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AB.STRACT 

The pion-nucleon scattering amplitude and its analytic continua­

tion TI+TI ~ N + N are studied from the point :of view of the analyticity in 

the complex angular momentum J plane. The quantum numbers that 

characterize the Regge trajectories are thereby settled. They are 1n 

the TI + N scattering channel, baryon number = 1, isospin = i or ~ , J 

parity = even or odd, space parity:,= even or ~dd for Regge poles; and, 

fo-r the TI+TI- N + N channel' baryon number = 0' G-pari ty = + 1, is 0 spin 

= 0 or 1, J ~parity = even or odd, space parity = even or odd. It turns 

out thatin the ;r+;r-...N+N channel, only the amplitudes having the same 

J parity and space parity, which is even for isospin 0 and odd for iso­

spin 1, are nonvanishing. Experimentally observed particles and 

resonances are also discussed in terms of the Regge trajectories with 

definite quantum numbers, and certain experimental consequences 

pointed out. We also give th~ expressicms for the differential cross 

section in forwardand backward scattering cones for ;rN scattering. 

A discussion of the rigorous Froissart-type upper bounds on asymptotic 

behavior and their implications for undertermined single spectral 

functions is also given, whichshould be useful in any further work on 

the determination of the meromorphy domain in.the J plane of the 

various partial-wave amplitudes. 
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I. INTRODUCTION 

The prescription fo1; simultaneously continuing two-body S-'matrix 

elements into the complex plane, regarding them as a function of in­

variant energy and momentum-transfer variables, was given by 
1 2 . 

Mandelstam. ' Through analytic continuation, the two-body scattering 

amplitude for any process describes two more physical processes, 

which are related to the first one through the substitutionlaw. Roughly 

speaking, these two other processes--i.e., the crossed channels in 

relation to the direct one- -provide the ordir).ary and exchange potential 

for the direct process. This vague notion of two-body potential was 

made more precise for _two-body relativistic S-matrix elements by 

Chew and Frau.tschi. 3 This, then, allows ~onsiderable insight by 

placing at our disposal all the -previous experience with the potential 

concept. In particular, Regge has introduced for nonrelativistic 

potential scattering the notion of simultaneous analyticity in.the complex 

energy and angular-momentum plane, 
4

• 5 and this notion can be _taken 

over to the relativistic S matrix. The implications of this notion, then, 
. 5-10 are many and 1mportant. In this work we discuss the scattering 

amplitude for pion-nucleon scattering, 1r+N -+ 1r+N, and its analytic 

continuation, describing 1r+1r-+- N+N. from the point of view of analyti-

. city in the angul~r -momentum plane. 
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II. GENERALIZED POTENTIAL 

The class of potentials for which the .. analyticity in the complex 

angular -momentum J plane has been investigated is r~ughly that of the. '·1 

superposition of Yukawa potenti~ds. 4 
The. existence of a two-body 

potential, which essentially belongs to this class, m~kes it plausible !o; 

thaLtbe J -plane ·analyticity prop~rties Of the rdativistic S-matrix ele-

ments will be similar to those enjoyed by potential scattering matrix 

1 t . th b h h M. d 1. .t · t · 4 • l l e .emen s, as ey ot · ave an e sam represen atlon. 

We no~ int~oduce this conce.pt of potential for two-body relativistic 

S -matrix el~ments according to Chew .and Frautschi. 3 It is convenient 
. . 12 

to cio so through the Mandelstam 'diagram and Cutkosky graphs. 

Mandelstam Diagram 

We shall use the usual invariant variables s, u, and t, defined 

by 
. 2 

-( ~ 1 + p 2) ' s = 

, u- -(Pl +P4)2, ( 2 01) 

t•= -(P·~t·P, )2 
. 1 3 • 

where P 
1

, P 
3 

are four momenta of pions, and P
2

, P 
4 

of nucleons, all 

ingoing (Fig. I}. They satisfy 

2 . 
s + u + t = 2m + 2 = ::E (2.2) 

(we take 1i = c· =pion mass ,j.J.= l, and hence, when all three invariant 

variables are real, can be used as triangular coordinates; the. height 

of the equilatreal triangle formed by straight lines s = 0, u = 0, t = 0 

is equal to :E. These variables shall also be used to refer to the 

channels for which they have the significance of the. energy squared, 

in its center-of-mass system. Thus,. s, u, and t channels refer 

respectively to pion-nucleon scattering, crossed pion-nucleon scattering, 

and. two pions going into a nucleon-antinucleon pair. 

The Man de lstam diagram (Fig. 2) exhibits - .,.with s, t, and u 

(for their real values) as the triangular coordinate.s--the physical 

regions of .the three channels, together with the regions in which the 

doublespectral functions(dsf) are nonvanishing. The boundary curves 
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Fig. l. The four-line diagram for the 1r-N problem. 
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u- physical· 
region 
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' 
s- physical 

region 

{.)(+) Q(-} 
f'J I' f'J I 

t- physical 
region 

Fig. 2. The Mandelstam diagram for the 1r-N problem. 
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for the physical regions of the three channels are given by 

t = 0~ 

su = (m2 ""f.i2,)2. 
( 2.3) 

The boundary curves for the regions in which dsf are nonvanishing are 

given by Mandel stam. 13 

Gutkosky Graphs 

Cutkosky has shown how, by use of generalized unitarity, the 

Mandelstam dsf's can be expressed as a sum of contributions of all 

possible four- (or more-) vertex graphs--Cutkosky graphs--where the r 

four external particle lines (i.e.~ two nucleons and two pions) are 

attached to four separate v~rtice s. 
12 

The contribution to a dsf 

p(s 1 ~ s
2

), where s
1

, s
2 

are two invariant variables~ of those Cutkosky 

graphs which have only the lowest-mass two-particle system going in 

the s
1
(or s

2
) channel while an arbitrary number of particles may be 

exchanged in the s
2
(or s

1
) ·channel, shall be called "elastic in s

1 
(or 

s
2
)" part of dsf p(s 1 ~ s

2
). As an illustration, the Cutkosky graphs~ 

giving rise to "elastic ins" parts of the dsf A
1
t (s~ t) and B

1
: (s, t) 

are those four-vertex graphs which have only one nucleon and one pion 

going in the s direction- -i. eat s > (m + f.L) 2 - -while any number of 

particles (at least four pions due to conservation of G parity, i.e., 

t > 16 f.L
2

) are exchanged in the t channel. These_ are shown in Fig. 3, 

(a) and(b). Their contribution is nonvanishing in the entire region 

bounded by thecurve c
1
c

1
•, while in the strip region·R

1
, these are 

the only Cutkosky graphs that contribute to dsf. 

It will be noticed that only those Cutkosky graphs contrihqte in 

strip regions R
1

, R
2

, ••• , R
6 

which lead to "elastic" parts of the 

respective dsfi s. There are no Cutkosky graphs that contribute only 

in the nonstrip regions and yet give rise to "elastic" parts. All the 

Cutkosky graphs that contribute to dsf 1 s in strips R
1 

(Fig. 3 a, b), 

R
2 

(Fig. 3c), and R
3 

(Fig. 3d, e) are shown in Fig. 3. They respectively 

give rise to "elastic ins" part of A
1

; (s, t) and B
1
t (s, t), "elastic in 

t" part of A
1

; (s, t)and B
1

; (s, tL and ''elastic in u" part of A 1: (s,u) 
± 

and B 12 ( s, u). The dsf' s in the ~trips R
4

, R
5

, R
6 

can be obtained by 

i 
( 
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(a) 

s1 
(c) 

________,.. 
t 

(b) 

sf 
(e) 

MUB-616 

Fig •. 3. The Cutkosky diagrams contributing to the dsf's 

in the strip regions R
1 
(a, b), R

2
(c), and R

3
(d, e). 

. ._, 
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using the crossing symmetry from those of R
1

, R
2

, R
3

• The notation 

for the parts of dsf contributing in the strips R
1

, R
2

, R
3 

shall be taken 
± ± ' ± ± . to be a

1 
(s, t), a

2 
(t, s), and a

3 
(u, s) for A (s~ u, t) amphtude, and 

13t(s,t), 13t(t, s), and 13
3
±(u, s) for B±(s, u,t) amplitude, respectively. 

We will also refer to dsf a
1
±(s, t)> 13t(s, t) as strip R

1 
dsf~ and similarly 

for other strips. .. 

Generalized Potential 

We can defined and give expressions for the generalized potential 

for any channel. To be precise, let us consider 'IT-N scattering, i.e., 

in the s channel. According to Chew and Frautschi, 3 the potential 

v'ITt1(t, s) for direct scatteringin s channel is given by the absorptive 

part in the t channel, of the scattering amplitude minus the contribution 

to it from the 11elastic ins" part of the dsf's, i.e., from the strip 

R
1 

dsf' s, i.e., 

vd < ± ) ( t,. s) 
'ITN .. , 

± · 1 Ja~(s',t)ds' 
[At (s,t)- 'TI s -s ] 

p 1 + p 3 ( ) _1 J 13:( s ', t)ds' 
+ v • ( 

2 
) [B t± (s, t) - ] · 

I 'IT S I - S 

( 2 .4a) 

The potential v;~(u, s) for exchange scattering ins channel .is similarly 

given by the absorptive part in the. u channel of the scattering amplitude 

minus the contribution to it from the "elastic in s 11 part of the dsf' s, 

i.e., from the strip R
4 

dsf's, i.e., 

( ) ± lf' a±
3
·(s',u)ds' 

V'ITeNx ± (u, s) = -[A (s u) -- ] 
u • 'IT s'-s 

(2.4b) 

The potentials are obviously spin-, i-spin-, and velocity-dependent. 

Similarly for .the other channeLs. 

The expressions for .the strip dsf's that we need for writing the 

e~pressions for the potential in the three channels can be derived by 

using generalized unitarily. The a 
1
±, 13:, a;, and 13; can be obtained 

by using generalized unitarity in pion-nucleon scattering channels, 



-8-

keeping only the one -nucleon-one -pion intermediate. state, and were 
9 ± ± 

calculated by S. Mandelstam. The a.
2 

, [3
3 

, onthe other hand, are 

obtained by applying generalized unitarity in the 1r+1r.,... N + N channel 

. with the two -·pion intermediate state. This was done by this author 

and B. M. Udgaonkar. 
14 

The quantities are given by the following 

expressions. 

(±) 4 
a.

1 
(s,t)=!: 

i=l 

m 
X 

X (Jdt' dt"K (s·t t' 

+ ~-. du 1 dun : ( ~ · 't ~ 
s ' ' 

t 11
) J. .(s;t, t', t") G .. tt(± )(s;t', t") 

1 1~. 

- S - U I, ~ - S - U 11 ) 

)<l.(s;t, !:-s-u' :E-s-u")G. (±)(s·u' u")], 
1 ' 1.; uu . ' ' 

(2.5) 

± 
ci. 

3
(u, s) 

4 
= '!: 

i=l 
m [Jdt' du" K ( s, '!:- s- u, t' Z - s - u") 

81r2kW u 

Xl.(s;':E-s-u, .t', ':E-s-u") {G.(±t· )(s;t', u")+H.C.}]; (2.6) 
1 1, u 

where 

and 

1 
- 2 

( 2. 7) 

2 2 . 3 2 
- [xl +x2 +x3 -2(xlx2+xlx3+x3xl)-(xlx2x3)k] e(xl--xl), 

with 

and 

X 
1± 

W ~ .fS = J k 2 + m 2 + J k 2 + 1 

( 2 .8) 

and G. " ( s; x, y) are bilinear combinations of absorptive parts defined 
1; ~~ . . . 
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by 

G (s·x y) = A~(+)(s x) A(+)(s y)+2A *(-)(s x)A(-)(s y) 
1 ;A. f.1 ' ' -A. ' f.1 ' A. · ' f.1 ' · ' 

G (+)(s;x y)::: A >:•(+)(s x)B(+)(s y) + ZA *(-)(s x)B(-)(s y) 
2; A.f.L • A. ' f.1 ' A. . • f.1 . • 

. *(+) = G3 ;A.f.L (s;y, x), 

G (-)(s x y) = A*(-)(s x)A(+)(s y·) + A*(+)(s x)A(-)(s y) 
1 ; A.p; • ' A. . • f.1 ' A. ' • f.1 ' 

+ A~(-)(s,x) A~-)(s,y), 

G (- )( s x y) = A*(-)( s x) B ( + )( s y) + A*(+)( s x) B (- )( s y) 
2 ; A. 1-i ' ' A. ' if! ·. . ' A. • f.1 • 

+ A>:<(-)( s x)B (- )( s y) = G *<- )( s ·y x) 
A. ' f.1 • 3 ; A.f.L . ' ' ' 

G (-)(s·x y) = B*(-)(s x)B(+)(s y·) = B*(+)(s x)B(-)(s y) 
4; A.f.L • ' ' A. • f.1 . ' A. • f.1 ' 

+ B *(-)(s x)B (-)(s y)· 
A. . ' f.1 ' ' 

(2.10) 

and the£ .. us are kinematical factors given by 
1 

and 

£ l(s;t,t',t") = 1 + (t'+t"-t) (s+l-m2) ' 

4[(m2 -1 )2 -su] 

(s -m2 -1) (t'-t"+t) 
J. (s·t t' t") = J. (s·t t" t') = 

· 2 ' ' ' . 3 ' ' • 4mt 

m( t-t 1 -t'')( s+ 1-m2 ) + 
4[(m

2 
-1}

2 -su] 

(2.11) 
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The corr~sponding expressions for the strip functions , ' 

(3
1
(±\s,,t), and (3~± )(\1, s)are obtained frorr:J, Eq~. (2.5) and (2.6) by 

replacing the kinematical factors 1 i therein by m
1
, defined by 

and 

where 

2 · s-m .-1 
m

4
(s;t, tv, tn) = --=---

2m 

. ( t~t' -t")( s+m
2 

-1) 
' 2 ··. 2 

4[(m -1) -su] 

( s -m2 }( s+m2 -1 ){ t-tu -t 11
) 

' 2 . 2 
4m[(m -1) -su] 

The expressions for a~± \t, s.h (3~± )(t, s) are giyen. by 

a~±)(t,s) = 1
2 

JJ ds 1ds"Kt(t;slls 1 .s 11 ){.A~:<(±)(tlls 11 ) 
1Tpq wt . 

-na(t;s, s'. s 11)·B:(±)(t, s 11)} /f<±\t, si'•) 

(±} 
B s (t, s ") 

{2.12) 

(2.14) 

and where the kine:n:atica1 factors na, !lW kernel function Kt, and 

A:(t, s)_ are quantities defined inAppendixi, where the derivation 

of .these expressions is given. 

In the first-order strip appro~imatiori of ·Chew and Frautschi, 
15 

the different absorptive parts occurring in the expressions for potentials 

can be expressed in terms of the. strip.~1 , • • ·, R
6 

dsf and single 

spectral functions, whichrilightbe pre:sent. Highe·r-order strip 

approximation would consist in including more and more inner strips 

parallel to s
1 

and s
2 

axes in dsf p (s
1

, s
2

). However, for the purpose 

of this work,. we do not concern ourselves with any particular approxi­

mation to calGulate the potential, as all we really use is the existence 

of the notion of potential for relativLstic.S-matrix elements. 



-11-

III. REGGE POLES IN POTENTIAL SCATTERING 

We would now like to discuss .the analyticity in.the J plane for 

potential scattering of two spin-zero particles. This woUld serve as 

a model for the more complicated case of nN scattering and n+n -N + N 

which we wish to consider in the next two sections. 

The usual partial-wave decomposition of the scattering amplitude 

is given by 

A(E, z) = L (2J+l) aJ(k) PJ(z), 
J=O, 1, 2, ••• 

( 3. 1) 

where aJ(E) is the :!_th partial-wave amplitude. The A (E, z) is known 

. to be analytic inside the Lehman ellipse with focii at z· = ± 1 and semi­

major axis 1 + f.L
2
/zE for a superposition of Yukawa potentials with 

maximum: range f.L -1 • 

.In order to give an expression for A(E, z) that can be :used out­

side the Lehman ellipse, Regge 4 used an artifice due to Sommerfeld 

and Watson, and transformed the sum over integer J valu~ s into a 

contour. integral along the path Gin the complex J plane (Fig. 4): 

i 
A(E, z) = 2 J 

c 

a(J, k)PJ( -z)dJ • (2J+l) 

1 
cos n(J + 2) 

( 3.2) 

This transform- -Watson transform- -of the sum in ( 3.1) assumes 

a continuation, which. we denote by a (J, k}, of the physical partial-wave 

amplitudes aJ(k), which are defined only for J = 0, 1, 2, • • •, into the 

complex plane. This continuation is obtained from the Schrodinger 

equation by solvingit for complex J. The contour Cis such that the 

only singularities of the integrand enclosed by C are poles of integrand 

arising from zeroes of the cosine function in the denominator. A little 

later we give a pre scription for analytic continuation in J, which does 

not :make any reference .to the Schrodinger equation. 

It was shown by Regge that a(J, k) is a meromorphic function 

of J. in the right half plane (Re J >- ~ ). The poles occur only in the 

first quadrant for real E in the right half plane. The contour C in 

( 3.1) can be distorted to C 1 along Re J = ~ ~ and an infinite semicircle 

in the right half plane (Fig. 5) provided we include the contribution of 

poles enclosed- -Regge poles. 



-12-

lmJ c 
0 2 3 4 5 6 7 8 

Re J 

Fig. 4. The contour C for the Sommerfeld-: Watson 
transform (SWT) for the potential scattering. 

. .. 
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lmJ 

\ I 
\ Re J 

\ 
\ 
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\ 

MU-27361 

Fig. 5. The displaced contour C' for SWT for potential 
scattering. 



We now write 

1 A(E, z) = .,.... 
1 

J 
G' 
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( 2J +l )a(J. k)P 
3

( -z)dJ ~ 

. J + L., 
S1n TI i 

f3.(k)P "(E)( -z) 
1 a1 · 

sinTia. (E) 
1 

Regge pol~s 

1 +. -- 100 
( 3 0 3) 

f3.(k)P . (E)( -z} 
1 a1 =.,!.. 21 

1 1 . 
---100 

(2J+l)a(J,k}PJ(-z}dJ + L 
sin TIJ 1 

Re ai >- z sinna.(E) 
1 

2 
( 3.4) 

The integral along the semicircle is seen to vanish as a(J. k} goes 
16 17 18 to zero sufficiently fast on the semicircle. Later work • • · has 

shown that the amplitude is meromorphic in the entire J plane, except 

for an essential singularity at infinity. 

We now come to the question of the. analytic continuation in J 

in the Mandelstam framework. The total amplitude satisfies the 

Mandel stam representation, 

00 

1 A(E, t} - 1 V(t'}dt 1 

lT 2 t' -t 
1-i 

E 
1-i 

1 
lT t -t 

p(E' .• t}dE'. dt 1 

. (E'..,E){t 1 -t} (3.5} 

(3.6) 

where t = -2k2( 1-z) and Dt is the t- absorptive part of the amplitude. 

Proj~cting out the Jth (J = 0, 1. 2. • • ·) partial wave. we get 

+l 

aJ(k) = .!._ J A (E. z)PJ( z)dz 
2 -1 

1 
= 

(3.7) 

(3.8} 

We now define, for complex J • the analytic continuation a(J. k) of 

aJ(k) by 

a(J. k) = 1 
( 3.9) 

.. 
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It can be shown that a(J, k) as definedin terms of the QJ projection 

.. are 

{a) 

(b) 

in agreement with a
1

{k) for physical J values (J = 0, 1, 2, • • • ), 

i.e., for a countable infinite set of physical J values; 

regular analytic to the right of some line Re .J. = J , where J 
. m m 

depends on the asymptotic behavior in the e of Dt(t', E), and is 

thus the real part of the Regge pole on the farthest right in the 

J plane; 

(c) vanishing sufficiently rapidly with J, owingto the QJ factor, so 

as to allow the Watson transform with no contribution from the 

infinite semicircle in the right half plane; 

{d) unitary; that is Im a{J, E) = la(J, E) 12 (Real J, E). (3.10) 

Now it has been shown that the analytic continuation a(J, E) in 

J. of a.
1
(E) away·froin'positive "integers is unique if the first three 

conditions, satisfied by our a(J~:E), in terms of QJ projection, are 

satisfied. 16 Thus the QJ projection is the meaningful Regge continuation 

in terms of the Mandelstam framework. 

J Parity 

The above analysis could be extended to include exchange potentials 

also. This leads to the notion of J parity, which we now proceed to 

explain. We have 

= .!_! Vd( t')dt 1 

A(E,t,u) TI t'-t 
+ !f Vex(u')du' l {(p 1(E',t')dE',dt' 

lT u'-u + TI2jj (E'-E){t'-t) 

l (J~P 2(E',u'.)dE'du 1 

+-2-jj (E'-.E){u'·u) · 
lT . 

. 2 
. where u. = -2k ( 1+ z). 

" 

+ Til J Du(u',E)du' 
u 1 -u 

(3.11) 

(3.12) 

(3.13) 
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Projecting out the _:!th partial wave, we get, after some 

simplifications, 

If we use this projection to define .the continuation a(J, E), we realize 

that it is no longer possible to make a Watson Transform because of 
J . +irrJ the presence of the factor ( -) , 1. e., e , which diverges badly as 

J--. oo ei<j>(; > <j> > - ; ). Therefore, what we do is to define two new 

e( 0 amplitudes, a J, E) and a (J, E), by the expressions 

e 1 
j<Dt+Du)QJ(1+ 

x' (3.15) a (J,E) = 
2rrk

2 
--- )dx' 
2k2 ' 

0 1 J ( D t - D) QJ( 1 + 
x'·-

(3.16) a (J,E) =-- -·--)dx'. 
2rrk2 2k

2 

These two. analytic funtions of J satisfy the conditions (b) and 

(c) stated above, and the condition (a) reads, for them,_ as 

( e . . a') a (J,E) = a
1

(E), for J = 0,2,4,···, 

0 
a (J,E) = aiE), for J = 1, 3,5, • • ·. ( 3.1 7) 

Thus we now h.ave, instead of one, two continuations ae(J, E), 

a 0 (J, E). The superscript_ e or o s_tands for the label( even'o~ odd) 

_of the quantum number distinguishing the two continuations, and shall 

be designated as J parity. The even J -parity continuation is meaningful 

only for even J values, the odd one only for odd J values. The 

Sommerfeld-Watson artifice now takes the form 

A(E, z) = -Ttf ttc 
ae(J, k)[J +}] [P

1
(z) + P

1
( -z)] dJ 

1 
cosrr(J+z-) 

+i. 
2 J 

c 
a 

0
(J, k)[J +t ](P J( -z; -P J(z)] dJ _ •' 

cos 1T (J + 2) __J 
(3.18)-
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We can again d,istort the contour C and write an expr~ssion similar 

to (3.4), where the sum will now run over the poles of both ae(J, E) 

and a 0 (J, E). 

It is to be noted that unitarity does not mix .the even and the odd 

J -parity parts of the amplitude A(k, z). In general, thus, the Regge 

poles for the even and odd J -parity parts of the amplitude are different. 

On the other hand, if unitarity coupled these two different J -parity parts 

of the amplitudes, then they would share the same singularities. 

Physical Significance oLthe Regge Poles 

We note that the large -momentum-transfer behavior of the 

amplitude is given by the Regge pole farthest to the right in the J 

. plane. From Eq. ( 3.4) we have 
t 

13i(E)Pa.(E)(-l- 2k2) 
A(E. t)- -ta.(E). (3.19) 

sin 1Ta.(E) 

The interesting point about this for the relativistic S matrix is that 

the large unphysical momentum transfer in one channel is also the 

physical large energy for crossed channels. Thus the high-energy 

behavior in any one channel is re_lated to the Regge poles in the 

crossed channels. 

As the energy (real) varies the positions of Regge poles trace 

out a trajectory in the J plane. The system has bound states or 

resonances whenever the real part of any· Regge pole (i) assumes a 

phys.ical J value, and (ii) is an increasing function of the energy while 

passing through this J value. Thus the high-energy asymptotic behavior 

in any one channel is re.lated to the bound states and resonances in 

the crossed channels. 
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IV. REGGE POLES IN THE PION -NUCLEON SGAT'T~RING CHANNEL 

In this section, we discuss analyticity in the J plaf?.e_for the. relati­

vistic pion-nucleon scattering channeL Even though parity is conserved, 

the discussion is carried out Jor.the general parity nonconserving case. 
" "'' • I "'-; 

. . . . . . . 

J.;he reason for doing this)s .that a ~ertain confusion prevailed as to • 

the question: :of J parity and ordinary parity (i.e., space parit~). The . . . . . . . ' 

source of the confusionis the circumstance that, in the sca~tering of 
. . . . 

two spin-zero particles (which Wf; discussed in the preceding; section), 

the, separation of the amplitude in even and odd J -parity pa.rts coincides 

with.the separation into evan and odd ordinary parity parts. Also in 

this case angular 'xuomentum c-onservation implies parity conservatio~. 
Thus there is no way to resolve the confusion, unless one treats .the 

scattering of two. particles, one of which at least has nonzero spin. 

This is what we proceedto do now for the-spiri-zero-s'pin-:half situation. 

, There are now four independent invariant. amplitudes, instead of 

the usual two amplitudes A and B. The T matrix can be expressed as 

T ~ .:.A + i'Y • QB + i't
5 

\'" QG - D\'5 .~~. (4.1) 

where A~'B, G,D'have only Mandelstam. si-ngularities. The differential 

. cross section da/ dn can be written as 

da 
dn 

where 

A A 

= 2: 
spins 

I (final I f I initial) 1
2

, (4.2) 

. kf, ki =unit vectors in the direction of finaL and initial pion three-

momentum, and 
_ (E + m) 

f
1

. [A +.(W- m}B]. - 81rW 

E-m 
f2 = 81rW [-A + ( W + m) B]. 

kG 
- """8;" • 

kD 
s1rw· 

(4.4) 
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We might note that the time-reversal.invariance implies that the 

D and consequently f
4 

should be zero. We shall ·not need to assume 

the time -rever sal invariance, however. 

The partial-wave decomposition of the four f 1s is-.given by 

( ' J J .. 
fl = :E a 1 · 1. P' 1 -a 1 ' 1 P' 1 ) 

J J- t· J-z J+z-. ~+z-,J+z J- 2 

f2 = ~ (aJ 1 1 pv 1 
. . J+- Jt- Jt-

-a ·- 1 1 'i ' J ·pi . ) 
J --J-- J-­·_. 2' . 2 2 . 2' 2 . 2. 

(4.5) 

where a~"Lu =the T-matrix.elementfromthe state !J,I.!)to !J,L), 
• 

I J, L) = the state with 'total arid orb:i,tal angular momentum equal 

to J and L respectively. 
1 3 5 

The summation over J runs over J = Z' Z' Z' The argument of 

Lependre polynomials is 

cos e - u 

The projection formulas for a~ L' are given by 
• 

aL!. J +!- ~ 1: <rlPJ+l/z + rzPJ-1/zldz, 

+1 

J (fl PJ- 1/2 + f2PJ + l/2}dz, 
-1 

(4.6} 
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J (!<. J 
a 1. 1 +a 1 1 = 

J - 2 ,!U + 2 J + 2' J - 2 

. ' 

f3(PJ -1/2 + p J + 1/2) dz~ 

J J +1 
a 1 1 -a 1 1 = 1 
J--2 ,J+-2, J+-2,J--2 -1 

The details of the derivation of these formulas can be found in 

Appendix IL 

It is Clear from (4.4), and from the fact that A, B, C, D have only 

Mandelstam singularities, that the f 1 s satisfy fixed energy-dispersion 

relations of the forms 

00 00 

fl. = _TTl ·14. Di, t(tu, s)dt' + 1 J 
_ t 

1 
-t TT ( m+ l) 2 

D. (u' s}du' 
1, u • 

u 1 -u 

D. t(x', s)dx1 
1, + 1 

TT 

( 2 1 }2 00 
D. (x'+ m - , s}dx' 

J 1 u s -
• x 1+ 2k2( 1 +cos B) 

(m+l}
2

-(m2 -1} 2/s 

2 
x 1+2k ( 1 -cos B) 

(4.8} 

(4.9} 

Using (4. 7} and the above dispersion relations (4 .• 9), we can carry 

out the projections for physical L, J, and we get 

1 2 2 
a J = 4 TTlk 2 [ r {D 1 , t (Xi' s) + ( -} J ± 2 Dl , u (Xi+ ( m s- 1 } ) } 
J± .!_ J± .!_ J 

2. 2 

x' 
X QJ -t 1/2 ( l + -2-)], 

2k 

J J 
a 1 1 ±a 1 1= 
J- 2 • J + 2 J + 2' J- 2 . 

1 

J- 1/2 1 m
2 

-1 }
2 

. . x' ] 
+ ( -} D 3' u ( x + ( s ' s}] ( Q J -l/2 (l + 2k 2 } 

4,u 

(4.10} 
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2 2 ±J[D (x', s) + ( -)J.+ 1I2D (x' + (m "'-1) 
3,t 3,u s 
41 t . 41 u 

x' 
' s) ]OJ+ 112(1 + -2-) }. 

2k 
(4.11) 

One sees that these expressions have all the nice properties we 

demanded of them in Section 3 for the unique analytic continuation 
J-112 into the complex J plane, but for the; factors (-) • Therefore, to 

define proper continuations, we split them into .the even and odd 

J -parity parts, as before; io e., we define 

-

a
3

• e = -
1
-{J[n + D ]Q +}<n ±D )Q - }· 

J ± 1 I 2. J ± 1 I 2 . 4nk 2 1t 1, u J ± 1 I 2 2 t 2. u J +I I 2 

. (4ol2) 

aJ,o = 4nlk2 {f[_Dlt±Dl,u]QJ±ll2+j-[n2,t+_n2,)0J+ll2}' 
J±li2,J±ll2 

{4.13) 
a J 1 e +( ± ) a J, e 

J-112 1 3+112 . J+1I2,J-l/2 

1 = 
2nk

2 D~: ~i QJ -112 

+ (± )1[~3 1 t)- 1J3, u~ 0 J+ll2} ' 
\4, t \4, u} 

. (4.14) 

J, o ( ) J, o 1 J [D D ·] Q 
a + ± ~ = 

2 
k 2 . 73 1 t)- 3, u\ J - 1 I 2 

J -112, J+ll2 J+l/2, J -112 n \4, t (4, u/ 

+ (±)J[D(3, t)+ lJ3,~~ 0J+ll2 • 
4 1 t \4, u} 

(4.15) 

We have replaced, in writing Eqs. _(4ol2) through (4ol5), the 

factors (-)J-ll2 in (4.10) and (4.11) by +1 for even J-parity and by 

(-1) for odd J -parity continuations. Thus even J -parity continuations 

are physically meaningful for J = ~ , ~ , ; , • o •, and odd J -parity 

ones for J = ~ , ~, • • o 0 ·The eig~t amplitudes defined by Eqso (4.12) 

through (4.15) are such that analytic continuation to the complex J 

plane is unique and is obtained by regarding J complex. We see that 

the notion of the J parity comes out naturally even in the non-parity-. 
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conserving case, .and therefore has nothing whatever to do with the 

parity conservation or symmetry properties, such as are present for 

rrrr scattering. Rather, the notion of J parity is a direct consequence 

of the prese:q.ce of exchange forces together with direct forces. 

We can now write 

f = f(e) + io) 
' 

( 4.16) 

where 

fe, 0 = f 1 e' 0 + f 2 e' 0 a . k f a . k i + f 3 e' 0 a . (k f + k) + f 4 e > 0 a . o~·J-ki), 

(4.17) 

where f.e and.£. 
0 

are r:espectively the parts of partial-wave sums over 
1 5

1 1 
3 7 

J = - - and · J = - , - · · · i, e • , 2 ' 2' 2 2' 

f e = L- aJ' e . P' 
1 I~l/2,5/2,···. J-l/2,J-l/2 J+l/2 

I 
J=l/2, 5/2, ••• 

X J, e P' 
· aJ+l/2,Jtl/2 J-1/2' 

(4.18) 

d f o f e, o an similar expressions for the other seven parts, 
1 

, 
2

, 
3

, 
4

• 

Equation (4.18) can alternatively be writtenas a sum over .all physical 

J values, 

f e = 
l 

L aJ,e 

J=l/2,3/2,··· J+l/2,J+l/2 (

P.J -l/2(cos 8) - P.J -l/2( -cos 8)) 
. . .(4.19) 

2 . 

We can convert the sum over physical J values in this and similar 

expressions into an ip.tegral in the same way as in Section 3 over the 

Contour c
1 

(Fig. 6), and get 

dJ 
COS TT J 

J,e 
a 
J-l/2~J-l/2 

(
PJ +1/2 ( z)+PJ-+l/2 ( -z) ) 

(W) 2 
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lmJ 

Y. 3~ ~ ~ ~ 
2 2 2 2 2 

ReJ 

MU-27362 

Fig. 6. The contour ~l for SWT for n-N scattering. 
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dJ 
(

P' (z)- P' ( -z)) 
aJ' e (W) J-1/2 J-1/2 

J+l/2,J+l/2 . 
2 cos 'TT J 

+i. J d J 
4 cos 'TT J 

cl { JO ( ') 
a' P' (z)- P' (-z) 
J-l/2,J-l/2 J-1/2 J+l/2 

(
P' .· (z) + P 1 (z))l. 
J-1/2, J-1/2 j + aJ' 0 

J + l/2, J +1/2 
(4.20) 

We have drawn the contour c
1 

so that it includes all the physical 

J values. To be accurate, the contour c
1 

should extend only up to the 

smallest J value, say J , which is within the natural boundary ofthe 
0 

eight function elements defined by Eqs. (4.12) through (4.15) for Re J ~a 

constant, say J m > J 
0

• The contribution of the partial waves Re J 
0
> J 

should be. explicitly added to the integrals. We shall later show that all 

the physical partial waves, with the possible exception of J = 1/2 waves, 

are completely determined in terms of the same double-spectal functions. 

One could now displace the contour c
1

, just as for spin-zero 

scattering, provided one included the contribution of the singularities­

in particular, Regge poles-that one encounters in shifting in contour C. 

The J -plane singularitites of the pion-nucleon scattering amplitudes 

would be thus the J -plane singularities of the four even J -parity ampli-

tudes a:i~.~/2. J± 1/2' ai~el/2, J +1/2' and ~£the four odd J ~parity 

1. d J,o J,o 
amp 1tu es aJ± 1; 2 , J± 1; 2 , aJ± 1; 2 , J+ l/2 · 

Now in this case, with parity nonconservation, all the four ampli­

tudes of the same J parity a-re coupled to one another by unitarity, and 

as a result share the same singularities. Thus the J -plane singularities 

are _labeled only by the quantum numbers, 

Baryon number = 1, 

J parity = even or odd. 
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In particular, Regge trajectories-the trajectory of the real part 

of a Regge·pole with energy taken real-are now. divided into two.families, 

on~ :with even and the other with odd J parity. 

:For the real physical case _of conserved parity, we .have 

. J, e 0 
a = ' 

J ± 112, J-t 112 

aJ,O = 0. (4.21) 
J± 1/2, J+ll2 

Further, unitarity no longer couples the even and odd space-parity parts. 

That is, we now have 

-1) ' 

where 

fe = 1 
l,(P = +l) 2 aJ' e (P' (z) + P' (-z\ 

J-li2,J-~Iz J+1/2 J+ll2 J J 

fe _ 1 
1, (P = -1) - 2 L . a J' e (p' ( z) - p ~ ( + z\ 

J J + 1 I 2 ,J + 1 I 2 J -1 I 2 J - 1 I 2 } 

etc. (P =space parity). (4.22) 

Unitarity never mixes the four amplitudes l(P0 
=· ± 

1 
); for example, 

f~, (P=+l) is coupled only to if, p = +l(i = 1, 2, 3, 4). This means that 

the J -plane sing11larities of the rr-N scattering amplitude are now the 

J-plane singularities of the four amplitudes aJ; e,.O • Thus the 

singularities -Regge trajectories in particulal-± ~~~·-J'frf~eled by 

Baryon number =. 1, 

J parity = even or odd, 

Parity = +1 • 

So Jar we have not. considered isospin. The inclusion of isospin gives 

one more quantum mirnber; 

Total isospin = I = 112, 3/2. 
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Thus there is :a total of eight families of Regge trajectories.- In general 

we expect to see roughly one trajectory from each family;;.,.the top one, 

These eight families of Reg·ge trajectories,· can be specified by 

assigning a'n ordered triplet ('isospin, spa·ee parity, J'parity) to each 

family. The elements of.the set of pion-nucleon scattering states, 

characterized.·by these triplets, are given by 

(112 312. -1, +1): 
1 5 with I = 112 or 312, or s2, DZ' •• 0 ' 

(112 312, -1, -1): 3 7 with I 112 312, or DZ, cy. = or 

(112 312,· +1, -1): 
. 3 7 with I 112 312, or PZ, FZ, - or 

( 112 or 312, + 1, 
1 

+1): Pz-, 
5 

FZ' with I = 112 or 312. 

Now, experimenta'lly, a number of particle and resonance states 
19 

have been observed having baryon number one. For_isospin one -half, 

one has to start with nucleon N. 

N 11 2 : J = 112, P = +1, mass= 939 MeV. 

Then there are two resonances observed in pion-'nucleon scattering: 

N11~\ J = 312, P = •L (i.e., D~ n-N state), 

mass= 1510 MeV; 

** 5 . .. 
N 

1 
I 

2 
: J = 5 I 2, P = + 1 ( i. e. , F 2 n- N state ) , 

mass = 1680 MeV~ 

If we regard these particles and resonances as Regge poles, they 

can be interpreted as follows: · 

,(a) N and N 
1
)i':< may be rega·rded as the first two members- of the Regge 

family ( 112, +1, +1 ). It must be observed that without J parity, it would 
3 1 . 

not have been possible to explain the. absence of a PZ, I= Z n-N reso-

nance in the Regge picture.· We further have to have both these objects, 

N, N 1 i~:< lying on .the same Regge traJectory, since otherwise one will 

expect another partiCle with nucleon quantum numbe·rs and mass depending 

on where Regge trajectory N>:<>'.< crosses J = 112. ·Then from observed 
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mass, we can get an idea of average slope of the Regge trajectory in 

this region of energy. This turns out to be da./ds ~{1 BeV)- 2 • 

(b) N
1
/;. has to be regardedas th~ first member C?f the f(l.mily (1/2, -1, -1). 

Whether one observes a second member of this fam:ily depends on 

whether this Regge trajectory ever_ crosses J = 7/2. On .. the basis of 

·the abov-e estimate of the slope of Regge trajectories, we might expect 

this to happen at around 4.5 (BeV) 2 , if one were allowed such an extra-' 

polation. More likely, however, is that this is the;only observable 

member of this family •. 

. It would further be noticed that no members of the families 

(1/2, -1, +1) and (1/2, +1, -1) have been experimentally observed. 

Obviously, no Regge trajectory belonging to these families reaches the 

lowest physical J value available to. the family, i.e., J = 1/2, 3/2 

respectively~ The a";>sence of the observable members in these families 

can be expressed alternatively·: Givenisospin (i.e., one-half) and 

space parity, the Regge trajectory corresponding to only one of the two 

possible J -parity values shows up. This could be understood probably 

as follows: Looking at Formulas (4.12) through (4.15), one sees that the 

direct .force has the same, while the exchange force has the opposite 

sign in the two states with opposite J parity, Now if the direct and 

exchange forces have roughly the same magnitude; the total forces are 

strong in only' one of the 'tV:,o J-parity states and weakin.the other .. 

Now coming to isospin 3/2, first there is the well-known 3, 3 

resonance in the iT-N scattering, 

N3j~: J, = 3/2, P = +1 (i.e., P~ iT-N state). mass = 1238 MeV. 

One has also observed a bump at mass~ 1900 MeV, whose quantum num-
. -2 

bers are not known. Now using the above ~stimate of slope ~ ( 1 BeV) , 

one expects in just this neighborhood of energy, the second member of 

* the Regge family (3/2, +1, -1) to which N
3

/
2 

belongs. If this bump is 

really the second member of this family, then one would predict that it 

would occur in the FI state. Besides, there is also a definite shoulder 

on the low-energy side of this 1900-MeV bump, which might be the 

first member of the family (3/2, -1, -1), i.e., D~, T = ~, as suggested 

by Moyer and Carruthers and Bethe. 
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We show the tentative Regge trajectories, which are physically 

mainfe st in Fig. 7'. 

The Range of the Exchange Potential 

One has so far ·never been sure what quantity should properly be 

. called the range of the exchange potential in case of the scattering of 

two unequal-mass particles, such as rr-N scattering. The above dis.., 

cussion-in addition to the question of the J parity-clarifies this 

situation. 

It will be seen from Expressions ( 4.1 0) and ( 4.'11} that the absorptive 

parts in the t and u channels having the same· value of the integration 

variable x' are superimposed on each other. Now, 

and 

x' = t for t-absorptive part, 

(m2 - 1}2 
x' = u- ~---...:..._- for u-absorptive part: 

s 

Hence the range of the exchange force arising from. the exchange of 

mass .Ju is 

( 
2 2 )-1/2 

. u _ (m ~ 1} · 

in the same sense I 
. 

-1 2 as ( t} . is .the range of the direct force arising 

from an exchange of mass .J t . The range of the exchange force is thus­

unlike the direct force-energy -dependent, and becomes srnalle r as 

energy becomes larger, In particular, the exchange of a single nucleon 

gives rise at low energies to a force of range :::::(2M}-l/2 and approaches 
-1 the naively expected M only at very high energy. 

, .. 
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/ 
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Fig. 7. The Regge trajectories in I = 1/2, 3/2 for 1r-N 
scattering. 
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V. · REGGE POLES IN THE TI +'IT +-+ N + N CHANNEL 

We now come to a discussion of the J-plane analyticity in the 

'IT+ 'IT-+ N + N channeL The partial-wave decomposition in this channel 
. . b 20 1s g1ven y 

± 8'!Ti 
B = -

pq 

where 

p 1/2 
( -). 

q 

L 
J 

L 
J 

{ 

m cos 83 (±) 
(J+l/2) 

112
s -J 

[J(J+l)] 

(J + 1/2) 

[J(J+l)] 1/2 

t = 4(q
2 

+ 1) = 4(p
2 + m 2

), 

2 2 cos 8 3 =(s + p + q )/2pq, 

(5.1) 

(5.2) 

± 
~S± J = S-matrix elements for TI-TI -+ N+N. The subscript+ and-

• 
refer to nucleon and antinucleon having the same or opposite 

helicity. The super.scripts + and .- refer respectively to 

total i spin and 0 or 1. 
. . . . . . + 

The sum over J runs over J = 0, 2, 4, • • • for A , B+, L e., T = 0; 

andoverJ = 1,3,5, •.•• ·forA-,B-, i.e., T = 1. 

In what follows, we do not consider the analytic continuation of 
± 

S ± J into complex J plane, but rather 

± ± 
(S) +J = S +J' 

(S)± . = J + 1/2 
~+J [J(·J+l)]l/2 

(5.3} 

(5 .4) 

as these are the quantities we always encounter. This gets rid of the 

fixed branch points in J = 0, -1. We have, for physical J values, 

(S)± . i (_g_)l/2 (- 2 A± + m p q ((J+l) B± J B± )) (5.5) 
-+J-4TI pt p J 2J+l J+l+ J-1' 

(5.6) 
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Using these expressions to project out these partial,waves, we 

obtfLin, after certain simplifications, 

J . 1/2 [ !00 

= [l± (-) ] (_:_1:_2)( qpt) ' . 2 
. 81r (m+l) 

ds' {A:(s',t) 

··2. 2 
B:(s', t)} i 2 2 )] .( s 1 + p + 9. ) m Q (s+p+9. (5.7) 

2p2 ' J 2 p q 

(S)± ( -/] i 1/2 [ J = (1 ± ( q) ds' B (s',t) 
--J 2 

p (m+1) 2 
s 

32 lT 

' 2 2 . 2 2] Q ( s '+ p + q . ) _ Q ( s 1+ p + q ) . 
J-1 2pq J+l 2pq 

(5. 8), 

We have also used crossing symmetry (Bose statistics for the pions) in 

writing these expressions. Looking at the expressions (5. 7) and (5.8), 

we again see that apart fro~ the factors [1 ± ( -)
3

], _the quantities 

(S)~J and {S)~J define the suitable unique analytic continuations, in the 

. sense of Section 3. In order to get rid of these factors, we -as in the 

last two. sections -define the new amplitudes for even and odd J parity. 

The even-J-parity ones we obtain by replacing (-)
3 

by +1; the odd­

parity ones by replacing(-/ by(-1) inEqs. (5.7) and (5.8). We thus get 

+e +e 
(~)+J' (S) -J ' (5.9) 

('S)+O = (S)+O = (S) -e (S) -e 0 
- +J - - -J - +J = - -J = 0 

(5.10) 

Thus only the even-J -parity continuations are nonvanishing for isospin 

zero, and only odd-J -parity ones for isospin one. This is a particular 

instance in whicha symmetry property--in this case crossing symmetry-­

tells us that only one J parity is physical. 

The partial-;ave sums in (5.1) and (5.2) can again be expressed as 

contour integrals in the J plane over the contour G (same as in Fig. 4). 

The contour C, strictly speaking as in the last section, has to 

inClude only those integer J values which can be reached from J continua­

tion from the function elements defined above by (5. 7) and (5.8). We 
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show later that with the possible exception of J = 0, 1, all other physical 

partial waves·are determined by the same double -spectral functions. The 

main interest in expressing.the partial-wave sum as a contour integral 

is, of course, in displacing the contou'r so as to be parallel to the imagi­

nary J axis. This can be done provided the contribution ofthe singularities 

in.the J plane, which we cross in doing so, is included. Also, we should 

be careful not to cross the natural boundary (if any) of the analytic con­

tinuation. In particular, we have to include the contribution of the Regge 

poles in these channels. 

The J -plane singularities of lT+rr-+ N + N amplitudes are the singu-

larities of (S)!~ for isospin zero and of(~)~~ for isospin one. Since 

both(~):~ and (S)~~ are connected by unitarity to a number of channels 

that are the same for both (for exam.ple, pion-pion scattering amplitude 

for isospin zero), they share the same Regge poles with pion-pion 
. • . -0 -0 • . 

amplitude. Similarly the {S)+J and{S) -J both have the same Regge poles 

as a( l)(J), the isospin-one pion-pion scattering:amplitude for a~gular 
momentum J. 

Thus there would. be two families of Regge Poles. which can be 

labeled by quantum numbers, 

Baryon numbers = 0, 

G parity = + 1, 

Isospin = I = 0, 1' 

J parity = even .for isospiri 0 and odd.for isospin 

space parity = even for isospin 0 and odd for isospin 

1, 

1, 

and thus differ in having different isospin, togeth~r with 11niquely as so­

. ciated J parity and space parity. 

Experimentally the only observed resonance for B = 0, G = l, 

I= l is the p meson, 

p : J = 1, P = -1, mass :::: 7 50 MeV. 

For isospin zero, I= 0, B = 0, G = l, only the interaction in J = 0, 

I = 0 iTiT s wave observed by Abashian et aL comes anywhere near being 

a resonance. This occurs very near the elastic threshold, i.e., mass 

:::: 280 MeV. If we regard these as manifestations of the Regge poles, 

then these would be first members of the two Regge trajectories. One 
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might observe the second member of the p -Regge trajectory with I= 1, 

J = 3 at about 1600 MeV, if the trajectory had not already turned down. 

For ABC trajectory,. however, one does not expect to see the second 

member, as the force leading to ABC phenomena does not seem to be 

strong enough. This trajectory, it is believed, just reaches toRe J = 0 

before turning down. 

As we shall see later, the constancy of high-energy cross sections 

implies in the Regge picture also the existence of another trajectory with 

I = 0, which passes through J = 1. at zero mass. There is some incon­

clusive experimental evidence for the first physical manifestation 

(i.e .• I = 0, J = 2 TTTT resonance) of this trajectory, to be called the 

Pomeranchuk trajectory. 

We represent the tentative Regge trajectories in this channel in 

Fig. 8. 
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4,0 

MU-27364 

Fig. 8. The Regge trajectories in I = 0, 1 for the 
1r+1r- N + N channel. 
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VI. HIGH-ENERGY PION -PROTON SCATTERING 
IN THE FORWARD AND BACKWARD CONES 

The present thinking about strong interactions, from the point of 

view of analyticity in angular momenta, is inclined to regard all the 
7 

baryons and mesons, as well as resonances, as Regge poles. One 

believes- that the high-energy behavior in any one channel is dominated 

. by the Regge poles in the crossed channels. Further, there does not 

seem to be any hesitation to apply this notion to either nucleon or pion, 

which customarily have been treated as eLementary-i.e., on a different 

footing from, say, the 3, 3 resonance in the. n-N system. In view of what 

we have been able to establish in the foregoing sections about the J-

. plane analyticity for pion-nucleon amplitudes, such a notion obviously 

has not been shown to follow from assumed analyticity in linear momenta, 

i.e., the Mandelstam representation. It is, however, experimentally 

possible to test the implications of the above. Regge pole hypothesis. 

To that purpose; we present in. this section the expressions for high­

energy pion-nucleon scattering. 

l:Iigh-Energy Forward Elastic Scattering 

This would be dominated by the Regge poles in the crossed channel 

n+n +-+ N+N, i.e., t channel. We have, for differential and total cross 

sections, 

( 6.1) 

total 
a = 4nW 

I m (fl + f2) ' 
t=O 

( 6. 2) 

z . I w = ( s -""' m · - 1) 2m, (6.3) 

where one has to substitute proper isospin combinations for f
1

, f
2

• 
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Thus, f,or example, 

f. ~ ~.(+) + f.(-) for 1T -p -+ 1T p, 
. 1 1 1 

Re-expressing Eqs. (6.1) arid (6.2) in terms of amplitudes, 

. we obtain 

da 
dn 

0
total = 

A'=A+ wtt/4m B 
1 - t/4m

2 
' 

B' = B, 

+ ~ (~-
4m,. 

(m + w) 2 2 
. 2 ) IB I ], 

1 - t/4m-

1 I m A 1 
( s, t = 0). 

Now we have, fromEqs. (5.1) and(5.2), 

tp 1/2 
(-) 

q 

B
± = 81Ti p 1/2 ± 

- - (-) · ~ (S) -J PJ- (cos e3 ). 
pq q J 

( 6.4) 

( 6.5) 

( 6.6) 

( 6. 7) 

( 6. 8) 

( 6. 9) 

On.t?e hypothesis that .large s (i.e., cos e
3

) behavior is dominated 

by the Regge poles .in the t channel, we shall have,. as in Section 3, 

(6.10) 
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. ± [ P' . (s+p2+q2) . . . (. s+p2+q2) 
a. (t) ± . ·- ± P' ± --~--~ 

- b(±)(t)(E.9..). a.(t) 2pq .. a.(t) ._.2pq 
- m ± 

s - oo . . . sin. iT. a. ( t) 
: . . . . ' 

]. 
where 

(6.11) 

a. +(t), a. -(t) = Regge poles with maximum real parts for isospin 

0 and l channels respectively, 

b~(t) = L_ t . [2. lT2 (pt)l/2 (2J+l) (~):J .( m )J(J-'a.±(t))]' 
J - a.± ( t) p q pq 

(6.12) 

b±(t) = Lt [ - S;r (1:) 1/ 2 (S)± (E::)J-l (J-a.±(t))] • 
- . ± pq q - -J pq 

J-a. (t) 

(6.13) 

It should be mentioned that, in writing these equations, we have 

used the. results on the J parity and sharing of Regge poles by different 

amplitudes that were establishedin Section V. 

The expressions ( 6.1 0) and ( 6.11) could be further simplified .to 

A'± ± . s a.±(t) [l ± e-i;ra.±.(t)] 
- b+(t) (2m) . ± ' 
s-oo s1n;ra. (t) 

± ±. 9 a.± ( t) - 1 [ 1 ± e - i mi ±( t) ] 
a. (t) b_ (t) (

2
m) ± • 

sin;ra. (t) s- 00 

Using the be~aviors (6.10) in our expression for total cross 

sections, we get 

(]total( _ ) · total ( + ) 
iT p - (] lT p ,-----.,. 

s- oo 

(6.14) 

(6.15) 

( 6.16) 

(6.17) 

Now, if constancy and equality of the ;r+p and lT -p cross sections 

are to be achieved in this picture, then we must have 
+ a. ( 0) = l, 

a.-(0)< l. (6.18) 
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Thus there must be a trajectory with zero baryon number, even G 

parity, even J parity, even space parity, and zero isospin- -in_ short, 

the quantum humbe:rs of the vacuum, which must pass through 1 at 

t = 0. This is the Pomeranchuk trajectory to which we alluded in the 

preceding section. There cannot be any trajectory that passes through 

a point J > 1, t = 0; otherwise we would have a cross section increasing 

like a power of energy, which js certainly not allowed by Mandelstam 
. . . . . 

representation, as we shall show later in Section VII. Also, for iso-

spin one, we expect the p -Regge trajectory to be the same as a-( t). 

Now Rt a-( t) = 1 at t ::::: 29 m 2 ; hence at t ::::: 0, we would automatically . 'IT 
have a-( 0) < 1. A preliminary analysis of experimental cross sections 

using (6.16) and (6.17) gives a -(0)::::: 0.3, and within experimental accu­

racy the observed cross sections can be reproduced by the formulas 

(6.16) and (6.17). 
10 

+ -Thus at high energies the 'IT -p and 'IT ""P scattering are both 

·dominated by the Poineranchuk Regge pole, and we. have 

da ( ± ± -'IT p.,..,;. 'IT p) 
dt 

{tb:(t)[2 
t 

---2 
4m 

1 s 2(a+(t)-l) - 16'!1' (2m) . 
s ~ 00 

(lb!(t) [
2
+ [a +(t)b~(t) [2)} X 

1 + e -i '!Ta + ( t) 2 

sin 'IT a +(t) 

(6.19) 

For charge exchange, 'IT- +p --.. 'TT
0+n, however, the Pomeranchuk 

. Regg~ pole cannot contribute, as one has to ·exchange charge in the 

. crossed channel, and the Pomeranchuk trajectory has zero isospin. 

Charge exchange is a pure I = 1 process when looked at fro:rp t channel. 

Thus the process is dominated by the p -Regge pole, and we have 

s -+ 00 

1 - e ':" i 'ITa - ( t) 2 

sin 'IT a -{t) 

( 6.20) 
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Using these two expressions, (6.19) and (6.20), it should be 

experimentally possible to determine the Pomeranchuk and p trajectories 

for negative yalues of t, if sucha description applies. A significant 

feature of the Regge pole hypothes1s is the iogarlthmic shrinkage of the 

width of the diffraction peak with increasing energy. 

High-Energy Backward Scattering 

This would be. controlled by Regge poles in the u channel; i.e., 

the crossed pion-nucleon channel. One knows from the analysis in 

Section IV the general features of J -plane analyticity for the pion­

nucleon scattering. 

We have 

dO' ± ± 
dQ(rrp-+rrp) 

whencrqssing:~ym:rp.etry ,is used, this is 

.., '' 

da ± ± 
dn ( rr p _. iT 'P) 

since we have 

1 (u 
- k2 

( + )c . ( - )c . . _ ( +) - . ( -) 
f
1

, 2 (u, s, t) ± f 1 , 2 (u, s, t) - f
1

, 
2
(s, u, t) + f

1
, 2 (s., u, t). 

(6.21) 

( 6.23) 

Now, on the basis of formulas given in. Section IV and the tentative 
. * >;c 

Regge trajectories corresponding toN, N
1

;
2

• N 3; 2 , which have the 

largest real parts, we. can write, for large -momentum-transfer s­

behavior, 

f~ 1/2)(u, s, t) = f~ +)c + 2£~ -)c 

s-:-:: ~N(u) cos-! naN(u) [ P'aJul-1/Z(zc) - P'aN(u)-1/2( -zc)] 

+ f3 ... · (u) sec .,c 

N 1/2 

rra >:< ( u) [ p r a ( z c ) + p ~ ( - z c )] , 

N 1/2 N~r/2(u)-1/2 N;;2(u)-1/2 

( 6.24) 



-40-

X (3
33

(u) Sec 1T a.
33

(u), (6.25) 

and similar expressions for £~ 1 /2 >, f~ 3/2 ). He·re 

z . = -( s -m2 -1 + 2 E ( w -E ) I 2q 
2

' c u u u u 

~· Eu = three momenta of the pion and the -e~ergy of the 

nucleon (c. m.) in the u channel, 
2 w = u. 

u 
Thus we would have 

da ( + + ) _A( ) 2 (~(u) - 1/2) dn TIP.,.TIP -,_,us ' 

where a>(u) is that Regge pole out of a.N(u), a. * (u), a.
33

(u) 

N 1/2 

(6.26) 

which has the .largest real part. The power of s, 2(d~ (u') - 1/2), comes 

from,f
2
,_for the N, N>:~r/ 2 trajectory, and,_fr.om~£1"-:fo,r .the, 3;.3 trajector,y. •.. 

Looking at the tentative trajectories shown in Section IV, ·one expects 

a.>(u)::::: o_ atu = 0, 

i.e., we have roughly 

da(+ +) f3(u) 
dn1Tp-1Tp- s. 

(6.27) 

( 6. 28) 

On the other hand, if the nucleon were elementary--i.e.~ had 

definite spin J = 1/2-- we would get 

da + · + dQ(1T p _ _,.. 1T p) -canst. (6.29) 

Thus the experiment can distinguish in principle the. two possibilities 

for the nucleon. Similarly 

da ( _- - ) _A'( ) 2(a. 33(u)-l/2) <in 1Tp-1Tp ,.., us .• (6.30) 
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VII. FROISSART-TYPE UPPER BOUNDS ON HIGH-ENERGY 
BEHAVIOR OF THE SCATTERING AMPLITUDES 

IN THE PHYSICAL REGIONS 

We now come to the other part of the work, i.e. • the determination 

of the asymptotic behavior of the scatteringamplitudes. This is pre­

liminary .to any further c:liscussion about the possible number of sub­

tractions in the Mandelstam representation, the domain of meromorphy 

in the J plane of the partial-wave amplitudes, and so on. 

We obtain in this section strict upper bounds on the high-energy 

behavior of our. amplitudes. It is not implied.that these bounds actually 

obtain in nature. 

A. Channel 1r + N _.. 1r + N 

First we obtain a strict upper bound on.the partial-wave ampli­

tudes for large_ angular momenta, which is stronger .than the unitarity 

b d 21,22 u . . . oun • n1tanty requ1res 

J 1 io 1 ± . ~ 
a l = fn = k e Sln u. n .± • 
J+- J+_!_ x± x 

2 • 2 

( 7.1) 

where o1 ± does have a negative imaginary part above .the inelastic 

threshold and is real 'in the elastic region. This gives the unitarity 

bound 

( 7. 2) 

To obtain. a stronger bound, we use analyticity of the scattering ampli­

tude in the Lehman Ellipse, given by Mandelstam representation, in 

.the cos e = z planeo We _have 

+1 . 

J dz [f
1
(s,z)P _

1 
(z)+f

2
(s,z}P 1 (z)J. (7.3) 

-1 J+z- J±2 

Also, from Cauchy's theorem, f fl, z(s, z')dz' 

E z' - z 
( 7 .4) 

where E is any ellipse within the Lehman ellipse (major axis = 2a). 
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Using ( 7 .4) in (7.3), we get· 

£1 ± ~ Z~i f dz' [f1 (s, z') Q ·• 1 ( z') +£2( s, z ') Q 1 (z')"]/ ( 7.5) 
E J +- J±-

2. 2 

. Therefore, 

1£1± J.; [i dz ]{Jif1 (s,~),jj·JioJ+tlll+ ll£2(s,z')jjQJ±~ (zlll} 

( 7.6) 

where the .II ••. • II denotes the maximum value attained on the. ellipse E. 

We now have. the bounds 

Jlfl,,2(s,z)ll < IR1,2(W)I, ( 7. 7) 

/ . 1T 1/2 1 1/2 1 
· I!Ori(z)ll< (n) ( 1 - --y) n+l' 

. d d· 
( 7 .8) 

J dz <. 2d, ( 7.9) 
E 

where d = a+(a
2

-1)
1
/ 2 and Rl, 

2
(W) are some polynomials in W. 

. Usm:/:ese 1up~;:~~:~~; t 7, 7) an: ( 7 .8), . i~:(~) I . ] 
lf.t± I ~<1T> · <1 -z:> - 1 172 ---=-r + 172 . 

d ( J + 2) . dJ + 2 ( J± .!._) J ± .!._ 
. 2 d . 2 

IR<W:>I 
~ kdJ-1/2' (7.10) 

where R( W) is another suitable polynomiaL This bound is weaker than 

the un:i,tarity bound for 

( J _.!._)< .fn R(.W) = ·J 1 
2 .fn d m - 2 · (7.11) 

. As the semimajor axis a is given by 

(7.J2) 

1 
the J m 

2 
forlarge W is given by 

J m- 1/2 ::::: const k.f n w :::::-const s 112 £ ns. .< 7.13) 
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The bounds can now be used to find the high-energy behavior for 

the various amplitudes. We have 

A± = 4 rr [w +m f ( ± ) - W - m f2( ± ) ] :....-- 8 (£ ( ± ) - f ( ± ) ) 
E+m 1 E-m TT 1 2 · ' 

s- 00 

--
s- 00 

Using ( 4.5 ), one then readily sees 

-s --+- 00 

8rr 

s~ ~2 

We also have 

IPl(z) I< ~1 (1+1), for -1 < z < 1, 

IP£ (z)l = }1 (1+1), for z = ±1; 

P' = - jf[_ 
1 TT 

COS({£+ 1/2) f)) f < l) < TT _ E • 

3/ 2 , . or e o 
(sin f)) 

Using (7.16) through (7.19), we obtain 

16rr 
.::;;~ 

J=Jm 2 I: (J+~) + 
.J=l/2 

3 
~ : s (£ n s) • 

Similarly 

B± ( s, f)= O) ..(; (1 n s) 2 

16rr 
~ 

(7.14) 

(7 .15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.21) 

(7.22) 
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These behaviors allow the total cross ·sections to increase as 1rt
3 

s. 

Using (7.16) .through (7.20), we similarly obtain 

± 
B < s, 8 = 1T) 

= 0( s 1/ 2 1 n 2 s), 

= 0( s 1/ 2 1 n 2 s ) • 

· and in the nonforward, .. non backward directio11s ( 1T -·e.> 8 > e) 

± 
A (s,8) 

± 
B ( s, 8) 

= 0( s 1/ 4 1 n 3/ 2 s), 

= 0( s 1/ 4 1 n 3/ 2 s). 

(7.23) 

( 7.24) 

( 7. 25) 

( 7. 26) 

Let us mention here that if the domain of meromorphy in the J 

plane of partial-wave amplitudes in the t channel extended up to 

Re J = - E. the logarithm factors in these upper bounds would be absent, 

as s is the momentum transfer squared for.the crossed channels, and 

the asymptotic behavior in.the Regge picture is a pure power behavior. 

B. The Channel1r + 1T ..:.. N + N 
A simi'lar -analysis can be carried··out for this channel. We have 

,the partial~wave expa11sions given by (5.1) and{5.2). The unitarity 

requirement, similar to ( 7.1 ), is 

(7.27) 

We obtain, finally, 

A±( t, cos 8 
3 

= ± 1 ) = 0 ( t 1/ 2 1 n \), ( 7.28) 

B±(t, cos 8
3 

= ±J) = O(t
1

/ 2 1n\), (7.29) 

and for nonforward, nonbackward directions--i.e. ( e < 8
3 

< 1T - e)--

A±(t, cos e
3

) = O(t1/ 4 1·n3';2 t), (7.30) 

B±(t, cos 8
3

) = O(t-l/4 1n3/ 2 t). (7.31) 
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VIII. FRO ISSAR T ANALYSIS 

We shall now prove that the upper bounds obtained in Section VII 

for different amplitudes are inconsistent with any arbitrariness inthe 

partial waves J > 1/2 in.the s channel and J, > 1 in the. t channel. In this, 

we shall be following Froissart, 
21 

who showed that subtractions corres­

ponding to arbitrarily high angular momentum waves in one channel are 

not consistent with the unitarity requirements in the crossed channels. 

Consider the amplitude A +(s, u, t) for the sake of definiteness. 

Let us denote the two different unitarity-satisfying amplitudes corres­

ponding to A+( s, u, t) by A~( s, u, t) and A''( s, u, t), which differ only be­

cause of having different subtraction terms. Their difference M +( s, u, t) 

also has the same unitarity 1imitatior1s and shall have the following 

. general subtracted expression (assuming that the asymtotic behavior is 

at most like a polynomial, i.e., the finite number of subtractions): 

+ M ,( s, u, t) = 
M 
~ 

p=O 

M 
+ ·~ 

p=O 

p M f t::..p (u\u•) du' s u t 
TI ~~Mr-------

·. · · u 1 (u 1 -u) 

L 
+ ~ 

p,q=O 

where M, L are sufficiently large positive integers. 

In the physical region of the s channel, we have 

+ Im M ( s, t) = 
M 
~ 

p=O 

Letting the scattering angle e assume (M+l) values e
1

, e
2

, • • ·, 

eM+l(= O,n) in the physical region in (8.2), we get (M+l) equations 

M 
Im M+(s,e.) = ~ (sin(ei /2))2P(-)P(sp t::.p(s)(s), 

1 p=O j p 

( 8.1) 

(8.2) 

( 8. 3) 

where we have used t ~ -~ sin
2 

8/2 for large s. These (M+l) linear 

equations can be solved for (M+l) quantities sPt::.p~s)(s), (p = 0, 1, • • •, M). 

The solution obviously implies that the asymptotic behavior o£ sp t::.p~5 ~ s) 
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is at most like that of Im M+(s, tl.). Thus; using.(8.3), we have 
1 

Ap(s)( s) = 0 ( s 114 -P£n312 s). (8.4) 
p ' . 

Similarly, using the analog of ( 7.25) in the crossed TI'-N channel, and 

( 7.30), we get 

1\ • < u >< · > o< 1 I 4 -p n 3 I 2 > 
~P u = u xn s, p ',, ' ·. ( 8.5) 

( 8.6) 

With the asymptotic behaviors (8.4) through (8.6) in mind, we can 

• 1\ A·+ rewrite~ as 

M p j· Ap (s)(s') s 1p-lds 1 : M 
M+ =.!._ ~ _t_ p + .!_ ·~ 

1T.' p -1 · S I - S . 1T 
p=O s p=O 

p J Ap(t)(t')t'p-ldt' 
u p 
tp -1 ---=--t--::1--_,t __ _ 

M p J Ap (u{u') u'p-l du' 
+ .!_ ~ _s_ -~p---· --.--·----

1T P 1 U l - u 
p=O u -

+ p( s, u:. t), ( 8. 7) 

where 

p(s,u,t) -· 
M M+2-p ( l) 
~ ~ Ap 

p=O q=O p, q 

M 
~ 

p=O 

M+2-p ( 2 ) 
~ Ap 

q=O p,q 

ptq+l-p M M+2-p 1\ (3) p q+l-p 
u - ~ ~ ~p ' s u • ( 8 0 8) 

p=O q=O p, q 

and we define . ( ) 

1\ ( 1 ) = _!_!App
8

( s ') ds' 
~P 

2 
, etc. 

p, q 1T s ,q -p+ 

In writing(8. 7) through (8.9) we have used the identity 

1 
y-x 

p-1 
- (y_) 

X [ 

1 . 

y-x 
1 X 
y - 2 

y 

__ :XM+2-p ] 

M+3-p 
y 

( 8. 9) 

Now the asymptotic behavior, s __.. + oo, in the s physical region 

( e < tl < 1T- tl) of the integral terms on the right-hand side in ( 8. 7) is like 

s 114£n312 s, using (8.4) through(8~6) and noting that t ~ s, u ~ s for 

large. s and E < e < 1T - tl 0 Thus these terms are unitarity -abiding 
' . 
in the physical region of the s channel. However, the polynomial 

p( s, u, t) contains arbitrarily high integral powers of s, and would .thus 

conflict with unitarity in the s channel, if this polynomial were not a 
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constant. Hence we can only have 

M+= 1 ~ LJ··D.p(s\s')ds's'p-1 

n p-1 s'-s 
p=O s 

+!. 
lT + D.p o o· (8.10) 

Now let s be held fixed at some finite negative value, and let 

t ...... + oo-. This means that the angle. of scattering in the t channel, 

i.e., e
3

, goes to zero. l'he asymptotic behavior of the terms on the 

right-hand side.of(6.10) are respectively (keeping s fixed), tP, 

t 1/ 4 .fn3 /~t, t 1/ 4 -P£n3/ 2t, t 0 • Thus we must have 

= 0 for p ~ 1~ 

if we are to respect the t 1/ 2£ n\ behavior of A+ given by ( 7 .28). 

Similarly, holding u fixed at some negative finite value and 

letting t ...... + oo (i.e., backward direction in the t channel), we get 

J 
D.p (u)(u') u'P- 1 du 1 .· 

P = 0 for p ~ 1 
u' - u ' 

(8.11) 

( 8.12) 

and holding t fixed at some negative vlaue and letting s or u go to 

+ oo (i.e. forward direction), we get, using.( 7 .20), 

= 0 for p ~ 2. ( 8. 13) 

We now have 

M=s o +u o +t o 
+ JD.p (s){s'~)ds 1 JD.p (u)(u 1.}du 1 JD.p(t)(t 1)dt 1 

lT 5 1 ( S I - S ) ; U I ( U I - U) lT -t.,-,1"(r-:t"Tf ---:t-.-)-

+~ 1 +D. JD.p(t)(t 1 ) dt 1 

n t 1 
- t · Po o· (8.14) 

. We have not yet used the crossing symmetry requirement for A+, which 

demands 

D.p ( s)(x) = D.p(u)(x) = D.p (x) 
0 . 0 0 
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and 

(8.15) 

Thus, finally, we have 

M+ s o J
~p (s')ds' 

= 1T -s ...... ' (r-s-r-1 --s....,),--
+ ~j~p0.·(u')du' 

1T -u_,',.,.( -u...-.1 --u"--<-) -

t J ~p ~t)( t').dt' 
+ 1T .t'(t' -t) + ~Po o· 

( 8.16) 

The la:st expre s.sion tells us that the only. independent subtractions 

in A+ are J·:::: ~ wave subtractiOJJ.S in s and u channels and J = 0 wave 

subtraction in .the t channel. A similar analysis for the other three 
. . - ± 

. amplitudes A • a .lead·s to the independent subtractions in.only 
1 

J = '2 waves for s, u channels and J = 0, 1 for t channe~. One might 

note that .if no logarithm factors are present in the asymptotic upper 

bounds, then the result for arbitrary subtractions can be strengthened 

to only J = 0 amplitudes in the t channel. 
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··APPENDIX 

I. Derivation of the Strip R
2 

Double . .,.Spectral Functions 

The expressions for the strip R
2 

dsf is no\V ca,lc-~ate~ by ~sing 

generalized unitarity, in which.the contr~bution of only the lowest-mass 

two-particle state, i.e._, two-pion state, is retained. 

The S-:matrix elem~nt for pion..:pion scattering, which we ·shall 

need for the application of generalized unitarity in this channel, is 

taken as follows: 

With this normalization, which agrees with that of Chew and Mandel-
2,15 [lh h . 1 . [ stam, Jl.. . as .t e partla -wave expans1on i 

The generalized unitarity condition with only 2'TT intermediate 

states then gives 

and 

. where (see Fig. 9) 

r, =·(ql•pl)' s' = (ql· qp, r,n = (q!• pl)' 

and 

d 3 1 : q i 2 dq 1 d Q i • 
ql 1 1 

(A1.2) 

(Al.3) 

(Al.4) 

These equations (Al.3).through(Al.4)hold separately and lead to 

the following expressions for the strip functions a.~ , 13~: 
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''I' 
~II 

MU-22704 

Fig. 9. The two-particle intermediate state for the 
1r.+1T-+ N + N channel. 



± 
a.

2 
(t,s) = 

and 

± 
13

2
(t, s) = 

where 

and 
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1 JJds'ds 11K (t s s' s") [A*(±)(t s") -n (t·s s' s") 
2 t''' s' a.''' 

1Tpq w t . 

X B:(±)(t, s''>]As(±)(t, s') (A1.5) 

\ Jd_s'f ds" K (t s s' s")n (t·s s's")B *(±)(t s") 
·t'' ' .13 ' ' ' s ' 

1Tpq wt 

x.}t~(± )(t, s'), (Al.6) 

(Al.7) 

(A1.8) 

Kt(t;x, y, z) = { ( x+~;~q2 ) t ( 1 t ~2y t (z+r::l r -1 

-2h~+q2) ~i ;2;2) ( '•Pz;:2 )l-J/2. CAl.9) 

if the quantity ·under the square root is positive, and z'ero otherwise 

and na., n
13 

arethe kinematicalfactors given by 

2 2 2 
m[Z_ q (s 11 -s) -. s'(s+_ p_ +q )] 

n (t;s, s', s") = -
a. 4 . 2 2 ( '+ 2+ 2)2 

(Al.lO) 

n (·t·s s' s 11
) = ·13 ' ' , : 

p q - s p q 

4p2q2 [ l+s'/Zqz] - .[ ss" + (p2+q2;)(s+s")+(p2+q2)2] 

4 pzqz -(s+pz+qz.)z 

(Al.ll) 

We have a1so used the crossing symmetry in writing down the 

expressions (Al.5) and (Al.6). 

.,. 
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II. Partial--Wave Analysis of Spin-Zero and Spin-One-Half 
Particle Scattering with Parity Nonconservation 

We shall carry out the decomposition into partial waves of in­

variant amplitude for spin zero and spin one -half particle scattering 

for the case in which parity is not conserved. 

We write the S-matrix element for scattering of an initial pion of 

four -momenta k 
1

, and of an initial m~cleon with four -morr1:enta K
1 

and 

spin state r 
1 

to a final pion with four -momenta k
2 

and a final nucleon 

with Jour-momenta K
2 

and spin sta.te ·r
2

, in terms of invariant amplitudes 

A, B, C, D as follows: 

X J4Km~ k k. T(K2,r2k2;Kl,rl,kl)' 
10 20 10 20 

(A2.1) 

with - -
T(K

2
,r2,k2 ;K 1 r 1,k 1) =ur

2
(K

2
) [-Atiy· QB+iy

5
y· QC- Dy 5 )ur/Kl) 

(A2.2) 
and 

kl +k2 
Q = 2 

Here u, u are appropriate Dirac spinors. 

We use Pauli -Dirac repre-sentation of the y matrices, in which 

we have 

i)' • 

(

-Q 
Q = 0 

-a ·a 

= (0 -1) ' 
-1 0 

a . a 
+Q 

0 

· and Dirac spinors take the form 

1 
= 

.J 2m(E+m) 

)· 
(A2.3) 
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- . 1 * u ( p) = --;::::::=====~ 
s .J 2m(E+m) X s 

·(E+m) - - ' -a. P 

and X· are Pauli spinors. 
r, s . 
We work in the center-of-mass system in which 

and define 

We have 

- ' -+ 
kl = -K = k.k, ' 1 1 

- - =k~, k2 = -K 
2 

Q = W - E, 
0 

-+ 1 .. 
Q = 2 -k.(ki + kf). 

Using. (A2.3) through (A2. 7-), we can reduce T to the form 

41TW * 
T=--m Xr f X 

2 r 1' 

where 

and 
-1 . 

f
1 

=(81TW) [A+(W-m)B](E+m), 

f
2 

= (81TW)- 1 (E-m) [-A+ (W+m)B], 

f
3 

= -kC/81T, 

f
4 

= -kD/81TW. 

1 (A2.4) 

(A2.5) 

(A2.6) 

( A2. 7) 

(A2.8) 

(A2. 9) 

(A2.1 0) 

(A2 .11) 

(A2.12) 

(A2.13) 

It.is appropriate before goit:tg further to point out that, if time­

reversal invariance alone did hold, then we would have 

· D = 0, 

f4 = o. 

... 
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This is easy to see, since under time-reversal operation, 

a- a 1 = -a, 

and therefore 

- - -kf- k'f = -ki. 
_.,. _.. ~ 

k. - k. 1 = -kf, 
1 1 

f- f' = f 1 + f 2 a· kfa. ki + f 3a· (kf+ki)- f 4 a· (kf-ki)' 

and thus we must have f
4 

= 0. 

On the other hand, parity conservation alone would give 

f3 = f4 = o, 

C = D = 0, 

since, under space reflection, 

a- +a, 
k. - -k., 

1 1 

We now proceed to angular-momentum decomposition of the f's. 

First we note that we have for the differential cross section the 

expression 
da = dn 

Therefore, if the incident wave .1. is 
't'inc 

iK. ·-; 
1 

.1. - e 't'inc-

the scattered wave is given by 

ikr 
~ f _e __ 

scatt r ! oo r X • r 

.... 

(A2.14) 

(A2.15) 

(A2.16) 

It is convenient to choose the incident wave vector k .. along the 
1 

positive z axis, i.e., 

.... 
k. =·(o, o, i). 

1 

We further define e, <I> through 

kf ::::: (sin (j CbS <j>, sin (j sin <j>, COS 8). 



-56-

Now let 
. iki. r (ol)' 

.1. = e 
'~'inc 

r __. oo 

( 

i k.r · i kr) · [ 1 1 ) . 1 1 >] e 2 ~:r . .[4; ,_j 1 +II£+ 2' 2 ,- ~ 1£ -.z-• -2 ., 

. · ; · . · · . · . . ( A2 .1 7} 

00 

r-+oo 
~ 

£ =0 

where .1 J, M > is the state total angular momentum J, and J z =M. We 

use the angular momentum conventions of Rose. 
23 

We have thus re-

expressed the incident wave in total angular rr10mentum representation. 
. . ' . . 

This is useful, since angular momentum is conserved. As a result of 

interaction the outgoing part of the incident wave shall be modified as 

to its amplitude, which is unity. 

Consider :j£ + ~, i) in (A2.1 7~ We have 

I n~-. r I)· , /£+1 y. o·(l·)" /·2i.+l .. ·.y/'·(· .. 01\ w·l'tli· parl·ty (-)£.·+1, 
x. + 2; 2 · .=· .J·2Ft f · 1 : o: + t.,J x. ) · 

~ y 0 ( 1 \ J 1+ 2 y 1 ( 0) . h . ( )! + 2 = -..Jj_if-3 1 +1 0) + 21+3 £ +1 . i wit panty - . 

Therefore, the part 

ikr 

~ikr ~ 1
£ +.!._ .!..)·. 

2 ' 2 

of the incident wave would give rise to the following .part in the 

scattered wave: 

ikr e .. 
·-.·-· ..[4;-' 21kr 7 .[TIT {{'j/2 (4~/Jr Yp (~ }+ ,JZ/+1 

+a: :u (-4~~:~ '£~1 (~): . 

Y/ ;·(~) 

( ~1) }. 
. where a.L", r> deonte the amplitude for transition between two states 

which have t9tal angular momentu~ J, and, where the initial and final 

states have orbital angular momentum L equal to L' and L" respectively. 
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Similarly, one can treat the rest of the inc:ide~~;w~ve (A2.17) to 

get finally 

(A2.18) 

On the other hand, if the incident wave were 

-+ -+ ( 
t1J inc = e ik . r ~) ' (A2.19) 

one would get 

(A2.20) 

Using (A2.9) and (A2.15) and (A2.16) and comparing them with 

(A2.17) through (A2.20), we get 

£1 + £2 cos(:)= L [<J + l/2 ) a.~-'l/2 J-1/2 PJ-1/2 
J=l/2 . ' 

+ (J+l/2 } a.~+l/2, J+l/2 PJ+l/2}, 

= J~/2 [ a~+l/2, J+l/2 PJ+i/2 - ~LI/2, J :1/2 P'J -1/2], 

£3 + 
1
4 = J~/2 [aLI/2, J+l/2 PJ -1/2 ~ a~+l/2, J -1/2 p;+l/J 

-(£3+£4) Cos e + (£4 -£3) = J~/2 [ aLI/2. J+I/2(J +1/2) PJ -1/2 

+ (J+I/2 ) "~+1/2, J -1/2 PJ+l/2] • 
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Sol Vin·g for· f~ fl one gets·: \_" _: ·;_ ~ 
1 

f 1 = ~ (a.~ - 1 I 2' J - 1 I 2 p J t 1 I 2 - a.~+ 1 I 2, J + 1 I 2 p I J - 1 I 2), 

f = 2 

f3 =-} ~ (a.~-li2,J+ll2 + a.~+li2,J-li2)(PJ-lf2- PJ+ll2)' 

f4 = ~ ~ (a.i -112, J+ll2 - a.i+ll2, J -112) .(Pj -112 + PJ+ll2), 

where we have used the identities 

(1- cos 8) P£ (cos8)- (£+1} P_e(cos 8} = fi1 (cos 8}- P 1£+l(cos 8}, 

I 

(A2.21) 

(A2.22) 

(A2.23) 

(A2.24) 

(1 +cos 8} P£ (cos~}+ (£+1} P 1 (cos 8} = P1 (cos 8} + P£+l (cos 8}, 

The projection formulas for different a.JL 1·, ·L 1 hav;e to be worked 
. . J'' 

out now~ They~a:r-e:known 1n the· hterature.for·a. L, .. L whe,re·. 

L = J"± 112. and are 'given by. 

J +1 

a.J+li2,J+ll2 =ll
2 

Jl (f1 PJ+ll2 + fz PJ-ll2 } dz, (A2.25} 

J +1 

a.J-li2,J-'ll2 = 112 1 (f1PJ-l/2 + f 2 PJ+ll2 ) dz. (A2.26} 
-1 

By use of the integral formula 

112 
+1 . 

Il (P£ + P£ +1} (P m ± p m+l) dz = 
- 6£ ' + ,m 

J J 
they can be worked out for a. J _112 • J + l/2 and a. J + 11 2 , J _11 2• and are 

given by 
+1 ' 

f f3 (PJ -112 + p J +.112} dz, 
-1 . . . 

(A2 .2 7} 
J J 

a.J -112, J+ll2 + a.J+ll2, J -112 =, 

(A2 .28} 

.-·. 
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