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IN THE ANALYTIC CONTINUATION
OF THE PION-NUCLEON SCATTERING AMPLITUDE

" Virendra Singh

: 'Lvaw'r‘e,n'ce R’_adiation Laboratory
University of California-
Berkeley, California -

. May. 23, 1962

ABSTRACT

The pion-nucleon scaﬁttiering.,amp‘litude and its:analytic continua-
tion mtr—=>N+N are. studied.from.the point 1df_view of the analyticity in
the complex angular mo{m‘e“ntum J plane. The quantum numbers that
characterize the Regge tra',j.elcto'r'i‘és are thereby settled. They are in
the m+ N scattering-'channel;,v ba,xyo_n num_belj =1, isospin = 5 or %, J
parity = even or odd, space patity = even.or odd for Regge poles; and,
for the w+m— N+ N channel, .vba'ry‘éﬁl' -numbér = 0, G-parity = +1, isospin
=0orl, Japaritf = even or odd, space parity = even or odd. It turns
out that in the m+wm—~ N+ N channel, only the amplitudes having the same
J parity and space parity, which is even for isospin.0 and odd for iso-
spin.1, are nonvanishing, Experimentally observed particles and .
resonances are also discussed in terms of the Regge trajectories with
definite quantum numbers, and certain experimental consequences
pointed out. We also give th.é éxpre ssions for the differential cross
section in forward and baékward scattering tone_s for =N scattering,
A discussion of the .rigoi‘ous Froissart-type upper bounds on asymptotic
behavior and their implications for undertermined single spectral
functions is also given, which should be useful in.any further work.on
the determination of the meromorphy domain in the J plane of the

various partial ~-wave amplitudes,
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et

.energy and angular-momentum plane,

1. INTRODUC TIoN

The prescrlptlon for S1mu1ta.neously contlnulng two -body S-matrix

' .elements into the complex plane, regarding them as a functlon of in-

variant energy and momentum-transfer Var1ab1es, was given by

1,2

Mandelstam, Through ana.lyt1c cont1nuat1on, the two- -body scattering

,-amphtude for any process describes two more physical processes

which are related to. the first one through the substitution.law. Roughly

-speaking, these two other processes--i.e., the crossed channels in
. relation to the dlrect one--prov1de the ordinary and exchange potential

.. for the direct process. Th1s vague notion of two - -body potentlal was

made more precise for two -body relativistic S matrix elements by

Chew and Frautschi. This, then, allows conS1derable 1n31ght by

plac1ng at our dlsposal all the ‘previous experience. with the potential
concept, In particular, Regge has introduced for nonrelativistic

potential scattering.the notion of simultaneous analyticity in.the complex

'~ and this notion can be taken

over to the relativistic S matrix, The implications of this notion, :then,

5-10

are many. and important, In this work we discuss the scattering

.amplitude for pion-nucleon scattering, w+N — w+N, and its analytic

continuation, describing w+w - N+N, from the point of view of analyti-

-city in the angular-momentum plane,



1L GENERALIZ-ED POTENTIAL

The class 6f potentials _f.o‘r;,whieh. the. aria’lyticity in the complex
angli_lar —moﬁlentﬁm J ‘p'la,he”-hvas beeﬁn.inve stigated is rdughly that of the-
: supefpos.itibh_of Yukawa‘-potentiéls, 4 .The existence. bf a twb—body
' potentia.l whiéh essentially belongs to this class,. makes it plausible |
that the J - pla.ne analyt1c1ty propert1es of the. rela.t1v1stlc S-matrix ele-
ments will be similar to those enjoyed by potent1a1 scattering matrix
el.ements as they both have Ma,ndelsta.m representatlon 4,11

We now introduce this concept of potential for two-body relativistic
S-matrix elements accordlng to Chew and ]E‘ra.utschl° 3 It is convenient
to do so through the Mandelstam d1agram and CutkOSky graphs 12

Mandelstam Diagram

We shall use the usual invariant varia.bles s,. u; a;.rid t; defined

_.s _ -(z?i‘FPZ“)Z?,-
S :'--(Pi+P4) ; (2.1
= —(P’+P ) , -
where Pl’ P3 are four mome.nfa of pions; and Pé"' P4.of nucleons, all
ingoing(Figo 1). They satisfy
s +u+_t=.2m2'-i-‘2 =2 : (2.2)

(we take h = ¢ = pion mass j+ =1, and hence, when all three invariant
variables are real, can be used as triangular coordinates; the height
of the equilatreal triangle formed by straight lines s =0, u=0, t=0
is equal to . These variables shall also be used to refer to the
channels for which thef have the significance of the energy squared,
in its center-of-mass system. Thus, s, u, and t channels refer
respectively to pion-nucleon scattering, crossed pion-nucleon scattering,
and two pions going-into a nucleon-antinucleon pair,

The Mandelstam diagram (Fig. 2) exhibits--with s, t, and u
(for.their real values) as the triangular coordinates--the phys’ical
- regions of .the three channels, together with the regions in which the

double spectral functions‘(dsf); are nonvanishing, T_he. boundary curves

&

e
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Fig, 1., The four-line diagram for the w-N problem,
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Fig. 2. The Mandelstam diagram for the n-N problem,



for the physical regions of the three channels are given by

t=0,
(2.3)

su. = (mz.-pzf)zo

The boundary curves for the regions in which dsf are nonvanishing are
given by Mandelstam. 13 |
Cutkosky Graphs

Cutkosky has . shown how, by use of generalized unitai'.ity, the

Mandelstam dsf's can be expressed as a. sum of contributions- of all
possible four- (or more-) vertex graphs--Cutkosky graphs--where the -
four external particle lines (i.e,, two nucleons and two pions) are
attached to four separate ver’cicesv;‘12 The contribution to a dsf

p(s19 SZ)’ where s sZ are two invariant varia.bles, of those Cutkosky

’
graphs which have]-‘only the lowest-mass two-particle system going in
the sl(or, SZ) channel while an arbitrary number of particles may be
exchanged in the sz_(or_ sl)"channel, vshall be called ''elastic invs1 (or
_ sz)” part of dsf p(sl, SZ,)° As an illustration, the Cutkosky graphs,
giving rise to '"'elastic in s' parts of the dsf A13i (s, t) and Bl; _(s, t)
are those four-vertex graphs which have only one nucleon and one pion
going in the s direction--i.e., s > (m-l-p)z-—while any number of
particles _(at least four pions due to conservation of G parity,. i.e.,
t> 16 pz_) are exchanged in the t channel, These are shown in Fig. 3,
(a) and (b). Their contribution is nonvanishing in the entire region
bounded by the curve CICI', while in the strip region=R1,v these are
the only Cutkosky graphs that contribute to dsf,

It will be noticed that only those Cutkosky graphs contribute in
.strip regions Rl, RZ, eo s R6 which lead to "'elastic" parfcs of the
respective dsf's, There are no Cutkosky graphs that contribute only
in the nonstrip regions and yet give rise to '""elastic' parts. All the
Cutkosky graphs that contribute to dsf's in strips R1 (Fig. 3a, b),
R2 (Fig. 3c), and R3 (Fig. 3d, e) are shown in Fig. 3. They respectively

give rise to "'elastic in s'' part of Al3i (s, t) and Blgb (s, t), '"elastic in

- =
t'' part of AI; (s, t) and Bl; (s, t), and "elastic in u' part of A12 (s, u)

and BlZ:.t (s,u). The dsf's in the strips R4, RS’ R6 can be obtained by
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Fig.. 3. The Cutkosky diagrams contributing to the dsf's
in the sfrip regioris Rl(a, b), RZ(C)’ and R%(d, e).



‘using the crossing symmetry from those of R 1’ R R3.; - The notation

1 R R3 'shall be taken

to be a, (s t) (t s), ,and a, (u, s) for AE (s, u, t) amplitude, and

for the parts of dsf contfibuting in.the strips R

Bl (s, t), (32 (t, s) and [33 (u,')for B* (s u, t) amplitude, respectively.
We will also refer to dsf a, (s t), ﬁl (s t) as strip R dsf, and similarly
for other strips,

Generalized Potential

We can-defined and give expressions for the generalized potential
for any channel, To be prec,ise, let us consider w-N scattering, i.e.,
in the s channel, According to Chew and Frautschi, 3 ‘1_‘;he potential ‘
V‘TTI\?(t, s) for direct scattering in s channel is given by.ﬁthe absorptive

part in-the t channel, of the scattering amplitude minus the contribution.

. to it from the "elastic in s' part of the dsf's, i.e., from the strip

Rl dsf's, i,e.,

(r » ai(S’ t)ds!
+ (2.4a)
P +P ﬁ (sl’ t) .
+Y°(—L— 85 (s 0 - %r—f—}_é—_s_gi]

The potential V:I}G(u, s) for exchange scattering in s channel is similarly
given by the absorptive part in the u channel of the scattering amplitude
‘minus the contribution to it from. the "elastic in s" part of the dsf's,

i,e,, from the strip R4;dsf's, i.e.,

ex (+) . L[ 5lshuds!
'VwN (u, s) = -[Au (s,u) - —TFf ]

s'-s

(2.4Db)

+ vy ( )[B

P1 + P3 B3 (s',u)ds'
- [E
. The potentials are: obviously spin-, i-spin~, and velocity-dependent,
Similarly for the other channels, »

The expressions for the> strip dsf's that we need for writing the
.expre551ons for the potential in.the three channels can be derived by
using _genera.hzed umtan_ty, The a; s (31 " a3 , and ﬁ3 can be obtained

- by using generalized unitarity in plon—nucleon‘scattenng channels,



‘keeping only the one-nucleon~one-pion intermediate state, and were
.calculated by S, I_\/Ia.ndels.ta.rn.,'9 The a;, [33#,, on the other hand, are
obtained by applying generalized unitarity-in the w+w—~ N +N channel

- with the two-pion.intermediate state. This was done by this author

and B. M. Udgaonkar, 14 The guantities are given by the following

expressions,
+
a 1( )( s, t

X [ [ dt dt”'KS(s_; t, t', ) fi(s,;'tgt', t") G (.i)(s,;,,ﬂ_, t'")

i; tt
+ /du' du" K (s t,= -s-u', T-s-u")

A (%) '
- - - -l . ' "
vxﬂ(s t, Z s u,E s u)Gi-;, .(s,u,_.uv)], (2.5)

.m

1 8t kW

™M

d’j::’,-(us s) = [/dt' du” Ku_(S,Z-,s -u, t'Z -s-u")

[
1

X Ifi(s; > -s —~u,  t', T -s-u' {Gl(:thu) (s; t,. ﬁ")'+ H.C. }]; (2.6)

~where
‘?‘{s(S;Xl’x x3) = 1
' 2
.2 2 2 2
+ [xl +>§Z- tx, - 2(xlx2 X X, FRX l) v,(x_,lx2x3)/k ] .é)l(xl —x1+),
(2.7)
and
K (s xl, x3) = .
2 2 3. 2 2
- [xl +x, %, - 2(x x2‘+x1x3+x3x1 (xlx2x3) k] 6(xl_-xl),
. | (2.8)
with 1 1
2)12 s 2
X), = {[x (1l +x /4k )] :I:[X (t+x /4k )] } . » (2.9)

~and

W= _r\/?=~/k2+'m'2 PN I

~and Gi' )\p(s; X, y)' are bilinear.c;ombihatiohs of absorptive parts defined

o



by 3 ' '
1)\ (s;x,v) =Ax;‘(+)(s x) A ( )(s y)+2A ( )(s x)A( )(s v),

GZ (+ )(sx y) —A (+)( ,x)B( )(s y)+2A - )(s x)B( )(s y)

= ‘G3;i$)(8;y, x),

.- Gzi;)\(:)(S;x’ Y) = B;F(+)(sv X) B:(S, Y) + ZBi( ')( s, X)Bi‘)( s, Y)s
Gy e y) = a5 e 0 A (s, )+ A7 s, 0 80 s, )
+ Ai( -)(S, x) A:‘-)( S, Y)s

( )(s X, y) = (—>(s,x) B(+)(s,y) + A)ik(‘i-)(s,x)vBH(_)(s,y)

+ A:“‘.’(s,x)Bi'Ns,y) = 6, i,

G4 )\( )(s X,y) = (~)(s,x)B:L+)_(s,y') = Bi(f)(s,x)B:L-)(s,y)

+ B;(f)(s,x)B<H(-)(s,y); ‘ (2.10)

~ and the ﬂ,i"s are kinematical factors given by

(t'4+t7-t) (s+1-m?)
4[(m2-1)2-—su]

£ (s5t, 't = 1 +

(s-mZ-1)(t'-t"+t)

i 2‘(s;t, th, ") = 4 3_(sv;t, ', th) =

4mt
+ m_(t-t'-t")(s+l-m2) )
4[(m2-1)2--su]
and : .
o (st b, ) = Lot ")(S -m )(s“ -m ) | (2.11)

4[(m -1) -su]
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The corresponding expressions for the strip functions .. :
ﬁi(:i',)_('ss"t), and pgi )(u, s)- are obtained fro:m Eqé._ (2.5) and (2.6) by
replacing the kinematical factors Iib therein by m"i‘, vde‘:_fined-vby

_ (s#mPol)tetioe)
‘4rn_,[( m? ml»-‘)z -su]

ml(s;t, th, ")

ottt (tet!- t”)(s+m -1)
2t 4f(m®e)Pesu]

m,(s5t, 41, £) = my(sit, t9,t1) =

mz.,=l (s -m )(s+m =l)(t t"mt”)

m (s;t, t7, 1) = 52 (2.12)
4 2m 4m [(m -==1) -suj )
The éxpressions for u,'gi )-(‘-t, s}, ﬁz )(t, s) are g'iy.e,nn by
ot e, 5) = /]ds"ds“K(ts sty s (A (*)(t s')
™Pq W
ﬁna(t;s, s', s”)"Bj(i,)‘(t, s} /Q/(ﬂ_:)(it, 's":") C (2.13)
~and | : : : o
Bé(‘i )V(t, s) = —1—2—- /] ds“ds”l_{t(t;s_, s, s:)nﬁf(t;s, 5!, ") X
uye| Wt ; ) o :
(£)
B_ (t,s") /Q-(ft,)(t,’s,'):, : . _ . (2.14)
where

t= W2 =4 (F+m?) = 4(q2v+1),* |

a.nd where the k1nemat1ca1 factors n s . kernel function Kt’ and

69

A (t, s) are quantltles defined in- Append1x 1, where the derivation

of these expressions is given,

In the first-order strip approximation of Chew and Frautschi, 15

the different absorptive parts -occurririg in the eéxpressions for potentials

can be expressed in terms of the str1p R e, R6 dsf and single
spectral functions, wh1ch m1ght ‘be present Higher-order strip
approximation would .co_nslst in including more and more inner strips
p.arallél to 5y and s, axes in dsf p .(Sl’ SZ)" However, for the purpose
of this work, we do not concern ourselves with any particular approxi-
mation to calculate the potential, as all we really use is the existence

of the notion.of potential for relativistic.S-matrix elements,

v
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III, REGGE POLES IN POTENTIAL SCATTERING

'We would now like to discuss the analyticity in the J plane for
potential scattering of two spin-zero particles. This would serve as
a model for the more complicated case of 7N scattering and m+m>N+N
which we wish to consider in the next two sections,

The usual partial -wave decomposition.of the scattering amplitude

is given by
| A(E, z) = z (27+1) a (k) P(z), | (3.1)
J=0,1,2,°°"

" where a.J(E) is the Jth partial-wave amplitude. The A(E, z) is known

..to be analytic inside the Lehman.ellipse_- with focii at' z'= £1 and semi-

major axis 1 + pz‘/ZE for a Sﬁperposition.of Yukawa potentials with

- maximum range p'l,
In order to give an expression.for A(E, z) that can be used out-

side the Lehman ellipse, Regg'e4 used an artifice due to Sommerfeld

and Watson, and transformed the sum over integer J values into a

_contour. integral along the path C in the complex J plane (Fig, 4):
f a3, k)P (-2)dd « (27+1)

C cosw(J+%—)

i

A(E,2) = 7 . (3.2)

This transform--Watson transform- -of .fhe- sum in (3.1) assumes
a continuation, which we denote by a (J, k), of the physical partial-wave
amplitudes aJ(k),_ which are defined only for J =0, 1,2,°°°,. into the
complex plane, This continuation is obtained from the Schrodinger
equation by solving-it for complex J. The contour C is such that the
only singuia.r.ities of the integrand énclosed by C are poles of integrand
a.i'_ising: from zeroes of the cosine function in the denominator., A little
later we give a prescription for analytic continuation.in J, which does
not make any reference to the Schrodinger equation,

It was shown by Regge that a{J, k) is a meromorphic function
of J in the right half plane (Re J> - %). The poles occur only in the
- first quadrant for real E in the right half plane. The contour C in
(3.1) can be distorted to C' along Re J = - % and an infinite semicircle
in the right half plane (Fig. 5) provided we include the contribution of

poles enclosed--Regge poles.
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Imd . ,
| c
f Kl 1 1 1 I . -l 1 b
\ T v ‘ T T ' 1
o + 2 3 4 5 6 7 8
Re J
: . A : 0 - MU-27360
Fig, 4; The contour C fdi"the.S'.omrnellf‘eld;'Watsén
: " transform (SWT) for the potential scattering.
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|# ImJ
C .

MU-27361

Fig., 5. The displaced contour C' for SWT for potential
scattering,
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We now write

j’ ‘(ZJ.{.]T)a(J'pk).PJ(-Z)dJ . z ﬁi(k)Pai(E)('z)
i

1
A(E; z) = 'i_ sinnai(E)

G sinmJ
Regge poles

(3.3)

sin mJ 1 sin,nai(E)

1 ..
| :l"zj,m (23+1)al3, k)P (-2)dJ T BRIP 5y -2)
o Re a,> - =
-Z_loo 1 2

| (3.4)
The integral along the semicircle is seen to vanish as a(J, k) goes
to zero sufficiently fast on the semicircle, Later work"169 17,18 has
shown,that. the amplitude is me.romorphic in the entire J plane, except
for an essential singularity at infinity,
We now come to the question of the analytic continuation in J

in.the Mandelstam framework, The total amplitude satisfies the

Mandelstam representation,

1 V(thdt' |, 1 / f (B, t)dE’, dt’
ALE. 0 = 2 [2' vt T2 2 ERE ey - (35)
B ™ 70
4 D (t’, E)dt'
_ 1 f t (3.6)
™ 2 ti-t ? °
! i «

where t = -Zk;(l—z) and Dt is the t- absorptive part of the amplitude,
Projecting out the Jth (J = 0, 1, 2, - - -) partial wave, -we get

+1
a (k) = %f A(E, 2)P {z)dz (3.7)
-1
- 12 f dt' D(t', E) QJ(1‘+.t'/2k2), (3.8)
21k MZ .

We now define; for complex J, the analytic continuation a(J, k) of

a.J(k) by .

a(r,x) = — [ dt' D', E)Q (1 + t'/2k%).  (3.9)
2
(1)
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It.can be shown that a(J, k) as defined in terms of the QJ projection
.are
(a) in agreement withv aJ(k) for physical J values (J = 0', 1,2,°¢¢),
i.e., for a countable infinite set of physical J values; '
(b) regular analytic to the right of some line Re J = Jm, where Jm
depends on the asymptotic behavior in the. t' of D (t' E), and is
thus the real part of the Regge pole on the farthest rlght in the
J plane;
(c) vanishing sufficiently rapidly with J, owing to the QJ factor, so
as to allow the Watson. transform with no contribution from the
infinite semicircle in the right half plane;
(d) unitary; that is Im a(J, E) = |a(J, E) |° (Real J, E). (3.10)
Now it has been shown.that the analytic continuation a(J, E)in
J.of :"aJ(E), away from'positive integers is unique if the first three
conditions, satisfied by our a(JyE), in terms of QJ. projection, are
satisfied, 16 Thus the QJ projection is the meaningful Regge continuation
in terms of the Mandelstam framework,
J Parity
The above analysis could be.extended to include exchange potentials
also, This leads to the notion of J parity, which we now proceed to

explain, We have

p(E' t)dE, dt!

' d
1 Vo(th)at! 1 (u")du
A(E’ t,u) = '.;r'f tT-t + F_[ u' ,[/' (ET-E)t'-t)

(3.11)
(E' u')dE 'du’ |
HTE'aETu —a)
D (t', E)dt’ D (u', E)du'
(L [RAERA R .12
™ t'-t TT u’-=-u

: wheré u. = -2k2(1+z), (3.13)
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Projecting out the _.Ith pa.r.tia.l wave, we get, after some

simplifications,

aJ(E)=-——[dx'D(x'E)+()D('E)]Q(l+ (3.14)
2k

—).
2k?
If we use this projection to define the continuation a(J, E), we realize
that it is no longer possible to make a Watson Transform because of
the presence of the factor (- ) , l.e., e+1TTJ, hlch.dlverges badly as
J = o e ¢'(— > > - ——) Therefore, what we do is to define two new.

amplltudes a (J E) and aO(J E), by the expressions

e 1 ‘ x! '
a®(J,E) = f(D D ) O(1+ X )dx!, (3.15)
ZTTkZ t Tu J Zkz ,

aO(J,E): 1 f(Dt—Du) QJ(1+ 'leh)dx', (3.16)

. These two.analytic funtions of J satisfy the conditions (b).and

(c) stated above, and the condition (a) reads, for them,. as

(a") a%(J,E) = a (E), for J =0,2,4,°°,

297, E) = al(E), for J =1,3,5,-". (3.17)

Thus we now have, instead of one, two continuations ae(J', E),
a°(J, E). The superscript. e or o stands for the label»(even_icﬁ“ odd)
.of the quantum number distinguishing the two continuations, and shall
be designated as J parity. The even J-parity continuation is meaningful
only for even J values, the odd one only for odd J values, The

Sommerfeld-Watson artifice now takes the form

A(E, z) = %y 2%(3,K)[T + 51 [Py(2) + Py(-2)] d

cos w(J +Z)

. j’ 2%(J, k)[J+ 1[Py(-2)-P(z)] dJ
+ =

C cos 1r(J+-é—)

(3.18)
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We can again.distort the contour C and write an expre ssibn ;similar
to (3.4), where the sum w111 now run over. the poles of both a- (J E)
and a°(J, E) ' '

It is to be noted that ‘unitafity does not mix the even and the odd
J-—parit'); p.arts of the amplitude- Alk, z).° In general, thus,. .theA'Regge
poles for the even and odd J-parity parts of the amplitxide- are different,
On the other hand, if unitarity couple'd these two different J -parity parts
of the. amplitudes, then they would share the same 31ngular1t1es.

Physical Slgmflcance of the Regge Poles

We note that the large -momentum-~transfer behavior of the
amphtude is given: by the Regge pole farthest to the rlght in.the J
- plane. From Eq, (3.4) we have
| B,(E)P

(-1- ——~
o(E) 2% ~ta.(E)

sin ma(E) (3.19)

A(E, t)~

The intéresting point about this for the relativistic S matrix is that
the large unphysical momentum transfer in one channel is also the
physical large energy for crossed channels, Thus the high-energy
behavioer in any. one chann_el is related to the Regge poles in the
crossed channels. |

As the energy (real) varies the positions of Regge poles trace
out a trajectory in the J plane., The system has bound states or
resonances whenever . the real part of anys Reggé pole (i) assumes a
physical J value, and (ii) is an increasing function of the energy while
passing through this J value. Thus the high-energy asymptotic behavior
.in any one channel 1s related to the bound states and resonances in

‘the crossed channels.
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" IV, REGGE POLES IN THE PION-NUCLEON SCATTERING CHANNEL

In this .s‘ecti.or‘l, we discussjdanalyticlity’in the J 'olﬁanef"or the relati-
vistic plon nucleon scatterlng cha.nnel Even though parlty is conserved
the dlscussmn is carr1ed out for the general parlty nonconservmg case,"
The reason for do1ng th1s is that a certain confusmn prevalled as to

the questlon of J parity and ord1nary parlty (i. e, 5 space parlty) The

source of. the confusion is the c1rcumstance that in the scatterlng-of

two sp1n zero particles (Whlch we dlscussed in the precedlng section),
the separatlon of the amphtude in even and odd J-parlty parts coincides

w1th the separatlon into evan and odd. ordlnary parlty parts Also in

‘this case angular momentum conservatlon 1mp11es parlty conservation,

Thus there is no way to resolve the. confusmn, unless one treats.the

scattering of »two:vpartl_cles, one of which at least has nonzero spin,

| 'This is what we proceed to do now for the spin-zero-spin-half situation.,

:There are now four independent inva.r_i-ant,-ampl'itpdes, instead of

the usual two amplitudes A and B, The T matrix can be expressed as

T 2 A+ iy-QB + 1y5 v QC - Dy5, T (4,.1)
where A,B,C, D‘have only Mandelstam.singularities. The differential

.cross section ,dG/dQ can be written as

. g% = I <f1nal |f 1 1n1t1a1> 1 - - (4.2)
: splns : _ , . .

whére =
f = fl.‘+. le 0°'k£0° ki + f30»,,(kf+ k_i) + £400_(kf'-— k,i)’ - (4.3)

, kf, ki.'= unit vectors in.thé direction of final and initidl pion.three-

momentum, and

(E + m) ‘
fl 8 W [A +(W - m)B]D
_E -m
kC
B35
£ .= KD {4.4)

4 8TW°
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We might note that the time-reversal.invariance implies that the
D and consequently f4 should be zero, We shall not need to assume
the time-reversal invariance, however,

The partial -wave decomposition of the four f's is given by
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(4.5)

= the T -matrix element from the state IJ L> to | J, L>

_ where a L,'L

| J L> ='the ‘state w1th total and orbital angular momentum equal

~to J and L respectively.

The summatlon-‘over J runs over J = %, %—, g—, se=, The argument of
Lependre polynomials is ' o
: ' 2 2
cosf =1 +-—£—2—‘= 1+ Zm +~'Zg ~s- 9, (4.6)
' -2k - 2kT : '

- The projection formulas for aJL 1, are given by

; ] |
| - E (flPJ+1/2 +1,Py_ 1/z)dz’
. J‘I‘Z,‘ J -y .
o 1 ,
a’ =1 (£, P +£,P )dz
1 12 J- 1/2 J+1/2707
J-39-F -1
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» . + :
a0 el s fl £5(Py 1/2 J+1/2)dz
A rs L ) 3 Il
J-38+5  T+5,7-5 U
p g +1 .
21 R U T BV S D7 St R PSSR
J-5, J+5,  T+50-5 ), 7

The details of the der,iva,ti.on of these formulas can be found in

Appendix II,
It is clear from (4 4), and from the fact that A, B, C, D have only

Mandelstam singularities, that the f's satisfy fixed energy-dispersion

"relations of the forms

- 7 D; (t', s)dt' . iy ', s)du'
: T /4 T (m+1)*
— 2 .2
7 1 D (x'+(rn—-l)——, s)dx'

_ 1 D; (=, s)dx 1 [ Tiu 5
T 2 t = =+ k2(1+ . (4.9)

T Y4 x'+2k“(l-cos@) T u 2 cos 6) ,
(m+1) (m -1)2'/5

Using(4.7) and the above dispersion relations (4.9), we can carry

out the projections for physical L, J, and we get

R i ' g4l S22
J = __1 ' J+ = (m _1)
a - [ {D (XW’ S)+(-) 2 D (XV_I_ ——_\}
g2 Logal 4l J[ 1,t D) u =
2 2 v .,
X Jif i Z,tx”'s)_ -) 5, gl s
2k
2’ 1 1 * a’ 1 1= 1 > {j[D3 ¢ (x's)
J-—Z,J+Z,_ J+E’J—Z, 2 vk 2t
2.2
J-1 _ .
+(-) /ZD (xt+ (2 sl) ,5)] [QJ 1/2(1 +_x2_)]
, 2k
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,. . . 2 V‘ .YZ o ;»,,,» . ) '
if[ (x"s) +(- )JH/Z ,ul® PR S-l) » S)]QJ+1/2(1:+.'2;§2_)}‘

3, 3
4, . 4,u - T C(4.11)
One sees that these expressions have all the nice prope'rties we

demanded of them in Section 3 for the unique analytic continuation

J- 1/2

" into .the complex J plane, but for the factors (-) . Therefore, to

define proper continuations, we split them into the even and odd

J-parity parts, as before; i.e., we define

J e 1 - ’
[D,,+ D, .IQ +f(D +D, )Q.: }
“re1/2,01/2 4nk2{ 167 71, uimTx1/2 7)ot T2, u I RL/2
(4.12)
J:l:l/Z J:l:l/Z 4k 1t 19521727 [ P2, ¢+ Dy, 4195112
(4.13)

aJ,e +(i)Je

J-1/2,3+1/2  J+1/2,3- 1/2 znk {f[ 3'5 (i \ Qr-1/2

7 (i)ﬁ?&t)' D(3,uﬂ Q;r+1/z} ’ o (414)
4,t 4,u :
J, o . J, 0 _ 1 . :
a +(£)a el L CR SRS VP
J-1/2, J+1/Z J+1/2,3-1/2 T (4,t) (4,u>
< (4.15)

HE) Dy D3 W95/
_ (4, t 4,u
We have replaced, in writing Eqs. (4.12) through (4.15), the
factors (- 1/2 n (4.10) and (4.11) by +1 for even J-parity and by

(-1) for od_d J-parilty continuations. Thus even J-pari‘ty continuations

are physical'ly meaﬁingful for J = %—, %’ %, *°*, and odd J-parity
- ones for J = % , %, ©e+, The eight amplitudes defined by Eqs. (4.12)

through (4.15) are such that a.naly.t.ic continuation to the complex J
plane is unique and is obtained by regarding J complex. We see that -

the notion.of the J parity comes out naturally even in the non-parity-
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conserving case, .and therefore has nothing whatever to do with the
parity conservation or symmetry properties, such as are present for
mw scattering. Rather, the notion of J pé.ri.ty‘is a direct consequence
of the presence of exchange forces together with direct forces.

‘We can now write A >_ o

£ =€)y do) I - O (4.16)
where | | o

¢85 ©

_ g €0 o-k 0.k, +£,%%0: (ftif+lzii)+ f4e"o°°(ﬁ' -ﬁ‘i),

1 2 f- 173 f
(4.17)
where f -and; f are respectively the parts of partial-wave sums over
’ 37 '

_ 5 ... 2 L
J_f > a.ndJ—2 > , l.e.,

e Z Je | Z :
T=1/2,3/2, - &5-1/2,3- 1/2 J+l/2 J=1/2,5/2,°°"-
‘Je ' ' |
Xaghi/a,341/2 F51/2 | (4.18)

and similar expressions for the other seven.parts, fl'o, fze,304 .

Equation (4.18) can alternatively be written as a sum over all physical

J values,

PR Z J e <P'J+]J2(Cos 6+ P J+1/Z( cos 6)>
J= 1/2 3/2,5/2 ;- 1/2,3-1/2 2

1

{(~-cos 0)
- Ty 1/2 ).‘(4,19)

e ( 1/2(°°s 0) -

J=1/2,3/2,°° J+1/2,J+1/2

We can convert the sum over physical J values in.this and similar
expressions into an integral in. the same way as in Section 3 over the

-.Contour C1 (Fig. 6), and get

v ’ v P' (.z)+P"‘ (-2)
, - , J+1/2 Y77 T+1/2
Jf a7 e (W)< , , )

2

f.= L

1
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Fig. 6. The contour C; for SWT for n-N scAatEei‘ing‘.
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P! (z)- P! (-2)
+‘zi / cc?sjn‘J Sl e (W) J-1/2 . J-1/2
pt _ J+1/2,3+1/2
1
i J 0
+—= / K P’ (z)- P! (-2)
4 c °%T J J—l_/Z,J—l/Z J-1/2 J+1/2
1 . '
+at 0 P (z)+ P (2P, (4.20)
J+1/z,’J+.1/2’ J-1/2, J-1/2
We have drawn the.contour C so that it includes all the physical

I
J values, To be accurate, the contour Cl" should extend only up to the

smallest J value, say Jo, which is within the natural boundary of the
eight function elements defined by Eqgs. (4.12) through (4.15) for Re J =a
constant, say Jm >JO., The contribution of the partial waves Re Jo> J
should be.explicitly added to the integrals. *We shall later show that all
the physical partial waves, with the possible exception of J = 1/2 waves,
are completely determined in terms of the same double -spectal functions.
One could now displace the contour Cl’ just as for spin-zero
scattering, provided one included the contribution of the singularities—
in particular, Regge poles—that one encounters in shifting in contour C,
" The J-plane singularitites of the pion-nucleon scattering amplitudes
would be thus the J- pla.ne 51ngular1t1es of the four even J-parity ampli-

tudes - 29 and of the four odd J -parity

J,
J:I:l/Z. J£1/2° aJ:!:l/Z J+1/

amplitudes a.J I
P J+1/2,3x1/2° a’J:l:l/Z J¥1/2 -

Now in this case, with parity nonconservation, all the four ampli-
~tudes of the same J parity are coupled to one another by unitarity, and
as a result share the same singularities, Thus the J-plane singularities
are labeled only by the quantum numbers,

Baryon number = 1,

J parity = even.or odd,
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In particular, Regge trajectories—the trajectory of the real part
- of a Regge pole with energy taken real-are now. divided into two.families,
one with even and the other with odd T parity.

‘For the real physical case of conserved parity, we have -

J e O.r
J:l:l/Z Jii/2
“T 0 = 0. i ' (4.21)

J:I:l/Z J¥1/2

Further, unitarity no longer couples the even and odd space par1ty parts.,

: Tha.t is, we now have

- £ 4+ £0
e, O e, 0 e, 0 . ;
IR NI N I I
where
f? (P = +1) ~ ;.' S P! (z) + P! (-2}
g J J-1/2,3-1/2\ J+1/2 J+1/2
£ (b _1)=% aJe P' (z) - P (+2),
L - T J+1/2,3+1/2\ J-1/2 J-1/2
etc. (P = space parity) - (4.22)
e, 0 '

Umtarlty never mixes the four amplitudes f(P + 1), for example,

€
fl,(P=+l) is coupled only to fi, P - +1(1 =1,2,3,4). This means that
the J-plane singularities of the w-N scattering amplitude are now the
J-plane singularities of the four amplitudes aJ; €0 . Thus the

-singularities ~Regge tra_]ectorles in. partlcular— cér?'i Bjétll!beled by

_vB.a.ryon. number = 1,
J. parity = even or odd,
) Parity = +1. _ ' »
So far we have not considered isoépine The inclusion of _isospirix gives
one more quantum number; o
Total isospin =1 = l/Z 3/2.
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In general

'we expect to see roughly one ‘trajéctory from each family=the top"one,

These eight families of Regge trajectoriés,

¢an beé specified by

assigning an ordered triplet {isospin, spaece parity, J'parity) to each

family.

characterized by these triplets, are given by

(1/2 or 3/2,
(1/2 or 3/2.,-
"i(1/2 or3/2,

(1/2 or 3/2,

1

-1, +1): S>,
3

-1, -1): D3,

+1,-1): - P3,
+1, +1): P

g 2

%,-H,with1=
G%, vee, withI =
F% ., with I =
Fg- ., with I

The elements of the set of pion-nucleon scattering states,

1/2 or 3/2,
1/2 or 3/2,

'1/2 or 3/2; -

=1/2 or 3/2.

Now, experimentally, a number of particle and resonance states

have been.observed having baryon number one.

one has to start with nucleon N,

Nl/ai

=1/2, P = +1,

For.isospin one -half,

mass = 939 MeV.

Then .there are two resonances observed in pion-nucleon scattering:

If we regard. thes’e’pa‘rticlés and resonances as Regge poles,

sk

mass =

mass =-

‘can be 1nterpreted a.s follows:

(a.) Nand N /
family (1/2, +1,

+1).

=3/2,P = -1 (i.e.,

1510 MeV;

1680 MeV;

D?’Z w-N state),

=5/2,P = +1 (i.e., F%ﬁ-N state),

they

* ‘may be regarded as the first two meimbers-of the Regge

It must be observed that without J parity, it would

3 1

not have been possible to explain the absence of a P>, I = > m-N reso-

‘nance 1n the Regge picture.-

We further have to have both these objects,

N, Nl/Z lying on the same Regge trajectory, since otherwise one will

expect another pa.rtlcle with: nucleon quantum numbers and mass depending

on where Regge traJectory N

.crosses J. =

1/2

" Then from observed
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mass, we can get an idea of average_slope of the Regge trajectory in
this region of energy. This turns out to be do._/ds”-zv(‘-l BéV)’__zq
(b) Nl/? has to be re_garded‘_as thgﬂ‘fi'rst.me-mber.qf .the”f_a:mily ('1__/2, -1, -1).
Whether one observes a second member of this family depends on
whether this Regge trajectory eve.r~ crosses J = 7/2. . On the basis of
-the above estimate of the sl.ope of Regge trajectories, we might expect
this to happen at around 4.5 (BeV)Z, if one wefe allowed such an extra-
polation., More ii_kely, however, is that this is the;»on-ly observable
member of this ,fandﬂy, o

It would further be noticed that no members of the families
(1/2, -1,+1) and (1_/2, +1, -1) have been experimentally observed,
Obviously, no Regge trajectory belonging to thesé families reaches the
lowest physical J s}ai.ue 'availéble to the family, i.e., J = 1/2,‘ 3/2
respectivelyf_ The a?:;enée'of the observable members in these families
can be expressed alternatively: Given isospin (i,e., one-half) and
sp’ac’:e‘ parity, the Regge trajectory corresponding to only one of the two
possible J-parity values shows up. This could be understood probably
as folloWs: Looking-at Formulas (4.12) through (4.15), one sees that the
direct force has the same, while the exchange force has the opposite
sign in the two states with opposite J parity, Now'if the direct and
' exchange forces have roughly the same magnitude; the total forces are
strbng in only one of the two J-parity stdtes and weak in the other.

Now COming't"o‘ isospin 3/2, first there is thé well-known 3, 3
resonance .in the n-N scattering, '

N3/2: J=3/2, P=+1(i.e., P%w-N_ state), mass = 1238 MeV.

One has also observed a bump at mass = 1900 MeV, whose quantum num-
bers are not known, Now u.sing.r the above estimate of slope = (1 BeV)_Z,
one expects in just this neighborhood of energy, the second member of
the Regge family (3_/2,' +1, -1) to which N3/\4:<2 belongs, If this bump is
really the second member of this family, then one would predict that it
would occur in the F% state. Besides, there is also a definite shoulder
on.the low-energy side of this 1900-MeV bump, which might be the:

first member of the family (3/2, -1, -1), i.e., D% , T = % ,. as suggested

by Moyer and Carruthers and Bethe.
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We show the tentative Regge trajectories, which are physically
mainfest in Fig, 7.

The Range of the Exchange Potential

One has so far never been sure what quantity should properly be
_called the range of the exchange potential in case of the scattering of

two unequal-mass particles, such as w-N scattering. The,abové dis-
cussion-in addition to the question of the J parity —clarifies this

situation. : :

It will be seen.from Expressions (4.10) and (4.11) that the absorptive
-parts in the t-and u channels having the same: value. of the integration

.variable x' are superimposed on each other, Now, .

x' =t for t-absorptive part,

_and

_(m? - 1)?

S for u-absorptive part;

x'=u

Hence the range of the exchange force arising from the exchange of

-1/2
(u- ) (1rnz -vl)z )

mass Nu is

S-

in the same sense as (1;)_1-/2 is the range of the dirécti force af,is:ing
from an-exchange of mass Nt . The range of the excha_,ngue force is thus-
unlike the direct force—-energy-dependent, and becomes sma.llé‘vr as
energy becomes larger, In particular, the exchang»ebof a singlé ‘nucleon
gives rise at low energies to a force of range = (21\/1)“1/'2 and approaches

‘the naively expected M-’1 only at very high energy,
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Fig., 7. The Regge trajectories in1 = 1/2, 3/2 for n-N
scattering, . ; L L ,
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V. REGGE POLES IN THE nw+ 1 «— N + N CHANNEL

We now come to a discussion of the J-plane analyticity in the

m+m > N + N channel. The partial-wave decomposition in this channel
is given byzo |

. m cos 6 | .
A* - _ 8ni (E)l/2 2. (J+1/2) {———3 S(i_)J - P'_(cos 6,)
p> 4 I [3(3+1)] /2 T ’
1/2
—-t—é— PJ(cos 63)5::3_} , (5.1)
£ 8m pl/2 (J+1/2) '
BT = - (By Z S P'_(cos 8.,), (5.2)
Pa 4 7 gt/ 7 3

where

t= 4(q2 +1) = 4(p2 + mZ),

cos 63_ =(s + vpz + qz_)/qu,
S: 7= S-matrix e_le'm.en,ts for m-m1 - N+N, The subscript + and -

refer to nucleon and antinucleon having the same or opposite
helicity. The super,éc.ripts + and - refer respectively to
, total i spin and 0 or l.,.
The éurn over J runs over J = O;.Zv, 4,000 for A+, B+, i.e,, T = 0;
and over J =1,3,5, ¢2° for A~,B™, i.e.,, T =1.
In what follows, we do not consider the analytic continuation of

SiJ into complex J plane, but rather

+
+J‘9 . (593)

+ J+1/2 +
(§)+J - [_H_LT)]]-Z S_J‘ 9 (5,4)

as these are the quantities we always encounter. This gets rid of the

fixed b_rénch points in J =0, -1, We have, for physical J values;

+
(8) ;=8

+ ! q 1/2 2 % mpq + +
(§)+J‘— I (pt) (-p At —m((J*‘l) Brgtd BJ_I))s (5.5)
E AT TEL WIS (5.6)
=.J T 8w 'p 2 J-1 " TF+1” -
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Us_ingjthese' expressions to project out these partial:waves, we

obtain, after certain simplifications, °

+ Jq,-1 !
(S;y = [1+ (-? ] ('-."Z,);(—a-— 2 {A (s', t)

8w m+l)
SRCILS . tq)m gE (g, t)} Q (2P X4 |,  (5.7)
s J 2pgq
2p : v
. 1/20 7 ,
(S)* = [1+ _(-)J] —— (3 [ ds' B _(s', t)
T (m+1)
0 .~(i'_'|'_P%ﬂi) Q' (S_H_P_ﬁ) . (5.8)
J-1'"2pq ' I+l Z2pq (5.8).

We have also used cr0551ng symmetry (Bose stat1st1cs for the plons) in
writing these expressions. Looking at the expressmns (5.7) and (5.8),

_. we aga1n see that apart from the factors [1 + (- ) ], the quantities

;(§)+ and (S) T define the su1tab1e unique analytic contlnuatlons, in the
_sense of Section 3, In order to get rid of these factors we —as in.the
last two sections ~define the new amplitudes for even and o.dd.J parity.
The even-J-parity ones we obtain by replacing (-)J by +1; the odd-
parity ones by replacing {( - ) by(-1) in.Eqgs. (5.7) and (5.8). We thus get

975 ©%, ©2,©2 4o, | (5.9)

("S)ig' =_(§)+§: = (g);f, = ('§)'§. = 0, : © o (5.10)
Thus only the even-J-parity continuations are nonva.msh1ng for isospin
zero, and only odd- Jmparlty ones for 1sosp1n one, Th1s is a particular
-instance in which a symmetry property--in this case crossing_'symmetry—-
tells us that only one J.vpa.rvity‘ is physical,

The partial -wave sums in (5,.1) and (5.2) can_again be,expressed as
contour integré.ls in the J plane over the contour C (same as in Fig. 4).

The ‘Contour 'C strictly: speakihg as in.the-last sectien, has to
.1nclude only those integer J values which can be reached from J continua -

tion from the fliinction elements defined above by (5.7) and (5.8). We
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show later that with the possible exception of J = 0, 1, all other physical
partial waves-are determined by .the same double -spectral functions, The
main interest in expressing-the partial ~wave sum as a contour integral
_is, of course, in dlsplac1ng the contour so as to be parallel to the imagi- -
nary J axis., This can be done provided the contribution of the smgularltles
in the J plane, which we cross in doing-so, is included. Also, we should
be careful not to6 :‘_crvos_sthe natural bou'n‘dary'_'(.if any) of the analytic con-
tinuation, In particula;r we.have to include the contribution of the Regge
poles in these channels, v |

The J -plane 51ngu1ar1t1es of m+m > N + N amphtudes are the singu-
for isospin one, . Since

‘larities of (§)+ for isospin zero and of (§)

both (_S_)i; andi(g)tj, are connected by unita::iiy to a number of channels
that are the same for both (for example, pion-pion scattering amplitude
for 1sosp1n zero) they share the same Regge poles w1th pion- plon
amp(hlt)ude Slmllarly the (S) and (S) J both have the same Regge poles
(J)

asa ; the 1sosp1n one plon-plon scatter1ng amphtude for angular
momentum J. _ _ »

» Thus there would. be two families of Regg‘e.Pol‘e's’wh_ich can be
\labeled by quanturn numbers o

Baryon numbers =0,

G parity ' S= 1, -
Isospiri» =1 =0,1,
J parity = even for isospin 0 and odd.for isospin 1,

even for isospin 0 and odd for isospin 1,

space parity
and thus differ in having different isospin, together with uniquely asso-
-c1ated J parlty and space parity. |
Experlmentally the only observed resona.nce for B O, G = 1,
.I‘ llsthep meson, _ S
| p: J =1, P = -'1, mass ® 7507MeV., _
For isospin zero, 1 =0, B =0, G.= 1, only the interaotion inJ =0,
| I=0 nrs wave observed by Abashlan et al, comes anywhere near being
a resohance° Th1s occurs very near the e1ast1c threshold, i.e., mass
=, 280 MeV If we regard these as. man1festat1ons of the Regge poles,

‘then these would be first members of thev, two Regge tra;ector1es, One
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might observe the second member of the p -Regge trajectory with I=1,
J =3 at about 1600 MeV, if the trajectory had not already turned down,
For ABC trajectory, however, one does not expect to see the second
member, as the force leading to ABC phenomena does not seem to be
strong enough. This trajectory, it is believed, just reaches to ReJ =0
before turning down, ,

As we. shall see later, the constancy of high-energy cross sections
implies in. the Regge picture also the existence of another trajectory with
I = 0, which passes through J =1 at zero mass. There is some incon-
clusive experimental evidence for the first physical manifestation
(i.e., I =0, J = 2 wr resonance) of this trajectory, to.be called the
Pomeranchuk. trajectory. _

We represent the tentative Regge trajectories in this channel in

Fig. 8.
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Fig. 8. The Regge trajectories inI = 0, 1 for the
w+tw— N+ N channel,
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VI. HIGH-ENERGY PION-PROTON SCATTERING
IN THE FORWARD AND BACKWARD CONES

The present thinking about strong interactions, from the point of

. view of analyticity in angular momenta, is inclined to regard all the
-baryons and mesons, as well as resonances, as Regge poles, 7 One
believes. that the high-energy behavior in any one channel is dominated

- by the Regge poles in.the crossed channels, Further, there does not

. seem to be any hesitation to apply this notion to either nucleon or pion,
which customarily have been treéedted as elementary—i.e., on a different
footing from, say, the 3, 3 resonance in the n-N system. In view of what
we have been able to establish in the foregoing sections about the J-

. plane analyticity for pion-nucleon amplitudes, such a notion obviously
"has not been shown to follow from assumed analyticity in linear momenta,
i.e., the Mandelstam representation, It is, however, experimentally

. possible to test the irriplicaiions of the above. Regge p'ole hypothesis.

To that purpose, we present in.this section the expressions for. -high~=
energy pion-nucleon_scatter-ing. o

High-Energy Forward Elastic Scattering

This would be dominated by the Regge poles in the crossed channel

~m+m <> N#+N, i.e., t channel. We have, for differential and total cross

sections,
do _ 2 t *
™ - |fl+f2| + k—z Re f, " f,, (6.1)
Jtotal _ 4rW I m(f+£) (6.2)
mnN @ -1 :
w=(s -m?* - 1)/2m, ' (6.3)

f,.

- where one has to substitute proper isospin combinations for fl’ >
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Thus,. for example, -

iy - D
fi=fi(-)+fi( ).fo_rTrp—>1rp,

= ‘f§+) — £§_)_ for ‘rr+p +_n+p, S (6.4)

-t\/T?.-fi(.—) for m p— n.

Re-expressing Eqgs. (6.1) and (6.2) in terms of amplitudes,

(6.5)

A,:A+.w+t4m2 B,
: 1 -t/4m
B' = B,
. we obtain
o .
do _ m 2 ' 12 Wt o n¥ Ay
d0 (4'TTW) [(l = t/4m )IA | + 2 (A B"BA ) +
. 4m
_ 5 . v
t +
vt (p - Amral ) g2y, . (6.6)
4m- 1 -t/4m= - .
o - L ImaA(s,t=0). ’ (6.7)
Now we have, from:Eqgs. (5.1) and (5.2),
- 1/2 '
ArF = I (12 T (23+1)(S)*, P(cos6,), (6.8)
q —'+J " J 3
P , J
':i:" -Sn‘i P 14/2 +x '
B” = - — (£, > (S P' (cos 6.). 6.9
S (B 2y Py (cos 0y (6.9)

On.the hypothesis that large s (i.e.,. cos 63) behavior is dominated

by the Regge poles.in the t channel, we shall have, as in Section 3,

P (_ s+p2+92> L P <s+p2+gz>
. + + 2 pq * 2pq
A'i .~ b::_(t) (E%)u' (t) a (t) a (t)

S — o

. +
sin wa” (t)

(6.10)
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L 2, 2 2 é
ai(t) P'y (__J_s+p + ):t P'a:l:(t)(- Stp tq )

BE b(:l:)(t) B9y - a (t)\ 2 pg .o _2Pp9 ° |
- m .
§ > o o :s.1n: T a._y»(rt)
(6.11)

af(.t), u.f(t) = Regge poles with rﬁaximum real parts for isospin

0 and 1 channels respect1vely,

F - J : ;
bi(t) = Lt 2% (B Y2 sy (8)4; (=) (J-a*_(t))}. o (6.12)
J-—» a (t) L ‘p : '
+ ) ~ 1/2 m v.- + . .
b (t) = Lt . pq q (s )J( ) (J a (t_))]o : (6.13)
J—>a (t)*"

It should be mentioned that, in writing these equations, we have
used the. results on the J parity and sharing of Regge poles by different
amplitudes that were established in Section V,

The expressidns.(6.10) and (6.11) could be further simplified to

+ +
a (t) -ima (t)
A — bl (o) rEe ] , (6.14)
s - o sin wa™ (t)
. E
a (t)- -ima” (t)
BY — o® (1) b0 () [1* " ] . (6.15)
s > sin ma” (t)
- Using the behaviors (6.10) in our expression for total cross
sections, we get
t - ' to - _
o otal(ﬂ p) + Gtotal( + p) b (0) (____ )a. _(O) 1, (6.16)
: s w.
. v “(0)-1
total _ . _total , + - o™
0" (wp) - 0" (n7p) —— B0) (55) : (6.17)
§> o ‘ '

Now, if constancy and equality of the Trfp and 7 p cross sections
are to be achieved in this picture, then we must have

a.f(O) =1, . .

a (0)< 1. . ' (6.18)
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Thus there must be a ,trajec.tory with zero baryon number, even G-
parity, even J parity, even space parity, and zero isospin--in short,
the quantum nﬁmbers of .the Vacinifn, which must pass 'through 1 at
t =0, This is the Pomeranchuk trajectory to which we alluded in.the
pfeceding section. There cannot be any trajectory that passes through
a pointJ >1, t =0; otherwise we would have a cross section increasing
‘like a power of energy, which is certalnly not allowed by Mandelstam
representation, as we sﬁall show later in Sect1on VII. Also, for iso-
spin one, we expect the p-Regge trajectory to be the same as a (t).
Now Rt a_,(.t) =1att=29 m:;.hence at t =0, we/would aﬁfomatically
have a (0)< 1. A preliminary analysis of experimental cross sections
using (6.16) and (6.17) gives a (0)= 0.3, and within experlmental accu-
racy the observed cross sections can be reproduced by the formulas
(6.16) and (6. 17). !

Thus at high energies the 1r+—p and m =p scattering are both

‘dominated by the Pomeranchuk Regge pole,. and we. have

do , + . * 1 2(a+(t) 1)
d—,C-(TT p—~m p) S—’_’bw_—l—g;r Zm :
1 +e 11rc1.-'-('c)~‘Z
{Ib (t)[ - — (jb (t)] + Iu. (t)b (t)|> v
m sin w a (t)
| - (6.19)
0

For charge exehange, Tr_+p - - +n, however, the Pomeranchuk
.Regge pole cannot contribute, as one has to exchange charge in the
.crossed channel, and the Pomeranchuk trajectory has zero isospin.
Charge exchange isapurel=1 process when looked at from t channel.

Thus the process is dominated by the p -Regge pole, and we have

do 0., 1, s 2la’(t)-1)
dt (m” péﬂ n) 8 ('Zm)

o 2 _ 2 _ 2\ L - Ti“a—,(t)
,{b+(t):l N, <lb+,(t)| + |a (t)b_(t)l)} X ‘1- S
4m ‘ ‘ ' " sin wa (t)

2

(6.20)
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Usmg these two expressmns, (6.19) and (6 2.0), it should be
experimentally p0551ble to determine the Pomeranchuk and p trajectories
for negative values of t, if such a de scr1pt1on apphes A significant
feature of the Regge pole hypothe51s is the 1ogar1thm1c shrinkage of the
‘width of the diffraction peak with increasing energy.

High-Energy Backward Scattering

‘This would bel._'con-tbrolled by Regge poles in the u channel; i.e.,
the crossed pion-nucleon channel, One knows from:the analysis in
Section IV the general features of J-plane analyticity for. the pion-

nucleon scattering.

We have
2 .2 2
(‘n':!:p - T p) = |f( ) + f( ) (f2(+) _‘l'_ f("))l __]_-_z v(u _(ms-l) ) %
: k
Re(f(+) f( )) (f(+) f( N, ’ o (6.21)

when crossing:symmetry .is used, this is

|f<+)c e (g Hey »fé-)c‘)l?

+
99 (2 ) - !

_u -.(mz'l‘)z/s)-ke(ffﬂc (ey¢he,5009), (6.22)

. ‘kz
since we have
f{+¥:(u,é,t)i ff:gz(u,s;t)z f( )(s u, t) - f ( )(s u, t). (6.23)

Now, on.the basis of formulas glven in. Sectlon IV and the tentative
>.'<
Regge trajectories correspond1ng to N, Nl/Z’ 3/2° which have the
largest real parts, we.can write, for large-momentum-transfer s-

behavior,

ff /2y, s,1) = f{ﬂc + 'Zf{")'c"

-1 - P 1
T Pylw) cos -"°N(u)[PaN(u)-1/z(zc) - PaN(u)-L_/z(‘?c’]

S - oo

+B 4 (u)secma , (u) (z )+P!

(-2
a c
'Nl,/z'. , N-lr/Z, '_[ N'l'*/z(u)-l/z 1/Z(u) -1/2 }

(6.24)
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£03/2)(4, 5, 6)= gl He g (0)e ——»[P L1l Py (e >]
: , § = 33 2 33 2

. ;‘VX__ﬁ33(u) Sec a33(u),_ _ | o - (6.25)
(1/2) .(3/2)
f2 , fz. .

~and similar expressions for Here

(2 : . /5 2
- (s-m“-1+2E (W Eu)/zqu,

qu E = three momenta of the pion and the energy of the
nucleon (c. m. ) in the u channel, '
) 2 - u,
u
Thus we would have

do

do (w P~ wp) = plu) &2 (8> (W) - 1/2) (6.26)

where as(u) is that Regge pole out of aN(u'), a (u), a33(u)

Ny /2
~which has .the largest real part. The power of s, 2(dy (u) - 1/2), comes
I,;fo;r the. 3;.3 trajectorny...

fromyfz._ for-the N, N.Pﬁl',/z, trajectory: and. from.f
Lookihg-at the tentative trajectories shown in Section IV, one ex‘pects

a>(u) =0 atu =0, (6.27)

i.e., we have roughly
dQ('rr p—~ m p) = - e - (6.28)
On the other hand, if the nucleon were elementary--i, €., had
definite spin J = 1/2——~we would get
(‘n’ p.~ 1.p) ~const. | - (6.29)

- Thus-the exper.ime.nt can distinguish in principle the two possibilities

for the nudeon. Similarly

49 (x7p v 7p) ~piw) s2033T/2) (6 50)
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VII. FROISSART-TYPE UPPER BOUNDS ON HIGH-ENERGY
BEHAVIOR OF THE SCATTERING AMPLITUDES
IN THE PHYSICAL REGIONS

We now come to the other part of the work, i.,e,, the determination
of the asymptotic. behavior of the scattering amplitudes, This is pre-
‘liminary to any further discussion about the poséible number of sub-
‘tractions in the Mandelsfamvrepre sentation, the domain.of meromorphy
_in the J plane of the partial -wave amplitudes, and so on.

We. obtain in:this section strict upper bounds on.the high-energy
behavior of our amplitudes. It is not ‘irhplieid.that _thé se bounds actually
~ obtain in nature. |
A, Channel 1+N = 1+ N

First we obtain a strict upper bound on.the partial -wave ampli -

‘tudes for large angular momenta, which is stronger than the unitarity

~bound, 21,22 Unitarity requires
id 2
2
o | =, =pe ‘*sing,,, (7.1)
J+'2",J+-2— S :

- where 5, does have a negative imaginary _pé,rt above the inelastic
threshold and is real in.the elastic region, This gives the unitarity
_ bo‘und_ . » o ‘ o
T, l<s. o (7.2)
To obtain a stronger bound, we use analyticity of the scattering ampli-
tude. in the Lehman Ellipse, given by Mandelstam rép'resenta.tion, in

~the cos 0 = z plane. We have

+1 1
_ J.- . . _ l . * - .

bemoy3lgil=3 j 4 [fl(S’Z)P 1 (28, 2Py (2)] . (7.3)
= 2 2 J+= J+ =

-1 2 2 .
Also, from Cauchy's theorem,

£ (s, z")dz’
fl’z(sp Z) —Zﬂ'i E Z' ~ z (7¢4)

where E is any ellipse withinL'the.Lehman..ellipsev(ma,jor axis = 2a).
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Using (7.4) in (‘7:,3),’ we -get' :

£ o=t 55 [f(sz)Q

(z )J, (7.5)

(Z')+f (s,2') Q
£+ 21 -
| E B J+—2- J:!:-Z—
. Therefore, - ‘ , | ‘ |
RIFRE 55 f)(s, 2) (2) ||+ [| (5,20 [|@_ | (=]},
tral< [ Jae i al o @il ligesolie
: 2 2
(7.6)
where the" H H denotes the maximum value attalned on the. elhpse E,
We now have. the bounds '
iy, s ] < Ry 0] - @
12 2 |
. Sy L v 1 !
egta[< (7 7)) (7.8)
ﬂg dz < 2d, S (1.9)
- 2 /2
where d = a+(a”™-1) and Rl 2(W) are some polynomials in W,
Using these upper bounds (7.7) and (7. 8), we get
| 12, 1/2||R(W)] ) R, (W) |
|f“_|s(w) (1-;) LT At T
' 2 d” 2 _(.T:i:—z—) dJ;I:-Z—
RwW) | . (7.10)
£ —. , ’ ) ’ ' _ 7.10
.de" 1/2 - .

where R(W) is another suitable polynom1a1 This bound is weaker than

_the unltarlty bound for

+ 1 In R(.W) _ _1 N :
(J §)< ma - Im > - : (7.11)
. As the semimajor axis a is given by

4|.1,2
Z ?

2k

a=1 ¥2E (7.12)

1 . .
the Jm- 5 forlarge W is given by

Jm‘-vl/z ~:.const ki n W =const sl-/z,i_r‘xs. ' (7.13)
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The bounds- can now be used to find the high-energy behavior for

the various amplitudes., We have

+ W+m f(:t) _ W-m f_(:l:)
Etm 'l T E-

S —>» o0

s, (1 e, 1] gr .
B" =4y —E——fl Eum f2:| —*—s—l%(f

S > o

Using (4.5), one then readily sees

Al®)

+ + \
— 8wz (f, - f1+1-)(P£+1+P )

S > J

() ¢ (£) yips '
_/z z “_f£+1 P - P

8 —» 0
- We also have

|P'(z) | < —12 (12+1), for -1.< z< 1,

_ . B .
|P£(Z,)I = Z£ (!Z+1), for z = +£1;

—— 87 (fii) - f

(%)
2 ')’

Lt P! = - ;JZ_!Z.. .c_os((£+1/2.)6)9 for e< 0 < m-e.

2 11' )3/2

{ —+ »(sin@

Using (7.16) through (7.19), we obtain

I) BN (€

A (s,6 =0 — 87 X ( 1 1
S >0 J J-— J J+'2—,J+-2—
. J=J o
l6n ™ 1.5 167 Z 12
< T Z (J'*"Z') t o5 . (J+—-)
J=1/2 ' J=J +1 -
m

~ .s(Ln s)3.
Similarly

* (s,6=0) < (£ ns)?

1 2

(T +3)

R(W
J-172

£), (%)
AR A

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)
(7.19)

(7.20)

(7.21)

(7.22)
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These behaviors allow the fotal cross sections to increase as !n?.’s.

Using (7.16) through (7.20), we similarly obtain -

Bi_‘(s,ﬂ

) l/zln s) v (7.24)

) and in the nonforward,’ non’baqkward directions (1; -e> 0> ¢)
A¥(s,0) = o(s/ 410/ 2s), L (7.25)

B*(s,0) = 0(s'/*10%/23). S (1.26)

Let us mention here 'éhé.t if thé domain.of meromorphy in the J
plane of partial -wave amplitudes in the t channel extended up to |
Re J = - ¢, the logarithm factors in these upper bounds would be absent,
as .s is the momentum transfer squared for the crossed channels, and
the asymptotic behavior in.the: Regge picture is a iaufe pbwer behavior,
B. The Channeln+w > N + N - |

A similar-analysis can be.carried~out for this channel. We have
_the partial -wave expansions given by (5.1) and (5.2). The unitarity

requirement, similar to (7.1), is

|siJ| <1. (7.27)
We.obtain, finally,

A%(t, cos 0, = £1) = 0(t}/ 2103y, (7.28)

B*(t, cos 6, = %1) = o(t}/ 2453, | (7.29)
and for nonforward nonbackward directions--i.e. {(e< 63 < mT-e)--

A%(t, cos 6,) = 0(t1/41n /2 t), | | (7.30)

Bi(t, cos 63) = O(t-l/41n3/2t). (7.31)
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. VIII. FROISSART ANALYSIS

We shall now prove that the upper bounds obtained in Section VII
. for different amplitudes are inconsistent with any arbitrariness in the
partial waves J > 1}/24 in the s channel and J >1 in the. t channel. In this,
we shall be following Froissart, 21 who showed that subtractions corres-
ponding-to arbitrarily high angular momentum waves in one channel are
not consistent with the unitarity requirements in the crossed channels.
Consider the amplitude Af(s, u, t) for the sake of definiteness.
Let us denote the two different unitarity -satisfying a.mplitudés corres-
ponding to A*(s, u,t) by A'(s,u, t) and A"(s, u, t), whick differ only be-
cause of having different subtraction terms. Their difference AA+_(s,u, t)
also has the same unitarity limitations and shall have the following
_general subtracted expression (assuming that the asymtotic behavior is

-at most like a polynomial, i.e., the finite number of subtractions):

(S) 1 1 ; (t},, 1
M tpsM Ap~p ..(s )ds M PtM Ap kt ) dt

M (s,u,t) = T - + u
’ ' p=0 -7 s (s'-s) p=0 T t _:(t'—t‘)
M (u{ i !
p.M Ap u')du L
_ stu it P.q
+ = Vi + = Dp st t?, (8.1)
p=0 T u'" (u'-u) P, q=0 b, 4

where M, L are sufficiently large positive integers.

In the physical region of the s channel, we have

+ Mo b () - |
Im AAT(s,t) = T .t° Ap" '(s). (8.2)
=0 p .
P
Letting.the scattering angle 6 assume (M+1) values 6 , 0 PURR
M+1(— 0,m) in the physical region in (8.2), we get (M+l) equat1ons
ateo) - 3 2P, _\P P A (8)
Im AA™(5,6,) = Z ‘(sin»(Gi/Z)) ()7 (sP ap®(s), ~ (8.3)
v =0 RS p

- where we have used t ® -5 sin 6/2 for large s. These (M+l) linear
equatlons can be solved for (M+1) quantities sP Ig )(s), (p=0,1,°"°, M).
The solution obviously 1mp11es tha.t the asymptotic behavior of spAp )(s)
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is at most like that of Im AA"(s, 6,). Thus; using(8.3), we have
Agés% s) = 0(81/4_1.)143/_2@° : . (8.4)

Similarly, using the analog of ( 7.25) in.the crossed w~N channel, and

(7.30), we get

Ap;u_).(l;'l) :_‘0(u1/4—p_1n3/2s_), - | o  (8.5)
(t)(t) o /3 (8.6)

With- the asymptotic' behaviors (8.4) through (8. 6) in mind, we.can

. rewrite AA ~as

M P ..Ap(s)(s")_ sPlggr : M _p Ap(t)(t')t'p-}dt'
+_1 -t p 1 & u p
2T =2 E —— o T oo —
p:O S p:O t
1 M p Ap(u{ u') u'p_l_vdu' » : _
+—T—I'_ ? p_l ul -u +P(S,u9t), (8-7)
, p=0 u
. where S L . M M+2'-p
Pls,wt)= BT oA Plo 3w Ap'(pl)q P sat1-P
P: q 4 p=0 q=0 ’
M  M+2-p - M M+2-p
-z = Ap.(z) uPtq+l_p - = = p(3) Pya*1-P, (g, 8)
p=0 q=0 P, q p=0 q=0 P, q
~and we define ( )
spll) = 1 b (8.9
= = , etc, 8.
P, q ™ lq p+2 . )

In writing (8.7) through (8.9) we.. have used the identity

(’_‘)M;_L_ =.(X)P=1 1 _ 1 _x _,..'-w
' y-x X y-X y vyz vyM+3—p :

Now the asymptotic behavior, s— + «, in.the s physical region

(e < 6 < 7-0) of the integral terms on the right-hand side in (8.7) is like
1/4£ n3/zs, using (8.4) through (8.6) and noting that t ®s, u = s for
..large s aLnd e< 6< 7w -68. Thus these terrﬁé are uni.tar.ity-abiding
“in'the physmal region of the s channel., However, the polynomial
p(s, u, t) contains arbltrarlly'hlgh_1ntegral powers of s, and would thus

conflict with unitarity in the s channel, if this polynomial were not a



-47-

constant. Hence we can only have

M p ..Ap(s)(s')ds’s'p_1 M oP Ao(t{t')t'p-l'dt“
At 1 5t P _P
AA'—? p-1] s' - s .+Z p-1 St -t
S p=0 s - p=0 Trt -
% M - Sp f Dp (u)('u,) du’ u'P"'1 : : o
+= = P___ + 8P e ~(8.10)
™ p-1 u' -u 00
p=0 u :

Now let s be held fixed at some finite negative value, and let
't = + », This means that the angle of scattering in.the t channel,
i,e., 6’3, goes to zero, The asymptotic behavior of the terms on the
right-hand side -of (6.10) are respectively (keeping s fixed), t P
1/41 3/Zt 'cl/4 Py 3/Zt t%. Thus we must have

N AP(S)(SY) 'S'P—‘l,dsv » : ‘
P - =0forp>1‘ : (8.11)

s"—s'

if we are to respect the tl/zln t behavior of A* g1ven by (7 28).
Similarly, holding u fixed at some negative finite value. and

letting t = + « (i, e.,, backward direction in the t channel), we get

N\

Ap (u)(uw) u“p_l_du' ; ‘
'/" pu'-—u =0forp=1, (8.12)

and holding 't fixed at some negative vlaue and letting s or u go to

+ o (i, e, forward direction), we.get, using (7.20),

= 0.for p = 2. (8.13)

Ap'g)_(t') ePlap
[ C;

We now have

4 v . 1 1 t ' '
L i[Ap (s)(s \ds L A‘p.(du‘)(u_,)du Lt prg Nty at
- (s' - 8) T u{u' - u) T t'{th -t

2o e at
ﬁt,' -t

u .

. We have not yet used the crossing symmetry requirement for A+, which

demands
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and ) : ‘ L
Apl(_t).(x) = 0. (8.15)
“"Thus, firially, we have
, (t)
+ s | Apo(sf)ds' u Ap,o(u')du' ¢ Apo (t')dt'

i By v B By e R B 3 ¢ i Y0
| - | (8.16)
The last expression tells-us that the only independent subtractions
- in ‘A‘+‘ are J = % wave subtractions in s and u channels and J = 0 wave
subtraction in.the t channel. A similar analysis for‘the other three
‘amplitudes A”, B leads to the independent subtractions in}ronlly _.
J = .;— waves for s, u channels and J =0, 1 for t channel. One might
-note that if no logarithm factors are present in.the asymptotic upper
bounds, then the re sullt for arbitfaljf subtracfcion_s can be strengthened

to only J = 0 amplitudes in the t channel,
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~APPENDIX

1L Der.i_vation o-frthevStripn;R Double ~Spectral Functions

The expressmns for the str1p R dsf is now ca.lculated by u51ng
generalized umtarlty, in Wthh the contrlbutlon of only the lowe st-mass
two- partlcle sta.te, i.e., two -pion state, 1s reta.lned ’

_ The 5- -matrix element for p10n p10n scattemng, .whlch we ‘shall
need for the a.pphca.tloﬁ of. gene rallzed umtanty in this channel

‘taken as follows

: 1(2'"') 6 (q1+q2 ql qz
<q1 q2|S|q1 q2> <q1 qzlql qz> C 2 <q1q2|16“\HJq1q2>°

(16 qloqzoqloqzo)

(Al.1)

With this normalization, which agrees with that of Chew and Mandel -

I
i

stam, 2,15 ﬂhas the partial -wave expansion i

o

(qPap2yt? i8, " A v
A = e > (2¢ +1)e © sin 6, Pylay * q;). (AL.2)

- The genera.lized unitarity condition with only 27 intermediate

states then gives

Im A(4,L) = =S [dar [A%(eLn) - 24 2 ft-’ Bt tm] AlLt)  (AL3)
t l

~and

Im B(t, ) = 53 fdsr [E—E%— B>“(t,4“)ﬁ,_<t,c'>], (AL.4)
. t 1-

, where (see Fig. 9)
. A o A - A o A - ”~ P
_t,. =(qlp1)9 gi _’(ql qi)s g”‘-(Q'l° pl)’
and
3 1

d’q} = q,” dq} d@.

These equations (Al.3)through (Al.4)hold separately and lead to

the following expressions for the strip functions a,;: s [5:;:
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MU-22704

Fig. 9. The two-particle intermediate state for the
m+m - N+ N channel. :
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o.;t (t,s) = ——l—— {ds'ds'"K (t, s, s, s'") .[A*‘(df)(t, s") -n (t;s, s',s")
AR 2 t s a
, » Tpq .Wt 4. :

x B+, s")]ﬁs(i),(t, s (A1.5)
‘.and ‘
B3ty 5) = — fds'fds" K,(t, s,s',s"-)nﬁ(t;s,s:s")Bs*‘*,’(t, s")
mpq W '
Xﬂ‘é(i)‘(t, s, | (A1.6)
where .
A, s - /q}oks ) + /l(lks o)+ Sy/%(z)(s'th ' (A1.7)

ﬂé—)( t,s') = %/z( 'Q)( s, t) + -;-ﬂ( 1‘,)(‘5'. .2 ﬂ(z)( s', t), (A1.8)

- and :
x+'?'+'Z - \2 z+2+22
Kv(t;x, Vs z) = ___p___g-_. + 1+ .._Y__ + _p_._ﬁ_ -1
t | 2pq quZ 2pq

. &pq ,ZqZ ‘ qu

_if the quantity under the square root is positive, and zero otherwise

and n_, ngare the k1nemat1<:a,1 factors glven by

- B

n (t;s, s', s") m[Zq (S”-S) - s'(s+p +CL)]
a

5 —, ' (Al.10)
ap’q” -_(S+p +q%)?

4p2q2 [ l+s'/ZqZ] - [ss" +‘ (p2+q2;:)(s+s”,)+(pz+q2)2]

il

n_(t;s,s',s'),

B

2 2 2, 2 ‘
4p~q -(s+p +q ’)2 »
. (Al.11)
- We have also used the crossing symmetry in writing down the

expressions (Al.5) and (Al.6).
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[I. Partial-Wave Analysis of Spin-Zero and Spin-One-Half
Particle Scattering with.Parity Nonconservation

We shall carry out the decomposition into partial waves of in-
variant amplitude for sp1n zero and spin one-half part1cle scatterlng
for the case in which parity is not conserved,

We write the S-matrix element for scattering of an initial pion of
four ~-momenta kl’ ‘and of an initial nucleon with four -momenta Kl and

spin state r, to a final pion with four -momenta k., and a final nucleon

1 2 :
with four -momenta KZ and spin state T in terms of invariant amplitudes
A,B,C,D as follows: '

(K, 1,0k, [SK 1 k) = (Kyuw K, T k> ~izmtetk, 4k, K, k)
2° 727 T2 1°7°1°71 2SN ASy R I LA R VA 171 2 72
X — T(K,, kK, T k), (A2.1)
4K10K20k10k20 2° 2 2 1’71’71 ‘
with N
T(K,, r), kK r), k) =T Z(KZ) [-A+iy: QB+iy y: QC - Dy_,)]x_xrl(K-l) :
' (A2.2)
and K, +k
0= 12
2.

Here u, U are appropriate Dirac spinors.

We use Pauli-Dirac representation of the y»matriceé, in which

we have
-Q g -0
1Y' Q —>O 3
_0' 06 +Q0
(A2.3)
0 -1
Ye. = s
5 -1 0

"~ and Dirac spinors take the form

- 1 E+m S
up) = ——— : : xr,witth—'+_p+m,

N2m(E+m) g- ;
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T(P) = —= !

N 2m(E+m)

and X‘I; sa.re Pauli spinors.

4 .

We work in the cen_ter—of-rhavss system in which

Ky tkp =k, +k, =0,
-and define _ :
K = K, =Kk,

kZ = —KZ = kfk’

E =+ '\/,kz + rnz,

wo=sl/2 o iPam?

We have
0O =W-E,
(0]
S o= L f vk
= skl k)

Using (A2.3) through (A2.7), we can reduce T to the form

47W *

m -Xr

2

T=-

where
f= f1+f2q~ k.f

and

+&~/k2+ 1.

2

£ x»

1’

0k + 500 (ketky) +£,0° (kp-k;)

fl. = (811-W)-l [A + (W-m)B] (E+m),

£ = (87W) 1 (E-m) [-A+{(W+m)B],

£, = -kC/8m,

f, = -kD/8nW.

v (A2.4)

(A2.5)

(A2.6)

(A2.7)

(A2.8)

\..(A2.9)

(A2.10)
(A2.11)
(A2.12)

(A2.13)

. It.is appropriate before going further to point out that, if time-

-reversal invariance alone did hold, theh we would have

"D =0,

f4=0,
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This is easy to see, since under time-reversal operation,

g—-0'= -0,
e _>—>' - _—-»
kf kf ki’
- - —
S e 1= _
ki ki. kf,

and therefore _
— ! = . e . e « ™ c - .u % _A
| f-f £, +15,0 ‘k.fo k, + f,0 (_kf+ki)‘ f,0 (kf ki)?
. and thus we must have f4 = 0. ,
On the other hand, parity conservation alone would give

. f3 = f4= O,

C=D=0,
Since, under space reﬂection,
' g~ +0,
ki - -ki,

kf - -kf.

We now proceed to angular-momentum decomposition of the f's.

. First we note that we »have for the differential cross section the

expression
| < = 2|t °. o (A2.14)
Therefore, if the incident wave L!Jinc is
iK, .7 . a

Yo =€ T Xps (A2.15)

the scattered wave is given by
. eik.r '
Yscatt T > f— Xpe ' v (A2.16)

It is convenient to choose the incident wave vector Ei. along the

positive z axis, i.e.,
ﬁi =(0,0,1), . |
We further define 6, ¢ through

' 12f = (sin 6 cos ¢, sin 0 sin ¢, cos 6).
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Now let -« - R

s : 1k1‘,_e-1kr .. 1
= S (24| &¥—"0 P, (k. * r) (0)
L=0 - - 2 ikr 1

o [ iKr ikr) o .
S i il @[ i |1z+__> f|z-2,-—>]

0 2 i'kr

]

© g
: , (A2.17)

where |J, M > is the state total angular momentum J, and J =M. We
use the angular momentum conventions of Rose, 2 We have thus re-
expressed the incident wave in total angular momentum representation.
This is useful, since angular momentum is conserved. As a result of
interaction the outgoing part of the incident wave shall be modified as
to its amplitude, which is unifyg

Consider ‘ﬁ+ =, 2> in (A2.17). We have

.1’v !2+1 / 7 (o . g1
f+z <o> ST Yo (1) with parity (-} 7,

24 +1
£+1 1+2 1 -
Therefore, the part |
ikr , 1
2ikr

of the incident wave would give rise to the follow1ng part in the

scattered wave:

kT ' _
L+1/2 / +1 L0 /1\ [ 1.(0)
d_—- Z ”qqf-{az 1 ’( ES R <o>+‘ sTr (1

’21k
2+1/2 [ [141 1 112 L1 (o)
Ty < 2043 §+1( )f arw Y (J)}

~where a deonte the amplitude for. tran31t10n between two states

LH Ll
which have total angular momentum J, and where the initial and final

states have orbital angular momentum L equal to L' and L' respectively.
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Similarly, one can treat the rest of the incident wave (A2.17) to

get finally

ikr L+1/2, , L-V/2f 0 441/2
Yscatt 1 = w er ) %{{(ﬂJrl)ai,ll +1a£,£ ] Py -(1+1)a£+1,£ P
1-1/2 1 1-1/2  1+1/2] 141/2 o,
‘ﬁw-hzﬁ-&>«J+{{%1 "o | Pl omogrs Py
ta '1/2 p! sin goi® (0 (Az.ls)
L - £-1 1/ .
On the other hand, if the incident wave were
_ kT [0 o
Wine = © (1>' - (A2.19)
one would get
Lo ikr :
e 2+1/2 1-1/2]
LL‘sca.tt r —- o r 22 ([(£+1)a +1°’1,!Z Py
£+1/2 L-1/2 0 L-1/2, £+1/2
U+l ay gty Py thoeg Y P£4>(1)+ <['% Tty L H
L+1/2 , 1/2 . -ig (1
S0y Pé+l + ‘11 P' l> sin B e R (A2.20)

Using (A2.9) and (A2.15) and (A2.16) and comparing them with
(A2.17) through (A2.20), we get

f, +1f,cos 6= J;/Z [(J+ 1/2) o.J 1/2,3-1/2 J-1/2

+(J+1/2) a J+l/2 J+1/2 J+1/2],

f = .aJ P! - ;J P! )
2 yei/2 | I+1/2,341/2 TI41/2 T R3-1/2,3-1/2 7 3-1/2
R ) ';g 1/2 341/2 F1-1/2 ~ §+1/z I-1/2 |

J=1/2 |77 J+1/z

3

. R J .
_(f3+f4) cos 0 + (f4-f3) = J=l/2 [QJ-I/Z, J+l/2.(J+l/Z) PJ 1/2

+(I+1/2) 0%,y /5 50172 PJ+1/2]'
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Solving for-f’i, one gets: -

- p! o J . \,
£ ? (“J 1/2,3- 1/2F541/2 " %541/2,541/2 £ 3172 (A2.21)
f= = (aJ p! -al =Y ) (A2.22)
2 I J+1/2,3+1/27J+1/2 " "3-1/2,3-1/2 ~J-1/2" ’
f=L 5 (J +a? yer ., - P! ) (A2.223)
372 3 T-1/2,3+1/2 " %3+1/2,3-1/2"%1-1/2 7 J+l/Z ’ o
f=lZ)(c1:'r | -cc.J ) (P! Pt
472 J-1/2,3+1/2 ~ "T+1/2,7-1/2 J- 1/2 J+1/2), (A2.24)
where we have used the identities '
(1 - cos 8) Pll (cos @) - (£+1) P!Z'_(cos 6) = PJZ" (cos 8) "-P'1+1(C°s 6),

(1 + cos 6) P' (cos@)+(l+l)P(cos 6)—P (cos 6)+ P 1+1 (cos 8),

Pé+l - cos 6 Pl'l ={L+1) P,.

The projection formulas for different ai,', L have to be worked

out now, They~are:known in the literature for-a L, L where-

L' =J+ 1/2, and are‘given by,

“:TT+1/2 J+1/2 =1/2 r (f) +1, P ) dz g (A2 25)"
g 1 J+l/2 J- 1/2 ’ | o

J - | +1 .

a . H — : B

J-1/2,J-1/2 = 1/2 [1 (flPJ_l/Z +f PJH/Z) dz. (A2.26)

By use of the integral formula
+1 '
- &,
t 1 = 9
1/2 j’ (P, P b)) (P :th+1)dzj ¥ E?m
21

| I T
they can be worked out for aJ-’l-/Z, J+l/‘v2. and a'J+1/Z 3-1/2° and are

given by
- +1 .
O.J +CLJ / / = ‘
J-1/2,3+1/2 J+1/2,3-1/2 ~ f f_ (P ) dz, (A2.27)
: _ _ SRR S J- 1/2 J+1/z
+1

J J ¢ ’
a - -a H - \ = . L ! .
J-1/2,3+1/2 Jtl./_zi.,J._v 1/2 = /:1‘\‘ APy )y - Prygp)de (A2.28)
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