions, monkeys were arm-restrained and 

used a BMI (under no VMR) for 2000 ± 1000 trials of the Radial 8 task. This typically took 

90 minutes. After this adaptation phase, the experimenter went into the monkey’s room and 

removed the restraint of the arm contralateral to the arrays. This readied the overt context 

(still with no VMR), in which the monkey performed the Radial 8 task for 500 trials. For the 

experimental conditions the same procedure as the control experiment was followed, with 

the one change that during BMI use, a VMR was introduced. Both control and the 

experimental conditions were performed within the same experiment session. We analyzed a 

minimum of four sessions for each analysis, with alternating order of control and 

experimental blocks. The experiments described in Fig. 4 followed a similar flow, with two 
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changes. First, the control comprised of only overt arm reaches in the presence of a VMR. 

Second, the experiment comprised of first using the BMI (in the presence of the same VMR 

as the control) for 2000 ± 1000 trials of the Radial 8 task, followed by a block of overt 

reaches in the presence of the same VMR. The precise number of trials for all of these 

experiments was based in part on the monkey’s degree of VMR adaptation as qualitatively 

assessed by the experimenter at each session. To minimize day-to-day or residual adaptation 

effects, monkeys started and ended each session with overt arm reaches without VMR.

BMI decoder fitting—In order to train the BMI decoder at each session, we adapted the 

recalibrated feedback-intention trained Kalman filter (ReFIT) procedure (Gilja et al., 2012). 

At the start of each session, monkeys observed 200 trials of Radial 8 automated cursor 

movements from the center of the workspace to one of 8 radially arranged targets at a 

distance of 12 cm. We performed three such blocks of 200 trials, each block with cursor 

velocity of 8, 10, and 12 cm/s. We used the neural and kinematic data from these blocks to 

estimate a position and velocity Kalman filter. Since BMI performance is sensitive to 

velocity gain, we manipulated this gain (i.e. scaling from neural activity to cursor velocity) 

on a session-by-session basis so as to help the monkey balance three factors: being able to 

successfully hold the center during the delay period (which benefits from low gain), moving 

in as straight as line as possible during the movement period (which benefits from low gain), 

and reaching the target as quickly as possible (which benefits from high gain). This 

procedure was followed for all Monkey J sessions.

Monkey R has poorer signal quality, and thus on roughly 50% of the sessions, the initial 

decoder (estimated the same was as done for Monkey J) was used by monkey R in closed-

loop to perform another 200 Radial 8 task trials. This data was used by the final Kalman 

Filter decoder, estimated using the ReFIT algorithm. We again manipulated the gain of the 

decoder to strike a balance between performance and ease of accomplishing the instructed 

delay period (i.e., staying below the 1 mm/s requirement during the delay period). For the 

other 50% of sessions for Monkey R, we built a decoder in a similar fashion as was done for 

Monkey J. We found no difference in the scientific findings by using the ReFIT decoder 

(versus the standard Kalman filter) for Monkey R. In our decoders, no distinction was made 

between PMd and M1; all neural data was used jointly.

Residual Movement Tracking—While monkeys performed covert movements (via the 

BMI), we tracked the position of various body parts using infrared video cameras at a rate of 

24 frames per second. Three cameras were positioned such that the dorsal forearm, the hand, 

the fingers, the rhomboids and deltoids regions, the pectorales and deltoid regions, and the 

shoulder, biceps, and triceps regions were visible, and took up most of the field-of-view. We 

used an open source implementation of the Lucas-Kanade optical flow algorithm (Liu, 

Adviser-Freeman and Adviser-Adelson, 2009) in order to estimate a velocity for each pixel 

from frame-to-frame. In order to ascribe a single velocity for each frame, we averaged the 

horizontal and vertical components (individually) of the velocity for all pixels in the field-of-

view. We used intentionally placed physical landmarks visible in the videos to convert pixel 

coordinates into real-world coordinates. Finally, we used the millisecond-level timestamp 
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from each frame to associate it with each individual trial. This analysis is presented in Fig. 

S1.

An alternative way to perform these control experiments could be to use an EMG 

preparation as done in many of our prior studies, e.g., (Kaufman et al., 2014). After 

consideration, we believe that a computer vision approach is more appropriate in this study 

primarily because we want to simultaneously monitor multiple muscles. While it is possible 

that the animals’ muscles sometimes undergo isometric co-contractions, which would result 

in minimal visible movement while still producing muscle activity, this is quite unlikely for 

three primary reasons: (1) given the number of hours of BMI experiments the animals must 

do, it is quite unlikely that they sustain co-contractions for that long as it is energetically 

expensive (i.e., very tiring), (2) even if there are isometric co-contractions, the shape of the 

muscles changes slightly, which can be measured at our camera working distance, which has 

hundreds of pixels for each anatomy of interest, and finally (3) co-contracting would not 

help the animals anyway because in order to affect the cursor movement, the muscle activity 

would need to systematically vary as a function of target direction; such distinct patterns of 

co-contractions would be picked up by our cameras. Thus, we believe that our approach well 

assesses the degree to which correlated movements are made during the covert context, and 

has the key advantage over EMG of being less likely to “miss a muscle” when measuring.

Preparatory neural state analysis—All of the analyses in Fig. 2 and Fig. 3 examine 

motor cortical preparatory neural states using a standard application of Principal 

Components Analysis (PCA)24. In brief, neural data was arranged into a data matrix 

comprising of neural firing rates of every neuron for every condition for every time point. 

We only looked at 200 ms worth of time points at the end of the instructed delay period. We 

then applied PCA on this data matrix. This results in a low-dimensional representation 

capturing the naturally occurring co-modulation in the data. Fig. 2B is a visualization 

produced by applying this procedure on a block of no-VMR overt trials. For each condition, 

trails (averaged in a bin of size three) were projected onto the top two PCs. These are 500 

baseline trials that were collected at the beginning of the experimental session.

In the behavioral data (Fig. 2A) we observed that overt no-VMR trials following a block of 

covert trials with a VMR initially erred in the direction corresponding to the adjacent target 

in the opposite direction of the VMR. In order to do a similar analysis on the neural data, we 

fit a line between the centroids of neural data recorded while the animal prepared reaches to 

pairs of targets from Fig. 2B. We then projected trial-averaged (5 trials) firing rates 

corresponding to overt reaches (after adapting to a VMR under the covert context), directly 

onto that line. These projections are shown in Fig. 2C. We established a normalized distance 

metric so that trials can be combined across reach conditions and sessions. Concretely, trails 

that were projected directly onto the centroid corresponding to the cued target are assigned a 

distance of 0, whereas trials projected directly onto the centroid of the target in the opposite 

direction of the cued target are assigned a distance of 1. Fig. 2D shows this visually for all 

eight conditions, and Fig. 2E shows the statistics across all reach conditions and sessions.

In Fig. 3A we use PCA in the same fashion to compute the cumulative variance captured by 

each individual PC. We find that 4 PCs (in Monkey R) and 6 PCs (in Monkey J) capture over 
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90% of the variance in the data. In order to find the amount of shared neural variance 

between overt and covert behaviors, we project the 4 PCs (6 in Monkey J) from the overt 

context onto the 4 PCs (6 in Monkey J) of the covert context, and compute the inner product, 

normalized by the amount of total variance captured by each PC. Vice-versa gives the shared 

variance between covert and overt. A similar procedure was performed (not reported here) 

where both sets of data were combined and a joint subspace was found. We found no 

significant difference between the joint analysis and the analysis presented in Fig. 3. The 

same procedure was followed for the pairwise comparisons for the ‘watch’ condition. The 

same procedure was followed for Fig. S4A.

Statistics—For all histograms (Fig. 1, Fig. 4, and Fig. S2), the significances of the 

differences in the distributions were determined with two-tailed Student’s t-tests, assuming 

non-equal variances of the two samples. We confirmed that each histogram followed a 

normal distribution using the Kolmogorov-Smirnov test. For data that did not follow a 

normal distribution, we used the Wilcoxon rank-sum test (Fig. 2, Fig. 3, and Fig. S3), using 

the paired (i.e., signed) test where appropriate. For all linear regressions (Fig. 1, Fig. 3, Fig. 

4, Fig. S1, and Fig. S3) we used the F-statistic to assess the significance level of the slopes 

being different from zero. Partial correlations were used to rule out influence from other 

experimental parameters. In Fig. S3, we compared the slopes using a two-tailed Student’s t-
test. In Fig. 3 we measured the statistical overlap between the populations using the 

Bhattacharya coefficient, normalized such that 1 indicates no statistical overlap. For all tests, 

we used p = 0.05 as the significance threshold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Learning covertly, without physical movements, transfers to overt behavior

• Covert learning systematically changes motor cortical preparatory activity

• Covert and overt movements share preparatory neural states and facilitate 

transfer

• Covert and overt movements engage a similar neural dynamical system
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Fig. 1. Motor adaptation transfers between covert and overt movement contexts
A. Monkeys performed a cursor movement task in one of two contexts: ‘overt’ where cursor 

velocity tracked hand velocity, or ‘covert’, where cursor velocity was controlled by neural 

activity via a BMI. When a visuomotor rotation (VMR) was applied, the cursor’s 

movements were offset by the corresponding angle (θ).

B. (Top) Instructed delay task flow; (Bottom) Experimental flow.

C. Raw arm-controlled cursor trajectories (no VMR applied) immediately following covert 

VMR movements. Initial trajectories (red traces) exhibit curvature, which indicates transfer 

of adaptation to the VMR that was applied during the preceding covert context.

D. Histograms (first 100 trials of each session) of the error angle between the arm’s velocity 

(measured at the half-way radius towards the target) and the vector from workspace center to 

the target. Colors represent conditions from B. Vertical dashed lines show means of 

distributions, and horizontal solid lines mean ± s.e.m. P values obtained from two-tailed 

Student’s t-tests.

E. Error angle over time for the same conditions as panel D. Solid lines show mean.

F. Number of trials needed to wash out VMR adaptation (i.e., reach 90% of control) during 

no-VMR overt (magenta) or covert (cyan) blocks is strongly correlated with the degree of 

adaptation during the preceding covert block (VMR applied). Adaptation is defined as 

number of targets acquired per second in the 50 trials at the end of the VMR covert block 

(less the initial performance), normalized by the maximum performance across all blocks. 

Each point corresponds to one post-VMR block.
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Fig. 2. Motor adaptation is reflected in population-level preparatory activity
A. Raw arm-controlled cursor trajectories following adaptation to a VMR applied during 

preceding covert use. Traces are divided into the first 25% (gray) and the last 25% (black) of 

trials.

B. 200 ms of instructed-delay period activity from a block of no-VMR overt trials projected 

into the top two PCs. Point clusters are three-trial-averaged overt trajectories projected into 

the PC state-space. Larger circles are cluster centroids. Colors denote the eight target 

conditions and match panel A.

C. Zoom into one overt movement condition from panel A. Preparatory activity projected 

into the corresponding region of the PC state-space of panel B. Gray/black points 

correspond to reaches from A. Neural states are orthogonally projected onto the line 

connecting the orange and red centroids from B. Each point is assigned a projection 

distance, where zero distance denotes being at the cued-target cluster centroid.

D. Example orthogonal projections for all eight conditions, aligned on the cued-target cluster 

centroid (from B). Early after the switch from VMR covert use, preparatory states were 

closer to the ‘anti-VMR’ target.

E. Normalized neural distances (combined across reach conditions and sessions) plotted as a 

function of trials since the switch from covert VMR to overt no-VMR contexts. Red shows 

the corresponding error angle. Inset compares the first 25% and the last 25% of trails. P 
values computed using the Wilcoxon rank-sum test.
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Fig. 3. Covert and overt movements share motor preparatory states
A. Percentage of shared variance between the overt context, covert context, and watch (i.e., 

during decoder training) context neural data. Data from each context is projected into the 

other contexts before the calculations are done. The subspaces were comprised of PCs (4 for 

Monkey R, and 6 for Monkey J), which collectively captured over 90% of the neural 

variance. There is no pairwise statistical significance. P values computed using the Wilcoxon 

rank-sum test.

B. Example visualization of mean overt (circle) and covert (square) preparatory states 

projected into a two PC state-space. Colors represent reach conditions. Dotted ellipses 

represent s.e.m.

C. Pairwise statistical population overlap (for the full high-dimensional distributions); zero 

corresponds to complete statistical overlap. Note that diagonals are close to zero.

D. The degree of overlap between covert and overt states in the full dimensional space 

(measured in spikes per second) is correlated with the magnitude of the transfer (error angle 

measured in degrees for the mean of the first five trials post-switch from covert to overt). 

Baseline overlap data, and subsequent transfer data were collected in the same sessions, with 

similar parameters (i.e., trial counts, VMR angle, etc.). P values computed using the 

Wilcoxon rank-sum test, and test the hypothesis of no correlation.

Vyas et al. Page 22

Neuron. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Covert rehearsal can enhance overt motor learning
A. (Top) Experimental flow. (Bottom) Purple traces show overt arm trajectories with a −45° 

VMR applied following a no-VMR overt block. Green traces show overt −45° VMR arm 

trajectories following a covert −45° VMR block. The rehearsed green trajectories are more 

direct.

B. Histograms of error angles for the two conditions. Colors matched to A.

C. Comparison of rehearsed and non-rehearsed normalized preparatory neural state-space 

distance (as described in Fig. 2B–C) as a function of trial number. Preparatory states start 

more adapted after covert rehearsal. Data averaged across sessions and reach conditions. 

Insets show strong correlation between individual trials’ normalized preparatory distance 

and subsequent error angle (p < 0.05). P values were obtained from two-tailed Student’s t-
tests.
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