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September 2018



The Dissertation of Jimmy Voong Liu is approved.

Professor M. Scott Shell

Professor Rachel A. Segalman

Professor Carlos J. Garćıa-Cervera
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Abstract

Complex-to-Real Mapping

for Polymer Field Theories

by

Jimmy Voong Liu

Polymer field theory is a valuable tool for studying the behavior of dense polymer

systems at near-atomistic length scales. In its most successful form, it is a complex-

valued, d+ 1–dimensional theory that can be studied using fully-fluctuating simulations

or at the level of self-consistent field theory (SCFT). This theory requires calculations

using fields that depend on d spatial variables as well as a contour variable indicating

the position along the polymer chain. In principle, it can be reduced to a simpler,

real-valued, d-dimensional theory that is more efficient to simulate numerically—a phase

field model—but these are typically less accurate due to approximations invoked in their

derivations. We introduce and refine a new method for constructing phase field models,

phase field mapping, that systematically parametrizes an optimized phase field (OPF)

model using the output of inexpensive SCFT simulations. We develop an OPF model for

the diblock copolymer melt and characterize its performance in terms of speed, accuracy,

and transferability. Then we modify and generalize the model to produce a weakly

compressible model suitable for running simulations in confined templates. In bulk and

in confinement, the OPF model is faster to simulate than SCFT and more accurate than

other phase field models. With these advantages, the OPF model is a useful alternative

to complex-valued field theories.
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Chapter 1

Introduction

Polymer field theory is a valuable tool for studying the behavior of dense polymer sys-

tems at near-atomistic length scales. In particular, self-consistent field theory (SCFT)

simulations have been used to predict phase behavior [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], to

guide patterning for manufacturing electronic devices [11, 12, 13, 14, 15, 16, 17, 18], to

design materials with desirable mechanical properties [19, 20], and to study dynamical

behavior of polymers in processes like solvent vapor annealing [21, 22]. SCFT has been

successful at predicting density configurations, length scales and energetics when thermal

fluctuations can be neglected (i.e., when either the polymer concentration or the degree

of polymerization is large). At an increased computational cost, we can also perform

field-theoretic simulations (FTS) using the complex Langevin method to sample these

thermal fluctuations [23]. What if the application is too computationally intensive even

for SCFT, demanding large parameter sweeps, large cell simulations or time dependence?

Phase field models offer a more computationally efficient method to study such ap-

plications. These models do not explicitly encode the contour variable s that indicates

the position along a polymer chain in SCFT. This benefits numerical calculations of

phase field models in several ways. For a simulation in d spatial dimensions, a field

update in SCFT is a d + 1–dimensional calculation with a computational complexity

of O(NsM logM), whereas a field update in a phase field simulation is a d-dimensional
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Introduction Chapter 1

calculation with a complexity of only O(M logM). Here, Ns is the contour resolu-

tion and M is the spatial resolution. Furthermore, in phase field models, stable and

metastable states correspond to local minima. This enables the use of the nonlinear

conjugate gradient method, an efficient numerical method that requires a convex energy

landscape. (In SCFT, the presence of pressure-like fields leads to mixed saddle points

and precludes the use of the conjugate gradient method.) Finally, phase field models are

purely real-valued. This eliminates the sign problem present in the original field theory,

where complex-valued fields and energies lead to difficulties in sampling the probability

distribution. Because SCFT typically requires Ns of about 100, we expect that a phase

field simulation can be run to convergence faster than a comparable SCFT simulation by

roughly two orders of magnitude [24].

Historically, phase field models have been inaccurate compared to SCFT. This is

largely due to the approximations used to derive these models: the Landau-Brazovskii

model [25] and the Ohta-Kawasaki (OK) model [26] both rely on the random phase

approximation (RPA) first applied to the diblock copolymer by Leibler [27]. The RPA

is an asymptotic approximation exact only in the weak segregation limit, χN ≈ χNs,

where χN is the segregation strength characterizing repulsion between unlike segments

and χNs is the spinodal value signaling the onset of microphase separation. In the

intermediate segregation regime where χN > χNs, the assumed small parameter in the

RPA (the amplitude of density oscillations) is large and the RPA is not strictly valid,

but the OK model is often used as a crude substitute for SCFT.

To address the drawbacks of these asymptotic and phenomenological phase field mod-

els, in this dissertation, we introduce a new approach to developing phase field models,

phase field mapping. The method is based on the coarse-graining technique of force-

matching for particle theories [28] and for field theories [29]. Like the coarse-graining

method, phase field mapping parametrizes a cheaper model by minimizing the differ-

2



Introduction Chapter 1

ence in thermodynamic forces between two models—in this case, SCFT and a phase

field model. In principle, the mapping can be exact: no accuracy is necessarily lost in

switching to a phase field description of the theory.

Starting from a particle-based theory for a diblock copolymer melt, we derive an

equivalent field theory that can be studied using SCFT or fluctuating FTS. We show that

that complex-valued field theory can be reduced to a real-valued field theory, a phase

field model. We then explore how best to formulate the phase field mapping procedure to

complete an optimized phase field (OPF) model. We also study the performance of the

OPF model with respect to its speed, its accuracy, and its transferability to other phases

(that is, how general the mapped model is). Next, we attempt to develop a phase field

model compatible with the wall masking method previously developed for SCFT [11]

to extend the advantages of the real-valued theory to confined systems. Finally, we

offer some perspective on directions for future work in complex-to-real mapping of field

theories.

1.1 Complex-valued field theory

We now outline a derivation for the complex-valued field theory that will serve as

the starting point for phase field mapping. We start from a particle-based model for

a polymer system, then use a particle-to-field transformations to obtain an equivalent

field-based model. Here, we define the theory for a diblock copolymer melt, because

most of our phase field mapping work is done for this system, but blends and other

architectures are possible as well. We generally follow similar notation as in reference [3],

except that we immediately nondimensionalize lengths, energies and the contour variable,

as explained next.

3
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1.1.1 Particle-based model

Our model describes an incompressible diblock copolymer melt consisting of n con-

tinuous Gaussian chains in a volume V . Each chain consists of N statistical segments

of length b, of which a fraction f are of type A and the remaining segments are of

type B. From this point on, we choose to express lengths in units of the radius of gy-

ration Rg = b
√
N/6 and energies in units of kBT , the product of Boltzmann’s constant

and the temperature. The canonical partition function for this system is

ZC(n, V, T ) =
1

n!λ3nN
T

n∏
j=1

∫
Drj e

−U0[rnN ]−U1[rnN ]K (1.1)

where λT is the thermal de Broglie wavelength and {Ui} represent contributions to the

potential energy of the system. K is a compressibility constraint—we will defer the

specifics to the end of the section. The integral
∫
Drj denotes a path integral over the

continuous function rj(s) (in (1.1), note that the product should be applied only to the

integration measure and not to the integrand). For a given chain j, the space curve

rj = rj(s) is a vector-valued function for the spatial position of the chain as a function of

contour position s. We choose to scale s so that its domain runs from 0 to 1. As shown

in Figure 1.1, s ∈ [0, f) corresponds to the A block and s ∈ [f, 1] corresponds to the B

block.

s=0 s=f
s=1

A B

Figure 1.1: A schematic of an AB diblock copolymer chain indicating contour posi-
tions s = 0, f , and 1.
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The potential energy consists of two terms, the chain stretching energy

U0[rnN ] =
1

4

n∑
j=1

∫ 1

0

ds

∣∣∣∣drj(s)ds

∣∣∣∣2 , (1.2)

and a sum over pairwise interactions,

U1[rnN ] =
n∑
j=1

n∑
k=1

∫ f

0

ds

∫ 1

f

ds′ u(|rj(s)− rk(s
′)|). (1.3)

For both terms, we have used the notation [rnN ] to denote a functional dependence on

n space curves each with N statistical segments—but note that, rigorously, each chain

has an infinite number of degrees of freedom because it is a function of the continuous

variable s. In the bounds of integration in (1.3), we have assumed that monomers of type

A interact only with monomers of type B and vice versa. For numerical convenience, we

further assume that the interaction u(r) occurs only on contact:

u(r) = v0χδ(r) (1.4)

where v0 is the volume of a statistical segment and χ is the Flory-Huggins parameter

characterizing the strength of the repulsion between A- and B-type monomers in units

of kBT . This choice of pairwise interaction allows us to write

U1[rnN ] = v0χ

∫
dr ρ̌A(r)ρ̌B(r) (1.5)

where on the right-hand side, r is the position vector (not a space curve), and we have

used Dirac delta functions to define microscopic species density operators ρ̌A and ρ̌B

5
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according to

ρ̌A(r) =
N∑
j=1

∫ f

0

ds δ(r− rj(s)) (1.6)

ρ̌B(r) =
N∑
j=1

∫ 1

f

ds δ(r− rj(s)). (1.7)

Finally, we briefly discuss the compressibility constraint K. Its purpose is to embed

the assumption of incompressibility into ZC . That is,

ρ̌A(r) + ρ̌B(r) = ρ0 (1.8)

at all points r, where ρ0 = 1
v0

= nN
V

is the system average density. The constraint is

expressed as a delta functional

K = δ[ρ̌A + ρ̌B − ρ0], (1.9)

which eliminates from the integrals in (1.1) any configuration that violates (1.8). This

grants us the useful property that, under an integral, we can make any replacement using

(1.8) (as long as we preserve the delta functional itself).

In Chapter 4, we will use a compressible model that relaxes the constraint (1.8) and

instead assigns a large energetic penalty for local deviations from the average density,

often referred to as the Helfand compressibility:

Kζ = e−v0ζ/2
∫
dr (ρ̌A(r)+ρ̌B(r)−ρ0)2 , (1.10)

We typically use a compressibility (ζN)−1 = 0.001, indicating that the melt is only

weakly compressible.

6
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1.1.2 Field-based model

We now transform the particle-based model defined by (1.1), (1.2) and (1.5) into a

field-based model. Our goal is to eliminate explicit dependence on {rj}, and to reexpress

all instances of ρ̌A and ρ̌B in terms of fluctuating density fields ρA and ρB. To this end,

we will introduce the following integral and delta functional (and similar for species B):

F [ρ̌A] =

∫
DρA F [ρA] δ[ρA − ρ̌A]. (1.11)

When we apply this to the right-hand side of equation (1.1), we obtain

ZC =
1

n!λ3nN
T

∫
DρA

∫
DρB

n∏
j=1

∫
Drj e

−U0[rnN ]−U1[rnN ]K δ[ρA − ρ̌A]δ[ρB − ρ̌B], (1.12)

and we can now replace occurrences of ρ̌A and ρ̌B in the integrand (in U1 and in K)

with ρA and ρB respectively. We also apply an exponential representation of the delta

functional,

δ[ρA − ρ̌A] =

∫
DwA ei

∫
drwA(r)(ρA(r)−ρ̌A(r)), (1.13)

which introduces the auxiliary fields wA and wB. Finally, we collect terms in the integrand

that still depend on rj, ρ̌A or ρ̌B, noting that they factor by chain:

n∏
j=1

∫
Drj e

−U0[rnN ]−i
∫
drwA(r)ρ̌A(r)−i

∫
drwB(r)ρ̌B(r)

=

(∫
Dr1 e

−1/4
∫ 1
0 ds |dr1(s)/ds|2−

∫ f
0 ds iwA(r1(s))−

∫ 1
f ds iwB(r1(s))

)n
(1.14)

= (Z0Q[iwA, iwB])n. (1.15)

7
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Z0 is a normalization factor and Q is the single-chain partition function for a diblock

copolymer, given by

Q[iwA, iwB] =
1

V

∫
dr q(r, 1; [iwA, iwB])q†(r, 0; [iwA, iwB]), (1.16)

which in turn requires the solution to Fokker-Planck equations for the propagators q and

q†:

∂q(r, s; [iwA, iwB])

∂s
= ∇2q(r, s; [iwA, iwB])− iNw(r, s)q(r, s; [iwA, iwB]) (1.17)

subject to the initial condition q(r, 0) = 1; w(r, s) = wA(r) for contour positions s within

the A block (0 ≤ s < f), or wB(r) otherwise. The complementary propagator q† solves

the analogous equation starting from the B end of the chain.

We now have a density-explicit expression for the field-based model suitable for nu-

merical simulation:

ZC = Z0

∫
DρA

∫
DρB

∫
DwA

∫
DwB e−H[wA,wB ,ρA,ρB ]δ[ρA + ρB − ρ0], (1.18)

where Z0 is the ideal gas contribution, and the action or effective Hamiltonian is

H[wA, wB, ρA, ρB] = −v0χ

∫
dr ρA(r)ρB(r)− i

∫
dr
[
wA(r)ρA(r)− wB(r)ρB(r)

]
− n lnQ[iwA, iwB]. (1.19)

Because H is quadratic in the densities ρA and ρB, the model is often further sim-

plified by applying a Hubbard-Stratonovich transform, which uses Gaussian integrals

to eliminate both density fields, leaving a functional dependence only on wA and wB.

Instead, to facilitate the connection to the next section, we write an equivalent model

8
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that leaves one density field explicit and eliminates the other using the remaining delta

functional in (1.18) (incompressibility). By convention, phase field models also typically

scale the density fields by ρ0, reexpressing them in terms of

φ(r) = φA(r) = ρA(r)/ρ0 (1.20)

= 1− φB(r) = 1− ρB(r)/ρ0. (1.21)

Our model is now

ZC = Z ′0
∫
Dφ
∫
DwA

∫
DwB e−H[wA,wB ,φ] (1.22)

with the simplified Hamiltonian

H[wA, wB, φ]

C
= −χN

∫
drφ(r)2 − i

∫
dr [NwA(r)−NwB(r)]φ(r)

− V lnQ[iwA, iwB], (1.23)

where C = n
V

is the chain density expressed in units of chains per R3
g. Note that H/C is

still an extensive energy. Later, we will also make use of intensive energies H/CV , with

units of kBT per chain, and H/V , with units of kBT/R
3
g.

We can numerically approximate the path integrals in (1.22) using a complex Langevin

technique that explores different field configurations and accumulates their contributions,

or simplify the equations using mean field theory, i.e., self-consistent field theory (SCFT).

SCFT approximates the integrals by the field configuration with the largest contribution,

(φ∗, w∗A, w
∗
B), corresponding to a stationary point in H. This leads to the self-consistent

9
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field equations for equilibrium configurations (φ∗, w∗A, w
∗
B),

δH[wA, wB, φ]

δφ(r)

∣∣∣∣
φ=φ∗,wA=w∗A,wB=w∗B

= 0 (1.24)

δH[wA, wB, φ]

δwA(r)

∣∣∣∣
φ=φ∗,wA=w∗A,wB=w∗B

= 0 (1.25)

δH[wA, wB, φ]

δwB(r)

∣∣∣∣
φ=φ∗,wA=w∗A,wB=w∗B

= 0, (1.26)

which we solve numerically by the pseudospectral method and iterative relaxation meth-

ods based on gradient descent, typically the semi-implicit Seidel (SIS) scheme [30], as we

will discuss in the next section. Note that equilibrium states in SCFT are independent

of the chain density C. Furthermore, if we use the groupings χN (hereafter the segrega-

tion strength), NwA and NwB everywhere in (1.23), we find that the equations are also

independent of the molecular weight N .

Finally, we briefly comment on the compressible model obtained by substituting Kζ

from (1.10) for K. The particle-to-field transformation proceeds mostly unchanged until

(1.18). At this point, the delta functional is replaced by an expression like Kζ , but with

ρA and ρB rather than ρ̌A and ρ̌B, that is usually appended to the Hamiltonian. We can

then rescale the ρ fields, but we cannot eliminate one. In place of (1.22) and (1.23), we

find

ZC = Z ′0
∫
DφA

∫
DφB

∫
DwA

∫
DwB e−H[wA,wB ,φA,φB ], (1.27)

H[wA, wB, φA, φB]

C
= χN

∫
drφA(r)φB(r) +

ζN

2

∫
dr [φA(r) + φB(r)− 1]2

− i
∫
dr [NwA(r)φA(r)−NwB(r)φB(r)]− V lnQ[iwA, iwB]. (1.28)

10
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1.2 Numerical methods

We now discuss our methods of choice for computing solutions to self-consistent equa-

tions like (1.24), the pseudospectral method and gradient descent relaxation. The essence

of the pseudospectral method is that we can freely alternate between a real-space and a

Fourier-space representation of each field, choosing whichever is more convenient at any

time. This will be convenient for calculating the force for our relaxation dynamics.

In this work, we will denote the Fourier representation of a real-space field g(r) as

F [g] = ĝ(k) =

∫
dr e−ik·rg(r). (1.29)

An advantage of the pseudospectral method over spectral methods is that we can quickly

and directly compute products in real space, rather than as convolutions in Fourier space.

Given fields g(r) and h(r), the convolution is

F [gh] =

∫
dr e−ik·rg(r)h(r)

=

∫
dr

∫
dr′ e−ik·rg(r)h(r′)δ(r− r′)

=

∫
dr

∫
dr′
∫
dk′ e−ik·rg(r)h(r′)e−ik

′·(r−r′)

=

∫
dk′
(∫

dr e−i(k−k
′)·rg(r)

)(∫
dr′ e−ik

′·r′h(r′)

)
=

∫
dk′ ĝ(k− k′)ĥ(k′). (1.30)

For a spatial resolution of M , the convolution has a cost of O(M2), while the product

is only O(M) (and, if needed, the Fourier transform is O(M logM)). An advantage of

the pseudospectral method over finite difference methods is the accuracy of derivative

11
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calculations. We will often exploit the following property of the Fourier transform:

F [∇g] =

∫
dr e−ik·r∇g(r)

= −
∫
dr∇e−ik·rg(r)

= ik

∫
dr e−ik·rg(r)

= ik ĝ(k), (1.31)

which shows that a derivative in real space, an approximate calculation in a finite differ-

ence scheme, can be computed with spectral accuracy as a product in Fourier space.

Let us briefly explain the gradient descent method (also sometimes called steepest

descent). For simplicity, suppose we have a Hamiltonian H that depends only on one

field φ. The self-consistent equation for this Hamiltonian is

δH[φ]

δφ(r)

∣∣∣∣
φ=φ∗

= 0. (1.32)

The left side of this equation, the “gradient” of H with respect to φ (not r) will be used

as the force for our relaxation. In general, it has some components that are convenient

to calculate in real space and others that are convenient to calculate in Fourier space. A

basic gradient descent scheme to solve equation (1.32) for the equilibrium state φ∗ is

∂

∂t
φ(r, t) = − δH[φ]

δφ(r, t)
, (1.33)

where we have introduced a fictitious time variable t. We can choose the initial condition

φ(r, 0) arbitrarily, for example, using a simple sinusoidal pattern or random noise. We

then iteratively solve for φ by discretizing t into timesteps of size ∆t. Because t here

does not correspond to a physical time, we are not interested in intermediate values of

12
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φ(r, t), so the timestep ∆t is limited by numerical stability only, not accuracy. As long

as equation (1.33) converges to a steady state for long times, we will find

lim
t→∞

∂

∂t
φ(r, t) = − δH[φ]

δφ(r, t)
= 0, (1.34)

indicating that φ(r, t) converges to φ∗(r):

lim
t→∞

φ(r, t) = φ∗(r). (1.35)

In practice, we decide that numerical relaxation is sufficiently converged when the L2

norm of the force reaches a chosen tolerance, say, 10−5, or perhaps smaller if we must

compute the energy to high precision to resolve small energy differences.

In this work, we will use a number of modifications to the fully-explicit gradient

descent scheme in equation (1.33), the most important of which are the semi-implicit

Seidel (SIS) scheme from reference [30] and the nonlinear conjugate gradient method in

Section 3.1.1. We also mention another class of relaxation methods, known as diffusive

dynamics, that would be necessary to describe the physical evolution of a system over

time (unlike the fictitious time variable in equation (1.33)). A simple diffusive dynamics

scheme is

∂

∂t
φ(r, t) = ∇2 δH[φ]

δφ(r, t)
. (1.36)

Finally, we note that in practice, we will actually relax the Fourier representations of

each field, i.e.,

∂

∂t
φ̂(k, t) = − δH[φ]

δφ̂(−k, t)
. (1.37)

Also, because we must discretize the continuous fields to a spatial resolution of M grid

points, we should actually replace φ with a finite M -dimensional vector φ, which will re-

13
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place functional derivatives δ
δφ(r)

with vector derivatives ∂
∂φ

. Apart from these notational

changes, the derivations in this section still hold.

1.3 Attribution

Parts of this dissertation are reproduced (adapted) in part with permission from:

Jimmy Liu, Nabil Laachi, Kris T. Delaney and Glenn H. Fredrickson, “Advantages

and limitations of density functional theory in block copolymer directed self-assembly,”

Proc. SPIE 9423, 94231I (Mar 19, 2015). doi:10.1117/12.2085666,

Jimmy Liu, Kris T. Delaney and Glenn H. Fredrickson, “Phase field mapping for

accurate, ultrafast simulations of directed self-assembly,” Proc. SPIE 9779, 977920

(Mar 25, 2016). doi:10.1117/12.2219311,

Jimmy Liu, Kris T. Delaney and Glenn H. Fredrickson, “Optimized phase field models

in confinement: fast and accurate simulations of directed self-assembly,” Proc. SPIE

10146, 101460Z (Mar 27, 2017). doi:10.1117/12.2258106, and

Jimmy V. Liu, Carlos J. Garćıa-Cervera, Kris T. Delaney and Glenn H. Fredrickson,

“The optimized phase field model for the diblock copolymer,” in preparation.
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Chapter 2

Phase field mapping method
development

In this chapter, we develop a method for parametrizing real-valued phase field models

from complex-valued theories. First, starting from the complex-valued model of Sec-

tion 1.1.2, we derive a real-valued model and point out the types of approximations that

may be invoked. We then focus on adapting the force-matching method from the coarse-

graining literature to our needs. Simply producing a sensible model consistently can be

a challenge: our first naive attempts to use force-matching to parametrize coefficients

often resulted in terms with the wrong sign. By exploring variations in the procedure

and in the choice of basis set, we will attempt to elucidate elements that are critical to

a robust mapping method.
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2.1 Reduction to real-valued field theory

By evaluating the integrals over w configurations in (1.22), we can in principle express

the partition function in terms of an exact reduced action He[φ]:

e−He[φ] =

∫
DwA

∫
DwB e−H[wA,wB ,φ], (2.1)

ZC =

∫
Dφ e−He[φ]. (2.2)

The functional He rigorously defines a phase field model whose statistics are consistent

with the field theory from the previous section. Numerically, though, the form of He

grants it several advantages over the original complex-valued Hamiltonian H. Because

He is purely real-valued, the Boltzmann weight e−He is positive definite, circumventing

the sign problem associated with the original weight e−H . Because He is a locally convex

functional, we can perform phase field calculations using efficient numerical methods such

as the nonlinear conjugate gradient method. Finally, because the single-chain partition

functions have been integrated out, the theory does not require the chain contour vari-

able s, nor the solution to the modified diffusion equation (1.17), reducing the theory

from d+ 1 dimensions to d spatial dimensions.

In the following sections, it will be useful to express the thermodynamic force for this

phase field model in terms of the original ensemble. By differentiating equation (2.1)

with respect to φ(r), we find that

δHe[φ]

δφ(r)

∣∣∣∣
φ=φ0

=

〈
δH[wA, wB, φ]

δφ(r)

〉
φ0

, (2.3)
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where the average over w configurations at some value of φ = φ0 is defined as

〈G[wA, wB, φ]〉φ0 =

∫
DwA

∫
DwB G[wA, wB, φ0]e−H[wA,wB ,φ0]∫
DwA

∫
DwB e−H[wA,wB ,φ0]

. (2.4)

We can also apply a partial saddle approximation (a mean field approximation for the w

fields only) that picks out the largest contribution to each of the
∫
Dw integrals. In this

case, equations (2.1), (2.3), and (2.4) simplify to

e−He[φ] ≈ e−H[w∗A,w
∗
B ,φ], (2.5)

δHe[φ]

δφ(r)

∣∣∣∣
φ=φ0

≈ δH[w∗A, w
∗
B, φ]

δφ(r)

∣∣∣∣
φ=φ0

(2.6)

〈G[wA, wB, φ]〉φ0 ≈ G[w∗A, w
∗
B, φ0], (2.7)

where w∗A and w∗B minimize H for any given choice of φ.

Whether or not we apply the partial saddle approximation, He can be studied either

at the mean-field level or accounting for fluctuations in φ. For this study, we again

focus on mean-field solutions φ∗. At these minima, He[φ
∗] represents a classical density

functional theory for the Helmholtz free energy.

Unfortunately, the functional form of He cannot be obtained analytically [31] except

in simple cases [32], so we must approximate it. We will denote the approximate reduced

Hamiltonian Hr: He[φ] ≈ Hr[φ]. Other authors have tried various forms for Hr, but

these approximations are often severe—for example, the random phase approximation

(RPA) only recovers the same results as Section 1.1 in the asymptotic limit of small

density perturbations about the homogeneous (disordered) state. Consequently, for many

applications, SCFT has been more successful.
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2.2 Basis set framework

As we explore various avenues for improving phase field models, it will be valuable

to have a framework for defining models that we can easily modify and that clearly

delineates inputs and outputs to a phase field mapping procedure. This framework

should also encompass existing models (for the diblock copolymer melt) like the Landau-

Brazovskii (LB) [25], Ohta-Kawasaki (OK) [26] and generalized Ohta-Kawasaki (gOK)

models [33].

To this end, we express Hr as a linear expansion in a set of basis functionals {hi}:

Hr[φ] =
∑
i

cihi[φ]. (2.8)

The basis set {hi} is an input to the mapping procedure. To build a phase field model,

we first choose the basis set from intuitive arguments, for example, using Landau’s theory

of phase transitions [34] or the random phase approximation [27] (note that the LB, OK

and gOK models are all derived from the RPA). We are only interested in the functional

dependence on φ: we ignore any numerical prefactors given by other models. Instead, we

obtain the coefficients {ci} as outputs from the mapping procedure, as we will explain in

the next section.

For example, in our notation, a LB-type model can be written

Hr,LB[φ]

C
=

∫
dr

{
c2δφ(r)2 + c3δφ(r)3 + c4δφ(r)4 + c5 |∇φ(r)|2 + c6[∇2φ(r)]2

}
, (2.9a)
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and an OK-type model can be written

Hr,OK[φ]

C
=

∫
dr

{
c2δφ(r)2 + c3δφ(r)3 + c4δφ(r)4 + c5 |∇φ(r)|2

+ c6

∫
dr′G(r− r′)δφ(r)δφ(r′)

}
, (2.9b)

where δφ ≡ φ−f serves as an order parameter for microphase separation (it is positive in

an A-rich region and negative in a B-rich region). G is the Green’s function for Laplace’s

equation: it satisfies −∇2G(r − r′) = δ(r − r′) and has units of R2−d
g , where d is the

number of spatial dimensions. This reflects the connectivity of the diblock copolymer and

prevents macrophase separation. We outline the derivation of (2.9b) in Appendix A.2.

We can study these energy functionals analytically to learn about properties of {ci}

that we should expect from a successful mapping. Both forms of Hr above can be divided

into two parts, one local in real space and one local in Fourier space. Each part dictates

the properties of δφ in some asymptotic limit. (Note that the appropriate division is

somewhat arbitrary, since h2 is local in both real space and Fourier space, while h5 and

the LB form of h6 are semilocal in real space and local in Fourier space.)

The first part is an integral over a Landau polynomial L(δφ), where

L(δφ) = c2δφ
2 + c3δφ

3 + c4δφ
4. (2.10)

The Landau polynomial dominates Hr in the narrow interface limit. This is because at

any point r where we can neglect the wavevector-dependent part (i.e., away from the

interfaces), the magnitude of δφ will try to minimize L to lower its contribution to the en-

ergy. If the system is capable of (micro)phase separation, we know from Landau’s theory

of phase transitions that L should have a double-well structure as shown in Figure 2.1.

Thus we expect to find c4 > 0 and c2 < 0. The sign of c3 depends on f : it should be
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negative for f < 0.5, zero for f = 0.5, and positive for f > 0.5.

( ) ( )

Figure 2.1: Examples of the Landau polynomial L(δφ) for temperatures on either
side of a phase transition. In Landau theory, as the temperature is decreased below
the spinodal, L changes from having only one minimum, corresponding to the homoge-
neous disordered phase (left), to having a double-well structure with two minima, one
positive and one negative, corresponding to the A-rich and B-rich phases respectively
(right).

The second part of Hr dominates in the weak segregation limit, where δφ is small in

amplitude. In this case, we can neglect the Landau polynomial and rewrite Hr in terms

of the Fourier transform δ̂φ(k) to find

Hr,LB[φ]

C
≈ 1

V

∑
k

(c5k
2 + c6k

4)
∣∣∣δ̂φ(k)

∣∣∣2 (2.11a)

or

Hr,OK[φ]

C
≈ 1

V

∑
k

(c5k
2 + c6k

−2)
∣∣∣δ̂φ(k)

∣∣∣2 . (2.11b)

Now, apply the single-mode approximation: assume that a single Fourier mode k∗ > 0

dominates
∣∣∣δ̂φ(k)

∣∣∣. The value of k∗ should minimize Hr, so it must be

k∗ = (−c5/2c6)
1
2 (2.12a)
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or

k∗ = (c6/c5)
1
4 , (2.12b)

and the signs of the coefficients must be c5 < 0 and c6 > 0 for LB-type models, or c5 > 0

and c6 > 0 for OK-type models. This sets a preferred length scale for domain sizes

L0 = 2π
k∗

. As χN increases above the weak segregation limit, the terms from the Landau

polynomial begin to play a role in setting L0 and the single-mode approximation breaks

down.

We have outlined two possible choices for the basis set, those that we used most

extensively, but there are many others. In fact, it can be shown that the vector space of

He is spanned by an uncountably infinite basis. It will become clear that the choice of

basis set has a large impact on the quality of the model produced by phase field mapping

(or any other method of determining the coefficients). Much effort in this chapter was put

towards identifying appropriate metrics for model quality and assessing whether failures

arise from deficiencies in the basis set or from deficiencies in the coefficient mapping.

2.3 Force-matching

2.3.1 Method

Phase field mapping is a novel method for producing phase field models [35]. It

systematically parametrizes a phase field model using only a small number of inexpensive

SCFT calculations. The method draws inspiration from the force-matching technique for

coarse-graining particle and field theories. Phase field mapping is analogous to coarse-

graining in that it reduces one theory to another that is more efficient to solve numerically.

Unlike conventional coarse-graining, though, there is in principle no loss of accuracy in
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switching from SCFT to a phase field description. The new model is not tied to a coarse

discrete spatial mesh, as it is in renormalization group theory—it is still a functional

of a continuous density field. Given an ideal set of basis functionals, we expect that

the reduced action would agree perfectly with SCFT. In this sense, phase field mapping

shares more in common with electronic density functional theory.

Given the Hamiltonian H, a representative configuration φ∗, and a reduced action Hr

with undetermined parameters {ci}, we minimize the following cost metric Ψ quantifying

the disagreement between the two models:

Ψ({ci}) =
1

V

∫
dr

[
δHr[φ]

δφ(r)

∣∣∣∣
φ=φ∗

−
〈
δH[wA, wB, φ]

δφ(r)

〉
φ∗

]2

. (2.13)

For the linear form of Hr in (2.8), Ψ is a quadratic form in {ci} and minimization amounts

to solving a system of linear equations in those parameters. We can choose to optimize

some or all of the {ci}. Any coefficients not being optimized should be fixed to some

predetermined values, for example, those prescribed in RPA-based models.

Equation (2.13) represents force-matching. It penalizes differences between the ther-

modynamic forces in the two models. This penalty is zero in the ideal case where the

forces exactly match, such as when Hr is exactly equal to He, as shown in (2.3), and

positive otherwise.

If the representative configuration φ∗ is chosen according to the conditions described

in the previous sections (i.e., if it is a stationary point in H), then the SCFT force is

zero. Then minimizing (2.13) amounts to selecting parameters {ci} that minimize the

phase field force when evaluated at the configuration φ∗. If we attempt to minimize with

respect to all of the {ci}, the linear system becomes homogeneous, so the mapping admits

a family of solutions that differ only by a multiplicative factor on all of the {ci}. In this

case, we fix one of the coefficients to a constant value (typically 1 or −1, whichever is
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appropriate) before minimization. The choice of multiplicative factor does not affect any

of the stationary points of Hr, so we will not concern ourselves with it for now, but we

can later choose it through another method, such as the one explained in Section 2.4.1.

2.3.2 Results

We applied the force-matching scheme defined in Section 2.3.1 to determine optimal

values for c2, c3 and c4 for LB-type and OK-type models (2.9a) and (2.9b), holding other

coefficients fixed at values given in the literature, at various values of χN for f = 0.5 (a

symmetric diblock). We first analyze the coefficients themselves to see if the mapping

is sensible, then we move on to study properties of the mapped model by computing

equilibrium solutions to Hr[φ].

Figure 2.2 shows the mapped coefficients c2 and c4 and compares them to the values

from the literature. As expected by symmetry for this block fraction, the mapping

effectively found that c3 was zero (typically it was order 10−5 due to numerical errors).

Note that in the original OK model, no values are given for the c3 and c4 parameters—

the value may be freely adjusted. To be as fair as possible to the original model, in

subsequent results, we defined the “original” values using phase field mapping with only

the c3 and c4 parameters optimized.

The results of Figure 2.2 are encouraging in two ways. First, the mapping produced

coefficient values with the correct signs c2 < 0, c3 = 0 and c4 > 0. (We did not see

the same success when optimizing the semilocal/nonlocal term coefficients c5 and c6

until Section 2.4.1.) Second, the mapping seems to recover the RPA result in the weak

segregation limit χN ≈ χNs, where those models were derived and should be most

accurate.

Next, we studied one-dimensional equilibrium density fields, minima of Hr[φ], using
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Figure 2.2: Values for phase field model coefficients (a) c2 and (b) c4 versus χN . Each
plot shows original values for the LB model (dashed line) and the OK model (solid
line), and values optimized by phase field mapping for an LB-type model (diamonds)
and an OK-type model (squares). Note that the original formulation of the OK model
does not give a value for c4.

numerical simulations in a periodic cell. (Note that equilibrium solutions of Hr will

generally not be identical to equilibrium solutions of H.) Figure 2.3 shows typical density

fields φ∗PF for original and optimized phase field models compared to the SCFT solution

φ∗SCFT under commensurate conditions—that is, the size of the simulation cell is consistent

with the equilibrium SCFT period L0,SCFT. Note that in weakly segregated systems χN =

15, the SCFT density profile is roughly sinusoidal, while at higher values (χN = 35), it

has an increasingly “square” character. The original LB model does not capture either

the shape nor the saturation of the SCFT profile. On the other hand, the optimized

LB model captures both in weakly segregated systems (χN = 15); at higher segregation

strengths (χN = 35), it finds roughly the correct saturation but fails to capture the

shape, instead showing unexpected “creasing” behavior in the center of each domain.

The OK-type model shows similar trends, but because the “original” model already

captured the density profile fairly well, the effect is less pronounced. We can understand
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this improvement in terms of the Landau polynomial (2.10): the mapping procedure

correctly sets its coefficients to capture the right saturation values for φ in each (A-rich

or B-rich) domain.
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Figure 2.3: Equilibrium density fields predicted by the original LB model (dotted
red line) and optimized LB model (solid red line) compared to SCFT (dashed grey
line) in a commensurate cell (a) at χN = 15, and (b) at χN = 35, both at f = 0.5.

In spite of the creasing issue, the improvement in the density fields from model op-

timization is clear. We quantified the improvement in Figure 2.4 by measuring the root

mean square (L2 norm) of the error made by phase field models density relative to SCFT,

r =

(
1

V

∫
dr
[
φ∗PF(r)− φ∗SCFT(r)

]2)1/2

(2.14)

at each value of χN . We present results for original and unoptimized version of the

LB and OK models and, for comparison, the original version of the gOK model (we

did not find good results from optimizing a gOK-type model). In all cases, optimized

models make smaller errors than the original versions, thanks to the improved form of the

Landau polynomial. As χN increases, though, all of the phase field models seem unable
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to reproduce the increasingly “square” character of the SCFT density profile, instead

showing creasing behavior. We attribute this remaining disagreement to a limitation of

the basis sets (2.9a) and (2.9b).
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Figure 2.4: Root mean square error in density made by phase field models relative
to SCFT versus χN in a commensurate cell with f = 0.5. Shown are original (open
shapes) and optimized (closed shapes) versions of the LB model (diamonds) and OK
model (squares), as well as the original gOK model (triangles).

The improvements we obtained in the equilibrium density fields using optimized mod-

els are an early success of our optimization procedure. However, note that the optimized

values for c2 and c4 are both strong functions of χN . From the derivation of He[φ], we

expect that only the quadratic coefficient, c2, should depend on χN , and that dependence

must be linear. We believe this to be a limitation of the basis sets (2.9a) and (2.9b), just

like the remaining disagreement in the density fields.

Next, we investigated the performance of these models under incommensurate condi-

tions. When the system is subjected to an incommensurate cell size, the density profile

must be reshaped to accomodate the resulting internal stress. We found that phase field

models, both original and optimized, responded to incommensurate conditions differently

than SCFT.

Figure 2.5 shows two types of nonphysical behavior that arise. First, we now found
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the creasing effect in all three types of phase field models (LB-type, OK-type, and gOK).

This is particularly notable for the gOK model, which is designed to perform well in the

strong segregation regime and is typically better at reproducing square density profiles.

Secondly, LB and OK density profiles, even optimized ones, sometimes exceed physically

relevant values for φ, predicting volume fractions less than 0 or greater than 1.
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Figure 2.5: Equilibrium density fields from phase field models showing nonphysical
behavior under strongly incommensurate conditions. Rather than using the com-
mensurate domain size L0,SCFT, the system size is fixed at 1.25L0,SCFT. In (a), the
optimized LB model predicts volume fractions less than 0 and greater than 1, and in
(b), the gOK model shows creasing, both at χN = 35 and f = 0.5.

We found that we could constrain the densities to stay between 0 and 1 by adding

logarithmic terms toHr like
∫
drφ lnφ as done in some other models [36, 33]. However, we

were unable to prevent creasing in any of the models. Because confinement often induces

incommensurability effects, these issues must be considered in any confined studies.

Next, we continued our investigation of commensurability effects by performing a

variable cell size calculation for each phase field model, as demonstrated in Figure 2.6.

(In this case, we are not evolving the cell size over the course of a single simulation, but

instead computing equilibrium configurations in cells of various sizes.) We found local
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minima in Hr corresponding to lamellar configurations with two, three and four periods

(of which two are metastable or unstable) and then plotted their intensive free energies

Hr[φ
∗]/CV as a function of the cell size L. We can then identify the domain spacing

L0,PF for each phase field model from the location of the minima (divided by the number

of lamellae there). In Figure 2.6, the cell size is listed in units of L0,SCFT the domain

spacing obtained in SCFT, so that if the phase field model agrees perfectly with SCFT,

the minima should occur at integer multiples of L0,SCFT. Instead, in this case, we find

that the gOK model at χN = 15 reaches a minimum for three lamellae at 2.8 L0, a

difference of 0.72 Rg or about 5 nm for a typical PS-PMMA diblock copolymer.
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Figure 2.6: A typical variable cell calculation, shown here for the gOK model at
χN = 15 and f = 0.5. We plot the intensive free energy Hr/CV for two- (left, blue),
three- (middle, red) and four-period lamellar configurations (right, green) as a function
of the cell size (in units of the SCFT domain spacing L0). The minimum of each curve
corresponds to an integer multiple of the gOK model’s predicted domain spacing
L0,gOK. Each curve is harmonic in the vicinity of the minimum with a curvature
related to the Young’s modulus, but then becomes anharmonic as L deviates farther
from the minimum.

By repeating this variable cell size calculation over a range of χN for several models,

we obtained predicted domain spacings for various phase field models (and for SCFT), as

shown in Figure 2.7. We discovered that none of the phase field models predicts domain

spacings that agree in value or in scaling with SCFT. From previous studies using SCFT,
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L0/Rg is known to scale as Nα−0.5, where α is approximately 1 just above the weak

segregation limit and gradually decreases towards 2
3

as χN increases [37]. Note that this

scaling is given for L0 in units of Rg = b
√
N/6, consistent with the rest of our work—if

lengths are instead given in dimensional units, the relation becomes L0 ∼ Nα.
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Figure 2.7: Domain spacing L0 in units of Rg versus χN predicted by the original
OK (open squares), optimized OK (closed squares), original LB (open diamonds),
optimized LB (closed diamonds) and original gOK models (open triangles) compared
to the SCFT values (solid line). The domain spacing for the optimized LB model for
χN > 15 was too large to fit on the scale of the figure.

The disagreement in L0 has significant ramifications for the quality of these phase field

models. Because the commensurability window is shifted, we do not expect predictions

of defect energies to agree with SCFT. As an example, in Figure 2.8, we computed the

defect formation energy for a simple defect, four lamellae in a cell of size 3L0,SCFT, at

various values of χN . In this case, the phase field model defect energy prediction is both

quantitatively and qualitatively useless: because of the incorrect domain spacing scaling,

at higher values of χN , all of the phase field models (except for the optimized LB model)

predict the four-period state to be more stable than the three-period state.

The conclusion from Figure 2.8 is that comparisons between simulations using SCFT
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Figure 2.8: Defect formation energy for a four-period lamellar state in a cell of size
3L0,SCFT as predicted by SCFT (solid line), original LB (open diamonds), optimized
LB (closed diamonds), original OK (open squares), optimized OK (closed squares),
and original gOK models (open triangles) versus χN . The reference energy is taken
to be the energy of the globally stable state (according to SCFT), three lamellae.
Negative values for the defect energy indicate that the defect is more stable than the
three-period state.
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using these phase field model simulations must be done carefully, accounting for the

mismatch in the model domain spacing L0, and the results should be viewed with some

skepticism. We are unlikely to find quantitative measurements of lengths or energies. As

a partial solution, we may be able to observe qualitative trends using phase field model

simulations in cell dimensions rescaled by the ratio
L0,PF

L0,SCFT
, but this amounts to changing

the physical constant Rg to a value inconsistent with the polymer’s molecular weight.

Our results in this section, particularly Figures 2.6 and 2.7, led us next to revisit and

improve the mapping procedure.
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2.4 Force-matching with stress-matching

In Section 2.3, we found that force-matching gave us a way to systematically param-

etrize coefficients in the Landau polynomial using only an equilibrium density field from

SCFT. Still, we encountered a limitation to the method: we were unable to obtain sen-

sible results when trying to optimize coefficients for semilocal and nonlocal terms c5, c6

and c6, so we fixed them to their literature values. Because these terms are primarily

responsible for setting the domain spacing L0, it is unsurprising that these phase field

models, optimized or not, did not match length scales with SCFT.

Can we modify the phase field mapping procedure to embed SCFT values of L0 into

the optimized models? We sought a functional of φ that is to L0 as the force δH
δφ(r)

is to the

equilibrium density φ∗. We proposed to use the derivative ∂H/V
∂L

: just as δH
δφ(r)

is zero when

evaluated at (φ∗, w∗A, w
∗
B), ∂H/V

∂L
is zero when evaluated at L = L0 (and (φ∗, w∗A, w

∗
B)).

Figure 2.6 demonstrates an analogous situation using the phase field energy Hr/V in

place of H/V and the phase field equilibrium density in place of φ∗. We can reexpress

our new functional in more conventional terms by defining the strain

ε =
L− L0

L0

, (2.15)

where it is understood that L0 is strictly the correct SCFT value, not necessarily the

domain spacing for the current model. Then the stress is

∂HV [wA, wB, φ]

∂ε
= −C∂ lnQ[iwA, iwB]

∂ε
, (2.16)

which we will try to match to the analogous stress for the real-valued field theory,

∂Hr,V [φ]

∂ε
=
∑
i

ci
∂hi[φ]

∂ε
. (2.17)
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For brevity, we have written HV = H/V and Hr,V = Hr/V . Note that these stresses have

units of energy per volume (kBT/R
3
g), just like the forces δH

δφ(r)
and δHr

δφ(r)
. An example

derivation of a stress is given in Section A.3.

2.4.1 Method

We now use equations (2.16) and (2.17) to develop an improved procedure for phase

field mapping that addresses the model’s predictions of domain size and defect energies.

As before, we minimize Ψ given the Hamiltonian H, a representative configuration φ∗,

and a reduced action Hr with undetermined parameters {ci}, where

Ψ({ci}) =
1

V

∫
dr

[
δHr[φ]

δφ(r)

∣∣∣∣
φ=φ∗

−
〈
δH[wA, wB, φ]

δφ(r)

〉
φ∗

]2

+ λ

[
∂Hr,V [φ]

∂ε

∣∣∣∣
φ=φ∗

−
〈
∂HV [wA, wB, φ]

∂ε

〉
φ∗

]2

.

(2.18)

For the form of Hr in (2.8), Ψ is again a quadratic form in {ci} and can be minimized by

solving a system of linear equations. The first half of the equation is the force-matching

term, unchanged from (2.13). The second half of (2.18) matches stresses between the

two models by assigning a penalty to differences between them. This penalty is zero

in the ideal case where the stresses exactly match, such as when Hr is exactly equal to

He, as shown in (2.3), and positive otherwise. When evaluating the derivatives, it is

understood that the density field φ = φ∗ also carries information about the simulation

cell size L in which it was obtained (and therefore the value of ε). The dimensionless

parameter λ controls the balance between force- and stress-matching. As it is increased,

the parametrized values change and lead to improved predictions of length scales until

the values eventually saturate. We studied the dependence of {ci} on λ and found that

setting λ = 100 was sufficient to produce parameters within 1% of their saturated values.
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In the following sections, we will choose a stress-free stationary point in H as the

representative configuration φ∗, so that both the SCFT force and stress are zero. The

minimum of equation (2.18) then tries to minimize both the phase field force and stress

at φ∗, with the relative importance of the stress determined by λ. As before, if we

optimize with respect to all of the {ci}, the linear system becomes homogeneous, so the

mapping admits a family of solutions that differ only by a multiplicative factor. In this

case, we fix c2 = −1 before minimization, then determine the multiplicative factor by

matching the elastic modulus from SCFT:

∂2Hr,V [φ]

∂ε2

∣∣∣∣
φ=φ∗

=
∂2HV [w∗A, w

∗
B, φ]

∂ε2

∣∣∣∣
φ=φ∗

. (2.19)

We can compute these derivatives analytically at φ∗, or approximate them by computing

H and Hr for several values of ε evenly spaced around 0 and measuring the curvature

[38], whichever is more convenient. In the latter case, small values of ε, say ±0.01, will

produce better estimates of the modulus, since cubic and higher order terms begin to

play a role at larger values.

2.4.2 Results

As a test of the improved mapping procedure, we parametrized an optimized phase

field (OPF) model of the form (2.9b) for a symmetric diblock copolymer (f = 0.5). With

the addition of the stress term to the cost function, we were able to parametrize all of

the model coefficients simultaneously, and obtain useful values for the semilocal coeffi-

cient c5 and the nonlocal coefficient c6. Therefore, we have for the first time succeeded

in producing a phase field mapping without any help in the form of information about

coefficients from previous models.

Figure 2.9 compares coefficients from the OPF model with coefficients from the un-
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optimized OK model as given in Appendix A.2. Since the OK model does not specify a

value for c4, we used the mapping procedure to determine its best possible value given

the unoptimized values of the other coefficients (for this mapping, equation (2.18) is

equivalent to (2.13) because h4[φ] does not contribute to the stress).
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Figure 2.9: Phase field model coefficients for a symmetric diblock copolymer melt for
χN from 11 to 35. Left: optimized local coefficients −c2 (diamonds) and c4 (squares)
and unoptimized local coefficients (dotted lines). Right: optimized semilocal/nonlocal
coefficients c5 (diamonds) and c6 (squares) and unoptimized coefficients (dotted lines).

As in Section 2.3, the optimization procedure correctly identified that c3 should be

zero for the symmetric case. The optimized local coefficients also seem consistent with

the standard OK model values in the weak segregation limit χN ≈ χNs = 10.495. On

the other hand, the optimized values for c5 and c6 clearly do not reduce to the OK model

values in this limit—why?

In the OK model, c5 and c6 are chosen to match the behavior of the structure factor

S̃(k) for large and small wavevectors, respectively (for more details, see Appendix A.2).

These choices immediately determine the critical wavevector k∗, as shown in (2.12b),

reproduced here:

k∗ = (c6/c5)
1
4 , (2.20)
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but this does not agree exactly with the RPA critical wavevector. In the weak segregation

regime where the single-mode approximation is valid, the OK model predicts that

L0 = 2π/k∗ = 2π(c5/c6)
1
4 , (2.21)

but this also does not agree exactly with the RPA value of L0. On the other hand,

because the OPF model is parametrized with the goal of improving its predicted domain

spacing, it can choose values for c5 and c6 that produce a better match to the RPA in

the weak segregation regime (and to SCFT at all values of χN). Note that the single-

mode approximation rapidly becomes inaccurate as χN increases above χNs, since many

harmonics are already engaged in SCFT solutions even quite near the ODT.

Now, we demonstrate the ability of the improved mapping procedure by repeating

the type of variable cell calculation from Figure 2.6. Using SCFT, the OPF model and

the unoptimized OK model, we calculated the intensive free energy H/CV or Hr/CV

for two-, three- and four-period lamellar states for simulation cell sizes from 2L0,SCFT to

4L0,SCFT. Figure 2.10 compares the results for these models at χN = 25. We observe

that the OK model underestimates the location of the minimum for three lamellae by

0.5L0,SCFT. The OPF model properly predicts the minima to occur at integer multiples

of L0,SCFT and captures the overall shape of the SCFT curve, which is important for

calculating defect formation energies.

By fitting several points on these curves to a quadratic function and calculating the

location of the minima, we obtained the predicted domain spacing L0 for each model as

a function of χN . Figure 2.11 shows that the OPF model successfully predicts L0 to

within one percent of L0,SCFT across the entire range of χN studied, a property that we

did not find for any previously studied phase field model.

The OPF model domain spacing still shows a small systematic error at larger values
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Figure 2.10: Intensive free energy of a lamellar diblock copolymer system at χN = 25
as a function of the simulation cell size in units of the SCFT domain spacing L0,SCFT

for SCFT (solid blue lines), the OPF model (blue circles), and the unoptimized OK
model (orange triangles). From left to right, the curves represent free energies for two-,
three- and four-period lamellar configurations. The minimum of each curve occurs at
a multiple of the model’s predicted domain spacing.
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of χN . This error comes from the discrepancy between the density fields of an OK-type

model and SCFT, which is a limitation of the basis set (2.9b). This result reinforces

our message that, even with our improved phase field mapping procedure, identifying a

strong basis set has a significant effect on the quality of the model.
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Figure 2.11: Predicted domain spacing L0 in units of Rg versus χN for SCFT (solid
line), the unoptimized OK model (triangles) and the OPF model (circles) for the
lamellar phase in a symmetric diblock copolymer melt.

2.5 Conclusions

In this chapter, we developed phase field mapping, a method that can quickly and

accurately parametrize an optimized phase field model using only a stress-free equilibrium

configuration for the SCFT density φ∗. After the mapping is done once, the resulting

model can be used as a substitute or partial substitute for SCFT to significantly reduce

computation time. By investigating the mapped models, we identified useful metrics for

gauging the quality of a phase field model, in particular, the error made by its equilibrium

density fields and its predicted domain spacing L0. Matching the domain spacing is

especially important for making comparisons between two different states, since their
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relative stability can be strongly dependent on the size of the simulation cell, so we

developed a mapping method to target the correct value of L0.

We found that the force-matching method in our original formulation was effective at

parametrizing coefficients in the Landau polynomial that dictates the amplitude of the

density fields. Using only force-matching, however, we were unable to obtain sensible

values for the semilocal and nonlocal coefficients in Hr that control the domain size

(coefficients from our attempts often had the wrong sign according to simple analytical

arguments). Adding a stress-matching term to the cost function rectified the issue. With

this improved mapping procedure, we can successfully parametrize every coefficient in

an OPF model and eliminate all dependence on values from the literature. The OPF

model also predicts with high accuracy the same value of L0 as SCFT (to within 1% for

symmetric diblock melts).

A crucial element of a successful mapping is identifying a set of basis functionals for Hr

that is a good approximation for He. Any inconsistencies will manifest as disagreements

in the equilibrium density fields and lower the quality of the OPF model. We must always

assess whether issues that we encounter with mapped models come from the basis set

or from other aspects of the method, a situation that makes method development more

difficult. As an example, a strong candidate for a useful basis functional is the mixing

entropy
∫
drφ(r) lnφ(r), but it is complex-valued for negative φ, and its contribution to

the force, 1 + lnφ(r), diverges as φ approaches zero.

Of course, improving the basis set is also a difficult task, since there is no algorithmic

way to do so (a similar problem exists in the exchange-correlation functionals of electronic

density functional theory). Some ideas for other potentially useful basis functionals are:

•
∫
dr |∇φ|

2

φ
, the Lifshitz entropy, which appears in the ground state dominance (GSD)

approximation [3] and as a generalized replacement for the square gradient term in
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various density functional theories [39], including the “improved” Ohta-Kawasaki

model [40] and the gOK model [33] (there, it is expressed as
∫
dr |∇ψ|2, where

ψ =
√
φ);

•
∫
drφ lnφ, the mixing entropy or configurational entropy from Flory-Huggins the-

ory, which appears in the slow gradient expansion [3], in the DFT by Bohbot-Raviv

and Wang [36], and in the gOK model [33];

•
∑

k

∑
k′ Γ̂3(k,k′)δ̂φ(k)δ̂φ(k′)δ̂φ(k−k′), where Γ̂3 is the third-order vertex function

Γ3 from Leibler’s RPA [27, 41], or some other nonlocal treatment of terms beyond

quadratic order in φ.
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Chapter 3

The optimized phase field model for
the diblock copolymer melt

Now that we have a robust method for producing optimized phase field models, we

explore deeper into numerical properties of the OPF model for the diblock copolymer

melt. Whereas our goal in Chapter 2 was to analyze the phase field mapping method

and improve it using feedback from model properties, now we leave the mapping method

fixed (for the most part) and focus on the comparison between SCFT and our best OPF

model.

3.1 Methods

The phase field mapping method for this study remains in the same form given in

Section 2.4.1, but we will now also apply it to parametrize the model at asymmetric block

fractions. Because the model for an AB diblock copolymer at any given block fraction

f = f0 is equivalent to a BA diblock copolymer with f = 1− f0, we need only consider

the case f ≤ 0.5. We will also later explore an alternate mapping produced from the

SCFT configuration φ∗HEX, an equilibrium state corresponding to the hexagonally-packed

cylinder phase (HEX).

Let us discuss two aspects of our simulation code that we will use to benchmark the
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OPF model: an efficient numerical relaxation strategy, the nonlinear conjugate gradient

method, that will be used for timing comparisons to SCFT; and code optimizations

around memory usage, that will dictate the maximum size of an OPF calculation. All of

our simulation code was written in the feature-PhaseFieldModels branch of PolyFTS,

the Fredrickson group’s extensive and versatile central codebase for equilibrium field-

theoretic simulations.

3.1.1 Nonlinear conjugate gradient method

The nonlinear conjugate gradient method is an efficient solver for high-dimensional

optimization problems. As written in Chapters 1 and 2, our field theories are, in fact,

infinite-dimensional, since a continuous field like φ(r) can be thought of as a vector

φ =



φ1

φ2

...

φM


(3.1)

in the limit that the number of points M → ∞. Of course, to simulate field theories

numerically, the fields must be discretized at M finite grid points. Since M can be larger

than 106, finding an equilibrium solution for φ (minimizing Hr(φ)) certainly qualifies

as a high-dimensional problem and benefits greatly from conjugate gradients. In SCFT,

the presence of a pressure-like field leads to a mixed saddle point problem and precludes

the use of the conjugate gradient method.

For this study, we implemented a conjugate gradient solver based on the Polak-Ribière

algorithm [42] to perform numerical relaxation, replacing our previous gradient descent-

based method. We first discretize the field degrees of freedom so that Hr is now a function
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F (φ) of the M -vector φ.

The key innovation of the conjugate gradient method is that the direction pj for the

jth field update is chosen to be conjugate to all previous directions by a formula involving

only the previous step. Two vectors pj and pk are mutually conjugate if

pj T (∇∇F )pk = 0. (3.2)

This property is like orthogonality for the inner product weighted by the Hessian of F .

In the Polak-Ribière method, the formula for the direction is

pj = −∇Fj + βjp
j−1, (3.3)

where φj is the field configuration for step j and ∇Fj is the discrete representation of

the force δHr[φ]
δφ(r)

for step j. Notice that if βj = 0, which should occur infrequently if ∇F

is mostly linear in φ, the next direction pj will be the steepest descent direction. In this

case, we say that the history of conjugate directions has been reset. The scalar βj is zero

for j = 0 and otherwise given by

βj = max

{
0,
∇F T

j (∇Fj −∇Fj−1)

||∇Fj−1||2

}
. (3.4)

To preserve conjugacy, the size of the step αj taken in the pj direction must be

determined by line search (i.e., minimization in one dimension). The minimization can
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be approximate as long as it satisfies the strong Wolfe conditions,

f(x) ≤ f(0) + c1xf
′(0) (3.5)

|f ′(x)| ≤ −c2f
′(0) (3.6)

c1 < c2 < 0.5. (3.7)

Here, the function to minimize is given by f(x) = F (φj + xpj), and its derivative is

f ′(x) = pj T∇Fj. Then αj will be the final value of x that we find by approximately

minimizing f . Equation (3.5), the Armijo condition, ensures that f decreases sufficiently

from its previous value. Equation (3.6) is known as the curvature condition and ensures

that f ′ approaches zero sufficiently quickly.

We took c1 = 0.0001 and c2 = 0.1 and followed the line search algorithm laid out

by Algorithms 3.5 and 3.6 in [42]. We do not attempt to reproduce all of the details

here, only to give a rough overview. We first take small “blind steps” until we have

bracketed the minimum. The first step size is chosen in some way using the minimizer

of the previous line search, for example, by fitting two points and a slope to a quadratic

function. Each subsequent blind step doubles the previous value of x. If we find that f

is increasing or f ′ is positive, indicating that the minimum is bracketed between 0 and

x, we switch to an interpolation strategy. We use the most recent known value of f

and the two most recent known values of f ′ to fit f(x) to a cubic polynomial and step

directly to its minimum. We repeat this last step indefinitely to improve the accuracy

of the minimum. At any point in the line search, including the blind steps, if the Wolfe

conditions are met, we assign αj = x, terminate the line search, and compute the next

conjugate direction. We end the optimization when the L2 norm of the force ∇F is

within a specified tolerance, usually 10−5, or when the line search can no longer resolve

differences between energies due to floating-point precision.
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In reference [42], Nocedal remarks that it is often better to use an existing imple-

mentation of the line search than to write a new one because it is difficult to correctly

implement the many important minutiae. We found this to be true, but chose to do so

anyway, to make full use of the existing structure of PolyFTS and its Field class, which

is efficiently designed for parallelization across multiple CPUs exploiting both shared and

distributed memory or, most advantageously, for GPUs [43]. In Section 3.2.1, we char-

acterize the performance of our conjugate gradient method relative to our most efficient

numerical solvers for self-consistent field theory.

3.1.2 Monitoring memory usage

Running very large simulations can be expensive in terms of both computational

time and memory usage. To reduce the former, we try to write code that uses efficient

algorithms for a given task, such as fast Fourier transforms for applying matrix operations

that are diagonal in Fourier space, or the nonlinear conjugate gradient method (rather

than gradient descent methods) for high-dimensional optimization. For the latter, we

try to reduce the amount of data that participates in any calculation and must be kept

in memory. Whereas a simulation that is processor-intensive can be completed given

enough compute time, a simulation that is too memory-intensive simply cannot be run

without upgrading the hardware. Memory usage thus sets a strict upper limit on the

accessible size of a simulation cell.

We counted the number of fields allocated during our simulations using a custom

build of PolyFTS that defines two static class variables Field::numFieldsAllocated

and Field::maxFieldsAllocated, updated in the constructor and destructor of the

Field class. For a bulk simulation with Ns = 100 contour points, we found that SCFT

must allocate 109 fields, most of which correspond to the propagator q(r, s) at different
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contour points s. We can then calculate the memory usage as the product of the memory

required per floating point number, the number of grid points and the number of fields.

For example, a calculation in a simulation cell with grid dimensions 768× 128× 40 using

complex-valued double-precision floating-point numbers in SCFT will require computer

hardware with about 768× 128× 40× 16 B× 109 = 6.8 GB of memory.

Because phase field simulations do not track the contour variable s, they do not

need to store fields for each contour point. After being careful to allocate temporary

fields only when needed, our implementation in PolyFTS requires 13 fields for any bulk

simulation. Therefore, a phase field model calculation corresponding to the previous

SCFT calculation would require only 768×128×40×16 B×13 = 800 MB of memory. We

can also conclude that, for a given amount of available memory, a phase field simulation

in PolyFTS can access system volumes nine times as large as SCFT simulations.
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3.2 Results

3.2.1 Computational efficiency

First, we briefly note the result of our benchmark testing for the computational

efficiency of OPF calculations compared to SCFT calculations. On the same hardware, a

single Intel Ivy Bridge CPU core, we ran serial calculations on a test problem (a symmetric

diblock copolymer melt at χN = 12 with fields seeded from uniformly distributed random

noise) with a spatial resolution of M = 128 × 128 grid points. These conditions ensure

that the computation time for each serial calculation is dominated by the cost of fast

Fourier transform operations, as would be the case for an expensive large-cell calculation

taking advantage of CPU or GPU parallelism [43]. Averaged over at least one hour of

computation time and at least 10,000 field updates, we found that the time required

per field update was 0.20 s for SCFT (using the SIS updater) and 0.011 s for the OPF

model (using the Polak-Ribière conjugate gradient method). Thus, we expect that a field

update for a large-cell bulk OPF calculation will complete roughly 20 times faster than

a field update for the corresponding bulk SCFT calculation.

Note that to complete our characterization of the speed of the OPF model, we also

need to estimate the number of field updates required to attain convergence. This number

is strongly system-dependent and varies with relaxation parameters and initial conditions.

We found that it is typically smaller for the conjugate gradient method than for the SCFT

relaxation algorithms, further improving the relative performance of the OPF model.

As mentioned previously, not only are phase field models faster than SCFT, they are

also less memory-intensive. For all of the simulations performed for this study, the chain

contour in SCFT was resolved at 100 points. Under these conditions, we found that a

bulk phase field calculation required roughly nine times less memory. Thus, given some

amount of available memory, the largest accessible system size is nine times larger using
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a phase field model than using SCFT.

3.2.2 Optimized coefficients

Using a commensurate one-dimensional (lamellar) density profile from SCFT as φ∗, we

performed phase field mapping to obtain model parameters c2, . . . , c6 that represent the

optimal values according to the metric of equation (2.18). Together with the basis set in

equation (2.9b), these parameters define the optimized phase field model for the diblock

copolymer melt. We repeated the mapping process at various points in the diblock

copolymer phase space (0.2 ≤ f ≤ 0.5 and 10.6 ≤ χN ≤ 35) for which the lamellar

phase is at least metastable. Throughout this range, all of the parameters appear to be

smooth functions of both variables. Figure 3.1 compares the mapped parameters and

fitted curves to the Ohta-Kawasaki model parameters. In the weak segregation regime

(near the spinodal), the mapped parameters recover similar values to the RPA and the

OK model. As χN increases away from the spinodal, the optimized parameters diverge

from the RPA values. In particular, we note that the ratio c6/c5, which plays a key role

in setting the domain spacing, adjusts to reflect the information obtained from SCFT.

For convenience, we fit the OPF model parameters to simple analytic functions of

f and χN using least-squares regression to the intermediate segregation data and taking
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advantage of the symmetry about f = 0.5:

c2 = −
2∑
j=0

2∑
k=0

b
(2)
jk x

jg2k (3.8)

c3 = −
2∑
j=0

2∑
k=0

b
(3)
jk x

jg2k+1 (3.9)

c4 =
2∑
j=0

2∑
k=0

b
(4)
jk x

jg2k (3.10)

c5 =

∑2
k=0(b

(5)
0k + b

(5)
1k x)g2k

1 +
∑2

k=0 b
(5)
2k xg

2k
(3.11)

c6 = −c2/
2∑
j=0

2∑
k=0

b
(6)
jk x

jg2k. (3.12)

Here, we have defined the block fraction asymmetry g = 0.5 − f and the distance from

the spinodal x = χN − χNs, where χNs is computed numerically from the RPA for

each value of g (some values are shown in Table 3.1). The parameters b
(i)
jk appearing in

equations (3.8)–(3.12) are listed in Table 3.2. These expressions are valid in the region

0.2 ≤ f ≤ 0.8 and 10.6 ≤ χN ≤ 35 (provided χN > χNs). Values indicated by a dash

were set to zero manually because they did not significantly impact the quality of the fit.

As Figure 3.1 shows, the regression is in good agreement with the original data

throughout, particularly in the intermediate segregation regime. In Figure 3.2, we plot

the residuals from the fit and find that the error made by the regression is within 2% in

intermediate segregation. Although the individual coefficients show some discrepancy in

the weak segregation regime, the ratio c6/c5 is still accurate to within 5%. The regression

thus retains the advantage of the OPF model over the OK model, as we discuss next.
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Figure 3.1: From left to right: OPF model parameters −c2, −c3, c4, c5, c6, and the
ratio c6/c5 as functions of χN for block fractions f from 0.5 (darkest) to 0.2 (lightest)
obtained from phase field mapping (points), the regression (solid lines), and values
from the Ohta-Kawasaki model (dashed lines).
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Table 3.1: RPA spinodal conditions for the diblock melt.
|g| χNs

0.00 10.495
0.05 10.698
0.10 11.344
0.15 12.562
0.20 14.635
0.25 18.172
0.30 24.613
0.35 38.038

Table 3.2: Diblock copolymer OPF model parameters.
k = 0 k = 1 k = 2

b
(2)
jk j = 0 5.920 -14.31 398.5

j = 1 2.025 -4.285 39.47
j = 2 0.005522 -0.1915 -1.003

b
(3)
jk j = 0 9.741 -39.46 -999.0

j = 1 9.224 14.69 -510.3
j = 2 0.06433 -1.281 15.70

b
(4)
jk j = 0 9.686 53.00 -1775.

j = 1 36 – –
j = 2 0.02068 -0.2385 -0.4559

b
(5)
jk j = 0 0.7853 -5.654 -16.22

j = 1 0.2356 -1.170 3.659
j = 2 0.1185 -0.7423 5.481

b
(6)
jk j = 0 0.5 – –

j = 1 0.2357 -1.956 7.147
j = 2 0.0006666 -0.02858 0.05316
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Figure 3.2: From left to right: residuals of OPF model parameters −c2, −c3, c4, c5,
c6, and the ratio c6/c5 as functions of χN for block fractions f from 0.5 (darkest) to
0.2 (lightest) from regression to data obtained by phase field mapping.
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3.2.3 Density fields

Now that we have generalized the model to asymmetric block fractions, it is worth

revisiting the density profiles to see how well the OK-type models perform with c3 6= 0.

Figure 3.3 shows stress-free equilibrium density fields for the lamellar phase predicted by

SCFT, the OK model and the OPF model at small and large asymmetries. Because we

know that the OK model makes poor predictions of L0,SCFT, here we allowed each model

to use a periodic cell with its own commensurate domain spacing, unlike in Section 2.3

where we enforced L = L0,SCFT. As expected, the OPF model is consistently closer to

SCFT than the OK model in terms of both density profile and L0 value. As χN or the

asymmetry increase, though, neither phase field model captures the shape of φ well.

Note that, in spite of the shape only partially matching SCFT, phase field models

still describe the interfaces well enough to predict the existence of other equilibrium mor-

phologies like hexagonally-packed cylinders (HEX) and the bicontinuous double gyroid

(GYR), as we will discuss in Section 3.2.7.

3.2.4 Domain spacing

Next, we expand our results from Figure 2.11 to study the effects of asymmetric block

fractions on predictions of the lamellar domain spacing L0 for OPF and OK models.

Note that as the diblock becomes more asymmetric, the stability of the lamellar phase

gradually decreases relative to other morphologies like GYR and HEX. Each morphology

will have a different lattice spacing that we would also like to reproduce. We defer this

to the discussion of transferability in Section 3.2.7 and focus for now on the lamellar

domain spacing L0. We are interested in matching both its magnitude and its scaling

with Nα−0.5, where α is approximately 1 just above the spinodal and gradually decreases

towards 2
3

as χN increases [37]. Note that this scaling is given for L0 in units of Rg—if
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Figure 3.3: Stress-free equilibrium density fields for the OK (solid blue) and OPF
models (dashed orange) and SCFT (solid black). From left to right, plots correspond
to f = 0.3 (large asymmetry), f = 0.4 (small asymmetry), and f = 0.5 (no asym-
metry). The top row corresponds to χN = 35, and the bottom row to χN = 18.
Because we know that the OK model makes poor predictions of L0,SCFT, here we al-
lowed each model to use a periodic cell with its own commensurate value of L0, unlike
in Section 2.3.
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lengths are written in dimensional units, the relation becomes L0/Rg ∼ Nα.

We minimized HV and Hr,V with respect to the simulation cell size to obtain predic-

tions of L0 for SCFT, for the OPF model, and for the OK model throughout the range

of f and χN described above. We then computed the signed fractional error η made by

each phase field model relative to SCFT, given by

η =
L0,PF − L0,SCFT

L0,SCFT

. (3.13)

Figure 3.4 shows that the OK model fails to capture the scaling of L0 as χN increases. We

attribute this to several approximations in the model. The asymptotic expansion of the

RPA may not be appropriate at intermediate segregation, where density perturbations

are no longer small. Neglecting the nonlocal behavior from the third- and fourth-order

RPA vertex functions will also distort predictions of L0. Furthermore, approximating

the second-order vertex function by its limiting behavior for small and large wavevectors

causes k∗ to be incorrect (according to equation (2.12b)), and thus the model overesti-

mates L0 even in the weak segregation limit where the RPA is valid. On the other hand,

by modifying the ratio c6/c5 as χN increases, the OPF model provides qualitative and

sometimes quantitative agreement with SCFT, especially for block fractions near sym-

metry where the lamellar phase is globally stable. It also correctly captures the scaling

of L0 with increasing N : the error quickly approaches a constant value as χN increases

above the spinodal.

3.2.5 Defect states

We now study the performance of the OPF model in defective thin films in the weak

and intermediate segregation regimes. We ran two-dimensional calculations to produce

defective metastable structures φ∗d,SCFT using SCFT at two values of χN . At χN = 12,
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Figure 3.4: (a) Predicted domain spacing L0 in units of Rg for SCFT at f = 0.5
(solid line) and at f = 0.3 (dashed line), for the OPF model at f = 0.5 (closed circles)
and at f = 0.3 (open circles), and for the OK model at f = 0.5 (closed triangles)
and at f = 0.3 (open triangles). (b)–(c) Error η (see Equation (3.13)) in the lamellar
domain spacing predicted by two phase field models, (b) the OPF model and (c) the
Ohta-Kawasaki model, functions of χN for various values of f .
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we used a resolution of 512 × 512 plane waves for an 82 Rg × 82 Rg simulation cell

(corresponding approximately to 400 nm× 400 nm for a PS-b-PMMA diblock copolymer

with molecular weight 72 kg/mol [44]). At χN = 25, we used a resolution of 128 × 128

plane waves for a 16 Rg × 16 Rg simulation cell (or 120 nm× 120 nm for PS-b-PMMA).

Next, we relaxed the unoptimized OK and OPF models to their respective local

minima φ∗d,OK and φ∗d,OPF using as initial conditions the previously obtained states φ∗d,SCFT

to determine whether they remain valid metastable states in the approximate models.

Figures 3.5 and 3.6 show representative samples of the results. The defect states found

in SCFT do not correspond to similar metastable states in the unoptimized OK model:

in the large-cell simulations at χN = 12, many defective regions are changed or removed

entirely, and at χN = 25, the OK model tends to shrink domains to its predicted domain

size. On the other hand, the OPF model predicts similar features and domain sizes as

those in the SCFT defect states throughout.

Finally, we study predictions of defect formation energies. We define the defect for-

mation energy ∆F of a state φ∗d with respect to a reference energy corresponding to the

perfect configuration φ∗p, regularly aligned commensurate lamellae:

∆FSCFT = H[w∗A, w
∗
B, φ

∗
d,SCFT]−H[w∗A, w

∗
B, φ

∗
p,SCFT] (3.14)

for SCFT, or

∆FPF = Hr[φ
∗
d,PF]−Hr[φ

∗
p,PF] (3.15)

for a phase field model. To compute this extensive quantity in units of kBT , we assume

a film thickness of 4 Rg and a chain density of 3.1 R−3
g , corresponding to a PS-b-PMMA

diblock copolymer with a molecular weight of 72 kg/mol, a monomer density of 1 g/cm3,
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χN = 12

OK SCFT OPF

111 kBT 205 kBT 165 kBT

11.1 kBT 168 kBT 145 kBT

Figure 3.5: Defective structures predicted by the unoptimized OK model (left col-
umn), SCFT (center column), and the OPF model (right column) in weak segregation
(at χN = 12) in an 82 Rg × 82 Rg simulation cell and their corresponding defect for-
mation energies.

χN = 25

OK SCFT OPF

-182 kBT 233 kBT 193 kBT

Figure 3.6: Defective structures predicted by the unoptimized OK model (left), SCFT
(center), and the OPF model (right) in intermediate segregation (at χN = 25) in a
16 Rg × 16 Rg simulation cell. Models predicted defect formation energies of -182,
233, and 193 kBT , respectively. Note that the unoptimized OK model predicts this
configuration to be more stable than perfectly ordered lamellae.
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and a radius of gyration Rg = 7.2 nm [44]. Figure 3.7 compares the phase field model

defect formation energies to the exact SCFT values over ten simulations at χN = 12 and

over five simulations at χN = 25. Note that the diagonal line corresponds to a perfect

match between SCFT and the phase field model defect formation energy. In all cases, the

OPF model is a significant improvement over the unoptimized OK model. At χN = 12,

the OPF model typically makes errors of 14%, whereas the OK model typically makes

errors of 47%. At χN = 25, due to the drastic mismatch in L0, the unoptimized OK

model predicts negative defect formation energies, i.e., it predicts that the defect is more

stable than perfectly placed lamellae.

We point out that the inaccuracy of the unoptimized OK model is largely due to

the disagreements between their equilibrium density fields φ∗d,OK and φ∗d,SCFT. However,

even if we remove this effect by defining an alternate defect formation energy that simply

evaluates the energy at φ∗d,SCFT (which is not a local minimum in Hr), i.e.,

∆F †PF = Hr[φ
∗
d,SCFT]−Hr[φ

∗
p,SCFT] (3.16)

we still consistently find large errors from the OK model. We show this now using the

relative errors

x =
|∆FPF −∆FSCFT|

∆FSCFT

(3.17)

x† =

∣∣∆F †PF −∆FSCFT

∣∣
∆FSCFT

(3.18)

for each phase field model. We collected statistics on its mean, standard deviation,

minimum and maximum values from the points in Figure 3.7. Table 3.3 shows the

results for each data set. Even using the alternate definition of the defect formation

energy in x†, the OK model still makes over twice the error of the OPF model.
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Figure 3.7: Defect formation energies predicted by the unoptimized OK (orange
triangles) and OPF models (blue circles) compared to SCFT. Each point represents a
simulation of a different metastable defect, at χN = 12 (left) or at χN = 25 (right).

Table 3.3: Statistics for the errors in defect formation energy predictions.
OPF x OK x OPF x† OK x†

χN = 12 Mean 0.14 0.47 0.086 0.21
Std. dev. 0.014 0.27 0.0052 0.17
Minimum 0.13 0.24 0.079 0.081
Maximum 0.18 0.93 0.097 0.66

χN = 25 Mean 0.20 1.7 0.078 0.58
Std. dev. 0.070 0.16 0.015 0.054
Minimum 0.16 1.5 0.063 0.49
Maximum 0.33 1.9 0.10 0.63

3.2.6 Defect annihilation and kinetic barriers

For many applications, a pure ordered state serves only as a reference, while the main

focus of study are defect states and their associated energies. In a previous study, we

showed that the OPF model can consistently predict the same types of lamellar defect

states as SCFT. We also showed that at f = 0.5 and χN = 25, the OPF model predicts

defect formation energies that are within 20% of the SCFT values, whereas the OK

model predicts energies with the wrong sign [38]. Here, we extend our analysis of the
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OPF model to kinetic pathways for defect annihilation.

A number of studies have investigated kinetic effects in SCFT by applying the string

method [45, 14, 15, 16, 46]. To do this, we use the mean-field approximation to construct

a free energy landscape F [φ] = H[w∗A, w
∗
B, φ] that allows arbitrary configurations for the

density field φ while relaxing the remaining fields to values stationary in H. For the OPF

model, the analogous free energy functional is simply F [φ] = Hr[φ]. We then use the

string method [47] to compute a minimum energy path (MEP) connecting two states,

such as a metastable defect φd and the stable perfect lamellar configuration φp. This

MEP consists of a continuous curve of configurations φ(α) beginning at φ(0) = φd and

ending at φ(1) = φp, such that the entire curve is always parallel to the force ∇F . That

is,

(∇F )⊥(φ(α)) = 0, (3.19)

where the arclength α is a distance defined by the L2 norm of φ, normalized to 1, and

(∇F )⊥ represents the component of the force normal to φ(α). Along the MEP, the free

energy is maximized at an intermediate barrier state φ∗ with energy F [φ∗]. Given this

information, we can estimate the barrier crossing frequency as proportional to e−Eb/kT ,

where the barrier height is Eb = F [φ∗]− F [φd].

To validate the OPF model, we replicated an SCFT calculation from Takahashi et

al. for the annihilation of a disclination defect in a lamellar diblock copolymer melt [14].

We chose to study the most relevant melting pathway (the one predicted to have the

lowest energy barrier), an asymmetric pathway that passes through a second metastable

state, a dislocation defect. To avoid the use of confining walls on the top and bottom

of the system, which would require additional methods and a generalization of the OPF

model [24], we use periodic boundary conditions as usual, but surround the defect region

with additional nondefective lamellae. These are meant to stabilize the system against

61



The optimized phase field model for the diblock copolymer melt Chapter 3

finite size effects by isolating the defect from the edges of the cell. Our version of this

system contains seven commensurate lamellar periods at f = 0.5 and has dimensions of

6 L0×7 L0. At χN = 25, this corresponds to 25.7 Rg×30.0 Rg. As done in reference [14],

to obtain extensive energies, we assume a film thickness of 4 Rg and a chain density of

3.1 R−3
g , corresponding to a PS-b-PMMA diblock copolymer with a molecular weight of

72 kg/mol, a monomer density of 1 g/cm3, and a radius of gyration Rg = 7.2 nm.

Figure 3.8 compares the minimum energy pathways predicted by SCFT and the OPF

model for asymmetric melting of the disclination defect at χN = 25. Qualitatively, the

two models are in strong agreement for the entire MEP. Both models predict MEPs

containing two barriers (local maxima), and snapshots of the density fields along the

string are indistinguishable between the two models. At the first transition state, the

polymer chains rearrange to form a narrow bridge across the break in the lower lamella

(for SCFT: Eb = 2.7 kT ; for OPF: Eb = 10. kT ). Next, we find a local minimum

representing a dislocation defect. A second bridge then forms to repair the remaining

broken lamella (for SCFT: Eb = 5.0 kT ; for OPF: Eb = 20. kT ). This second transition

state gradually heals to the perfect lamellar state at α = 1. We see a slight finite size

error in the intermediate states: in spite of the extra lamellae surrounding the defect,

the defect still interacts slightly with the ends of the cell, as evidenced by a slight tilting

of the lamellae most distant from the asymmetric defect.

Although the qualitative shape of the MEP is captured by the OPF model, the OPF

model underestimates the formation energy for the defect F (0) by about 20%, just as

in our previous work. We also find that the OPF model significantly overestimates

the barrier heights for both the disclination and dislocation. We further investigated

these trends by repeating the string calculation for different values of χN for which the

disclination remained metastable (down to χN = 20). Figure 3.9 shows the resulting

defect formation energies and barrier heights as a function of χN . We observe that
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Figure 3.8: Top: Minimum energy pathway for the annihilation of a disclination
defect in a lamella-forming diblock copolymer melt with χN = 25 and f = 0.5 as found
in SCFT (diamonds) and the OPF model (circles). Bottom, left to right: snapshots of
density profiles along the MEP from the OPF model (visually indistinguishable from
SCFT) corresponding to the local extrema of F .

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20  22  24  26  28  30  32  34

E
b
 (

kT
)

χN

Barrier 1, SCFT
Barrier 2, SCFT
Barrier 1, OPF
Barrier 2, OPF

Figure 3.9: Energy barriers Eb for the melting of disclination (open shapes) and
dislocation (closed shapes) defects versus χN as predicted by SCFT (diamonds) and
the OPF model (circles).

63



The optimized phase field model for the diblock copolymer melt Chapter 3

the OPF model correctly predicts increases in Eb with χN , but that it consistently

overestimates its magnitude. It may also allow both defects to remain metastable for

smaller values of χN where SCFT will indicate they are unstable.

3.2.7 Transferability across different morphologies

We have demonstrated that the OPF model produced by mapping from the com-

mensurate lamellar choice for φ∗ can be used to study defects and transition states. Is

the lamellar mapping still valid for studying a different morphology? We studied the

hexagonally-packed cylinder (HEX) phase and the gyroid (GYR) phase using SCFT, the

OK model and the OPF model from Table 3.2. By minimizing HV and Hr,V with respect

to the simulation cell size, we obtained predictions for the domain spacing for the HEX

phase L0,HEX, defined as the side length of a rhombic unit cell (equivalent to the shortest

center-to-center distance between cylinders), and for the GYR phase L0,GYR, defined as

the side length of the cubic unit cell. Figures 3.10 and 3.11 compare the errors ηHEX

and ηGYR made by the OPF model and by the OK model relative to SCFT. As in the

lamellar case, the OPF model qualitatively captures the correct magnitudes of L0,HEX

and L0,GYR both in the weak segregation and intermediate segregation regimes, whereas

the OK model does not. For both the HEX and GYR phases, the OPF model performs

best for block fractions near f = 0.3, where L0,HEX is accurate to within 4%. This result

is especially encouraging as HEX and GYR become the globally stable phase near these

conditions.

An alternate approach to studying the HEX phase is to redo the mapping from an

SCFT configuration for the same phase, φ∗HEX. For points in the phase space where the

HEX phase was at least metastable, we used phase field mapping to obtain another set of

values for the model parameters that we will refer to as OPF-HEX. Note that the OPF-
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Figure 3.10: (a) Predicted domain spacing L0,HEX in units of Rg for SCFT at f = 0.45
(solid line) and at f = 0.3 (dashed line), for the OPF model at f = 0.45 (closed circles)
and at f = 0.3 (open circles), and for the OK model at f = 0.45 (closed triangles)
and at f = 0.3 (open triangles). (b)–(d) Error ηHEX in the cylindrical domain spacing
predicted by phase field models, (b) the OPF model, (c) the Ohta-Kawasaki model,
and (d) the OPF-HEX model, as functions of χN for various values of f .
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Figure 3.11: (a) Predicted domain spacing L0,GYR in units of Rg for SCFT
at f = 0.45 (solid line) and at f = 0.3 (dashed line), for the OPF model
at f = 0.45 (closed circles) and at f = 0.3 (open circles), and for the OK model
at f = 0.45 (closed triangles) and at f = 0.3 (open triangles). (b)–(c) Error ηGYR

in the gyroid phase domain spacing predicted by two phase field models, the OPF
model (center) and the Ohta-Kawasaki model (right), as functions of χN for various
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HEX mapping extends to f = 0.15, since the HEX phase remains metastable for stronger

asymmetries than the lamellar phase, but it could not be parametrized for the symmetric

case f = 0.5. The coefficient values differ somewhat from the lamellar mapping but still

follow similar trends in χN and f ; the data are shown in Figure 3.12.

We computed values of L0,HEX predicted by the OPF-HEX mapping. The resulting

error with respect to SCFT is shown in Figure 3.10(d). As expected, because the OPF-

HEX model was trained in the HEX geometry, it tends to make slightly better predictions

of L0,HEX than the lamellar mapping. Still, the original mapping obtained simply from

a one-dimensional SCFT calculation performs comparably well for block fractions near

f = 0.30.
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Figure 3.12: From left to right: OPF-HEX model parameters −c2, −c3, c4, c5,
c6, and the ratio c6/c5 as functions of χN for block fractions f from 0.5 (darkest)
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3.3 Conclusions

In this chapter, we studied in detail the numerical properties of the OPF model, our

best phase field model so far. We found that it is fast—OPF simulations can be completed

roughly one to two orders of magnitude faster than corresponding SCFT simulations,

thanks to the elimination of the modified diffusion equation for the propagators and to

a nonlinear conjugate gradient solver. We can also simulate systems about nine times

larger using OPF simulations than SCFT.

The OPF model is qualitatively and sometimes quantitatively accurate in predictions

of density fields, length scales, and defect formation energies, more so than the OK

model. We were even able to find a defect melting pathway that aligns nicely to the

SCFT result. The quality of the model is highest for symmetric diblocks and decreases

as f deviates from 0.5. We interpret this as an indication that the basis set (2.9b) is

poor for describing asymmetric diblocks—there must be significant terms in He that are

absent from our approximation and that vanish on symmetry.

We find it likely that identifying new terms to add to Hr that capture these density

profiles will lead to further improvements in other aspects of the model, such as its phase

behavior. A possible lead is to introduce some semilocal or nonlocal character at cubic

(and higher) order in φ, for example, the Lifshitz entropy,
∫
dr |∇φ|

2

φ
.

We point out that even if the OPF model is not quantitatively accurate, it can still

be used in a multiscale approach in combination with SCFT. To speed up the overall

calculation, we can perform an initial relaxation using the OPF model, then use the

resulting fields as the starting point for an SCFT simulation.
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Chapter 4

Phase field models in confinement

An attractive application for OPF models is directed self-assembly (DSA), a patterning

technique for semiconductor device manufacturing that produces controlled features on

length scales on the order of 10 nanometers. The name comes from the fact that, although

a block copolymer melt below its spinodal temperature will spontaneously self-assemble

to an ordered structure, we can direct the type of pattern that is formed by carefully

choosing conditions for the environment surrounding the polymer, like the geometry of

the walls and the affinity of each wall to each monomer type, often referred to as the

wetting conditions. Of course, as usual, we can also manipulate polymer properties

like the block architecture and composition to obtain different patterns. The design

space for a confined polymer system is thus even larger than for a bulk polymer system.

Furthermore, it is generally not enough to study one equilibrium configuration φ∗ for

each design condition. We must also look at a collection of possible defective metastable

states and try to characterize how likely they are to occur. To optimize a process for

DSA, therefore, we must have a thorough understanding of all of these considerations:

the thermodynamics of the self-assembling polymer, parameters for the confining walls,

stability and defectivity.

A number of studies have used SCFT to study various templates and patterns for

DSA [11, 12, 13, 48, 14, 15, 46, 16, 17, 18], producing results in good agreement with
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experiments [49, 3, 50]. These studies employ a wall masking strategy [51, 11] that

introduces a new field for the wall density φw. The wall density interacts with the

polymers in two ways: through the compressibility (equation (1.9) for the incompressible

model or (1.10) for the weakly compressible model), and through a new enthalpic term

analogous to the χ interaction term. The first type of interaction is associated with

graphoepitaxy, in which walls are used as arbitrarily complicated effective boundary

conditions to confine the polymer; the second is associated with chemoepitaxy, in which

surface interactions cause preferential wetting of one monomer type (or the other, or

neither) to direct polymer self-assembly. In general, both interactions are present and

play a role.

In this chapter, we attempt to develop a phase field model compatible with the wall

masking method and analogous to the successful confined SCFT model. Our confined

OPF model should extend the computational advantages of the OPF model to confined

systems. We discover that several steps are required to make this happen. First, we

formulate a compressible version of the model, and validate the result against the bulk

incompressible OPF model. We then introduce the wall masking method and motivate

the need for more modifications to the OPF model. Then we define a variable transfor-

mation for the density fields to impose a physical constraint necessary in confinement.

Throughout, we test our modifications against SCFT in some simple confined systems.

4.1 Methods

4.1.1 Compressible model extension

Though it is not strictly required, confined studies using SCFT typically represent

the polymer using a compressible model like (1.28) instead of the incompressible model
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discussed in Chapters 2 and 3. This is because of numerical difficulties associated with

resolving sharp features in the fields near the walls (specifically, in the pressure-like

field w+, the eigenfunction proportional to wA + wB) [48]. Chantawansri et al. found

that the compressible model has a faster rate of convergence, enabling us to obtain

equilibrium solutions in less simulation time. The compressible model tends to make

similar qualitative predictions to the incompressible one, except that it allows the total

density φA(r)+φB(r) to deviate slightly from the system average of 1 everywhere in space.

This is a well-controlled approximation of the incompressibility constraint φA+φB = 1: in

the limit that the Helfand compressibility parameter (ζN)−1 approaches zero, we exactly

recover the incompressible model. In practice, we typically choose a compressibility of

0.001. For this value, we find at equilibrium that the total density at any given point

in space is close to 1, so we say that the model is weakly compressible. For example, in

a bulk lamellar system at f = 0.5 and χN = 25, we found that the standard deviation

in the total density was 0.003. In a simulation of lamellae confined to a three-period

channel at f = 0.5 and χN = 25, the standard deviation in the total density was 0.009.

Let us generalize the reduced Hamiltonian Hr to explicitly depend on two density

fields φA and φB representing the A- and B-species of the diblock copolymer, first for bulk

systems, and later for confined ones. We start with the form of Hr in equation (2.9b). In

direct analogy to (1.28), we add a Helfand compressibility term to keep the total density

roughly constant everywhere in space,

Hr,ζ [φA, φB]

C
=
ζN

2

∫
dr

(
φA(r) + φB(r)− 1

)2

, (4.1)

or, in terms of the zero-average order parameters that tend to appear in Hr,

Hr,ζ [φA, φB]

C
=
ζN

2

∫
dr

(
δφA(r) + δφB(r)

)2

. (4.2)

72



Phase field models in confinement Chapter 4

where δφA ≡ φA − f and δφB ≡ φB − (1 − f). As in SCFT, we will study a weakly

compressible model by choosing a compressibility (ζN)−1 of 0.001.

Next, we would like to generalize all of the other terms in our basis set for Hr

from (2.9b) to depend on both δφA and δφB, instead of just δφ, which in the incom-

pressible model is equivalent to δφA = −δφB. If we try to do this simply by enumerating

all of the possible terms that reduce to Hr under the substitution δφB = −δφA (valid

strictly in the incompressible limit), we will end up with an explosion in the number of

terms and associated mapping parameters. This is because a term at order j in δφ could

have come from j + 1 possible terms in a compressible model. For example, at cubic

order, we can combine all four of the possible compressible model terms to write one

term in the incompressible limit:

c3AAAδφA(r)3 + c3AABδφA(r)2δφB(r) + c3ABBδφA(r)δφB(r)2 + c3BBBδφB(r)3

= (c3AAA − c3AAB + c3ABB − c3BBB)δφ(r)3 = c3δφ(r)3. (4.3)

To reduce the number of terms and coefficients needed for our model, we take advan-

tage of the fact that δφB ≈ −δφA is still approximately true in a weakly compressible

model. If the standard deviation in the total density is within 1%, we expect that all

of the j + 1 compressible terms will be mutually equivalent to within about 1% locally,

or even less when integrated over the system volume due to cancellation. For the same

reason, if we attempt phase field mapping with each of these nearly-redundant terms

treated as separate basis functionals, we expect that the linear system to solve would be

nearly singular. We therefore arbitrarily choose to keep a set of terms that preserves the
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symmetry about f = 0.5, for example:

Hr,compr[φA, φB]

C
=

∫
dr

{
− c2δφA(r)δφB(r) + c3

δφA(r)3 − δφB(r)3

2

+ c4
δφA(r)4 + δφB(r)4

2
+ c5
|∇φA(r)|2 + |∇φB(r)|2

2

− c6

∫
dr′G(r− r′)δφA(r)δφB(r′) +

ζN

2

(
δφA(r) + δφB(r)

)2}
. (4.4)

This expression for Hr preserves the symmetry in f , since it is unchanged if we make

the replacement f → 1− f and switch A and B. Another reasonable choice would be to

partition coefficients according to the relative weights of their RPA values (for example,

by using reference [33]). With either strategy, we can exclude certain terms that are not

present in the RPA, such as

∫
dr∇φA(r) · ∇φB(r), (4.5)

because the gradient terms only appear in A–A and B–B correlations, and

∫
dr

∫
dr′G(r− r′)δφA(r)δφA(r), (4.6)

because only the A–B correlation diverges in the limit of small wavevectors.

4.1.2 Wall interactions

We now further generalize the compressible phase field model to confined systems

using the masking method. The procedure that we wish to apply is essentially identical

to the one used in SCFT [11]. We begin by defining a microscopic field φw representing

the wall density. Unlike the polymer density fields, φw is specified as an input to a
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simulation. Roughly, the idea is that φw is 1 where the wall is present, and 0 otherwise.

In practice, we also introduce a transition region at the edges of all of the walls, for

two reasons: first, on physical grounds, the wall should not be atomistically sharp, and

second, the rate of convergence for numerical calculations benefits from fields smooth in

as many derivatives as possible.

The masking method gives us the flexibility to design φw however we wish, effectively

imposing arbitrarily complicated boundary conditions on the polymer. We developed

a procedure that takes a two-dimensional black-and-white bitmap image in which each

pixel corresponds to a block of grid points in a field (we used a block of size 16 × 16),

resizes the image, applies one or more blur filters, scales the result to the range [0, 1],

and writes field data to a text file compatible with PolyFTS. During the resizing step, we

used MATLAB’s algorithm for Lanczos resampling, but only allowed the output to take

values of zero or one. We found that this step helped to smooth corners in the image.

For the filter, we used a Gaussian blur with a size of 16 pixels and a standard deviation

of 3 pixels. Figure 4.1 shows an example of an initial bitmap drawn by hand and the

result after resizing and filtering.

Figure 4.1: Left: a hand-drawn bitmap image depicting a pattern of trenches (black)
into which block copolymer will be deposited. Right: the same pattern after applying
Lanczos-3 resampling and a Gaussian filter to smooth the wall density field.
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The wall should affect the partition function and Hamiltonian in two places, whether

the model is real or complex. First, the incompressibility condition (1.8) is modified to

read

ρ̌A(r) + ρ̌B(r) + ρ0φw(r) = ρ0, (4.7)

leading to a different expression for (1.9),

K = δ[ρ̌A + ρ̌B + ρ0φw − ρ0], (4.8)

and a different expression for the replacement of φB,

φ(r) = φA(r) = 1− φB(r)− φw(r). (4.9)

In principle, we should be able to trace the effect of this change through to the reduced

Hamiltonian Hr to embed the same constraint into a real-valued incompressible model,

but we did not find it straightforward to do so, as we will show in Section 4.2.2. We

found better success with the compressible model. In SCFT, we simply modify the

Helfand compressibility term from (1.10) to account for the wall density,

Kζ = e−v0ζ/2
∫
dr (ρ̌A(r)+ρ̌B(r)+ρ0φw(r)−ρ0)2 , (4.10)

leading to the following expression for the Hamiltonian in place of (1.23),

H[wA, wB, φA, φB]

C
= χN

∫
drφA(r)φB(r) +

ζN

2

∫
dr [φA(r) + φB(r) + φw(r)− 1]2

− i
∫
dr [NwA(r)φA(r)−NwB(r)φB(r)]− V lnQ[iwA, iwB]. (4.11)

where, as before, (ζN)−1 is the compressibility and we can see that the expression reduces
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to the original one in the bulk where φw = 0. In the real-valued field theory, we make an

analogous change to the compressibility term from (4.1):

Hr,ζ [φA, φB]

C
=
ζN

2

∫
dr

(
φA(r) + φB(r) + φw(r)− 1

)2

(4.12)

or in terms of zero-average fields,

Hr,ζ [φA, φB]

C
=
ζN

2

∫
dr

(
δφA(r) + δφB(r) + δφw(r)

)2

. (4.13)

Note that upon introduction of a wall density into the model, we must change the defi-

nitions of the zero-average fields to

δφA(r) = φA(r)− f(1− fw) (4.14)

δφB(r) = φB(r)− (1− f)(1− fw) (4.15)

δφw(r) = φw(r)− fw, (4.16)

where fw = 1/V
∫
drφw(r) is the overall fraction of the system volume occupied by the

wall.

The second change is the introduction of new enthalpic interaction terms between

each polymer species and the walls. Like the first term in H given in equation (4.11), the

new terms are overall quadratic in density fields and have prefactors analogous to χN ,

and they will take the same form in Hr. We therefore label them χAwN and χBwN and

write

Hw[φA, φB]

C
= χAwN

∫
drφA(r)φw(r) + χBwN

∫
drφB(r)φw(r) (4.17)

77



Phase field models in confinement Chapter 4

or in terms of zero-average fields,

Hw[φA, φB]

C
= χAwN

∫
dr δφA(r)δφw(r) + χBwN

∫
dr δφB(r)δφw(r) (4.18)

where we have discarded inconsequential terms that contain φw but are independent

of φA and φB. In the incompressible limit, we can combine both terms by defining

χwN = χAwN − χBwN :

Hw[φ]

C
= χwN

∫
dr δφ(r)δφw(r). (4.19)

In either the incompressible or compressible model, we can also make use of multiple

types of walls, each with their own interaction strengths χA,wi
and χB,wi

, in which case

we add another pair of terms to H or Hr for each wall type.

4.1.3 Species mass conservation

Our numerical methods use a relaxation dynamics scheme like (1.33), which, unlike

diffusive dynamics, does not automatically satisfy conservation of mass for each species.

We sometimes found it necessary to explicitly impose this constraint on each species

density to prevent the relaxation algorithm from adding or removing A or B from the

system. We found three strategies to enforce the constraint.

In the most naive approach, after each relaxation step, we reset the average value of

φA to its known value f(1 − fw). This can be done by computing 1/V
∫
dr δφA(r) and

subtracting it from the current value of φA, or, equivalently, by setting the zero mode of

δ̂φA(k) to fV ). (We can combine this with a related strategy that sets to zero the average

value of the force (or the zero mode) before taking a step, but this is not reliable by itself

due to the accumulation of floating-point errors, e.g., from discrete Fourier transforms of
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φA.) We apply a similar procedure to reset the average value of φB. This simple solution

works well for the models we have written so far, but it is problematic for the variable

transformations we will propose in Section 4.1.4 because after modification, if at any grid

point φA becomes negative or greater than 1, the corresponding value of ψA will become

complex-valued.

Our second strategy uses the Lagrange multiplier method. We promote Hr to a

Lagrangian L,

L(λA, λB; [φA, φB]) = Hr[φA, φB] + λA

∫
dr δφA(r) + λB

∫
dr δφB(r), (4.20)

and we locate equilibrium solutions (λ∗A, λ
∗
B, φ

∗
A, φ

∗
B) iteratively by gradient descent, min-

imizing L with respect to φA and φB and maximizing L with respect to λA and λB in

alternating steps. At equilibrium, the constraint is satisfied, so the Lagrange multiplier

terms vanish and Hr = L. This method is also effective, but because it creates a mixed

optimization problem, we can no longer use the conjugate gradient method.

We finally settled on a third strategy. We add to Hr quadratic penalties for deviations

of the average species densities from their expected values:

Hr,K [φA, φB]

C
=
KAV

2

(
1

V

∫
dr δφA(r)

)2

+
KBV

2

(
1

V

∫
dr δφB(r)

)2

, (4.21)

where we took KA = KB = 1000. Note that we have been cautious to write the right-

hand side as an extensive quantity, since Hr/C is extensive. During numerical relaxation,

these terms create a contribution to the force of

1

C

δHr,K [φA, φB]

δφA(r)
= KA

(
1

V

∫
dr δφA(r)

)
(4.22)
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for the relaxation of A, and

1

C

δHr,K [φA, φB]

δφB(r)
= KB

(
1

V

∫
dr δφB(r)

)
(4.23)

for the relaxation of B. This strategy for conserving mass is compatible with our con-

jugate gradient solver and the rest of the confinement methods in this chapter. When

we relax φA and φB to equilibrium, we will find that the constraint is approximately

satisfied, so Hr,K is close to zero and the overall energy Hr is left unchanged.

4.1.4 Bounded density constraint

Recall from Figure 2.5 and Section 2.3.2 that LB- and OK-type phase field models,

optimized or unoptimized, sometimes predict volume fractions below 0 or above 1. This

pathological behavior frequently occurs at large χN values in both compressible and

incompressible models, especially when the polymer has a high degree of conformational

frustration, like in the confined system shown in Figure 4.5. This behavior does not occur

in the weak segregation regime where the basis set was derived and where the densities

tend to be small in amplitude. To use our OPF model in the intermediate segregation

regime, though, we would like to have a way to impose the constraint

0 ≤ φ(r) ≤ 1− φw(r) (4.24)

at all values of r in the incompressible model. In the compressible model with both

density fields explicit, the corresponding constraint should be

0 ≤ φA(r) (4.25)

0 ≤ φB(r) (4.26)
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at all values of r. In this case, unlike in the incompressible model, we can allow the local

volume fractions to exceed 1 slightly, since the Helfand compressibility term will prevent

large deviations between φA + φB + φw and 1.

Ideally, equilibrium solutions for the OPF model that already satisfy these bounded

density constraints will be unchanged, and previous solutions that violate the constraints

will be replaced by solutions that do not. We can think of two strategies to enforce the

constraints. One strategy is to introduce new terms into the energy that diverge as the

density approach its bounds, such as φ lnφ, which diverges as φ approaches 0. A second

strategy is to replace φ with a function of a new variable ψ so that φ always satisfies the

constraint. Each strategy has potential advantages and disadvantages.

Logarithm terms

Let us consider the first strategy, adding new terms to the energy that diverge as the

density approaches its bounds. For the compressible model, we define a new Hamiltonian

Hr+ that contains two new terms, corresponding to the constraints (4.25) and (4.26)

respectively. As discussed in Section 2.5, these terms resemble the mixing entropy from

Flory-Huggins theory:

Hr+[φA, φB]

C
=
Hr[φA, φB]

C
+

∫
drφA(r) lnφA(r) +

∫
drφB(r) lnφB(r). (4.27)

In the incompressible limit, we replace φB with 1− φA − φw and find that the resulting

terms enforce the constraint (4.24), as expected:

Hr+[φ]

C
=
Hr[φ]

C
+

∫
drφ(r) lnφ(r)+

∫
dr (1−φ(r)−φw(r)) ln(1−φ(r)−φw(r)). (4.28)
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In Section 4.1.3, we were able to ensure that new terms added to the Hamiltonian did

not directly add an energetic contribution, since they become zero at equilibrium when

the mass conservation constraint is satisfied. In contrast, the logarithm terms do not

vanish when the density is bounded. In fact, because these terms enter at all orders of φ,

they will effectively add undesired contributions to the mapped coefficients c2, c3 and c4.

To counteract this, we can subtract those contributions by examining the coefficients of

a Taylor expansion about φ = f . Alternately, we can set an arbitrarily small coefficient

on the logarithm terms, say, 0.001. Note that no matter what the coefficient is, as long

as it is finite and positive, the equilibrium density will be strictly bounded.

In principle, Hr+ should diverge to infinity as φ approaches its physical bounds, thus

guaranteeing the constraint for any minimizer, as long as we begin relaxation within

those bounds. In practice, however, we found that in any situation where these terms

would be useful for constraining φ—even in the incompressible case and in the bulk

where φw = 0—we also encountered difficulties in the numerical relaxation. Any time

that φ grows towards a boundary, the driving force for relaxation builds up two large

contributions that nearly cancel each other out, a growing outward push from the original

action − δHr[φ]
δφ(r)

and a growing inward push from whichever logarithm term is close to

diverging:

− 1

C

δHr+[φ]

δφ(r)
= − 1

C

δHr[φ]

δφ(r)
− lnφ(r) + ln(1− φ(r)− φw(r)). (4.29)

Presumably, as φ continues to grow, both contributions to the force will continue to grow

in magnitude nearly matched ( δHr[φ]
δφ(r)

will be slightly larger in magnitude, so that the net

force still tends to decrease) until they exactly balance out at equilibrium. We specu-

late that, once the density reaches a certain segregation strength, the two contributions

become too large to accurately resolve their difference by floating-point subtraction [52].
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Variable transformation

We proposed the following variable transformation as an alternative strategy. In the

compressible model, we define new fields ψA and ψB. These transformed fields will be

related to the A- and B-species densities according to a new function τ(ψ):

φA(r) = τ(ψA)(r) =
tanh(aψA(r)) + 1

2
(4.30)

φB(r) = τ(ψB)(r) =
tanh(aψB(r)) + 1

2
. (4.31)

This transformation guarantees that the volume fractions φA and φB will be strictly

between 0 and 1 for any real values of ψA and ψB between −∞ and ∞, since

lim
ψ→−∞

τ(ψ) = 0 (4.32)

τ(0) = 0.5 (4.33)

lim
ψ→∞

τ(ψ) = 1. (4.34)

The prefactor a controls the rate of the approach to saturation for extreme values of ψ.

To see this, we can write τ(ψ) in terms of x = e−2aψ, then perform a Taylor expansion

for x→ 0 (ψ →∞):

τ(ψ) =
1

2

(
1− e−2aψ

1 + e−2aψ
+ 1

)
=

1

2

(
1− x
1 + x

+ 1

)
= 1− 3

2
x+

3

2
x2 +O(x3), |x| < 1. (4.35)
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For large values of ψ, then, we find that φ = τ becomes very close to 1 according to

1− φ =
3

2
e−2aψ ≈ 1.5× 10−0.87aψ, ψ →∞. (4.36)

Similarly, as ψ becomes large and negative, φ approaches 0 according to

φ =
3

2
e2aψ ≈ 1.5× 100.87aψ, ψ → −∞. (4.37)

It is worth asking whether typical equilibrium values of φ can be accurately repre-

sented by floating-point values for ψ. Of course, before we can address that subject, we

first require that the floating-point number representation of φ is an adequate approxima-

tion for the real numbers. This separate issue deserves some scrutiny, since we encoun-

tered φ values as small as 10−14 in converged confined OPF simulations (and as small

as 10−21 in problematic simulations). For comparison, machine epsilon or DBL EPS, the

smallest representable increment above 1.0 in double-precision floating-point arithmetic,

has a value of 2× 10−16. We expect roundoff errors in force and timestep calculations to

accumulate near this precision.

Setting aside the thorny issue of approximating φ using floating-point numbers, we

now address the more straightforward subject of representing φ using ψ. Because aψ

appears in the exponent in equations (4.36) and (4.37), it scales linearly with the exponent

for the floating-point representation of φ. Thus, ψ can easily resolve extreme values of φ

without risk of arithmetic underflow or overflow. For example, if φ = DBL EPS = 2×10−16,

then aψ = −16. Even if φ = DBL MIN = 2 × 10−308, the smallest positive number

representable by a normal double-precision floating-point value, then aψ = −308. We

therefore are not concerned that the choice of a will impact the equilibrium solution for

φ.
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To use the variable transformation, we substitute expressions (4.30) and (4.31) into Hr

and perform numerical relaxation on the transformed fields ψA and ψB instead of φA and

φB. For example, a basic gradient descent scheme for ψA (replacing equation (1.33)) is

∂

∂t
ψA(r, t) = −δHr[τ(ψA), τ(ψB)]

δψA(r, t)

= −
∫
dr′

δHr[φA, φB]

δφA(r′, t)

δτ(ψA)(r′, t)

δψA(r, t)

= −δHr[φA, φB]

δφA(r, t)

a sech2(aψA(r))

2
. (4.38)

To write the second line, we applied the functional chain rule. We then reduced the

functional derivative to an ordinary derivative to obtain the final line:

δτ(ψA)(r′)

δψA(r)
= δ(r− r′)

dτ(ψA)

dψA
= δ(r− r′)

a sech2(aψA(r))

2
. (4.39)

We can think of the factor dτ(ψA)
dψA

in equation (4.38) as a damping effect that slows relax-

ation when ψA is large in magnitude. Note that if we omit dτ(ψA)
dψA

from equation (4.38),

it is still a valid relaxation scheme, as it still leads to a stationary point in ψA in the

limit t → ∞. In fact, we can in principle multiply the relaxation force by any finite

and positive definite function of r without changing its solutions. However, as written,

equation (4.38) uses the direction of steepest descent that serves as the starting point for

the SIS scheme and for the nonlinear conjugate gradient method.

Note that the inverse of τ ,

τ−1(φ) =
tanh−1(2φ− 1)

a

=
1

2a
ln

(
φ

1− φ

)
, (4.40)

becomes complex-valued if φ is less than 0 or greater than 1. This may happen when
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using the first approach to mass conservation in Section 4.1.3. Instead, we use one of the

other strategies, which do not require the inverse transformation during relaxation (we

may still employ it for setting initial conditions).
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4.2 Results

4.2.1 Bulk compressible model

Before we introduce confinement into the system, we test the numerical properties

of the compressible model that we generalized from the incompressible OPF model.

Figure 4.2 shows converged equilibrium density fields for various formulations of the

compressible model compared to the incompressible OPF model Zinf. We see that the

compressible model Z3, defined by (4.4) with a compressibility (ζN)−1 = 10−3, matches

the predictions of the incompressible model in both weak and intermediate segregation

and both on and off symmetry in f . For this small compressibility, we confirmed that

δφA + δφB was consistently close to zero. For example, at f = 0.3 and χN = 35, we

found that the mean value of δφA+ δφB averaged across all 128 grid points was 1×10−12

(zero to within roundoff error) with a standard deviation of 6 × 10−9, so the Helfand

compressibility term Hr,ζ/C has a negligible energetic contribution of 2 × 10−13. Also

shown in Figure 4.2 are density profiles for Z1, a similar model with (ζN)−1 = 10−1.

Even for this larger compressibility, we still find that the mean and standard deviation

of δφA + δφB are almost as small: −4× 10−12 and 1× 10−8.

We also tested an alternate model, Z3A, that assigns all of the weights {ci} purely to

combinations of φA,

Hr,Z3A[φA, φB]

C
=

∫
dr

{
c2δφA(r)2 + c3δφA(r)3 + c4δφA(r)4 + c5 |∇φA(r)|2

+ c6

∫
dr′G(r− r′)δφA(r)δφA(r′) +

103

2

(
δφA(r) + δφB(r)

)2}
, (4.41)

and another, Z3B, that similarly assigns the weights purely to combinations of φB. Both

of these produced nearly indistinguishable results from Z3, supporting our claim from
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Figure 4.2: Equilibrium density fields φ∗(x) for various formulations of the OPF
model for increasing values of f (left to right) and increasing segregation strengths
(bottom to top). Zinf is the incompressible model and Z3 is a compressible model
with ζN = 103. The remaining models are variations on Z3: Z1 has ζN = 101; Z3A
assigns all of the {ci} to combinations of φA only; Z3B assigns the {ci} to combinations
of φB only; and Z3T uses the tanh variable transformation to bound densities, and the
quadratic penalty strategy to conserve species mass.
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Figure 4.3: Intensive free energy Hr/CV of a three-period lamellar state for a di-
block copolymer as a function of the simulation cell size L in units of Rg for various
formulations of the compressible OPF model for increasing values of f (left to right)
and increasing segregation strengths (bottom to top). The minimum of each curve
occurs at three times the model’s predicted domain spacing.
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Section 4.1.1 that the compressible terms at a given order are almost mutually equivalent.

Additional variants of Z3A and Z3B that enforce mass conservation for φA and φB using

the quadratic penalty (4.21) also produced equivalent solutions, though we encountered

some numerical issues—we were only able to attain convergence using the fully explicit

Euler field updater. We speculate that the issues lies in the handling of the zero Fourier

mode of the fields and forces in our implementations of the SIS and conjugate gradient

updaters.

We tested a version of the compressible model Z3T that uses the tanh variable trans-

formations (4.30) and (4.31) to bound the density and the quadratic penalty (4.21) to

conserve mass for each species. We found, as expected, that the density profiles for this

model are unchanged as long as the original profile Z3 stays between the bounds 0 and

1, but as soon as Z3 steps past these bounds, Z3T switches to a new solution. We did

not encounter the same numerical issues with Z3T as in the previous paragraph, perhaps

because the mass conservation constraints are no longer completely determined by the

zero Fourier modes of the fields ψA and ψB.

Next, we tested energy predictions for all of these models using a variable cell cal-

culation like Figure 2.10. Figure 4.3 compares the new results at several combinations

of f and χN . As before, we find that Z3T yields different results wherever the density

is corrected by the bounded constraint, predicting that the stress-free domain spacing

L0 should increase with the severity of the correction. All of the other variations are

generally consistent with the incompressible OPF model.

4.2.2 Confined compressible model

We now show some preliminary results investigating the behavior of the new model

in confinement. We used SCFT to perform a one-dimensional simulation of a symmetric
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diblock copolymer melt confined to a channel at χN = 25, ζN = 1000 and χAwN = −10,

corresponding to walls that are slightly selective towards species A. Figure 4.4 shows the

stable state with the expected A-wetting at the walls and alternating A and B lamellae

in the center of the domain. We also find two metastable states with B wetting at one

or both walls. The defect formation energies ∆F for these states are 0.034 kBT/chain

and 0.150 kBT/chain, computed by taking the difference in H/CV from the stable state.

Notice that because the total density is allowed to fluctuate, it rises slightly near the

walls, allowing the species densities to decay more gradually into the wall and improving

the rate of convergence of the simulation.
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Figure 4.4: Density fields obtained in SCFT for a diblock copolymer at χN = 25,
f = 0.5 and (ζN)−1 = 0.001 confined to a channel of width 12 Rg using the mask-
ing method. The wall interaction parameter χw = −10 favors A-wetting at the
walls. Thus, the state with A wetting both walls (left) has the lowest energy and
is globally stable. Two metastable states are shown, one with B wetting one wall
(center; ∆F = 0.034 kBT/chain), and another with B wetting both walls (right;
∆F = 0.150 kBT/chain).

Next, we demonstrate the need for the complete set of methods in Section 4.1 by

attempting to reproduce Figure 4.4 using a deficient model, shown in Figure 4.5. We

use the incompressible OK model from (2.9b) and add only the wall interaction term

from (4.19), as was done in reference [53]. Even when seeded from the SCFT solution,
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the failure of this model is obvious: the densities of both species frequently escape the

physical range [0, 1], and the polymer is not excluded from the wall. Note that using a

tanh variable transformation would still not be enough to prevent the implicit B-species

density from taking on negative values, thereby allowing A to penetrate the walls. This

kind of model might instead be appropriate for a chemoepitaxial system in which the

polymer is assembled on a flat but chemically patterned surface, and the surface is in

contact with, not in, the simulation box.
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Figure 4.5: Density fields predicted by a standard formulation of the incompressible
OK model with only a wall interaction term added for the same confined system as
in Figure 4.4.

To contrast this result, Figure 4.6 demonstrates the success of our weakly compressible

confined OPF model. We used the variable transformation described in Section 4.1.4 with

a = 0.1 and the Helfand compressibility term from Section 4.1.1 with (ζN)−1 = 0.001 and

reproduced system conditions from the SCFT simulations. The confined OPF solution

successfully constrains both densities to (0, 1), thanks to the variable transformation, and

correctly predicts that both species densities decay to zero in the walls, thanks to the

compressibility term. We also reproduced the metastable defects from Figure 4.4 and

computed their defect formation energies as 0.011 kBT/chain and 0.14 kBT/chain. Both
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values are of the same order of magnitude as predicted by SCFT, but consistent with

the trend found in Chapter 3, the OPF model tends to underestimate defect formation

energies. Note that the confined OPF model even correctly predicts the small enrichment

in the A-density at the edge of a wall with B-wetting. Still, the predicted formation

energy for the asymmetric defect is quite poor compared to the 10-20% error expected

from Table 3.3. Perhaps the error results from the sharp feature in φB as it decays into

the wall, or from the smaller amplitude of the lamellae in the OPF result relative to

SCFT.

At equilibrium, we found that the average species densities for the confined OPF

calculation in Figure 4.6 were within 10−4 of the desired block fractions fA(1− fw) and

fB(1 − fw). Consequently, the energy Hr is left practically unchanged by the addition

of our constraints from Sections 4.1.1 and 4.1.3. The most extreme value of {ψi} was

−68.5, corresponding to φB = 1.12× 10−6.
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Figure 4.6: Equilibrium density fields φA and φB predicted by the weakly compress-
ible confined OPF model with (ζN)−1 = 0.001 for the same confined system as in
Figure 4.4. We are able to find the same stable state (left) and the same types of
metastable states (center and right) as in SCFT. Defect energies are 0.011 kBT/chain
(center) and 0.14 kBT/chain (right).

Although the numerical methods we used were sufficient to obtain one-dimensional

results like Figure 4.6, we found some other systems challenging. If sharp features are
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present in the density, like in strong segregation, or when seeding configurations from

random noise, we sometimes encountered difficulties in reaching convergence. We have

identified at least two possible problems. One is that the conjugate gradient method

terminates early because we cannot resolve differences in the energy between two values

of the field. Often, though, this occurs when the value of Hr/CV seems resolved to a

precision of 10−5, or when the L2 norm of the force is already smaller than 10−5, in which

cases we can usually consider the fields fully converged. The second problem is that the

relaxation takes a step that causes the energy to diverge.

For example, consider a diblock copolymer melt with f = 0.3 and χN = 25 confined

in a cylinder. Our goal is to use a confined OPF model to find the range of cylinder

dimensions for which the polymer forms a thinner, unbroken cylinder within its guide

pattern. We first approached this problem by seeding an OPF calculation using uniform

random initial conditions for φ in the range (0.5, 1), which are then converted to initial

conditions for ψ by equation (4.40). (We tried using initial conditions for φ in the range

(0, 1) and found that the simulation diverged in the first 1,000 timesteps.) Figure 4.7

shows the progress of this simulation. After only 1,000 conjugate gradient steps, the

polymer already resembles the expected cylindrical configuration. Over the next 12,000

timesteps, the energy Hr/CV and the L2 norm of the force steadily decrease towards

convergence. In the density snapshots, we see the texture of the outer cylinder of A

continue to smooth out. Then, abruptly, the simulation reports that the energy has

diverged. On the other hand, a simulation of the same system but seeded from the

converged SCFT density, shown in Figure 4.8, does not diverge and successfully reaches

a precision of 10−6 kBT/chain in Hr/CV and a force norm of 3× 10−5.

Figure 4.9 examines the progress of the conjugate gradient solver for 278 timesteps

and line searches leading up to the numerical divergence. We take this opportunity to

point out some details about the conjugate gradient method. The conjugate directions
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Figure 4.7: Progress of a diblock copolymer melt being relaxed using the OPF model
in cylindrical confinement starting from random initial conditions. Top row, left to
right: density snapshots from timestep 0, 1,000, 2,000 and 13,000 in the nonlinear
conjugate gradient method. Bottom: evolution of the intensive energy Hr/CV and
the L2 norm of the relaxation force over time.
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Figure 4.8: Progress of a diblock copolymer melt being relaxed using the OPF model
in cylindrical confinement starting from converged SCFT density fields. Top left:
equilibrium density for this system, as output by SCFT. Top right: converged density
for the confined OPF model. Bottom: evolution of the intensive energy Hr/CV and
the L2 norm of the relaxation force over time.
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Figure 4.9: Progress of the conjugate gradient method for 278 timesteps (line
searches) leading up to an observed numerical divergence. Plotted are the norm of the
j-th conjugate direction, ||p|| (left), the minimizer of the j-th line search α (center),
and the j-th conjugate gradient parameter β (right).

p are not normalized to one, so their magnitudes vary from step to step. This can be

useful for diagnosing issues with the relaxation: if we notice that ||p|| does not change

as j increases, the relaxation is likely to be “stuck” in one direction. This does not occur

here. A possible separate issue, though, is that the final directions grow unusually large

in magnitude. Similarly, the values of α (minimizers of each line search) are typically

small, but occasionally, the method finds a minimum at an unusually large value of α,

and the step before the calculation diverges is one of them. This may be part of the

problem, because the first guess for the next value of α (the “blind step” in the next

line search) is informed by the previous solution. However, we still encountered this type

of issue, even with the blind step limited to a maximum value of 1. Finally, the value

of β determines how much “better” the next conjugate direction will be relative to the

steepest descent direction (the gradient in φ). We found that it dropped to zero twice

during this segment of relaxation, both times in response to a line minimization that

did not satisfy the Wolfe conditions after the maximum number of iterations (ten). In

these cases, the algorithm then recovers by resetting the history of conjugate directions

and starting again from the steepest descent direction. Like p and α, the final value of
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β before divergence is also unusually large, which may give us some insight into how to

improve the robustness of our algorithm.

4.2.3 Computational efficiency

The various modifications needed for a confined model—especially the tanh variable

transformation—incur new computational costs, so we now revisit our previous analysis of

computational efficiency. We compared the performance of the Euler predictor-corrector

(EMPEC) method [54], our most efficient method for confined SCFT calculations, and

the conjugate gradient solver for the confined OPF model. On the same hardware for

both SCFT and the OPF model, we ran serial calculations ensuring that the cost of

the simulation was dominated by fast Fourier transform operations [43]. We found that

EMPEC field updates for SCFT took 0.40 s, while Polak-Ribière field updates for the

confined OPF model took 0.055 s. In confinement, we thus estimate that a field update

for the OPF model will complete 7 times faster than a field update for SCFT.

Let us also estimate the number of field updates required to attain convergence in

both models. As we stated previously, we expect this number to be strongly dependent

on the system and its initial conditions (however, it should not depend on the computer

hardware used). To make a fair comparison between the two models, we should adjust

our usual criterion for convergence, an arbitrarily small cutoff value for the L2 norm of

the relaxation force. In SCFT, this norm gives us an idea of the precision to which the

w fields are known; in the OPF model, the norm of the force measures the precision for

the transformed density ψ. A more direct way to compare the two models is to use a

cutoff for the intensive energies H/CV and Hr/CV . For the one-dimensional confined

channel above, seeded from a sinusoid, we found that SCFT with EMPEC needed 6000

timesteps to compute the energy to a tolerance of 10−6, corresponding to a force norm
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of 2× 10−5, while confined OPF with Polak-Ribière needed only 2000 timesteps to reach

the same precision—three times fewer—corresponding to a force norm of only 1× 10−4.

Overall, then, a confined phase field calculation should complete about 20 times faster

than SCFT.

Because we must now store two ψ fields and two φ fields, rather than just one field

φ, as well as some number nwalls of φw fields, a confined OPF model calculation must

allocate more memory than a bulk OPF calculation, about 20 + nwalls. Of course, the

corresponding SCFT calculation must also store nwalls additional wall fields. Overall, we

find that the confined OPF model requires about five times less memory than SCFT,

allowing us to access system sizes five times larger.

4.3 Conclusions

In this chapter, we outlined a number of modifications to the standard phase field

model formulated in Section 2.1 to account for the physics of confinement (the presence of

the wall density in the compressibility and enthalpic interactions with the wall), species

conservation of mass, and the physical constraint 0 ≤ φ ≤ 1. Together, we showed

that these extensions to the model bring real-valued field theories closer to the accuracy

of SCFT and complex-valued field theories. We also demonstrated that, even with the

confinement extensions, the OPF model is still significantly faster than SCFT.

Still, there is much left to understand about the confined model, especially in how

to maximize its numerical performance at stronger segregation strengths. We speculate

that numerical issues associated with floating-point arithmetic may be important [52].

Especially as we go to higher segregation strengths and the density fields approach zero

and one, calculations involving φ, lnφ and ψ increasingly rely on resolving small dif-

ferences in numbers near zero and one. However, because types like the C++ double
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approximate real numbers using a floating-point representation, numbers close to zero

can be represented much more precisely than numbers close to one.

An alternate variable transformation such as
√
φi as done by reference [33] might

have better numerical performance. This transformation constrains φ ≥ 0 but not φ ≤ 1,

which may be sufficient to reproduce the qualitative success of our confined work thus

far.
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Conclusions and outlook

In this dissertation, we developed new methods for simulating real-valued polymer field

theories with an emphasis on their connections to the more well-established complex field

theories. In Chapter 2, we bridged the gap between SCFT and phase field models by

introducing and refining phase field mapping, a new procedure inspired by force-matching

that quickly and systematically parametrizes an optimized phase field model using output

from inexpensive SCFT calculations. In Chapter 3, we studied the numerical properties of

our best phase field model thus far, noting especially its impressive numerical efficiency

and accurate predictions of length scales. We also identified areas for improvements,

such as better performance at asymmetric block fractions and greater transferability

across morphologies. Finally, in Chapter 4, we developed a sequence of modifications to

the original incompressible model and produced a weakly compressible confined model

compatible with the wall masking method that we can directly compare to SCFT in

confined systems.

Chapters 2 and 3 teach us that identifying an appropriate set of basis functionals

for Hr is crucial for a successful mapping. Without a strong basis set, there will always

be inaccuracies in the equilibrium density fields that limit the quality of the mapping.

There is room for improvement in our OPF model for the diblock melt, which could not

reproduce SCFT density profiles for strongly asymmetric systems even with optimized
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coefficient values. We find it likely that adding new terms to Hr that capture these

density profiles will lead to further improvements in other aspects of the model, such as

the transferability of the mapping to gyroid, cylindrical and spherical morphologies and

phase behavior. A possible lead is to introduce some semilocal or nonlocal character at

cubic (and higher) order in φ, for example, the Lifshitz entropy,
∫
dr |∇φ|

2

φ
. The Lifshitz

entropy might also be valuable for improving the model at strong segregation, since it

appears in the ground state dominance approximation. We could also take a data-driven

approach and use machine learning to find a functional form for Hr[φ], as is being explored

in electronic structure DFT [55, 56].

We also hope to develop optimized phase field models for other block copolymer

architectures and blends. In this area, the generalized Ohta-Kawasaki model [33] (either

its “weak segregation” form—effectively the RPA, or its “strong segregation” form) can

serve as a starting point for the basis set. Some ideas for systems to study next are: blends

of AB diblocks with A and B homopolymers, that could lead to interesting studies of

polymer dynamics and reactive blending applications; ABC triblock copolymers, which

have a rich phase behavior that reduces to the diblock copolymer in various limits; and

bottlebrush copolymers, that might gain the most from a real-valued theory in terms of

computational efficiency. As we increase the complexity of the system, the basis set will

almost certainly increase in size; it will be interesting to see how the mapping procedure

handles these larger basis sets. It may become important to characterize to what extent

a mapped model was underfitted (fails to capture all of the relevant physics) or overfitted

(loses transferability), perhaps by using the magnitude of Ψ at its minimum, scaled to

some reference value. We should also be able to detect redundant basis functionals by

looking at the condition number of the matrix used to solve for the coefficients. If the

basis set is redundant, the matrix would become degenerate and the condition number

would diverge.
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Zooming out, a valuable direction for further study is to apply the mapping method

in a more general context. Instead of using a single stationary point for the input φ∗, we

can use multiple states and compute Ψ as a sum over states φ∗j ,

Ψ({ci}) =
states∑
j

(
1

V

∫
dr

[
δHr[φ]

δφ(r)

∣∣∣∣
φ=φ∗j

−
〈
δH[wA, wB, φ]

δφ(r)

〉
φ∗j

]2

+ λ

[
∂Hr,V [φ]

∂ε

∣∣∣∣
φ=φ∗j

−
〈
∂HV [wA, wB, φ]

∂ε

〉
φ∗j

]2)
.

(5.1)

A useful set of input states might include different morphologies or defect states to im-

prove transferability. If we choose at least one state with nonzero force or stress, the linear

system to solve will no longer be homogeneous, so we can optimize every coefficient in

the model simultaneously without resorting to a separate step like equation (2.19) (in

place of the elastic modulus, we would hope that the input states provide the information

necessary to correctly capture magnitudes for defect energies). We can also choose to

relax the partial saddle approximation on H by sampling multiple configurations for w

instead of approximating the average forces and stresses using only w∗. Finally, applying

the mapping beyond the mean-field approximation would enable us to study an even

broader range of phenomena dictated by fluctuation effects, such as phase separation

in polyelectrolyte systems, or fluctuation-stabilized microphases like the bicontinuous

microemulsion in diblock/homopolymer blends and the bricks-and-mortar phase in mik-

toarm/homopolymer blends.
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Appendix A

Previous phase field models

A.1 Random phase approximation

Leibler’s seminal paper [27] describes the random phase approximation for the diblock

copolymer melt, a method to asymptotically evaluate the integrals in equation (2.1).

Assuming that the potential fields wA(r) and wB(r) are close to the values they would

take in the homogeneous (disordered) state, Leibler obtains the following expansion for

Hr in powers of φ:

Hr,RPA[φ]

C
= H0 +

∞∑
n=2

1

n!V n−1

∫
dr1 . . .

∫
drnNΓn(r1, . . . , rn)δφ(r1) . . . δφ(rn) (A.1)

= H0 +
∞∑
n=2

1

n!V n

∑
k1

. . .
∑
kn

N Γ̂n(k1, . . . ,kn)δ̂φ(k1) . . . δ̂φ(kn), (A.2)

where the n-th order vertex function Γn is a function of n different positions r1 through

rn (or similar in Fourier space). The expression is typically truncated at fourth order, the

lowest order sufficient to predict (micro)phase separation, and often a local approximation
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is applied to the third- and fourth-order vertex functions, producing

Hr,RPA[φ]

C
=

1

2!V

∫
dr

∫
dr′NΓ2(r− r′)δφ(r)δφ(r′)

+
1

3!V 2

∫
drNΓ3δφ(r)3 +

1

4!V 3

∫
drNΓ4(0, 0)δφ(r)4. (A.3)

The expression for Γ2 can be related to the structure factor S̃(k), which is the Fourier

transform of the density correlation function 〈δφ(r)δφ(r′)〉:

N Γ̂2(k) = N/S̃(k) =
g(1, x)

g(f, x)g(1− f, x)− 1
4
[g(1, x)− g(f, x)− g(1− f, x)]2

− 2χN,

(A.4)

where x = k2 = |k|2 has units of R−2
g , and the Debye function for the diblock copolymer

melt is

g(f, x) =
2(fx+ e−fx − 1)

x2
. (A.5)

For the interested reader, derivations of the RPA can be found in the appendix of

[27], and in [33, 41], and [57].

A.2 Ohta-Kawasaki model

In 1986, Ohta and Kawasaki simplified the random phase approximation to obtain a

more tractable expression for analytical and numerical calculations. They noticed that

the vertex function Γ̂2(k) diverges as k goes to zero and infinity, and preserved the

behavior of the function in those limits:

lim
k→0

N Γ̂2(k)

k−2
=

3

4f 2(1− f)2
(A.6)

lim
k→∞

N Γ̂2(k)

k2
=

1

4f(1− f)
. (A.7)
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Then, they added a constant in k to capture the χ-dependence and preserve the spinodal

(the height of the minimum). This leads to the approximation

1

2
N Γ̂2(k) ≈ −χN +

s(f)

4f 2(1− f)2
+

1

4f(1− f)
k2 +

3

4f 2(1− f)2
k−2. (A.8)

where s(f) is a fitting function that we will address later. This corresponds directly to

the three quadratic terms in equation (2.9b):

1

2!V

∫
dr

∫
dr′NΓ2(r− r′)δφ(r)δφ(r′)

≈
∫
dr

{
c2δφ(r)2 + c5 |∇φ(r)|2 + c6

∫
dr′G(r− r′)δφ(r)δφ(r′)

}
, (A.9)

where

c2,OK = −χN +
s(f)

4f 2(1− f)2
(A.10)

c5,OK =
1

4f(1− f)
(A.11)

c6,OK =
3

4f 2(1− f)2
. (A.12)

Note that in their original paper, Ohta and Kawasaki eventually divide their entire energy

functional by 2c5,OK for convenience. We have been careful here to retain the original

multiplicative factor on all of the terms (a straightforward way to do this is to ensure

that c2 contains the term −χN). Also note that c2 has units of kBT per chain, while c5

has units of kBT · R2
g per chain, and c6 has units of kBT · R−2

g per chain to compensate

for factors of k2 in equation (A.8) (or ∇2 and G(r− r′) in equation (A.9)).

The fitting function s(f) is defined to approximately preserve the spinodal χNs, the

value of χN at which our approximant for S̃ first diverges (and Γ̂2 first reaches zero).

Since we can compute the RPA value of χNs numerically, we will not bother with s(f)
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and instead exactly preserve the spinodal using

c2,OK =
1

2
N Γ̂(k∗)− c5k

∗2 − c6k
∗−2

= −χN + χNs − c5k
∗2 − c6k

∗−2, (A.13)

where the critical wavevector k∗ is the location of the minimum of Γ̂2, given in equa-

tion (2.12b).

To complete equation (2.9b), Ohta and Kawasaki make a local approximation for the

third- and fourth-order vertex functions. The cubic and quartic polynomial coefficients

c3 and c4 are not specified—the authors only note that in the strong segregation limit,

the polynomial in δφ must have two degenerate minima corresponding to the densities

in the A-rich and B-rich phases. Other authors have assumed phenomenological values

that produce the desired minima for the double well in Hr, like in equation (2.10) and

Figure 2.1 [53, 58], or values corresponding to NΓ3 and NΓ4(0, 0) from the previous

section. To represent the OK model as fairly as possible in comparisons to our model,

we parametrize c3 and c4 using phase field mapping, while retaining (A.13), (A.11) and

(A.12) for the remaining quadratic coefficients.

A.3 Stress derivation

We perform an example derivation of the stress for the Ohta-Kawasaki form of Hr.

For reference, the starting point is an intensive version of equation (2.9b),

Hr,V [φ]

C
=

1

V

∫
dr

{
c2δφ(r)2 + c3δφ(r)3 + c4δφ(r)4 + c5 |∇φ(r)|2

+ c6

∫
dr′G(r− r′)δφ(r)δφ(r′)

}
, (A.14)
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where the Green’s function G(r−r′) solves Laplace’s equation: −∇2G(r−r′) = δ(r−r′).

In one dimension, we simplify to

Hr,V [φ]

C
=

1

L

∫ L

0

dr

{
c2δφ(r)2 + c3δφ(r)3 + c4δφ(r)4 + c5

∣∣∣∣dφ(r)

dr

∣∣∣∣2
+ c6

∫ L

0

dr′G(r − r′)δφ(r)δφ(r′)

}
, (A.15)

where, for periodic boundary conditions in one dimension, the Green’s function G has

dimensions of length and becomes G(r − r′) = − |r − r′|.

To compute the stress, the derivative of Hr,V with respect to the strain ε = L−L0

L0
,

we first make explicit the dependence on L by moving it out of integration bounds,

derivatives, and G. Defining a new spatial variable x = r/L and new L-independent

functions δϕ(x) = δφ(r) and Gx(x− x′) = G(r − r′)/L, we write

Hr,V [φ]

C
=

1

L

∫ 1

0

Ldx

{
c2δϕ(x)2 + c3δϕ(x)3 + c4δϕ(x)4 +

c5

L2

∣∣∣∣dϕ(x)

dx

∣∣∣∣2
+ c6

∫ 1

0

Ldx′ LGx(x− x′)δϕ(x)δϕ(x′)

}
. (A.16)

We then take the derivative with respect to L and find that the Landau polynomial terms

vanish:

1

C

∂Hr,V [φ]

∂L
=

∫ 1

0

dx

{
−2c5

L3

∣∣∣∣dϕ(x)

dx

∣∣∣∣2 + 2c6L

∫ 1

0

dx′Gx(x− x′)δϕ(x)δϕ(x′)

}
. (A.17)
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Restoring the original variable r, the stress is then

1

C

∂Hr,V [φ]

∂ε
=

1

C

∂Hr,V [φ]

∂L

dL

dε

=
1

C

∂Hr,V [φ]

∂L
L0

=
L0

L2

∫ L

0

dr

{
− 2c5

∣∣∣∣dφ(r)

dr

∣∣∣∣2 + 2c6

∫ L

0

dr′G(r − r′)δφ(r)δφ(r′)

}
. (A.18)

In d dimensions, the procedure is similar, but we can choose to define stress and strain

tensors to describe changes for every element of the cell shape tensor. The expression

for the Green’s function and the dimensions of the Green’s function will also change,

but we can still define a system size-independent version, and the extra factors of length

from integration over dr′ will always cancel out the changes to the dimensions of G. If

the strain is isotropic, we can again use a scalar ε. Repeating the derivation, we find a

generalization of (A.18),

1

C

∂Hr,V [φ]

∂ε
=

1

(ε+ 1)V

∫
dr

{
− 2c5 |∇φ(r)|2 + 2c6

∫
dr′G(r− r′)δφ(r)δφ(r′)

}
. (A.19)
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