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ABSTRACT OF THE DISSERTATION

Essays on Macroeconomic Expectations and Revised Data

by

Tyler Louis Paul

Doctor of Philosophy in Economics

University of California San Diego, 2024

Professor Giacomo Rondina, Chair

This dissertation studies the impact of data revisions on macroeconomic expectations.

In the first chapter I show theoretically how revised data bias estimates of information frictions

taken from surveys of expectations. The bias is due to the dynamic property of revised data

which introduces additional past dependency into forecasts, breaking the informational symmetry

between forecast errors and forecast updates. I propose a new estimation specification which

corrects the bias and apply my method to data from the Survey of Professional Forecasters. I find

the degree of information frictions is 33% different from existing estimates on average. Using

my new estimates, I find equilibrium models of incomplete information more closely match the

data.

xii



In the second chapter, I study socially optimal data provision when the economy resem-

bles a beauty-contest. The budget-constrained statistical office (S.O.) faces a trade-off: provide

imprecise yet timely data about the present, or wait to provide more precise yet delayed data

about the past. I find the S.O.’s welfare-maximizing choice of current versus revised signal

precisions depends on the accuracy of private information and strength of strategic incentives. In

some cases the S.O. offers a mixture of both signals, while in others it provides only one or nei-

ther signal in order to reduce the crowding-out of private information caused by the coordination

incentive. The S.O. treats the revised signal as an inferior good, reducing its precision in favor of

the current signal when the budget limit rises.

In the third chapter, I evaluate the interaction between revised data and higher-order

dynamics when estimating information frictions. I prove analytically that the existing estimation

method is valid when the fundamental possesses additional past dependency relative to the case

in chapter one. I find additional bias terms in estimates of information frictions in the presence

of revised data and higher-order dynamics. I propose a correction which eliminates the bias and

does not depend on the specific time series properties of the data. I use simulation to study the

nature of this new bias, finding it to be quantitatively small relative to the bias caused solely by

revised data.

xiii



Chapter 1

Measuring Information Frictions with
Surveys of Expectations: How Revised
Data Bias Estimates

I study how data signals of the past affect the prevailing method of estimating
information frictions. Existing literature measures the relationship between
average forecast errors and forecast updates to estimate the degree of information
frictions, or slow response of forecasts to news. I introduce a revised data signal
into the noisy information model and find this theoretic relationship now suffers
from omitted variable bias and cannot be estimated by OLS. The bias is not due
to noise in the signal but due to the dynamic property of the revised data which
introduces additional past dependency into forecasts and breaks the Markovian
flow of information. I use the model to propose a new specification which corrects
the bias. When I estimate the corrected specification on data from the Survey
of Professional Forecasters, I find the degree of information frictions is 33%
different from existing estimates on average. I apply my results toward two
applications to demonstrate the economic significance of this bias. Under my
corrected estimates I find incomplete information theories more closely match
the data, while the efficacy of forward guidance as a monetary policy tool is
significantly reduced.

1.1 Introduction

Most aggregate data series in macroeconomics are imperfectly estimated using surveys

and statistical sampling. These estimates can change overtime as more information becomes

available or new classification schemes are used, which generates revised estimates of existing

1



published values.1 A large literature has studied the value of using revised data to improve

real-time forecasts, repeatedly finding increased performance relative to models which ignore

revisions (Clements and Galvão, 2017). This paper applies these insights towards a question at

the heart of modern macroeconomics: how are expectations formed?

Canonical workhouse models in macro assume full information and rational expectations

(FIRE): agents freely observe all relevant variables and form their forecasts optimally. Using

surveys of forecasters past researchers have empirically tested these assumptions, generally

finding evidence against either or both components of FIRE (Pesaran and Weale, 2006). Recent

work has followed the contribution of Coibion and Gorodnichenko (2015), henceforth CG, who

develop a test of the full information assumption based on predictability of the forecast error.

When the FIRE assumption holds, forecast errors should be unpredictable; otherwise the forecast

was not optimally using all available information and could be improved. CG show how models

with either sticky or noisy information predict that forecast errors averaged across all agents

are predictable by average forecast updates, which are cross-period revisions to a forecast. The

degree of predictability maps directly to a measure of information frictions, or under-reaction

to informative signals. When they estimate their test using OLS they find just under half of the

information available to forecasters is used in their forecasts.

The CG test is a seminal tool for capturing information frictions directly from data.

However, it is derived from an information set which does not allow signals of the past. Given

the usefulness of revised data in forecasting, this paper asks: how are estimates of information

frictions affected by revised data? I make two key contributions. First, I demonstrate theoretically

how including a revised signal in the noisy information framework biases the CG test and renders

regression estimates unable to identify the degree of information frictions. The bias can be

economically large, depending on parameters, and has a complex interaction with relative signal

1These revisions can be large: over the past two decades, the first estimate of the monthly change in non farm
payroll employment had a 90% confidence interval of ±115,000 jobs; the average level of this estimate was 128,000
(Mester, 2016). Another example is the well-known revision during the Great Recession, where the 2008Q4 real
GDP growth was initially estimated at -3.8%, revised one quarter later to -6.3%, and finally lowered to -8.4% where
it stays today.
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precisions and persistence. Furthermore, the structural mapping between regression estimates

and information frictions is altered due to revised data, introducing additional error in the recov-

ered size of the friction. Second, I propose a new specification of the test which corrects the bias

and restores identification. I estimate my specification and compare with estimates from CG to

show the empirical relevance of the bias. I find the bias ranges from -0.49 to 0.28 percentage

points across a variety of macroeconomic variables and forecasting horizons.

To understand the source of the bias, first consider how forecasts are updated. Upon re-

ceiving a new contemporaneous signal, the forecaster learns about the current period’s innovation

for the first time, while also shedding light on past innovations. Optimal forecasting behavior

implies the current period forecast will include some portion of the new signal, according to its

accuracy, plus a fraction of the prior forecast, weighted by the signal accuracy and persistence. In

effect, the flow of information follows the process of the state: past information is carried forward

similarly to how the state evolves through time, but down-weighted by the trustworthiness of

new information. The dependent variable in the CG test, forecast error, also inherits this same

Markovian flow from the state.

When forecasters also observe a revised signal, the flow of information is broken since

forecasts contain extra learning about the past. The forecast update thus includes an additional

‘bump’ of past dependence, which changes the weights on all previous innovations. This does

not affect the forecast error, though, since the error compares the entire history of forecasts with

the realization, not the change across periods as for the forecast update. This means the new past

dependence ends up in the regression residual as an omitted variable and biases estimates of the

relationship between forecast errors and forecast updates.

I use the noisy information model with the expanded information set to identify an

additional regressor to correct the bias in the CG test. Alongside forecast updates I include the

revised signal innovation, or the difference between the revised signal and the lagged expectation

of it. This term captures the extra past dependence of forecasts (or the ‘bump’ in the flow of

information) and removes both the lagged fundamental and its noise from the error term. The
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correction term also restores the mapping between the estimated coefficients and the degree of

information frictions.

In order to test my correction term I require a revised data signal. Typically, a data

revision occurs when additional data become available at a later date and are used to provide a

more accurate estimate of the fundamental. These revisions are common for data series in the

national income and product accounts (NIPA), since most series are constructed from surveys of

private entities which can have large variation in response time. The most recent estimates are

assumed to be the most accurate, though my findings do not require this assumption. In terms of

the news versus noise literature of Mankiw, Runkle and Shapiro (1984), Mankiw and Shapiro

(1986), and Aruoba (2008), these revisions are forecastable given contemporary information and

thus considered noise.

There is an additional type of data revision that I study empirically due to the structure

of the expectations data. The publicly available Survey of Professional Forecasters (SPF) is

conducted quarterly by the Philadelphia Federal Reserve. Responses are sent in the middle of

the quarter, while forecasts are made on a quarterly basis. This means that for some variables

which are released monthly, like the unemployment rate, forecasts are based on incomplete data

for the current quarter (namely, the final month is missing). This also applies to high-frequency

financial variables, like the interest rate on Treasury bills, which is known with certainty each

day. I consider the initial signal of these variables to be what was known by forecasters at the

time they returned the survey, while the revised signal is the actual quarterly value known at the

end of the quarter. In this way, I may test the model with variables which are measured precisely

and thus do not have the typical revision process.2 In total I will test 14 aggregate data series for

the influence of revised data: six from the NIPA and eight variables with a greater frequency

than quarterly.

When taking the model to the data, I have two goals: to assess the theory’s validity and to

2These revisions would be classified as news: the revision is correlated with the true value, but unpredictable
given contemporary information.
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re-estimate information frictions. To validate the model I test if the coefficient on the correction

term is statistically different from zero, even after conditioning on forecast updates, which

implies forecasters pay attention to revised data. This would be contrary to the investigations of

CG and others who find no other variable helps predict forecast errors when forecast updates are

included.3 In my benchmark specification, I find a non-zero coefficient estimate for 12 out of

14 variables, which is strong support of the theory. Across other specifications with different

forecasting horizons the average number of variables with a non-zero coefficient drops to 8 out of

14. The NIPA variables in particular are most likely to have a correction term coefficient estimate

of zero as the horizon changes, unlike the higher-frequency variables which nearly always are

non-zero. These results indicate forecasters use revised data as predicted by the model, though

revised data may be more important for non-NIPA variables.

Next I re-estimate the degree of information frictions and statistically compare my esti-

mate to one generated by the CG specification. I find six variables with a different estimate of

frictions between the two models under my benchmark specification. The difference amongst

these variables is nearly a third on average in both directions: CPI inflation, housing starts

and the unemployment rate are underestimated by the CG model by 20 percentage points (a

28% difference), while two financial variables are overestimated by 35 percentage points (a

43% difference). As an example, existing estimates suggest 80% of new CPI inflation data are

incorporated into forecasts while my corrected estimates say only 57% of these data are used.

The difference of 23 percentage points corresponds to a 29% bias in the estimate of information

frictions.

Interestingly, all of these six variables are non-NIPA, a pattern that generally holds

across forecasting horizons. Combined with the findings from the model validation exercise it

appears there is a special interaction between NIPA data and data revisions. Alternatively, it

may be the ‘constructed’ nature of non-NIPA data revisions that is unrealistically influencing

the estimates. I provide two possible explanations. First, the natural revisions of non-NIPA data

3One specification in CG found the unemployment rate significant, but the cause is unknown.
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can be considered a closer match to the theory, since the mechanism depends on how the flow

of information is altered by the revised signal. Non-NIPA revisions are highly informative to

forecasters, so one would expect them to break the flow of information and thus bias existing

estimates of information frictions. Second, NIPA revisions occur out of sync with the forecaster

survey so that the time between when forecasters observe the first estimate and most recent

revision is several months. During these months multiple revisions occur, so my ability to match

changes in information with changes in expectations is limited. In summation, my empirical

results provide strong evidence to believe revised data are an important feature of expectations

and estimating information frictions, though their impact may be weakened on NIPA data due to

their low frequency.

As an extension of the theory I apply my correction term toward the salient question of

individual rationality recently raised by Kohlhas and Broer (2019) and Bordalo et al. (2020).

These authors find evidence of forecast error predictability at the individual level, violating the

rational expectations assumption. While the bias due to revised data could explain these findings

in theory, estimating my specification with the correction term at the individual level instead

corroborates them. Indeed, the degree of overreaction at the individual level is typically higher

once correcting for revised data.

To demonstrate the importance of accurate estimates I study two applications and com-

pare results from my estimates with CG. In the first I assess the performance of a modern New

Keynesian model with incomplete information from Angeletos and Huo (2021). The goal of

introducing information frictions is to better match the persistence observed in data estimates of

impulse response functions. When I plot the IRFs from the model I find the curve is significantly

more hump-shaped when using my estimate of information frictions relative to CG. Evaluation of

the model’s performance with only CG’s estimate may lead one to reject the power of information

frictions, which would be an incorrect conclusion if my estimate was closer to the truth. In

the second application I evaluate a stylistic model of forward guidance courtesy of Angeletos

and Lian (2018). When I recreate their results I find the consumption response to a forward
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announcement of interest rates is sharply reduced under my estimate, more than five times lower

than the response in CG. Using the most accurate degree of information frictions thus matters for

determining the usefulness of unconventional monetary policy.

This paper contributes to three strands of literature. The first contains papers which

empirically test FIRE and recover estimates of information frictions. Many authors have tested

FIRE since Muth (1960) put forward model-consistent expectations as a standard (Pesaran and

Weale, 2006), but the recent methodological contributions from Coibion and Gorodnichenko

(2012, 2015) sparked a flurry of research using survey data. Kumar et al. (2015) and Coibion,

Gorodnichenko and Kumar (2018) study how firms in New Zealand form their expectations,

particularly in response to central bank activity. Coibion et al. (2021b) designed a survey eliciting

higher-order expectations, which they use to test alternative theories of incomplete information

like level-k thinking or heterogeneous priors. Cutting edge studies create randomized controlled

trials to test the causal impact of various information treatments on firm and individual ex-

pectations and behaviors (Coibion, Gorodnichenko and Ropele (2020), Coibion et al. (2021a),

Coibion, Gorodnichenko and Weber (2022)). There is an abundance of new survey data and

additional tests of expectations that could be affected by revised data similar to the original CG

specification.

Within this set of literature, my paper fits most directly amongst a recent wave of papers

that examine the validity of the CG test. Bordalo et al. (2020) apply the CG test to individual

forecasters and find evidence of individual overreaction to shocks. The authors take this as

evidence against rational expectations and suggest a non-Bayesian model, similar to Kohlhas and

Broer (2019). In theory, the bias I identify due to revised data could explain over-reaction at the

individual level, however when I estimate my corrected specification on individual forecasters I

find even stronger evidence for over-reaction. Goldstein (2019) derives an alternative approach

to measuring information frictions that is feasible at the individual level by exploiting forecast

dispersion about the mean. His information framework does not include revised data, which may

similarly affect the test’s validity. Gemmi and Valchev (2022) find bias in surveys of forecasters
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subject to strategic considerations and common noise. My paper does not include strategic

coordination, but I find a bias nonetheless which is not due to noise but due to the dynamic

property of revised data. Goldstein and Gorodnichenko (2022) add a noisy future signal to each

forecaster’s information set. They show how forward information changes the persistence of

forecasts relative to the underlying state, a similar result to what I find with revised information.

Their paper, however, does not consider how forward information may bias estimates of informa-

tion frictions.

My contribution also speaks to the literature which analyzes data revisions and builds

forecasting models with real-time data. Concern over the vintage used in forecasting models

extends back to Cole (1969) who found that using revised estimates of GNP produces more

accurate forecasts than using preliminary estimates. Howrey (1978, 1984) built upon this insight

by providing a framework for incorporating preliminary and revised data together for optimal

economic forecasting. The modern success of this literature started with the efforts of Croushore

and Stark (2001) who developed a real-time data set of macroeconomic variables. The data are

arranged into vintages according to the latest known observation for each period of a time series,

enabling econometricians to quickly construct information sets as they were available at a given

point in term. In Stark and Croushore (2002) the authors compare ARIMA forecasting models

which use the latest vintage versus the real-time vintage and find large differences in average

errors. Since then several authors have created forecasting models which incorporate multiple

vintages. Jacobs and van Norden (2011) construct a state-space model which separately allows

for news, noise and spillover effects of data revisions. Kishor and Koenig (2009) generalize

Howrey (1978) in a VAR framework where the data are filtered by the statistical agency before

publication, as in Sargent (1989). Galvão (2017) jointly estimates the parameters of a DSGE

model with the data revision process, improving the forecast accuracy of the DSGE model.

While these papers use sophisticated modeling techniques to harness the value of revised data, I

study a simple model of data revisions and take it as sufficient that incorporating one additional

vintage of data improves forecast performance. To my knowledge, this is the first paper to apply
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the forecasting benefits of revised data towards questions of incomplete information.

By providing new estimates of information frictions my paper contributes to the theo-

retical literature studying incomplete information models. An early example is Lucas (1972),

which described the economy as a series of islands that hold private information. More recent

approaches follow either the sticky information theory of Mankiw and Reis (2002), rational

inattention of Sims (2003), or the noisy information framework of Woodford (2001). Since my

paper uses noisy information my results are most applicable to literature in this vein. Nimark

(2014) considers an information framework with multiple sources of private and public noise, and

shows how they can produce realistic business cycle behavior. Melosi (2016) proposes a DSGE

model where firms receive noisy private signals of aggregates, which ultimately makes inflation

expectations respond more slowly than inflation itself. While these models are estimated directly

on survey data, they could in theory be calibrated by my estimates of information frictions.

More recent advancements from Angeletos and La’O (2020), Huo and Pedroni (2020), and

Angeletos and Lian (2022) recast the incomplete information model into a general global games

framework which sharpens the connection between estimates of information frictions and their

aggregate implications. For this reason I chose two recent papers by Angeletos and Huo (2021)

and Angeletos and Lian (2018) to demonstrate the significance of my findings.

The paper proceeds as follows. Section 1.2 presents the model and analyzes the bias

caused by a revised signal. Intuition is developed initially through the special-case of a perfectly-

revealing revised signal Section 1.3 describes the expectations and macroeconomic variable data,

with special attention paid to the revision process. Empirical results are in section 1.4, which I

use in two applications in section 1.5.

1.2 Model and Analytic Characterization of Bias

I study a noisy information model similar to CG and Woodford (2001), but adapted

to include a revised data signal. The fundamental xt follows an AR(1) process with serially
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uncorrelated errors. There is a continuum of forecasters indexed by i who wish to predict the

fundamental. Each forecaster privately receives a current signal of the fundamental based on

their own knowledge and experience.4 New to their model, I add an additional revised signal

that all forecasters observe, rt , which is informative of the previous period’s fundamental:

State: xt = ρxt−1 +wt

Current signal: yit = xt +ψit

Revised signal: rt = xt−1 +νt

where 0 < ρ < 1, wt ∼ N(0,τ−1
w ), ψit ∼ N(0,τ−1

ψ ), and νt ∼ N(0,τ−1
ν ). The idiosyncratic term

ψit is uncorrelated across both agents and time, and represents the influence of the forecaster’s

local experiences and expertise as in Berger, Ehrmann and Fratzscher (2011). The common noise

νt represents the imprecision inherent in revised data publications from the statistical authority.

Importantly I allow for a perfectly-revealing revised signal, when τψ → ∞, which provides useful

intuition and helps match some data series. The common noise term has no serial correlation.

Finally, computing the revision as yit−1 − rt = ψit−1 − νt which is pure noise, one potential

interpretation of data revisions. I show in appendix A.1.2 that a model of data revisions as news

leads to qualitatively similar results as I find with the noise specification.

Each forecaster forms their best prediction of the fundamental conditional on her infor-

mation set, Ωit , which consists of all current and revised signals revealed through time t: Ωit =

{yit ,yit−1, . . . ,y0,rt ,rt−1, . . . ,r1}. For notational convenience I define Eit [xt+h] = E[xt+h|Ωit ].

Since all innovations are assumed to be normal, I can use the Kalman filter to determine the

optimal forecasting rule. I show in appendix A.1.1 how to derive the following forecasting

4CG study a current signal with both common and idiosyncratic noise in their appendix. They find the common
noise term biases their estimate of information frictions downward, making their results an underestimate of the
degree of information frictions. I will show that common noise in my model behaves similarly, but is not crucial to
my findings.
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formula:

Eit [xt+h] = Eit−1[xt+h]+ρ
hK(yit −Eit−1[yit ])+ρ

hKr(rt −Eit−1[rt ]) (1.1)

The parameters K and Kr are the steady-state Kalman gains, or the weights placed on

the current and revised signals when forecasting the current fundamental xt .5 CG use their

forecasting formula to derive a relationship between average forecast errors, xt+h −Et [xt+h], and

average forecast updates, Et [xt+h]−Et−1[xt+h]. The forecast update measures how the forecast

of xt+h changes between periods t − 1 and t (that is, after observing new signals in period t).

Intuitively, this captures the relevance of new information learned in period t. If there were

no signals observed in period t, then the forecast update should be 0; today’s forecast of xt+h

would be the same as yesterday’s forecast. To find the relationship between forecast errors and

revisions, I will manipulate the optimal forecasting rule, equation (1.1).

1.2.1 Case 1: Irrelevant revised signal

To match the setting used by CG I initially assume the revised signal is not useful for

forecasting because it is infinitely noisy, or τν → 0. In this case the weight on the revised signal

Kr = 0, so the optimal forecast becomes:

Eit [xt+h] = Eit−1[xt+h]+ρ
hK(yit −Eit−1[yit ])

From this equation I plug in yit , average across forecasters to eliminate idiosyncratic noise,

subtract KEt [xt+h] from both sides and rearrange to get equation (9) from CG:

xt+h −Et [xt+h] =

(
1−K

K

)
(Et [xt+h]−Et−1[xt+h])+ γt+h (1.2)

5Because the fundamental is stationary, the Kalman gain matrix will converge. See Hamilton (1994).
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where γt+h = ∑
h
j=1 ρh− jwt+ j is a linear combination of future fundamental shocks. Equation

(1.2) relates average forecast errors to average forecast updates. Averaging across forecasters

eliminates the idiosyncratic noise term ψit in yit .6 Since γt+h consists of shocks starting in t +1,

it is not known by forecasters in period t, so it must be uncorrelated with the forecast update.7

From this structural relationship, CG suggest the following econometric specification:

xt+h −Et [xt+h] = β (Et [xt+h]−Et−1[xt+h])+ εt (1.3)

where εt is the regression residual. Comparing this with (1.2) shows εt = γt+1, a series of shocks

occurring after period t and thus uncorrelated with the regressor. Therefore (1.3) can be estimated

consistently with OLS; estimates of β recover the structural coefficient in equation (1.2), which

I will call β̄CG = 1−K
K .8 Through this connection, one can get an estimate of K, the degree of

information frictions: β̂ → β̄CG, or K̂ = 1
1+β̂

.

The reason this relationship holds is the following logic. The forecast update represents

all new information learned in period t relative to t −1. However, that information is imprecisely

observed due to the noise in signal yit , so forecasters will only partially incorporate it into their

new predictions by down-weighing the signal by K < 1, with the rest of the weight (1−K) placed

on their prior belief. The forecast update thus contains only a fraction of the new information; it

is this less-than-full updating which creates the predictability of forecast errors by past forecasts.

To foreshadow my results, I will expand the key terms in (1.2) into two components:

information about period t and information from periods t −1 and earlier.

Proposition 1 (Forecast error and revision composition) When the revised signal is irrele-

vant, the average forecast error and average forecast update can be represented with the

6Any current period common noise term would enter the right-hand side negatively.
7This term disappears when h = 0.
8Since any common noise term would enter εt negatively, estimates of β̂ would be biased downwards and

thus underestimate the degree of information frictions. CG argue that any finding of β̂ > 0 is strong evidence of
information frictions when common noise is present.
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following recursive equations:

xt+h −Et [xt+h] = ρ
h(1−K)wt +ρ

h+1(1−K)(xt−1 −Et−1[xt−1])+ γt+h

Et [xt+h]−Et−1[xt+h] = ρ
hKwt +ρ

h+1K (xt−1 −Et−1[xt−1])

All proofs are relegated to appendix A.1.5. Both equations are linear combinations of the current

shock wt and last period’s forecast error, with the respective weights depending on the degree

of signal precision. The forecast update places a weight of K on the current shock since wt is

noisily observed from yit , so only some fraction K is incorporated into period t forecasts. This

implies that a fraction (1−K) of the current shock is missing from the period t forecast, and

thus shows up in the forecast error. The second term contains last period’s learning from yit−1

and thus the rational errors made predicting shocks from t − 1 and earlier.9 These errors are

discounted according to how far back they are so that very old forecast errors are less important

for today’s error and forecast update. The key insight from proposition 1 is that the underlying

process for both forecast error and forecast update is the same in terms of fundamental shocks.

It is the difference in weights ascribed to each shock due to the noisy signal that makes the

relationship predictable.

CG stress that this predictability only arises after aggregating across forecasters; oth-

erwise, individuals could exploit the relationship to reduce their own forecast error, implying

their original forecast was not optimal. Recent empirical work, such as Ryngaert (2017) and

Bordalo et al. (2020), has tested this relationship on an individual level and found predictability,

casting doubt on the rational expectations framework. I will show that my results could address

this discrepancy in theory, however individual predictability is still empirically present after

correcting for revised data.

Next I will allow τν ∈ (0,∞) and show how the regression residual is no longer orthogonal

to the forecast update.

9Indeed the forecast error is a difference equation which I will solve backwards later.
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1.2.2 Case 2: General revised signal

Let the revised signal have forecasting value yet be observed with noise so the optimal

forecasting equation is (1.1), reproduced below:

Eit [xt+h] = Eit−1[xt+h]+ρ
hK(yit −Eit−1[yit ])+ρ

hKr(rt −Eit−1[rt ])

The goal is to recreate relationship (1.2) under this new information framework and characterize

the bias. Starting from the optimal forecasting rule (1.1), I perform similar manipulations as for

case 1. However, now there is a new term that doesn’t match (1.2): the revised signal innovation

(rt −Et−1[rt ]). Under the CG relationship, this term will be captured by the forecast update

in an identical manner to the current signal innovation (yit −Et−1[yit ]). I will show that the

revised signal innovation is fundamentally different, and thus representing it by the forecast

update requires an additional term to appear. First expand this signal innovation and relate both

innovations as follows:

ρ(rt −Et−1[xt−1]) = (yit −Et−1[xt ])−wt +(ρνt −ψit)

The above equation states that after accounting for the degree of persistence, the differ-

ence in information between the two signal innovations is wt , the fundamental innovation in the

current period, plus the noise terms from both signals. All of the other information embedded

in yit and rt is identical. In order to recreate (1.2) with a revised signal I must summarize the

mutual information content across both innovations, but to do that requires an additional term in

wt to account for the difference in information. The following proposition uses the above result

to find the structural relationship in the presence of revised data.

Proposition 2 (Structural equation with revised data) When the revised signal is informative,
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the true structural relationship between average forecast errors and average forecast updates is:

xt+h −Et [xt+h] =

(
ρ(1−K)−Kr

ρK +Kr

)
(Et [xt+h]−Et−1[xt+h])

+

(
ρhKr

ρK +Kr

)
wt + γt+h −

(
ρh+1Krνt

ρK +Kr

)
(1.4)

There are two key differences when relating (1.4) to the structural equation (1.2). First, the

coefficient on forecast updates (which I will call β̄REV ) is now a combination of K, Kr, and ρ .

Second, the structural residual contains a term in νt , the common noise of the revised signal,

and a term in wt , the current period fundamental innovation. In terms of the econometric

specification (1.3), the first difference means estimates of β̂ no longer directly map into an

estimate of information frictions, K, since estimates of Kr and ρ are needed as well. The second

difference implies there is correlation between the regressor and residual through wt , so the OLS

assumption of orthogonality no longer holds. Next I will characterize the bias when estimating

(1.3) with OLS.

1.2.3 Bias Characterization

If one were to estimate equation (1.3) when revised data are present, then the true

structural β one is attempting to recover would be β̄REV = ρ(1−K)−Kr
ρK+Kr

. However, the presence of

wt in the error term εt means OLS estimates of β will be biased due to correlation with average

forecast updates. Running OLS on (1.3) when (1.4) is the correct model will give the following

estimate of β :

β̂ = β +
E
[
(Et [xt+h]−Et−1[xt+h])

((
ρhKr

ρK+Kr

)
wt + γt+h −

(
ρh+1Krνt
ρK+Kr

))]
E[Et [xt+h]−Et−1[xt+h]]2

E[(Eit [xt+h]−Eit−1[xt+h])γt+h] = 0 since γt+h only contains shocks from the future. That leaves

two terms with opposite sign: a positive term in wt and a negative term in νt . The following

proposition analytically calculates the size of the bias.
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Proposition 3 (Bias equation) If the true information structure contains a revised public signal

(e.g. τν ∈ (0,∞)) then estimating specification (1.3) with OLS will produce a biased estimate of

β . The size of the bias is:

Bias =
(1−G2)

(
KKrτ−1

w −ρK2
r τ

−1
ν

ρK+Kr

)
τ
−1
w (K2 +2KrKG+K2

r )+K2
r τ

−1
ν (1−2Gρ +ρ2)

(1.5)

where G = (ρ −ρK −Kr).

The direction of the bias is ambiguous; if τν

τw
> ρ

Kr
K the bias will be positive and β̂ will be an

over-estimate. Given the true structural coefficient β̄REV I can compute the relation between β̂

and the implied estimate of K:

K =
1

1+ β̂
− Kr

ρ
(1.6)

Equation (1.6) collapses to 1
1+β

when Kr = 0, as in the CG case with an irrelevant revised signal.

Larger estimates of β̂ lead to smaller implied K, so a positive bias makes estimating (1.3) more

likely to find higher degrees of information friction than there truthfully are.

The size of the bias is affected by the relative precisions of the fundamental, the noise

terms, and the persistence, but importantly not the forecast horizon. Figure 1.1 plots equation

(1.5) for varying levels of τν and ρ while holding the current signal precision ratio τψ

τw
at a

moderately high level.10 The graph shows that the bias is largest for low (but non-zero) degrees

of persistence, a pattern which is preserved as τψ

τw
changes. This result seems counter-intuitive: if

the bias is only present due to the revised signal (i.e. Kr ̸= 0), then decreasing the importance of

the revised signal by lowering ρ should decrease the bias. To better understand why this happens,

I study a simplified model where the revised signal is perfectly-revealing: τν → ∞.11

10As the current signal precision ratio rises, both the bias and the difference due to persistence decrease, since the
revised signal becomes relatively less important.

11This simplification is with some loss of generality, which I will make clear in the following section. The basic
intuition is the same in the general case.
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Figure 1.1. Bias when current signal precision is high. This graph plots the bias from equation
(1.5) as the degree of revised signal precision changes for different levels of persistence ρ . The
degree of current signal precision τψ

τw
= 1. The bias is largest when persistence is low.

Intuition: perfectly-revealing revised signal

A perfectly-revealing revised signal greatly simplifies the forecasting equations which

allows us to neatly identify the source of the bias. Additionally, many authors explicitly or

implicitly assume that the state is perfectly-revealed with a lag. For instance, the theoretical

literature often uses a perfectly-revealing revised signal to limit the extent to which individuals

have differentiated information sets, thus permitting a solution to incomplete information models

(Lucas, 1972). More relevantly, most empirical papers implicitly makes this assumption by

choosing a specific data release as the ‘final’ version, or empirical counterpart to xt . Studying a

perfectly revealing revised signal therefore helps connect this paper’s contribution to the wider

literature.

When xt−1 is known in period t, the problem becomes a static forecasting exercise of

predicting wt .12 The Kalman gain parameters simplify to K =
τψ

τψ+τw
, and Kr =

ρτw
τψ+τw

, which

12I could proceed by forecasting xt using the modified signal ỹit = yit −ρrt , but I prefer to keep the signals intact
to demonstrate the flow of information. The resulting conclusions are the same.
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allows recomputing of the individual forecast (1.1):

Eit [xt ] = K(ρxt−1 +wt)+Krxt−1 +ξit = ρxt−1 +Kwt +ξit (1.7)

where ξit = Kψit . Forecasts no longer depend on the prior belief Eit−1[xt ] since rt perfectly

reveals the state from the previous period. Despite this, the weight on rt (i.e. Kr) is less than 1.

This is because the current signal yit also contains information about xt−1, but since that signal is

noisy agents only learn a fraction ρKxt−1 from yit . Efficiently using rt alongside yit demands

Kr = ρ(1−K) because agents perfectly know xt−1.

Now consider the process of forecast updating. The difference in information content

between today’s nowcast and yesterday’s forecast should reflect the new information acquired

today. If I expand (1.7) to show the information in each signal, I can keep track of the source of

new information in the forecast update:

Eit [xt ]−Eit−1[xt ] = K(ρ2xt−2 +ρwt−1︸ ︷︷ ︸
Info on xt−1 from yit

+wt)+Kr(ρxt−2︸ ︷︷ ︸
Info on xt−2 from rt

+wt−1)

−ρ(K(ρxt−2 +wt−1︸ ︷︷ ︸
Info on xt−1 from yit−1

) +Krxt−2︸ ︷︷ ︸
Info on xt−2 from rt−1

)+ ξ̃it

= Kwt +Krwt−1 + ξ̃it (1.8)

where ξ̃it = ξit −ρξit−1. Today’s nowcast depends on yit , which contains the current fundamental

shock wt as well as all past fundamental shocks in xt−1 due to the AR(1) nature of the state.

However, the forecaster already learned of these past shocks in the previous period from yit−1,

so updating the forecast removes this information. The same happens with common information

about xt−2 in rt and rt−1. All that remains is wt as learned from yit and wt−1 as learned from rt .13

13The form of (1.8) is especially simple due to the perfectly-revealing revised signal. In the general case when
τν < ∞, the forecast update will still depend on all past shocks since observing yit allows forecasters to update their
predictions of the past. When rt = xt−1, there is no guesswork involved in the past beyond wt−1, so we are left with
(1.8). See section 1.2.3 for the general case.
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The presence of wt−1 in the forecast update is due to forecasters using the revised

signals to perfectly infer all past shocks. The forecaster knows xt−1 from rt and xt−2 from rt−1.

Combining both signals is akin to updating her belief of the past shocks: rt −ρrt−1 = wt−1.

The forecast update therefore takes the additional signal of the past and uses it to transform the

forecasting problem into a static one. This requires some weight placed on the revised signal,

hence Kr ∈ (0,1), and so some information from rt is preserved in the forecast update. Therefore,

the forecast update only contains learning on two shocks: wt which is newly observed, and wt−1

which is now perfectly observed.14

After aggregating (1.7) I compute average forecast error to find xt −Et [xt ] = (1−K)wt ,

and plug this plus the aggregate version of (1.8) into the CG regression (1.3):

(1−K)wt = β (Kwt +Krwt−1)+ εt (1.9)

Consider the true structural β when τν → ∞: β̄REV = ρ−ρK−Kr
ρK+Kr

= 0. This means there is no

relationship between forecast errors and forecast updates with a perfectly-revealing signal. Since

the forecasting problem is static, forecast error only depends on wt ; but since wt is not observed

in the previous period, there is no information in the forecast update about it beyond what is in the

current forecast. How one updates a static forecast across time periods thus has no predictability

for their static forecast errors.

This result has implications when I turn to empirics, since many real-world data series are

treated as if their revisions are perfect. For understanding the bias, it implies εt = (1−K)wt =

Kr
ρ

wt as predicted from equation (1.4).15 Estimating (1.9) by OLS gives the exact expression

of the bias: β̂ = β̄REV + (1−K)K
K2+K2

r
= (1−K)K

K2+K2
r

. Due to the simple nature of the Kalman gains, I can

14I can rewrite (1.8) as Kwt +ρ(1−K)wt−1 + ξ̃it . The previous period’s forecast put a weight of K on wt−1,
which is updated to ρ(1−K) after learning rt .

15If I take Kr → 0, then β̄REV = 1−K
K = β̄CG, and εt = 0 just as in CG. However, this is at odds with the assumption

of τν → ∞, so is purely to demonstrate the coherence of these equations.
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represent the bias in terms of fundamental parameters:

Bias =
(1−K)K
K2 +K2

r
=

τψτw

τ2
ψ +ρ2τ2

w
(1.10)

which is what (1.5) converges to as τν → ∞. The bias is strictly decreasing in the current signal

precision; in the limit when yit = xt the bias converges to 0, since the revised signal is no longer

important. The bias is also decreasing in persistence, as demonstrated earlier in figure (1.1).

Since the bias is the covariance between regressor and residual over the variance of the regressor,

the presence of ρ is due to the variance of forecast updates. The forecast update is essentially an

MA(1) in wt , so increasing the persistence will always increase the variance of the process since

past shocks will have a larger influence on the present.16

In terms of forecasts, increased persistence means the revised signal is more important,

thus Kr will receive more weight. However, this does not affect the covariance between the

residual and forecast update, since the revised signal does not help predict forecast errors. Instead,

larger ρ increases the variance of each period’s forecast, which translates into higher forecast

update variance. In effect, the bias shrinks because forecasts follow the process and become

more variable, which reduces the strength of connection between forecast errors and updates.

To summarize, when the revised signal is perfectly-revealing, forecasts no longer depend

on prior expectations, which means forecast updates do not reflect updating of beliefs. Conse-

quently there is no longer a relationship between forecast errors and forecast updates so now the

regression residual equals the forecast error. There is still a covariance between forecast errors

and forecast updates, but this is solely bias due to correlation between forecast errors and current

period forecasts. The bias is decreasing in ρ because while the covariance does not depend on it,

the variance does, which shrinks the whole term.
16Let Pt = Kwt +Krwt−1. Define w̃t =

wt
K , so Pt = w̃t +Krw̃t−1. Increasing ρ increases Kr and not K, so this

amounts to increasing the persistence of an MA(1).
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Intuition: general revised signal

With a general revised signal τν ∈ (0,∞) the intuition is similar, though now the true

structural β̄REV is non-zero. To see the additional persistence in the forecast update I rewrite the

recursive forecasting equations as an ARMA representation. Repeatedly substituting equation

(1.1) into itself gives:

Eit [xt+h] =

(
ρh(K +KrL)
(1−GL)

)
xt +

ρh(Kψit +Krνt)

1−GL
(1.11)

where L is the lag operator. The extra dependence on the lagged state is immediate: the forecast

has an additional moving average term due to the revised signal rt . While the forecast made with

one current signal is an AR(2) process in wt , the forecast made with one current and one revised

signal is an ARMA(2,1). Averaging (1.11) across agents and computing the forecast update in

terms of the fundamental shock shows a similar equation to (1.8):

Et [xt+h]−Et−1[xt+h] = ρ
h Kwt +Krwt−1 +(1−ρL)νt

1−GL
(1.12)

The forecast update is now an ARMA(1,1) process in wt , and includes updating the weight placed

on the infinite sequence of past shocks. If Kr = 0 this becomes an AR(1) in wt , exactly following

the form of the underlying process: the forecast update reduces the weight on past shocks in

a smooth manner, by the geometric sequence 1
1−GL . With non-zero Kr there is an additional

moving-average term that confounds this smooth discounting of the past. New information about

the past adds a ‘bump’ to the flow of information when compared with the state process.

As before, I construct equation (1.3) when h = 0 by plugging in my expressions for the

average forecast error and average forecast update processes:

(1−K)wt −Krνt

1−GL
= β

(
Kwt +Krwt−1 +(1−ρL)Krνt

1−GL

)
+ εt (1.13)

21



Equation (1.13) shows how the same logic from the perfectly-revealing case still applies.17

The forecast error only depends on an AR(1) in wt , as dictated by the fundamental process.

The forecast update is an ARMA(1,1) due to the revised signal. The extra weight on the past

introduced by rt creates a regression residual that is correlated with the regressor. Using β̄REV

and computing the residual finds the same terms identified in equation (1.4). If I assume εt is

orthogonal and use OLS to find β̂ I get:

β̂ =
τ−1

w (1−K)(K +KrG)−K2
r τ−1

ν (1−ρG)

τ
−1
w (K2 +2KKrG+K2

r )+ τ
−1
ν K2

r (1−ρ2 +2ρ(ρK +Kr))

The difference between β̂ and β̄REV gives the same bias found in proposition 1. Note

if Kr → 0 (equivalently if τν → 0), β̂ → β̄CG, so it is the revised signal which causes the bias.

This expression is more complicated than in the perfectly-revealing case, and as such exhibits

more complex comparative statics. Figure 1.2 plots bias equation (1.5) with a lower current

signal precision ratio than in the previous figure. Overall the magnitude of the bias is larger than

in figure 1.1 since there is less weight placed on the current signal. The bias still decreases in

persistence, but for high enough ρ it becomes negative. As ρ increases, the influence of the

fundamental falls due to increased variance of forecasts (similar to the perfectly-revealing case),

but this is supplemented by the noise’s negative contribution.

On surface level, the bias is due to representing the information learned from both current

and revised signals by a single variable, the forecast update. Since the current signal contains wt

while the revised signal does not, a term in wt shows up in the residual. Looking deeper into what

constitutes the forecast error and forecast update, I showed that the revised signal introduces

additional dependence on past shocks in the form of extra weight assigned to wt−1 and earlier.

This extra weight does not affect the forecast error, so it shows up in the residual and thus biases

estimates of β̄REV .

17Equation (1.13) is also the solution to the difference equation representation of forecast errors and forecast
updates from section 1.2.1.
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Figure 1.2. Bias when current signal precision is low. This graph plots the bias from equation
(1.5) as the degree of revised signal precision changes for different levels of persistence ρ . The
degree of current signal precision τψ

τw
= 0.1. When persistence is low (less than 0.5), the bias

is positive and initially increasing until it begins to decrease at a low level of revised signal
precision. When persistence is higher the bias is always negative and asymptotes to 0.

Next I discuss how an incorrect assumption of the structural β further biases the recovered

degree of information frictions.

1.2.4 Implications for estimates of K

The implications for estimates of information frictions of the econometric bias crucially

depend on the econometrician understanding the true structural β they are hoping to recover

from (1.3) as seen in the mapping between β̂ and K from equation (1.6). However, if the

econometrician has a mistaken belief of the true structural β , then mapping β̂ into K will

introduce additional bias relative to that discussed previously. Specifically, the difference

between the estimated β̂ and the mistakenly-believed structural β̄CG is the error in estimating K

due to believing an incorrect structural relationship.
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I first show this error with a perfectly-revealing revised signal:

β̂ − β̄CG =
KKr

ρ(K2 +K2
r )

− 1−K
K

=− ρ2τ3
w

τψ(τ2
ψ +ρ2τ2

w)

This shows that the recovered β̂ will always be smaller than one expects it to be under the

mistaken informational assumption of irrelevant revised data. When one believes the true

structural β is β̄CG, then K̂ = 1
1+β̂

. If β̄REV is in fact the true structural β , then I can find the

over-estimation of K by plugging β̄REV into β̂ and comparing K̂ with the true K:

K̂ −K =
τ2

ψ +ρ2τ2
w

τ2
ψ +ρ2τ2

w + τψτw
−

τψ

τψ + τw
= Kr

(
ρτ2

w
(τ2

ψ +ρ2τ2
w + τψτw)

)
(1.14)

Expression (1.14) shows that mapping β̂ into K as if there were no revised data will

produce estimates of K that are too high, which means lower information frictions. This is the

opposite effect on β̂ and K̂ compared with the econometric bias in the perfectly revealing case.

Increased persistence causes estimates of K to be even larger than the truth.

To see the source of this error, return to equation (1.9). I showed that this equation cannot

be estimated by OLS, since εt is not orthogonal to the forecast update. If one had the mistaken

assumption that εt was orthogonal, that would imply β = β̄CG = 1−K
K . Plugging this into (1.9)

and solving for the econometric residual under the belief that β̂ → β̄CG gives:

−Kr

K
(1−K)wt−1 = εt (1.15)

If the revised signal were irrelevant, Kr = 0, and εt = 0 since h = 0. However, a useful

revised signal causes the regression residual to be correlated with the regressor by Krwt−1, so

OLS estimates will be biased. In this case, the correlation is through the lagged fundamental

wt−1, whereas the correlation for the econometric bias was due to wt . The appearance of wt−1 is

due to the assumption of β → β̄CG, which ignores the extra persistence in forecasts from rt .
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1.2.5 Correct specification

The bias described above is essentially an omitted variable bias: the revised signal

introduces an additional dependency in the forecast update which is not captured by the CG

regression specification. To correct this I propose introducing an additional regressor to equation

(1.3) that will capture the influence of the lagged observation. Since the revised signal is public,

the econometrician has access to it, thus I can include the signal innovation term (rt −Et−1[xt−1])

in the specification to control for forecast updates due to the revised signal.

One can derive the following relationship from the optimal forecasting equation (1.1):

xt+h −Et [xt+h] =

(
1−K

K

)
(Et [xt+h]−Et−1[xt+h])

−ρ
h
(

Kr

K

)
(rt −Et−1[xt−1])+ γt+h (1.16)

which suggests the regression specification:

xt+h −Et [xt+h] = β (Et [xt+h]−Et−1[xt+h])+βr(rt −Et−1[xt−1])+ εt (1.17)

The first term of equation (1.16) as well as the true structural β is the same as in (1.2).

The second term represents the information learned from signal rt . The residual εt = γt+h no

longer contains the fundamental shock wt and contains no noise terms since they are preserved

in the signal rt , so this equation can be consistently estimated by OLS. Estimates of β and βr

directly map into K and Kr and do not require a measure of ρ .

The structural relationship (1.16) implies several testable restrictions. First, it predicts the

coefficient βr should be negative: since observing rt doesn’t affect forecast errors but does affect

forecast updates, βr < 0 in order to remove the impact of rt from the forecast update.18As the

18To see this, return to the perfectly-revealing case: (1−K)wt =
1−K

K (Kwt +Krwt−1)− Kr
K (rt −Et−1[rt ])+εt . Plug

in Kr = ρ(1−K) and Et−1[rt ] = ρxt−2 +Kwt−1 +ξt−1, simplify to find (1−K)wt = (1−K)wt +ρ
(1−K)2

K wt−1 −
ρ

(1−K)2

K wt−1 + ξ̃t + εt .
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horizon increases, βr will decrease, but similar to CG β should remain constant across horizons.

Note that any prediction across variables is conditional on constant precisions τν and τψ , plus

constant variance of the fundamental τ−1
w , which is unlikely to be true in the data. The predictions

within a variable are more likely to hold empirically.

1.3 Data

To assess the validity of the model I require a panel of forecasts to construct average

forecasts, as well as real-time data releases in order to construct the revised signal innovation.

Here I describe the data sources, paying special attention to the schedule of data releases and

sources of revisions.

1.3.1 Expectations

I use the publicly available Survey of Professional Forecasters (SPF) for expectations

data. The survey includes a panel of roughly 30-40 forecasters making quarterly predictions

on key economic indicators for horizons up to four quarters ahead. The SPF also includes a

forecast of the previous quarter, which I will show is necessary for estimating certain data series.

Most forecasters use a mathematical model, adjusted with subjective judgments, to construct

their forecasts, while 60% update forecasts at a monthly or higher frequency (Stark, 2013). This

suggests the SPF forecasters are highly attentive to new data releases so their forecasts will likely

respond to revised signals, which makes the data ideal to test the model.

The survey is sent to respondents at the end of the first month of each quarter, timed

to arrive after the advance report of the national income and product accounts (NIPA) by the

Bureau of Economic Analysis. The deadline for returning the survey varies around the middle of

the second month of the quarter, although since 2005 the deadline is by the second week.19 The

information set for respondents thus includes the advance NIPA report, anything released before

the middle of the second month, and everything published in the past. For variables published

19The Philadelphia Fed lists the exact deadline dates on their website.
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quarterly respondents should only receive one current signal (e.g. the advance report for NIPA

variables) per survey. For variables published monthly respondents could receive an additional

signal during the second month before the SPF deadline.

1.3.2 Real-time Macroeconomic Data

Most macroeconomic data series are not perfect representations of the true underlying

value, but instead are estimates based on statistical sampling. The first estimate of a variable

rarely has access to all the underlying raw data, which are collected later and incorporated into

subsequent estimates. I describe the revisions process here for two sets of variables: those from

the National Income Product Accounts (NIPA) and those from other sources.

NIPA variables

The BEA releases its advance report of the NIPA at the end of the first month of each

quarter. This report has the first quarterly estimates of nominal and real GDP, the GDP price

index, real consumption, real investment, etc. The second and third estimates are released at the

end of the second and third months of each quarter.20 This never occurs before the SPF deadline,

so only the advance estimate is in the forecaster’s information set. Additionally, there are yearly

revisions to all quarterly estimates of the preceding three calendar years, plus a comprehensive

revision every five years based on economic censuses. Since the annual and comprehensive

revisions often include definitional changes I always compare values within a data vintage when,

for example, computing growth rates.

The difference between the advance and second estimates of the NIPA is due to the

different source data available. The NIPA handbook describes five categories of source data

which can be ranked according to their comprehensiveness and accuracy. Holdren (2014) shows

that the most comprehensive data only comprise 25% of the advance estimate, while trend

calculations (based solely on past observations) contribute 28%. One month later, the second

20Appendix A.1.3 demonstrates how including additional revised signals in the model does not qualitatively
change the results, though now there are additional biases due to each revision.
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estimate uses 37% comprehensive data and only 20% trend. The third estimate uses the least

trend data, with other more comprehensive categories picking up the difference.

To be more specific, the advance estimate has no source data available for the third month

of the target quarter for many key series, like construction spending, changes in inventories for

nondurable-goods, and U.S. exports and imports of goods (Holdren, 2014). The BEA makes

trend-based assumptions for these series in the third month based on past periods. The second

estimate replaces a statistical prediction of, for example, private construction spending, with

source data from the census bureau’s monthly Value of Construction Put in Place Survey. This

report is released one month after the target month, so it would be unavailable for the third month

of the advance NIPA estimate target quarter. Another example is the Quarterly Services Report

(QSR) used to calculate private investment and PCE inflation. The QSR releases 2.5 months

after the target month, so can only be incorporated in the second (and sometimes third) NIPA

estimate. In sum, the revisions to the NIPA represent increased knowledge of the underlying

variable through more comprehensive and representative data availability.

Importantly, the NIPA reports contain estimates only of the prior quarter: the advance

report released in Q1 2022 has the first estimates for Q4 2021. Appendix A.1.4 shows an

alternative way of modeling the NIPA data which incorporates the delay in data publications.

Empirical results are similar across both methods, so I will use the initial model presented in

section 1.2.

Labor statistics

The Bureau of Labor Statistics publishes the Employment Report every month on the

first (or second) Friday.21 The report contains the results from two surveys: the Current Pop-

ulation Survey (a survey of households) and the Current Employment Statistics (a survey of

establishments). These surveys provide the first monthly estimate of the unemployment rate

(from the CPS) and nonfarm payroll employment (from the CES) for the previous month.
21Technically: ‘The Employment Situation is scheduled for the third Friday following the week including the

12th of the prior month, with an exception for January.’
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The CES is a voluntary survey collected from firms about their employee levels, hours

and earnings. As a voluntary survey, the CES fails to receive 100% of sampled firms responses

by the publication date of the Employment Report. In fact, the average response rate by the first

publication of the target month over the last 40 years is around 61%.22 The BLS continues to

collect responses after the first Employment Report, which they call the first preliminary release,

incorporating the additional survey data into revised estimates in the next two Employment

Reports. Thus the revised monthly estimates are due to additional survey receipts, which should

improve the accuracy of the estimates.

The monthly unemployment rate from the CPS is not revised on a month-to-month basis,

as the survey completes its data collection prior to publication. The BLS does annually adjust

the population weights of the survey according to census data, but this is done in real-time and

does not affect historic data. Therefore, a second estimate of the monthly unemployment rate

would be identical to the first estimate.

There is an additional dimension of data revision to both nonfarm payroll employment

and the unemployment rate. In order to match the SPF forecasts, I take quarterly averages of the

monthly employment rates. The consistent timing of the SPF and the Employment Report means

a second estimate of the quarterly employment level or unemployment rate would be different

from the first estimate due to additional months of data.

As an example, consider the SPF for 2019 quarter 3. The survey is sent to respondents at

the end of the first month, July. The June Employment Report, containing the unemployment

rate in June, was published on the 5 July. The information set of forecasters contains the un-

employment rates for each month in quarter 2: April, May, June. The deadline for returning

the survey is 6 August. On 2 August, the next Employment Report is released and reveals the

unemployment rate in July, the first month of quarter 3. Forecasters take this signal as the average

unemployment rate in quarter 3 despite it only representing July. Fast forward to the next SPF

for quarter 4. By this survey deadline, forecasters will have received the September, October,

22This has trended up over time as the BLS improves its electronic data collection systems.
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and November Employment reports with August, September and October unemployment rates.

Now consider their information sets across both surveys. For the quarter 3 survey, all they knew

of the quarterly unemployment rate in quarter 3 is the July monthly figure. For the quarter 4

survey, they’ve learned the August and September figures as well. I consider this addition of

new data as the quarterly revision, despite none of the monthly unemployment rates changing.

The employment levels will change, which means this variable has two dimensions of revision.

Furthermore, this means that BLS variables are available for the current time period, even if it’s

only one month out of the quarter.

Financial variables

I study three financial variables: the secondary market interest rate on Treasury bills (3

month) and bonds (10 years) and Moody’s AAA corporate bond yield index. These variables

never receive revisions like the NIPA data do, and they can be publicly looked up at any given

moment. However, since the SPF asks respondents for their forecast of the quarterly average

interest rate, their initial forecast will be based on incomplete information of the quarter. When

an individual makes a forecast in Q1 of the quarterly average Treasury bill rate for Q1, for

example, they only have access to the daily rates up through the middle of February. In effect,

their nowcast is a prediction of the second half of Q1. Next quarter when they make forecasts

they will now know the true average rate in Q1. Therefore, I use the average rate up to the

deadline date for returning the survey each quarter as the initial signal yit , and the complete

average rate as known on the first day of the following quarter as the revision rt .

Housing starts

The U.S. Census Bureau publishes a monthly report on New Residential Construction

(NRC), where the number of housing starts is collected in the Survey of Construction (SOC).

The data are collected by Census field representatives visiting permit offices and building sites

to catalog which permits have begun construction. Difficulties in reaching every site or permit-
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owner in the sample means the first estimate of housing starts is based on incomplete data. The

Census Bureau releases revisions to their first estimate in the following two months as the sample

becomes fully covered.

Published estimates of monthly housing starts correspond to the previous month. Unlike

the Employment Report, the NRC is published during the third week of each month, and thus

will be after the SPF deadline. Only the first month of each quarter is in forecasters’ information

set. Therefore the only source of revisions to housing starts is the receipt of additional source

data.

Industrial production index

The Federal Reserve Board of Governors publishes the G.17 report monthly which

contains their estimates of real industrial output and capacity utilization. There are two main

sources of data: physical product output and production inputs. Physical output data are received

from private trade agencies at a monthly or quarterly frequency, with some quarterly data receipts

coming several months after the initial estimate. When product output data are not available, the

Board of Governors converts estimates of production-worker hours from the BLS establishment

survey into production outputs using factors derived from historical relationships. When some of

either source data is not yet available the Board of Governors estimates the missing production

using statistical modeling. In 2020, the first monthly estimate of the index was derived from

31% physical product data, 43% production-worker hours, and the remaining 26% of the index

was estimated. By the third monthly estimate source data accounted for 93%. The sixth and

final monthly estimate had 98% source data. The first estimate is released around the 15th of the

following month, which means the forecaster’s information set contains the first estimate of the

first month of the current quarter.
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1.3.3 Data caveats

The first concern is the mismatched frequency of data revisions and forecast updates.

Since the SPF is conducted quarterly but most data series are revised monthly, I do not observe

forecast updates in response to the initial revisions. For example, the advance estimate of Q1 is

released during the first month of Q2 and is available for the Q2 forecaster survey. After forecasts

are submitted, the second estimate (i.e. first revision) will be released during the second month

of Q2. Before the next SPF occurs the third estimate will be released (i.e. second revision), as

well as possibly annual or benchmark revisions. This means the forecast update I observe in

the Q3 SPF is reacting to the third or fourth revision of Q1. The size of the revision from the

advanced to the third estimate is larger than from the advanced to second estimate which may or

may not improve the empirical identification.

The lagged release schedule of the NIPA variables presents its own problems. Many

forecasters use the advance estimate as their backcast Eit [xt−1]. Using the model from section

1.2, this implies forecasters believe rt is perfectly-revealing. Table (1.1) summarizes the share

of individual backcasts made that equal the advance estimate. The high shares across NIPA

variables indicate that I should view the empirical results as if τν → ∞. In that case, the true

structural β̄REV = 0, so any statistical evidence to the contrary is due to bias.

Table 1.1. Share of Individual Backcasts Equaling Real-time Signal

NGDP RGDP Price Index Non-Resid. Inv. Resid. Inv. Cons.
90% 82% 86% 56% 54% 61%

Notes: Each column computes the share of individual backcasts (i.e. forecasts of xt−1) that
are within 0.001 of the advance release of that data series. An error margin of 0.001 is used to
include cases where forecasters appeared to round the data release differently. Data are from
1968Q4 to 2020Q3. The Price Index data series is the GDP deflator.
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1.4 Empirically testing the model

I wish to test the predictions of the model with a revised signal and compare the estimates

of information frictions to the standard specification of CG. As a first step, I perform a test of the

relationship between data revisions and forecast updates. If forecasters pay attention to revised

data, there should be a correlation between the size of data revisions and the forecaster’s own

update.23 I use the notation xt−s|t+ j to denote the value of xt−s as published in t+ j. For example,

from the model yit = xt|t +ψit and rt = xt−1|t +νt . I define the size of the data revision observed

in period t as the difference between the initial release and the first revision. For non-NIPA

variables, this is zO
t = xt−1|t − xt−1|t−1. Data revisions to the NIPA are zN

t = xt−2|t − xt−2|t−1 due

to the lagged release schedule. I run the following regression:

Et [xt+h]−Et−1[xt+h] = c+α1zd
t +δt (1.18)

The null hypothesis is α1 = 0, implying forecasters do not condition their forecast updates

on revised information. Table (1.2) shows results when the forecast horizon is one year.24 I

cannot reject the null for most of the NIPA variables plus housing starts and industrial production,

yet the coefficient on nearly all other non-NIPA variables is statistically different from 0 at the

10% level. The discrepancy is likely due to the delayed release schedule of the NIPA variables.

Recall from table 1.1 that most forecasters use the current signal as their backcast. This implies

they believe the current signal is the truth (or at least close-enough to it), so they have no reason

to monitor revisions. On the other hand, the results for non-NIPA variables suggest forecasters

do pay attention to revised data signals. The advance estimate for these data series are published

in the current period but only contain one month of the quarter. This makes the second estimate

(i.e. the data revision) important for accurate forecasting.

23This should hold at an individual level as well, but I focus on the aggregate forecast update to stay in line with
the model.

24Appendix A.1.6 contains results for other horizons, as well as including the first data release as a control in the
regression. Results are similar across horizons and with the control.
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Table 1.2. Data Revisions Predicting Aggregate Forecast Updates, one-year ahead

Forecast Updates Data Revision pval

Nominal GDP -0.08 0.75
Real GDP 0.06 0.75
GDP price index inflation 0.32 0.53
Real consumption 0.34 0.02
Real nonresidential investment 0.04 0.75
Real residential investment 0.04 0.82

Consumer price index 0.16 0.00
Housing starts 0.06 0.46
Industrial production 0.03 0.18
Unemployment rate 1.34 0.00
Employment growth 1.33 0.00
Treasury bill 3 month rate 1.41 0.00
Treasury bond 10 year rate 1.76 0.00
AAA Corporate bond rate 1.06 0.00

Notes: Each row shows the estimated coefficient α̂1 from regression model (1.18) for one-year
ahead forecasts. The variables in the top panel are from the NIPA. Data used for estimation are
from 1968Q4 to 2019Q4. Standard errors are computed using the Newey-West method with
automatic bandwidth selection to correct for serial correlation. Estimates are bold if I reject the
null hypothesis of ignoring revised data releases at the 10% level.
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Importantly, there is positive correlation between forecast updates and data revisions for

the non-NIPA variables. This implies that a revision which increases the value of xt−1 will lead

to an increase in the forecast update. Put another way, an unexpectedly high revision causes

forecasters to raise their current forecast of xt . These preliminary results suggest I am more

likely to find validation of the model in the non-NIPA variables than the NIPA variables.

1.4.1 Main results

To test the validity of the model, I estimate (1.17) using the third estimate (second

revision) as xt (i.e. xt|t+3). Table 1.3 presents regression results for one-year ahead forecasts in

both the CG model without revisions (equation 1.3) and the corrected specification.

Table 1.3. Average Forecast Errors and Average Forecast Updates, one-year ahead

CG Model Revised Model
Variable β pval R2 β pval βr pval R2

Nominal GDP 0.68 0.00 0.05 0.72 0.00 -0.53 0.02 0.07
Real GDP 0.63 0.02 0.04 0.66 0.02 -0.37 0.11 0.05
GDP price index inflation 1.35 0.01 0.24 1.28 0.01 0.63 0.00 0.26
Real consumption 0.36 0.25 0.01 0.29 0.38 0.33 0.06 0.02
Real nonresidential investment 0.97 0.00 0.07 0.90 0.02 0.30 0.45 0.07
Real residential investment 1.17 0.00 0.10 1.09 0.00 0.49 0.03 0.11

CPI inflation 0.24 0.30 0.00 0.74 0.00 -0.25 0.00 0.05
Housing starts 0.42 0.11 0.01 1.35 0.00 1.36 0.00 0.17
Industrial production 0.95 0.00 0.08 0.94 0.00 -0.67 0.02 0.10
Unemployment rate 0.83 0.00 0.12 1.17 0.00 -1.08 0.01 0.15
Employment growth 1.60 0.00 0.34 1.49 0.00 1.39 0.00 0.36
Treasury bill 3 month rate 0.67 0.00 0.08 0.26 0.08 1.97 0.00 0.21
Treasury bond 10 year rate -0.06 0.42 -0.01 -0.05 0.72 -0.55 0.06 0.00
AAA Corporate bond rate 0.08 0.61 -0.01 -0.30 0.02 1.30 0.01 0.11

Notes: The CG model refers to estimates of (1.3), while the Revised Model refers to estimates
of (1.17). All forecasts are of xt one-year ahead. The variables in the top panel are from the
NIPA. Data used for estimation are from 1968Q4 to 2019Q4. Standard errors are computed using
the Newey-West method with automatic bandwidth selection to correct for serial correlation.
Estimates that are in bold are statistically significant at the 10% level.
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Recall that β is the coefficient on the average forecast update and βr is the coefficient on

the correction term, the revised signal innovation. Testing the model’s key assumption that

forecasters use revised data has a null hypothesis of βr = 0. The data reject at the 10% level for

all variables excluding real GDP and nonresidential investment. This is strong support of the

model, as CG point out that no other variable should have predictive power once conditioning

on forecast updates. Additionally, the revised model finds a statistically significant β for nearly

all variables, while the CG model does not for CPI inflation, housing starts, and the corporate

bond rate. This means that estimates from CG would predict no information frictions on those

variables. Finally the model fit as measured by R2 is much greater for the revised model when

considering non-NIPA variables: R2 for 3-month treasury bills increases from 8% to 21%, for

example. The fit is mostly the same for NIPA variables, which may reflect the results from table

1.2.

Next I compute the influence of the revised data signal on the recovered estimate of

information frictions. Table 1.4 performs a statistical comparison of β̂ between the two models

and computes the implied estimate of K. The last column takes the difference and is a measure of

the bias from using the CG model when the true information set contains revised data. As hinted

at in earlier results, none of the NIPA variables have a statistically distinguishable estimate of

K across the two models. Despite the revision correction term being significant, the resulting

estimate of K is unchanged. At the same time, five of the eight non-NIPA variables do have a

significantly different estimate of K. Averaging the absolute difference across these five variables

finds an average bias of 0.26, or 0.17 when averaged across all eight. The direction of the bias

varies: for non-financial variables it is positive, while bond rates have a negative bias.
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Table 1.4. Comparing estimates of K between CG and Revised model, one-year ahead

Variable Test stat pval CG K REV K Difference

Nominal GDP 0.89 0.34 0.59 0.58 0.01
Real GDP 0.54 0.46 0.61 0.60 0.01
GDP price index inflation 1.32 0.25 0.43 0.44 -0.01
Real consumption 2.40 0.12 0.73 0.78 -0.04
Real nonresidential investment 0.61 0.44 0.51 0.53 -0.02
Real residential investment 1.41 0.23 0.46 0.48 -0.02

CPI inflation 13.03 0.00 0.80 0.57 0.23
Housing starts 21.87 0.00 0.70 0.43 0.28
Industrial production 0.06 0.81 0.51 0.52 0.00
Unemployment rate 5.17 0.02 0.55 0.46 0.08
Employment growth 1.55 0.21 0.38 0.40 -0.02
Treasury bill 3 month rate 8.25 0.00 0.60 0.79 -0.20
Treasury bond 10 year rate 0.36 0.55 1.07 1.05 0.02
AAA Corporate bond rate 4.62 0.03 0.93 1.42 -0.49

Notes: The test statistic is a chi-squared adjusted for heteroskedasticity. CG K and REV K refer
to the K recovered from both model estimates according to the expression K = 1

1+β̂
. Estimates

that are in bold are statistically different at the 10% level.
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In appendix A.1.7 I show versions of tables 1.3 and 1.4 across all horizons. The same

variables exhibit large bias across horizons, though the size of this bias varies greatly. This is

contrary to the model’s predictions, but it affects the CG specification similarly.

1.4.2 Testing the relationship at the individual level

Bordalo et al. (2020) estimate the CG regression (1.3) at an individual level and find

evidence of over-reaction to data, or K̂ > 1. According to rational expectations there should be

no relationship between individual forecast errors and individual forecast updates, since if there

were the forecaster could exploit it and improve their forecast. Finding K > 1 casts doubt on the

rationality of forecasters and suggests individuals suffer from a behavioral bias. Ryngaert (2017)

found some evidence of overestimation on the individual level in a model of mis-perception of

the fundamental persistence.

In this section I will re-run my corrected specification at the individual forecaster level to

assess if controlling for revised data can address these findings. Since revised data can introduce

a positive or negative bias into estimates of K, depending on parameters, it is possible that the

results in Bordalo et al. (2020) and Kohlhas and Walther (2021) can be explained in terms of the

identified bias. Following these papers I pool across forecasters and recreate tables 1.3 and 1.4 at

the individual level.
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Table 1.5. Average Forecast Errors and Average Forecast Updates
Individual level, one-year ahead

CG Model Revised Model

Variable β pval R2 β pval βr pval R2

Nominal GDP -0.23 0.01 0.02 -0.28 0.00 0.34 0.01 0.04
Real GDP -0.17 0.08 0.01 -0.14 0.23 0.33 0.17 0.01
GDP price index inflation -0.09 0.60 0.00 -0.17 0.14 1.17 0.00 0.09
Real consumption -0.22 0.05 0.02 -0.23 0.04 0.34 0.04 0.04
Real nonresidential investment 0.04 0.80 0.00 -0.05 0.78 0.74 0.03 0.05
Real residential investment -0.03 0.79 0.00 -0.04 0.73 0.79 0.00 0.06

CPI inflation -0.27 0.02 0.02 -0.30 0.00 0.00 0.95 0.02
Housing starts -0.29 0.01 0.02 -0.04 0.69 0.84 0.00 0.12
Industrial production -0.04 0.69 0.00 -0.04 0.61 0.27 0.28 0.01
Unemployment rate 0.33 0.04 0.03 0.28 0.07 0.22 0.37 0.03
Employment growth 0.36 0.25 0.03 0.12 0.63 1.70 0.00 0.12
Treasury bill 3 month rate 0.27 0.01 0.02 0.03 0.69 1.50 0.00 0.16
Treasury bond 10 year rate -0.19 0.02 0.01 -0.33 0.00 0.54 0.00 0.04
AAA Corporate bond rate -0.21 0.00 0.02 -0.40 0.00 0.90 0.00 0.12

Notes: The CG model refers to estimates of (1.3), while the Revised Model refers to estimates of
(1.17). The table pools all individual forecasts together. All forecasts are of xt one-year ahead.
The variables in the top panel are from the NIPA. Data used for estimation are from 1968Q4
to 2019Q4. Standard errors are clustered by forecaster and quarter, and corrected for serial
correlation and heteroskedasticity with a bandwidth of four quarters. Estimates that are in bold
are statistically significant at the 10% level.
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Table 1.6. Comparing estimates of K between CG and Revised model
Individual level, one-year ahead

Variable Test stat pval CG K REV K Difference

Nominal GDP 18.29 0.00 1.31 1.40 -0.09
Real GDP 2.63 0.10 1.20 1.16 0.04
GDP price index inflation 4.13 0.04 1.10 1.20 -0.10
Real consumption 0.16 0.69 1.29 1.30 -0.01
Real nonresidential investment 5.88 0.02 0.96 1.05 -0.09
Real residential investment 0.11 0.73 1.03 1.04 -0.01

CPI inflation 0.28 0.60 1.36 1.43 -0.06
Housing starts 34.15 0.00 1.41 1.04 0.36
Industrial production 0.37 0.54 1.04 1.04 -0.01
Unemployment rate 0.96 0.33 0.75 0.78 -0.03
Employment growth 11.45 0.00 0.73 0.89 -0.16
Treasury bill 3 month rate 32.11 0.00 0.79 0.97 -0.18
Treasury bond 10 year rate 9.83 0.00 1.23 1.48 -0.25
AAA Corporate bond rate 33.71 0.00 1.27 1.68 -0.40

Notes: The test statistic is a chi-squared adjusted for heteroskedasticity. CG K and REV K refer
to the K recovered from both model estimates according to the expression K = 1

1+β̂
. Estimates

that are in bold are statistically different at the 10% level.
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At the individual level there is still strong evidence in favor of forecasters using revised

data, since I can reject βr = 0 for the majority of variables. Most estimates of β are now negative

across both models, which matches the results from Bordalo et al. (2020). Table 1.6 shows how

the revision correction alters estimates of K at the individual level. Although nine of the thirteen

variables have different estimates of information frictions in the revised model, there is rarely

a difference in implication. Variables that have over-reaction continue to do so, with housing

starts being a possible exception. Variables that have under-reaction largely remain so, except

for the three-month treasury bill, which the revised model predicts has no information friction.

In total, the revision correct does not reverse findings of individual over-reaction; if anything, the

correction strengthens them.

1.5 Applications: Model Validation and Forward Guidance

This section demonstrates the economic significance of my empirical findings that

information frictions are under-estimated by 26 percentage points on average. For the first

application, I take a theoretical New Keynesian model with incomplete information and show

how the implied impulse response function better matches the data when using my estimate of K

compared with the CG estimate. In the second application, I use a model of forward guidance

to show that with my estimate of K the policy has severely diminished efficacy. The goal is to

highlight the importance of correctly measuring information frictions by using leading models

from the literature. It is important to note that these models do not include a revised signal in

their information structure, so the following analysis is only illustrative. To fully study how a

revised signal interacts within an incomplete information model requires a new theory which

embeds my information structure.

1.5.1 Impulse responses in the New Keynesian model

Angeletos and Huo (2021) develop a general theory which links incomplete information

and two behavioral distortions. They show that their theory can nest two components of the New
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Keynesian (NK) model: the investment-saving curve and the Phillips curve (NKPC). For the

latter, they assume an exogenous AR(1) process for marginal cost which firms observe noisily.

They solve the model using the Wiener-Hopf technique, first used in an economics context by

Rondina (2008), and then study how inflation responds to marginal cost shocks. I recreate their

impulse response functions in figure 1.3.

Figure 1.3. The IRFs plotted above come from the hybrid NKPC in Angeletos and Huo (2021).
The black solid line is when information is complete. The dotted blue line uses an estimate
of information frictions according to the CG specification, while the dashed red line uses the
estimate from the revised model. Both estimates are from CPI inflation.
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Following a marginal cost shock, inflation jumps to its highest level then smoothly returns

to its previous value when information is complete. This is at odds with empirically estimated

IRFs as in Gali, Gertler and David Lopez-Salido (2005), which demonstrate a hump-shaped

profile. Relaxing the complete information assumption by introducing noise into observations

of marginal cost brings the IRF closer to the data. The dashed blue line uses the estimate of

K from the CG model applied to CPI inflation. The initial jump is not as high as the complete

information benchmark, and inflation continues to rise for one additional period before following

the smooth discounting of the complete information curve.

Contrast this with the dashed red line, which uses the estimate of K from the revised

model. The initial response to the marginal cost shock is markedly modest, and it takes a full

year before inflation reaches its peak response. This better matches the evidence from the VAR

literature of weak immediate reactions followed by prolonged build-up. The difference between

the blue and red lines matters for how successful incomplete information theories are at matching

the data. With only the blue line, one may believe information frictions are insufficiently strong

to induce the degree of persistent witnessed in the data. Instead, the red line suggests incomplete

information can be the sole friction needed to achieve this persistence. Generating an accurate

estimate of information frictions is vital for proper model validation.

1.5.2 Efficacy of forward guidance

Forward guidance is a monetary policy tool which attempts to sway expectations of future

monetary action through statements of commitment. Angeletos and Lian (2018) study the power

of this policy action through the lens of an incomplete information model. The main conclusion

they reach is that without common knowledge, general equilibrium effects (through higher-order

beliefs) greatly attenuate the impact of future monetary policy commitments, which contradicts

the prediction of a sustained response when information is complete. They illustrate this fact by

plotting, for increasing horizons, the ratio of consumption response to forward guidance with

incomplete information to the response with complete information. A value of 1 for this ratio
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implies the response is invariant to information, while a value of less than 1 implies incomplete

information reduces the efficacy of the announcement.

I recreate this attenuation curve for two values of K: 0.8 as estimated from the CG model,

and 0.58 as estimated from the revised model. The results are in figure 1.4. The dashed blue line

captures the attenuation result from their paper: consumption response falls as the periods since

the announcement increase. After four years, the response is less than 25% that of the complete

information benchmark. The dotted red line shows the degree of attenuation with the revised

model estimate of K = 0.57. This curve shows a much steeper initial decline in efficacy, such

that the response at four years is under 5% the benchmark.

Figure 1.4. Consumption response to forward guidance announcement. The curves plotted
above come from the incomplete information model of Angeletos and Lian (2018). The dashed
blue line is when the degree of information frictions is 0.8, as estimated from the CG model.
The dotted red line uses an estimate of 0.58 from the revised model. The y-axis is the ratio of
consumption spending in response to a forward guidance announcement relative to the same
response when information is complete.
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Both curves showcase the ability of information frictions to solve the forward guidance

puzzle, though the red line offers a more pessimistic view of the policy’s usefulness. Determining

which line is correct is important when considering what mixture of unconventional monetary

tools to use when nominal interest rates are stuck at the zero lower bound.

1.6 Conclusion

Information frictions can be a powerful tool for studying policy and improving model fit,

but this crucially depends on what degree of friction we impart to the model. I have shown that

our ability to estimate information frictions from survey data is a function of the information

structure we assume survey participants are using. When revised data signals are present, rational

forecasts have additional dependence on past outcomes which biases the standard econometric

specification between forecast errors and updates. Without correction, regression estimates no

longer recover the degree of information frictions. I propose a model-implied correction term

to capture the extra persistence in forecasts which fully removes the bias. My new estimates

suggest information frictions are 20 percentage points lower on average across three key indicator

variables (CPI inflation, housing starts, unemployment), with an absolute average difference of

26 percentage points when including financial variables. Applying my regression model to test

individual rationality yields noisy results which do not overturn existing ideas in the literature.

Despite this, I find strong evidence across specifications that revised data are an important signal

for professional forecasters; future empirical work should consider revised data when deriving

new test specifications.

Chapter 1 is currently being prepared for submission for publication; Tyler L. Paul.

The dissertation author was the principal author on this paper.
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Chapter 2

Now or Later: Optimal Data Provision
with Data Revisions and Strategic Incen-
tives

When statistical offices (S.O.) are budget constrained they face a trade-off: provide
imprecise yet timely data about the present, or wait to provide more precise yet
delayed data about the past. I study this decision in the context of a beauty-contest
economy where end-users of data want to produce forecasts that are both accurate
and similar to one another. The S.O.’s welfare-maximizing choice of current
versus revised signal precisions depends on the accuracy of private information
and strength of strategic incentives. The S.O. prioritizes the revised signal when
individuals have poor private information, yet as it becomes more precise the
S.O. increases the budget devoted to the current signal until eventually it does not
provide a revised signal. When private information and strategic incentives are
sufficiently high, this reverses: the S.O. increases resources towards the revised
signal in order to reduce the crowding-out of private information caused by the
current signal. A larger budget constraint makes the S.O. reduce the precision of
the revised signal in favor of the current signal, as the S.O. effectively treats the
former as an inferior good.

2.1 Introduction

The role of a national statistical office (S.O.) is to publish estimates of nation-wide

aggregate variables in a timely manner. In an ideal world, the S.O. could perfectly observe

all economic activity over a given time period so that their estimates comprehensively and

accurately reflect true activity. In reality the S.O. has a limited budget for data collection and thus
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relies on surveys of a representative group of economic actors. Conducting and analyzing these

surveys takes time and labor resources, so when the data publishing deadline approaches the S.O.

typically has an incomplete set of sample data to use when estimating the national aggregate. As

a result, the initial value of a variable is usually revised in later periods due to the receipt of more

survey responses.

A limited budget combined with the nature of data collection implies the S.O. must

trade-off the timeliness of estimates with their accuracy. To understand the consequences of this

trade-off the S.O. needs to consider the behavior of their end-users, and assess the marginal value

of more accurate data releases in the next period versus the value of timely data today. That is

what this paper addresses: how should the S.O. use its limited resources to provide data releases

that maximize social welfare? The answer to this question can provide a set of guidelines for a

S.O. to follow according to the unique features of their economy and budgetary environment.

I begin by casting the question into a two-staged optimization problem. The first stage

involves the end-users of data solving a forecasting problem in which they use noisy signals to

simultaneously minimize their forecast error as well as the distance between their guess and the

average guess. The latter objective reflects strategic complementarities, an additional incentive

for agents to coordinate their forecasts along the lines of Keynes’s beauty contest. This model

belongs to a class of economies called global games which offer a flexible and general way to

incorporate incomplete information into commonly used macro models like the New Keynesian

framework (Angeletos and Lian, 2018). Where my model differs from the existing literature is

by studying a dynamic fundamental (i.e. the target variable for forecasts) and including a revised

signal in the information set. This revised signal represents a new (noisy) observation of the

fundamental value in the previous period, and thus captures the trade-off faced by the S.O.

Solving an incomplete information model with a dynamic fundamental is famously

difficult, as Townsend (1983) pointed out this typically requires an infinite set of state variables.

I take advantage of a recent methodological innovation by Huo and Pedroni (2020) who show

the equilibrium action is equivalent to the optimal forecast of a modified problem that includes
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the degree of strategic incentives. Using their method I solve the first stage for individual actions

given the precisions of all data signals and derive an expression for social welfare.

The second stage of the optimization problem has the S.O. maximize the social welfare

function subject to their budget constraint by choosing two signal precisions: one for a current

signal and one for a revised signal. The optimal choice of relative signal precisions reflects the

marginal welfare trade-off between accuracy in the future versus timeliness today. The S.O.

also considers the relative costs of increasing both signal precisions, with the assumption that

increasing current precision is at least as expensive as increasing revised precision. This reflects

the idea that marginal gains to accuracy prior to the initial publication date will involve additional

expenses like overtime pay or high-wage temporary contractors.

I analyze the model solution under a variety of parameterizations and find the S.O.’s

equilibrium choice can be a mixture both signal precisions, using the full budget on one signal

instead of the other, choosing to not exhaust the budget or even providing neither signal. The

mixture equilibrium results when agents have highly imprecise private information. In this case,

the marginal gain to forecasting accuracy (and thus welfare) of increasing both signal precisions

is high, and when the S.O. has a limited budget it chooses to spread resources across both current

and revised signals. As private information becomes more precise the S.O. will increasingly

shift resources from the revised signal into the current signal until it optimally chooses to only

provide the latter, provided the degree of strategic incentives is small.

Large strategic incentives introduce the possibility of increased current precision crowd-

ing out private information. In a static beauty contest Morris and Shin (2002) (henceforth MS)

showed how increasing the accuracy of information available to all agents can reduce social

welfare when strategic incentives are high. The incentive to coordinate causes agents to exces-

sively rely on public information at the expense of their private information because the former

is useful both for forecasting the fundamental and predicting the average forecast. Since social

welfare does not depend on the degree of dispersion in forecasts in a beauty contest, any weight

placed on public information for coordination purposes is purely detrimental from a societal
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perspective.

I find a similar result to MS but with an important caveat. At a certain level of strategic

incentives the S.O. will lower the precision of the public signal to avoid inefficient coordination,

but they choose to redirect that budget back into the revised signal precision. This means welfare

is decreasing in current precision but also increasing in revised precision at the threshold level of

strategic incentives. The reason for this novel result is the difference in coordination value of

both signals. Being a signal of the past, revised data are little use for agents trying to coordinate

their forecasts, since any information about the past is heavily discounted through the forecasting

mechanism. Despite this, the revised signal provides a net benefit to society because its small

forecasting value outweighs its even smaller coordination value. This gives the S.O. a new lever

to use when strategic incentives are high, whereby they can reduce inefficient coordination on

public current information while still providing some useful public revised information.

When private information is very precise and strategic incentives are very high, the S.O.

chooses to publish neither the current nor revised signal since either would risk crowding out the

superior forecasting value of private information. In this parameter range the solution returns to

that from MS, where any public information provision is welfare-decreasing.

The threshold levels of strategic incentives for which the revised signal is preferred or

neither signal is offered depends on the size of the budget constraint and the relative costs. As

the budget limit rises the S.O. puts more resources into the current signal, raising the level of

strategic incentives before it switches back to the revised signal. This is due to a higher budget

afford a more precise current signal which provides superior forecasting value compared to

the revised signal, all else equal. Higher strategic incentives will eventually boost the costs of

coordination above their forecasting value, but this threshold is pushed further out when there

are more total resources available. In the limit with an unconstrained budget, the S.O. would

choose a perfectly revealing current signal and no revised signal, just as in the idealized world.

My findings highlight the importance for the S.O. to understand three key features of

their unique environment: i) the accuracy of private information; ii) the strength of strategic
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incentives; iii) the impact of shifting resources between current and revised signals. The first

two are primitive parameters the S.O. takes as given in the model and in the real world, yet they

determine which optimal choice set of signal precisions to offer. The last refers to the production

function of the S.O. when choosing signal precisions. I assume linear marginal costs in the

model, but in reality there are likely increasing resources required for similar improvements in

current precision, as an example.

This paper contributes to the literature studying optimal data provision in the context

of a beauty contest. As previously mentioned, MS began this research agenda by first showing

how increased public information can reduce social welfare. Svensson (2006) argues that public

information is welfare-enhancing under conservative parameterizations for private and public pre-

cisions within the set-up of MS. Other authors constructed different microfounded environments

and found welfare weakly increases with public information, such as the investment game of

Angeletos and Pavan (2004) or the monetary economy of Hellwig (2010). Angeletos and Pavan

(2007) study a general set-up which includes MS as a special case, finding the MS result only

holds due to a lack of other market frictions and coordination being socially undesirable. Amador

and Weill (2012) show how the MS result can cause an informational externality whereby

endogenously-generated signals become less informative of private information due to excessive

coordination.

The literature listed above considers a static fundamental, so my paper is more closely

related to recent work by Angeletos and Lian (2018) and Angeletos and Huo (2021) who study

higher-order beliefs in a general equilibrium model with a dynamic fundamental. These papers

include strategic incentives in the form of expectations of others’ future actions, rather than

their current actions. They also do not consider the question of optimal data provision. The

methodology paper Huo and Pedroni (2020) applies their solution technique to a similar dynamic

process as this paper but lacks the richer information framework I use that includes revised data

as well as the optimization problem of the S.O.

Another related literature deals with modeling the decision problem of the S.O. directly,
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starting with Sargent (1989). He considers two possible models of the S.O., one in which the

S.O. reports the true data measured with some noise or one in which the S.O. collects noisy

data and filters it before publication. My approach is aligned with the second model, as it is the

presence of noisy data that creates the trade-off between providing imprecise data now or more

precise data next period. To my knowledge this is the first paper to study optimal data provision

by the S.O. within the context of an incomplete information model.

2.2 Description of data revisions

Most macroeconomic data series have several different estimates published over time,

with subsequent estimates reflecting revisions to the first publication. These data revisions are

not corrections of previous errors, but instead reflect the receipt of additional source data that are

used to produce superior estimates of the variable in question. The size of data revisions can be

large: for example, the average revision to nominal GDP quarterly growth averaged 0.47 over a

40 year period (Aruoba, 2008). A recent extreme example occurred when real GDP growth in

the first quarter of 2023 was initially estimated at 1.1%, but after revisions it is now estimated to

be 2.2% (U.S. Bureau of Economic Analysis).

Statistical offices produce revised estimates in order to use more complete underlying

source data. As an example, the first estimate of GDP produced by the Bureau of Economic

Analysis is calculated by using four broad categories of data, ordered by how representative

they are of the full population: comprehensive and near comprehensive, direct indicator, indirect

indicator, and trend-based. As the name suggests, comprehensive data provide nearly complete

coverage of the target population. The next two categories use extrapolation of related source

data at a different frequency (e.g. using annual firm profits to estimate quarterly profits). The last

category uses time series models to estimate source data when collected results are not available.

Typically this is when survey collection is too slow to be incorporated into the first estimate

(Holdren, 2014).
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Many of the source data series that are collected from households involve labor-intensive

survey methods, but as a result these tend to have higher response rates. The Current Population

Survey (CPS), which provides data on labor force activities, is a questionnaire conducted in

person or over the phone with roughly 60,000 households each month. It boasts the highest

household response rate of 70% compared with, for example, the Consumer Expenditure (CE)

survey which has a response rate of 41%. Surveys of establishments tend to use more automated

tools like computer-assisted telephone interviews (CATI) or online forms, but these can suffer

from low response rates. The Job Openings and Labor Turnover Survey (JOLTS), which is used

for firm-side labor market statistics like job vacancies, has a response rate of just 33%, despite

the collection period for the JOLTS being 4.5 times as long as for the CPS (U.S. Bureau of Labor

Statistics).

Statistical offices are well-aware of the trade-off between high labor costs and receiving

timely and complete responses. Regarding the JOLTS, the BLS requested an addition $9.6

million in funding (roughly 3% of the entire Labor Force Survey budget) in their 2024 budget

justification in order to increase the sample of establishments and release the survey results two

weeks earlier (U.S. Department of Labor, BLS-14). The same budget justification requests an

additional $1 million to improve the timeliness of chained CPI measured by three months, as the

current estimates are held up due to delays receiving current period expenditure weights from

the CE survey (U.S. Department of Labor, BLS-46). When describing the need for additional

funds, the BLS explained:

The very features that make CPS unique and so valuable (high response rates
and timely data) are the very same features that are proving problematic in the
current environment. The extensive use of in-person field interviewers to collect
data makes these two features possible. However, data collection costs are the
most expensive component of the CPS program and are continuing to rise at an
unsustainable pace. Mandatory pay and benefit increases for field representatives
are outpacing appropriated funding and other costs (e.g., travel for personal visits)
are increasing, while survey collection has become more challenging, requiring
additional labor per case. (U.S. Department of Labor, BLS-29)
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Given the rising costs associated with acquiring high quality and comprehensive data it is

important to understand the value of additional data with respect to an objective measure. In the

next section I describe the model set-up which relates the budget trade-offs described above to a

metric of social welfare.

2.3 Model

Following MS I construct a simple economy which resembles a beauty contest over a

single economic variable. The economic variable has persistence as in Huo and Pedroni (2023),

but I add to their information structure an additional public signal of the past to represent data

revisions. Agents use all sources of information to maximize their individual utility, which

depends on their forecast accuracy and their distance from the average forecast. Finally I embed

this beauty contest within the optimal data provision problem for the S.O., who chooses public

signal precisions in order to maximize social welfare.

2.3.1 Information structure and individual behavior

The economic fundamental is a univariate persistent variable xt which is never perfectly

observed by anyone. Agents observe three noisy signals of the fundamental: a private signal

that is unique to them and two public signals provided by the S.O. One public signal is called

the current signal because it contains information about xt directly. The other public signal is

called the revised signal because it contains information only about xt−1. Both public signals are

contaminated by noise terms that are independent with each other but common across all agents.

Fundamental: xt = ρxt−1 +wt

Private signal: yit = xt +ψit

Current signal: st = xt + εt

Revised signal: rt = xt−1 +νt
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The fundamental shock and all noise terms are i.i.d. and independent of each other and across

time: wt ∼ N(0,τ−1
w ), ψit ∼ N(0,τ−1

ψ ), εt ∼ N(0,τ−1
ε ), νt ∼ N(0,τ−1

ν ). All shocks are common

across agents except for the variance of the private signal, τ−1
ψ . I represent the variances of each

shock as the inverse of τ which is the precision of the signal. For example, when the variance

of the current signal goes to 0 this means the precision goes to infinity, and the current signal

perfectly reveals the fundamental.

There is a continuum of agents indexed by i. Each agent uses the information structure to

choose an action ait to maximize the expectation of their period utility function:

uit(ait ,at ,xt) =−
[
(1−α)(ait − xt)

2 +α(Lit − L̄t)
]

(2.1)

where at =
∫

aitdi is the average action across all agents. The first term represents the individual’s

incentive to accurately forecast the fundamental. The second term represents the beauty contest

nature of the economy, where Lit =
∫ 1

0 (a jt −ait)
2d j is the loss agent i suffers by choosing an

action far away from the actions chosen by other agents. The weight agents assign to their

forecast accuracy versus how close their action is to the average is governed by the parameter

α ∈ [0,1], which represents the strength of strategic incentives. All else equal, a larger strategic

incentive means agents will choose actions they think are more alike at the cost of their individual

forecast accuracy.

Taking the first-order condition in expectation gives agent i’s optimal action:

ait = (1−α)Et [xt |Ωit ]+αEt [āt |Ωit ] (2.2)

where Ωit is the information set available to agent i in period t. Agents choose ait to be a

weighted average of their expectation of the fundamental xt and their expectation of the average

action, āit . The weight is α: when there are no strategic incentives (α = 0) agents choose their

best (mean-squared error minimizing) forecast. When α = 1 agents want the same action as
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everyone else regardless of the fundamental.1

Period social welfare is the average across individual utilities:

Wt(at ,xt) =
1

1−α

∫
uit(ait ,at ,xt)di

where the term 1
1−α

normalizes social welfare so that it no longer depends on the degree of

strategic incentives:

Wt(at ,xt) =−
∫
(ait − xt)

2di (2.3)

Comparing equations (2.2) and (2.3) reveals the key tension in beauty contest economies. When

α > 0, individuals wish to minimize their forecast error as well as minimize their distance

from the average action, which means their optimal choice will not minimize their forecast

error. Social welfare, however, does not consider action dispersion and only cares about forecast

accuracy, so any non-zero incentive to coordinate actions must reduce welfare. As a result,

providing agents with more useful public signals can decrease welfare if agents use the signals to

excessively coordinate their actions. In the static beauty contest of MS, increasing the precision

of the public signal will reduce welfare if the ratio of public to private precisions is sufficiently

small:2

τε

τψ

≤ (2α −1)(1−α) (2.4)

When private information is relatively precise and α > 0.5, increasing τε decreases welfare

due to agents over-relying on their public signal in order to choose actions that are similar to

each other. In this sense public information crowds-out private information: private information

improves welfare by improving forecast accuracy, but agents partially ignore this and choose

actions that rely more on public signals due to their coordination incentive. In the next section I

will show that including an additional public signal of revised data can overturn this result: it

can be welfare enhancing to increase the precision of the revised signal due to its relatively low

1In this case, all agents choose the unconditional mean of xt .
2In the notation from their paper, τε = α , τψ = β , and α = r.
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coordination value compared with the current signal.

2.3.2 Optimal data provision

Given the beauty contest described above, the S.O. chooses the degree of precision for

both the current (τε ) and revised signals (τν ) in order to maximize expected social welfare. The

S.O. is subject to a budget constraint which makes increasing signal precisions cost additional

limited resources (e.g. labor hours). The total resources available to the S.O. are fixed by

parameter I. For reasons described in section 2.2 I assume increasing the current signal precision

is at least as costly as increasing the revised signal precision. The exact marginal cost of current

signal precision is determined by the parameter φ ≥ 1. The S.O. solves

max
τε ,τν

E[W(τε ,τν)] (2.5)

s.t. φτε + τν ≤ I

where W is given by equation (2.3) and the expectation is taken with respect to the joint

distribution of the fundamental shock and all noise terms. The model is solved in two steps:

1. Given τε , τν , and parameters, agents choose ait to maximize uit(ait ,at ,xt) conditional on

their signals yit , st , and rt . Averaging across individual actions gives the aggregate action

at .

2. Given at , the S.O. chooses τε and τν to maximize expected period welfare subject to its

budget constraint.

The S.O. views the following parameters as primitives for its optimization problem: properties

of the fundamental ρ and τw; precision of private information τψ ; degree of strategic incentives

α ; and budget constraint parameters φ and I. It takes these as given, combined with the optimal

actions of all agents, and chooses public signal precisions to maximize expected welfare.
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2.4 Solution

I solve the model in two parts: finding equilibrium actions for each agent, and finding the

optimal degree of public precisions chosen by the S.O.

2.4.1 Equilibrium action

Equation (2.2) provides each agent’s best-response function: the optimal action given

their information set and expectation of the average action across agents. Agents must solve

their signal extraction problem to know Et [xt |Ωit ] and also compute the functional form of

Et [āt |Ωit ]. In a static environment as in MS, this can be solved using guess-and-verify. The

model of this paper involves a persistent fundamental which thus introduces the infinite regress

problem identified by Townsend (1983). To see this, consider the following expansion of agent

i’s expectation of āt :3

Eit [āt ] = Eit

[∫ 1

0
aitdi

]
= Eit

[
(1−α)

∫ 1

0
E jt [xt ]d j+α

∫ 1

0
E jt [āt ]d j

]
= (1−α)Eit

[
Ēxt
]
+αEit

[∫ 1

0
E jt

[
(1−α)

∫ 1

0
Ekt [xt ]dk+α

∫ 1

0
Ekt [āt ]dk

]
d j
]

= (1−α)
(
EitĒxt +αEitĒĒxt +α

2EitĒĒĒxt + . . .
)

= (1−α)
(
EitĒxt +αEitĒ2xt +α

2EitĒ3xt + . . .
)

where the first line uses (2.2), the second line uses
∫ 1

0 Eit [xt ]di = Ē[xt ], and the fourth line

collapses Ē2[xt ] = ĒĒ[xt ], Ē3[xt ] = ĒĒĒ[xt ], and so on. With this expression of Eit [āit ] in terms

of the underlying fundamental, I can rewrite (2.2) as follows:

ait = (1−α)Eit [xt ]+αEit [āt ] = (1−α)
(
Eit [xt ]+αEitĒ[xt ]+α

2EitĒ2[xt ]+ . . .
)

= (1−α)
∞

∑
k=0

α
kEit

[
Ēkxt

]
3For readability I abbreviate E[xt |Ωit ] = Eit [xt ].
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This expression shows that the equilibrium action ait depends on the agent’s expectations of

the fundamental plus a linear combination of all higher-order expectations, which are beliefs of

others’ beliefs. Since agents have different information sets through their idiosyncratic private

signals, the law of iterated expectations does not apply, so the higher-order expectations do not

collapse to agent i’s first-order expectations. Agent i must therefore predict what everyone else

will do, what everyone else thinks everyone else will do, and so on. Townsend (1983) showed

computing all of these higher-order expectations requires infinite state variables to form priors for

the cascading sequence of beliefs on beliefs on beliefs etc., which is computationally infeasible.

There are two main strategies for overcoming this problem. First is to convert the

problem into the frequency domain and apply analytic techniques, as used in Kasa (2000) and

Rondina (2008). This method provides neat closed-form forecasting equations that are useful

for intuition, but generate messy welfare equations. The second method from Huo and Pedroni

(2020) is to solve a forecasting problem after modifying the signal structure by the degree of

complementarities. Although this provides a recursive form of the equilibrium action, I can

study the the welfare expression numerically. To use this method, I first rewrite the information

structure in state-space form:

ξξξ t+1 = FFFξξξ ttt +uuut+1

zzzit = HHH ′′′
ξξξ ttt +ζζζ ttt

ξξξ t =

 xt

xt−1

 FFF =

ρ 0

1 0

 uuuttt =

wt

0



HHH ′′′ =


1 0

1 0

0 1

 ζζζ ttt =


ψit

εt

νt


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Next I use the Kalman filter to derive optimal forecasts for the fundamental:

ξ̂ξξ t|t = FFF ξ̂ξξ t−1|t−1 +KKK(zzzit −HHH ′′′FFF ξ̂ξξ t−1|t−1)

⇒ x̂t|t = (ρ −ρk11 −ρk12 − k13)x̂t−1|t−1 + k11yit + k12st + k13rt (2.6)

where x̂t+ j|t−s is the forecast of xt+ j given information in time t−s. KKK is the steady-state Kalman

gain matrix; the first row corresponds to the weight placed on the signals when forecasting

the current fundamental xt , and the second row contains the weights used for forecasting the

fundamental last period xt−1.4 The Kalman gain matrix is a function of the squared forecast error

matrix, PPPt+1 = E[ξ̂ξξ t+1|t −ξξξ t+1]
2, which I find by solving the Ricatti equation:

PPPt+1 = FFF(PPPt+1 − (PPPt+1HHH(HHH ′′′PPPt+1HHH +RRR)−1HHH ′′′PPPt+1))FFF ′′′+QQQ (2.7)

where QQQ = E[uuutttuuu′′′ttt ] and RRR is the covariance matrix of the signals, E[ζζζ tttζζζ
′
ttt ].

Applying the Kalman filter to this state-space framework would compute the optimal

forecast for an individual agent given signals zzzit , but this is only part of their equilibrium action

in (2.2). Importantly this ignores the coordination incentive (i.e. it computes a∗it for α = 0).

Huo and Pedroni (2020) propose a method for finding the full form of (2.2) by solving a single

agent’s signal extraction problem after modifying their signals. The authors show that scaling

the variance of all private noise terms by 1√
1−α

and solving for the optimal forecast obtains the

same function of signals as the equilibrium action. In my framework this means modifying ζζζ ttt

and RRR as follows:

ζ̃ζζ ttt =


ψit√
1−α

εt

νt

 R̃RR =


(τψ(1−α))−1 0 0

0 τ−1
ε 0

0 0 τ−1
ν


4I assume ρ < 1 so the the fundamental is stationary and the Kalman gain matrix will converge to a steady-state

value.
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I denote variables determined by the alpha-modified signal as the original variable with a tilde

over it, so KKK is the matrix of weights used purely for forecasting while K̃KK is the matrix of weights

used in the equilibrium action. By replacing RRR in (2.7) with R̃RR and solving for P̃PPt+1 I find K̃KK.

Plugging this into equation (2.6) gives me the equilibrium action for agents as a function of their

signals:

a∗it = (ρ −ρ k̃11 −ρ k̃12 − k̃13)a∗it−1 + k̃11yit + k̃12st + k̃13rt (2.8)

where k̃11, k̃12, k̃13 are all between (0,1). The degree of strategic incentives, α , is embedded in

each Kalman gain parameter. When α = 0, k̃s = ks for all s. Plugging equation (2.8) into (2.3)

and solving gives the following expression for expected welfare:

E[W] =
τ−1

w (1− k̃11 − k̃12)
2 + τ−1

ψ k̃2
11 + τ−1

ε k̃2
12 + τ−1

ν k̃2
13

1− (ρ −ρ k̃11 −ρ k̃12 − k̃13)2
(2.9)

Welfare is a complicated function of the primitive parameters ρ , α , τψ and the choice variables

τε , τν , since they all have non-linear relationships with each modified Kalman gain parameter.

2.4.2 Optimal data provision

The solution for S.O.’s problem is straightforward in abstract terms. Taking first-order

conditions and re-arranging gives the following two conditions dictating the choice of τ∗ν and τ∗ε :

∂W
∂τε

∂W
∂τν

= φ

φτε + τν = I

Using the specific expression for welfare from equation (2.9) quickly makes the problem analyti-

cally intractable, and it is not feasible to derive a closed-form solution for τ∗ν and τ∗ε . Fortunately

the expressions for welfare and its constituents (e.g. Kalman gains and mean-square error matrix
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P̃PPt+1) are smooth and can be solved numerically. To proceed I solve for τ∗ν and τ∗ε using the

equation solver in MATLAB and study comparative statics numerically.

2.5 Results

Numerically solving the problem requires choosing fixed parameter values. I set ρ = 0.95

to match highly-persistent data series as well as to best showcase the impact of revised data. All

signal precisions are normalized by the inverse variance of the fundamental, which means τw = 1

and signal precisions can be interpreted as signal-to-noise ratios.

I start by analyzing a benchmark set of parameter values which demonstrate the unique

properties of revised information. Then I consider how changing the budget constraint affects

the trade-offs between current and revised signal precisions.

2.5.1 Benchmark case - low τψ

For the benchmark case I set the budget limit I = 1 and the cost of improving the current

signal φ = 5, so that the maximum attainable value of the current signal precision is τε = 0.2 and

the marginal rate of technical substitution between the current and revised signal is 1
5 . Finally, I

allow τψ and α to vary and study the response of τ∗ν and τ∗ε .

Figure 2.1 shows the optimal choice of current and revised signal precisions for a

selection of relatively small τψ values and across the entire range of α . When individuals have

very inaccurate private signals as in the top row, τψ ∈ (0.1,0.2), the welfare-maximizing choice

of public signals puts more weight on the revised signal instead of the current signal. Both

signals receive some weight and the budget constraint is fully exhausted, which is true for the

entire range of α . The bottom row of the figure shows τ∗ν and τ∗ε when individuals have more

accurate private signals, τψ ∈ (0.3,0.4). As τψ rises the weight placed on the revised signal falls

and the weight placed on the current signal rises, culminating in a range of α (roughly between

0 and 0.65) over which τ∗ε > τ∗ν when τψ = 0.4.

The overall lesson from figure 2.1 is that when individuals have poor private information
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Figure 2.1. Notes: Each quadrant plots the optimal choices of τν and τε as α changes for a
given level of τψ . The blue line dotted with circles represents τ∗ε and the red line dotted with
pluses represents τ∗ν . The figure uses the following fixed parameter values: ρ = 0.95, τw = 1,
φ = 5, I = 1.

it is welfare-enhancing to provide them a mixture of signals about both the present and the past.

The northwest plot shows that τ∗ε ≈ 0.1 for the entire range of α , which amounts to only 50%

of the available budget. The rest should be spent on improving the revised signal precision.

A mixture of both signals is optimal even as individuals receive increasingly accurate private

signals, as can be seen in the southeast plot which suggests that even the lowest value of τ∗ν

should be about 5% of the total budget.

The S.O. chooses higher precision for the revised signal than the current signal for two

reasons: a small budget constraint and low private precision. First consider the impact of the

budget constraint. If the S.O. was unconstrained they would set τε = ∞ and perfectly reveal

the fundamental, rendering the revised signal irrelevant and maximizing welfare regardless the

degree of strategic complementarities. When the budget constraint is small (i.e. I is small relative

to τw) the best the S.O. could do using the current signal alone is set τε =
I
φ

, which would be

τε = 0.2 in the benchmark case. This does not maximize welfare because the marginal gains to
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forecasting accuracy of raising τν away from zero are large. Specifically, these gains are larger

than the gains in forecast accuracy of increasing τε from 0.1 to 0.2.

To demonstrate this I plot the mean-squared error of both signals as their precision rises

in figure 2.2. This captures the pure forecasting returns to each signal (i.e. assuming α = 0)

since the findings in figure 2.1 are true when there are no strategic incentives.5 Holding τψ = 0.1

and τν = 0, the black dashed curve represents the forecast error for any choice of τε ∈ (0.1,0.2).

This is a feasible choice set for the S.O. as outlined previously, but the slope of the curve is

fairly flat, indicating marginal increases in current precision provide small and nearly constant

reductions in errors. The red dotted curve represents how increasing revised signal precision

reduces forecast error assuming τε = 0.1, which captures the trade-off inherent in figure 2.1.

The steeper τν curve is why the S.O. chooses to put some of its budget in both signals, since the

returns to the revised signal are large when τν = 0 and τε = 0.1.6

Now consider the impact of the degree of private precision. When τψ is small relative to

τw, agents are poorly informed and thus rely heavily on public signals to improve their forecast

accuracy. This means the reduction in MSE will be greater when increasing either τε or τν if τψ

is small rather than when it is large. I show this in figure 2.3, which plots MSE when using either

public signal on its own alongside different levels of private precision. As τψ rises the slopes

of both the current and revised signal curves flatten, meaning the largest gains to welfare from

increasing public precisions comes when τψ is small. This fact combined with the small budget

constraint is what creates the favorable marginal reduction in MSE from having τν > τε as seen

in figure 2.2.

The mechanism described thus far ignores the role of strategic incentives. These become

more important as both τψ and α rises, such as in the bottom row of figure 2.1.7 For example,

5Strategic incentives play a vital role for other results from figure 2.1 which I discuss later.
6It is important to note that the shape of both curves crucially depends on the value of the other signal’s precision.

For a larger value of τε the MSE curve when raising τν (i.e. the red dashed line) becomes very flat, which will
explain results in the next section regarding lifting the budget limit.

7The graphs in the top row also demonstrate the impact of strategic incentives through the slight upward slope to
the τ∗ν curve, but this becomes much more pronounced as τψ increases.
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Figure 2.2. Forecast Error of Current and Revised Signals. The graph plots the mean-squared
error for forecasts made under the following parameterizations: ρ = 0.95,τw = 1,τψ = 0.1,α = 0.
The dashed black line represents the MSE when increasing τε from 0.1 to 0.2, holding τν = 0.
The dotted red line represents the MSE when increasing τν from 0 to 0.4, holding τε = 0.1.

the southwest plot with τψ = 0.3 shows the line for τ∗ε shifting up and the line for τ∗ν necessarily

shifting down, as the S.O. exchanges revised signal precision for current signal precision. The

two signal precisions are close together while strategic incentives are small (i.e. α < 0.4) but

begin to diverge significantly afterwards. As α approaches 1 the optimal choice of precisions

returns to the case when private information was inaccurate.

More accurate private information increases the coordination costs of public information,

as increasingly precise public signals will effectively crowd-out useful private signals. When the

incentive to coordinate for individuals rises, agents will place excessive weight on public signals

relative to their value from a forecasting perspective, ultimately causing a reduction in social

welfare. This is the conclusion from MS, though it is largely a function of the beauty contest

nature of the economy they study (Angeletos and Pavan, 2007). The economy modeled here is

also a beauty contest but we see the opposite result due to the revised signal: increasing revised

signal precision is welfare-enhancing when strategic incentives are very high. This increased
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Figure 2.3. Forecast Error of Current and Revised Signals. The graph plots the mean-squared
error for forecasts made under the following parameterizations: ρ = 0.95,τw = 1,α = 0. The
solid lines with dots represent MSE when increasing τε for various levels of τψ while holding
τν = 0. The lines of circles represent MSE when increasing τν for various levels of τψ while
holding τε = 0.

precision comes at the cost of decreased current signal precision, as the S.O. optimally balances

the forecasting gains and coordination costs from the two signals.

A more accurate revised signal reduces the weight agents place on the current signal due

to the mechanics of their forecasting problem. When solved with the Kalman filter, the weight on

each signal corresponds to its associated Kalman gain (modified according to the procedure from

section 2.4). Figure 2.4 plots the α-modified Kalman gain on the current signal as τν changes,

holding τε equal to its optimal choice given similar parameters to figure 2.1. The slope of the

curve represents how much agents will shift weight from the current signal to the revised signal

as τν increases. The downward slope is as expected - when the revised signal becomes relatively

more informative, agents will put more weight on it at the expense of weight on the current

signal.

Comparing across the curves gives a sense of the cross partial derivative with respect to

τν and α . Since the red dashed line is steeper than the blue crossed line, this cross-partial is
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Figure 2.4. Weight placed on current signal. The degree of current precision is calculated as the
optimal choice given the following parameter values: ρ = 0.95, τw = 1, τψ = 0.3, and τν = τ∗ν .
When α = 0.3 as in the blue crossed line, τ∗ν = 0.188. When α = 0.8 as in the red dashed line,
τ∗ν = 0.405.

positive, meaning higher strategic incentives increase the impact of τν on the current signal’s

weight. This explains the steep upward slope of the τ∗ν line in the bottom row of figure 2.1: when

α is large, the S.O. can minimize the coordination incentive for agents by increasing τν and thus

forcing agents to shift weight from the current signal to the revised signal. Agents will rationally

adjust their weights because the revised signal provides increased forecasting accuracy.

In effect, the revised signal gives the S.O. a new lever for addressing socially inefficient

coordination. Without a revised signal the only way to reduce excessive coordination is to lower

current signal precision, which also lowers welfare through decreased forecast accuracy. With a

revised signal the S.O. can both reduce excessive coordination and increase forecast accuracy by

raising the revised signal precision.

The southeast quadrant of figure 2.1 shows how sufficiently accurate private information

causes τ∗ε > τ∗ν when strategic incentives are small. This is due to shifting of the τ∗ε and τ∗ν curves
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as described above. The upward slope of the τ∗ν curve becomes steeper for high α , in line with

the mechanics underlying figure 2.4. The next section pushes τψ further until the optimal choice

of τ∗ν is zero.

2.5.2 Benchmark case - medium τψ

Figure 2.5 plots optimal precisions of the current and revised signal for significantly

higher degrees of private precision. The graphs continue the pattern observed in figure 2.1 but

now it is no longer always optimal to have a mixture of current and revised signal precisions.

Each graph in the figure shows that τ∗ν = 0 as long as α is below a specific threshold level, ᾱ .

This threshold increases as the degree of private precision increases. Since τν > 0 in each graph

from figure 2.1, very small τψ means ᾱ = 0 (even if τ∗ε > τ∗ν as in the southeast quadrant).

Figure 2.5. Optimal choice of τν , τε - benchmark parameters, medium τψ . Each quadrant plots
the optimal choices of τν and τε as α changes for a given level of τψ . The blue line dotted
with circles represents τ∗ε and the red line dotted with pluses represents τ∗ν . The figure uses the
following fixed parameter values: ρ = 0.95, τw = 1, φ = 5, I = 1.

Holding α constant, a more precise private signal reduces the potential welfare loss due

to public signal coordination. This is because higher τψ will naturally reduce the weight agents

place on their public information, similar to the mechanism in figure 2.4. Figure 2.6 repeats
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this exercise but instead holds τν fixed at its optimal choice given parameters and plots the

weight on the current signal as τψ increases. Again there is a downward slope when α is held

constant, indicating that agents will optimally shift weight from the current signal to their private

information as it becomes more accurate. This reduces the potential crowding-out of private

information and brings private actions closer to the social-maximizing ones. When agents act

accordingly the S.O. can put all its resources into improving the current signal which improves

forecast accuracy by more than the revised signal.

Figure 2.6. Weight placed on current signal. The degree of current and revised signal precisions
is fixed at the optimal choice given the following parameter values: ρ = 0.95, τw = 1. When
α = 0.3 as for the blue solid line, (τ∗ε ,τ

∗
ν) = (0.2,0). When α = 0.9 as for the red dashed

line, (τ∗ε ,τ
∗
ν) = (0.155,0.225). The optimal signal precisions (τ∗ε ,τ

∗
ν) were computed assuming

τψ = 1. Choosing a different τψ for this computation does not materially change the graph.

However, this crucially relies on the level of α being below the threshold. Above this

threshold agents will put too much additional weight on their public information at the expense

of fully utilizing their accurate private information. This is evident in the far flatter slope of the

red dashed line in figure 2.6: with α = 0.9 agents have strong incentives to coordinate, thus they

are less willing to shift weight from public information to their private signals even as τψ rises.

This is where the S.O. can improve welfare by both reducing the quality of the current signal
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and increasing the quality of the revised signal. Reducing τε reduces the weight individuals

place on the current signal for both forecasting and coordination purposes. Increasing τν has two

effects: it improves forecasting accuracy by more than the costs of coordination (since τν was

initially 0), and it shifts weight from τε as described by figure 2.4. The mechanism is the same

as when τψ was low as in figure 2.1, but now there is a clear cut-off point of ᾱ that informs the

S.O. of whether it should put all its resources in the current signal (α < ᾱ) or if it should mix its

resources across current and revised signals (α > ᾱ).

2.5.3 Benchmark case - high τψ

Finally, I plot the benchmark case parameterization with relatively high values of τψ in

figure 2.7. The pattern from figure 2.5 continues in the northwest quadrant when τψ = 3, however

once τψ ≥ 5 there is a new equilibrium: no public information is provided (i.e. τ∗ε = τ∗ν = 0).

When private information is very precise, the S.O. chooses to provide no useful public information

for high levels of strategic incentives in order to avoid crowding-out private information. This is

analogous to the condition from MS which I reproduced in equation (2.4). The threshold level of

strategic incentives at which public information becomes welfare decreasing, α , is decreasing in

τψ until it reaches a limiting value.

The S.O. chooses to not fully use the budget when strategic incentives and private

precision are both very high. Figure 2.8 plots the surface of welfare for various choices of τε

and τν , with the budget constraint represented by the red plane. Points on the welfare surface

anterior to the red plane are infeasible, while points posterior to the red plane are feasible but

do not exhaust the budget. Welfare slopes upwards away from the red plane as both τε and τν

decline, reaching a maximum when they are both equal to 0. This is because increasing either

signal precision leads to inefficient forecasting weights due to excessive coordination. If the S.O.

was required to fully use their budget, they would put all their resources into τε since the welfare

surface is sloping downward away from this point at the back-left of the figure.

Next I study how the budget limit I and the marginal cost of current signal precision φ
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Figure 2.7. Optimal choice of τν , τε - benchmark parameters, high τψ . Each quadrant plots
the optimal choices of τν and τε as α changes for a given level of τψ . The blue line dotted
with circles represents τ∗ε and the red line dotted with pluses represents τ∗ν . The figure uses the
following fixed parameter values: ρ = 0.95, τw = 1, φ = 5, I = 1.

affect this threshold ᾱ and the trade-off between τ∗ν and τ∗ε .

2.5.4 Raising the budget limit

Figure 2.9 shows how the optimal choice of τν and τε changes as the budget limit doubles

from 1 to 2. The most striking difference from the analogous figure 2.1 is that τ∗ε > τ∗ν for all

levels of τψ considered and over the entire range of α . The two curves have similar shapes as

they did in figure 2.1, but the rise in the budget limit caused a large shift in opposite directions

so that it is always optimal to put more resources into the current signal rather than the revised

signal, even when strategic incentives are very high. Additionally, the threshold level of α at

which all resources should be put into the current signal has increased to roughly ᾱ = 0.52 when

τψ = 0.3. When the budget limit was lower, ᾱ = 0 until τψ ≥ 0.5.

A higher budget limit lets the S.O. increase welfare by raising the accuracy of the current

signal to a level that was previously unobtainable. Interestingly, τ∗ε has more than doubled from

its value under the benchmark parameters, from 0.1 to 0.4, suggesting there is a non-linear
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Figure 2.8. Welfare, high α and τψ . The vertical axis (z) represents welfare given the choice
of τε (x-axis) and τν (y-axis). The figure uses the following fixed parameter values: ρ = 0.95,
τw = 1, τψ = 10, α = 0.9, and φ = 5.

relationship between the budget limit and τ∗ε . The new budget limit is still fully exhausted for all

levels of τψ , but only uses a mixture of current and revised signal precisions when τψ is small.

In a sense, the S.O. views the revised signal as an inferior good (for a given level of α).

Increasing the budget constraint allows the choices of both τε and τν to rise, but instead the S.O.

chooses to decrease τ∗ν in favor of increasing τ∗ε . This is evident from figure 2.10 which plots

the surface of τ∗ν as the budget limit and strategic incentives change. Revised signal precision

increases in the budget limit only over a very small range, since with such a low budget and

high φ the forecasting gains from the current signal are too low to invest in. Around I = 0.6, the

revised signal becomes an inferior good: increasing the budget limit leads to lower values of

τ∗ν . The reason is the relatively low forecasting value of the revised signal, which is clear when

considering limits: a perfect current signal will eliminate forecast errors, but a perfect revised

signal cannot.

The higher threshold level of α before the S.O. chooses to offer the revised signal again
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Figure 2.9. Optimal choice of τν , τε - budget limit = 2, low τψ . Each quadrant plots the optimal
choices of τν and τε as α changes for a given level of τψ . The blue line dotted with circles
represents τ∗ε and the red line dotted with pluses represents τ∗ν . The figure uses the following
fixed parameter values: ρ = 0.95, τw = 1, φ = 5, I = 2.

Figure 2.10. Optimal choice of τν . The vertical axis (z) represents the optimal choice of τν for a
given α (y-axis) and budget limit (x-axis). The figure uses the following fixed parameter values:
ρ = 0.95, τw = 1, τψ = 0.2, φ = 5.
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is most evident when considering the high range of τψ as in figure 2.11. Compared with the

benchmark case, ᾱ is significantly higher for all levels of τψ , so the S.O. will only use the revised

signal when the degree of strategic incentives is very high. This is because with a higher budget

limit, welfare is enhanced by the greater forecast accuracy from putting more resources into the

current signal. This pushes ᾱ higher due to the improved accuracy overpowering the costs of

coordination for a larger range of α .

Figure 2.11. Optimal choice of τν , τε - budget limit = 2, high τψ . Each quadrant plots the
optimal choices of τν and τε as α changes for a given level of τψ . The blue line dotted with
circles represents τ∗ε and the red line dotted with pluses represents τ∗ν . The figure uses the
following fixed parameter values: ρ = 0.95, τw = 1, φ = 5, I = 2.

To show how the budget limit affects the tension between forecasting gains and coordina-

tion costs, I plot the weights placed by agents on the current signal for both purposes in figure

2.12. The black solid and dashed lines correspond to the weights agents choose when τε = 0.2

as in the benchmark case studied in figure 2.7. The lower forecasting weight when τε is small

explains why ᾱ is lower: the ratio between forecasting gains and coordination losses is smaller,

so the S.O. begins mixing signal precisions for a lower level of α . When the budget limit rises
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and τε = 0.4 becomes obtainable, agents place more weight on the current signal due to its high

forecasting gains. The coordination incentive changes little as τε rises which means the S.O. will

prefer providing only the current signal for a higher degree of α , thus increasing ᾱ .

Figure 2.12. Weight placed on current signal - forecasting vs. coordination. Coordination weight
(solid black and red circles) is computed as the total weight placed by agents on the current
signal minus the weight they would have placed if α = 0. Forecasting weight (dashed black
and red dots) is computed as the total weight minus coordination weight. The figure uses the
following fixed parameter values: ρ = 0.95, τw = 1, τψ = 0.5, and τν = 0.

As the budget limit continues to rise, the revised signal becomes increasingly irrelevant

for all ranges of α and τψ due to the vast improvements in forecasting accuracy afforded by the

current signal. This effect is symmetric: when the budget limit decreases, the revised signal

becomes increasingly more important and ᾱ falls. Next I hold the budget limit fixed and allow

the marginal cost of current signal precision, φ , to change.

2.5.5 Changing the cost of current signal precision

The size of the relative costs between both signal precisions has a similar relationship

with τ∗ε and τ∗ν as the budget limit. Lowering φ shifts τ∗ε up and τ∗ν down in a manner reminiscent

of figure 2.11. This is no surprise considering the mechanism underpinning that figure. When
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the budget limit rises, the S.O. can put more resources into the current signal which has higher

forecasting value. A decrease in the marginal cost of the current signal also allows the S.O. to

put more resources into improving its precision, so the effect is the same.

Raising φ has a similar impact as lowering the budget limit, since it makes the more

valuable signal for forecasting less affordable. Figures 2.13 and 2.14 plot τ∗ε and τ∗ν when the cost

of improving the current signal is 7.5 times that of the cost improving the revised signal (a 50%

increase from the benchmark case). As expected, the revised signal has increased importance

over a larger range of τψ and even is the only signal provided when private precision is very

small and α large. The threshold value ᾱ decreased significantly from the benchmark; previously

ᾱ = 0.65 when τψ = 0.5, but now with more expensive current signal precision ᾱ = 0 at the

same degree of private precision. A more expensive current signal means it is harder for the S.O.

to overcome the coordination costs, so it will increase τν for lower levels of α .

Figure 2.13. Optimal choice of τν , τε - φ = 7.5, low τψ . Each quadrant plots the optimal choices
of τν and τε as α changes for a given level of τψ . The blue line dotted with circles represents τ∗ε
and the red line dotted with pluses represents τ∗ν . The figure uses the following fixed parameter
values: ρ = 0.95, τw = 1, φ = 7.5, I = 1.

75



Figure 2.14. Optimal choice of τν , τε - φ = 7.5, high τψ . Each quadrant plots the optimal
choices of τν and τε as α changes for a given level of τψ . The blue line dotted with circles
represents τ∗ε and the red line dotted with pluses represents τ∗ν . The figure uses the following
fixed parameter values: ρ = 0.95, τw = 1, φ = 7.5, I = 1.

2.5.6 Summary

The optimal choice of current and revised signal precisions depends on the accuracy of

private information, the degree of strategic incentives, and the budget constraint. With a small

budget limit (or relatively expensive current signal precision) and imprecise private information,

the S.O. maximizes welfare by providing a mixture of both signals because the gains to forecast

accuracy from both signals are largest when all precisions are low. As private signal precision

increases, the S.O. will put more of its budget into the current signal precision until it chooses to

provide no revised signal, because more accurate private information can overcome the potential

coordination costs of the current signal. However, there is a level of strategic incentives at which

the S.O. will choose a mixture of both signals in order to reduce the degree of coordination

on the current signal and still provide some forecasting benefits with the revised signal. This

threshold increases in the budget limit (decreases in the cost of current signal precision) and

the precision of private information, as both dimensions improve forecast accuracy enough to
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overcome coordination costs as strategic incentives rise. Finally, increasing the budget limit

results in a higher degree of current precision and a lower degree of revised precision due to the

lower forecasting benefits of the latter.

2.6 Application

To demonstrate the applicability of my results I conduct the following exercise. Given a

set of parameters and optimal choices for τν and τε , suppose the S.O. had the ability to either

raise the budget limit I or lower the cost of current signal precision φ . When is it optimal to raise

the budget limit instead of lowering the marginal cost, and vice versa? The answer depends on

the mechanisms identified previously; namely, the impact the budget has on relative forecasting

values and the degree of strategic incentives.

Figure 2.15 plots two curves depicting the relationship between welfare on the horizontal

axis and either φ or I on the vertical axes. Both curves use the optimal choice of τν and τε . The

black solid line fixes φ = 5 while the red dashed line fixes I = 1, as in the benchmark case, which

is where the two lines necessarily cross. The figure shows that either increasing the budget limit

or lowering the cost of current signal precision can increase welfare. Which choice has a greater

impact on welfare depends on the specific trade-off between increasing the budget or lowering

costs.

For demonstration purposes, assume the trade-off is proportional: the S.O. has the ca-

pability to either increase the budget limit by 20% or decrease φ by 20%. Starting from the

benchmark case, that means increase I from 1 to 1.2 or lower φ from 5 to 4. When I = 1.2,

welfare ≈−1.0364, while when φ = 4 welfare ≈−1.0284, so the S.O. would prefer to lower

the marginal cost rather than increase the budget limit. This is apparent from the slightly flatter

slope of the red dashed line at φ = 5, indicating a larger change in welfare following the same

proportional change in φ . This result does not hold for all parameterizations; see figure 2.16

which chooses I = 0.5,φ = 5 as the intersection point. Increasing the budget from I = 0.5 to 0.6
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Figure 2.15. Welfare as budget limit or marginal cost changes. The black solid line depicts the
level of welfare (horizontal axis) as the budget limit I changes (left-hand vertical axis) when
φ = 5. The red dashed line depicts the level of welfare as the marginal cost of increasing current
signal precision φ changes (right-hand vertical axis) when I = 1. The maximum for both vertical
axes is double the level of the benchmark case. The figure uses the following fixed parameter
values: ρ = 0.95, τw = 1, τψ = 0.3.

raises welfare by more than reducing φ from 5 to 4, as can be seen by the relatively steep slope

of the red dashed line around the intersection.

This exercise shows there is no dominant option for the S.O. looking to raise welfare by

improving its budget constraint. The slope of the welfare function with respect to the budget

limit or marginal cost of precision depends on the current optimal choice for τν and τε , which

the previous section showed depend on the degree of private precision and strategic incentives.

In general, the more influential a facet of the budget is on τ∗ν and τ∗ε , the bigger gains to welfare

from relaxing that facet. This was the example in figure 2.16 which used the same parameter

values as the benchmark case except the budget limit was halved. That created the opportunity

for greater welfare improvements from raising the budget instead of lowering the marginal cost

of signal precision.

To maximize welfare the S.O. must therefore have accurate knowledge of many factors,
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Figure 2.16. Welfare as budget limit or marginal cost changes. The black solid line depicts the
level of welfare (horizontal axis) as the budget limit I changes (left-hand vertical axis) when
φ = 5. The red dashed line depicts the level of welfare as the marginal cost of increasing current
signal precision φ changes (right-hand vertical axis) when I = 0.5. The maximum for both
vertical axes is double the level of the benchmark case. The figure uses the following fixed
parameter values: ρ = 0.95, τw = 1, τψ = 0.3.

some of which may be unobservable like the properties of the fundamental (ρ and τw) and the

precision of private information (τψ ). This exercise additionally requires the S.O. to precisely

understand how its resources translate into signal precisions and the potential trade-offs between

changes in their resource constraint. I have made simplifying assumptions to sidestep these

difficulties, but my results emphasize the potential gains to optimal decision making for the S.O.

which attempts to identify these parameters and relationships.

Chapter 2 is currently being prepared for submission for publication; Tyler L. Paul.

The dissertation author was the principal author on this paper.
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Chapter 3

Measuring Information Frictions: The
Interaction of Revised Data and Higher-
Order Dynamics

The main method for estimating information frictions from surveys of forecast-
ers makes two key assumptions: the variable to be forecast follows a simple
dynamic process, and forecasters observe only current data signals. I relax the
first assumption by introducing additional past dependence to the fundamental.
Previous authors have claimed that this requires modifying the estimation method
to account for higher-order dynamics, but I prove analytically and by simulation
that the existing method is still valid. The method works by relating information
flows to forecast errors, thus the specific time series properties of the variable
are irrelevant for estimating information frictions. When I relax the second as-
sumption and introduce a revised data signal of the past, I find it interacts with
higher-order dynamics to create additional bias in the estimation of information
frictions. I propose a correction to the regression which eliminates the bias by
capturing the new information flow, and I show how the correction does not
depend on the specific time series properties of the data. I use simulation to study
the nature of this new bias, finding it to be quantitatively small relative to the bias
caused solely by revised data.

3.1 Introduction

Measuring information frictions from surveys of expectations is a simple and powerful

way to recover the deep parameters necessary for modern business cycle models. The leading

estimation method proposed by Coibion and Gorodnichenko (2015) (henceforth CG) exploits the
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predictability of average forecast errors by average forecast updates, which are changes across

time of the average forecast for a given time horizon. Importantly, the CG method assumes

individual forecasters only have access to data signals informative of the present time period. I

show in the first chapter that the CG method suffers from omitted variable bias when forecasters

also receive new signals informative of the past, i.e. revised data signals. The cause of the bias

comes from the additional learning a revised signal offers which breaks the symmetry between

forecast errors and forecast updates, and thus disrupts the method’s ability to recover the degree

of information frictions.

I proved the existence of the bias assuming the underlying economic variable to be

forecast followed a simple dynamic process: an autoregression with one lag, or AR(1), meaning

the current value only depends on its previous value plus an innovation term. Since revised data

contain observations of past values, it is natural to wonder how learning of the past interacts

with forecasting a variable that has higher-order dynamics, such as dependence on the past

two or three periods. That is the goal of this paper: to understand how the revised data signal

impacts measurement of information frictions when the underlying fundamental has additional

persistence on the past. Specifically I answer two questions. First, how can one recover a measure

of information frictions from surveys of expectations when the fundamental has higher-order

dynamics? Second, how do higher-order dynamics change the bias in the original CG method

when exposed to revised data?

Both questions have practical significance, since many aggregate data series in macroeco-

nomics do not strictly follow an AR(1) as assumed in chapter one and the original CG paper. For

example, when evaluating outliers in the Nelson and Plosser data set from 1982, Charles and

Darné (2012) find only two of the fourteen aggregate variables are best modeled as an AR(1).

Kamber, Morley and Wong (2018) demonstrate how assuming an AR(1) for the output gap can

produce mistimed and unrealistically small cyclical behavior. When I separately model each data

series used in chapter one I find only two out of fourteen variables are best-represented by an

AR(1), with the rest exhibiting meaningful higher-order dynamics.

81



I address how to measure information frictions in the presence of higher-order dynamics

by starting from an extension proposed by CG in their original paper. When the fundamental

follows an autoregression with p lags, or AR(p), CG derive a new regression specification

for measuring information frictions which involves regressing average forecast errors on the

current forecast update plus a sequence of forecast updates regarding past observations of the

fundamental. The additional persistence of the fundamental, they argue, requires additional

forecast update terms of lagged values in order to preserve the predictability of forecast errors

and thus recover information frictions from the data.

When CG test the importance of higher-order dynamics for measuring information fric-

tions, they find the regression model which assumes an AR(1) fits the data best. This is somewhat

surprising given the evidence outlined above regarding the higher-order properties for many

variables, but CG argue that there is likely high correlation across past forecast updates that

renders their point estimates for the new terms overly imprecise. I confirm their findings using

Monte Carlo simulations of the forecasting environment, but the large sample size I use suggests

a new result: the new specification is incorrect not due to lack of precision but due to near perfect

multicollinearity of the regressors. Conceptually, all forecast updates are driven by the exact

same learning process: the difference between the observed signal and the individual forecast of

that signal. I show analytically that each forecast update term is related via the ratio of Kalman

gains for the associated forecast horizon. The new specification is thus unable to reliably recover

the degree of information frictions, regardless the size of the sample.

This finding adheres to the logic outlined in chapter one. Forecast updates reflect the

new information learned in the current period. When that information is contaminated by noise,

individuals will rationally update their previous forecasts only partially, so their new forecast is

a weighted average of their prior belief and the new information. The gap between their new

and old forecasts is thus entirely determined by what they learned in the current period. This

applies to all forecast updates, including those regarding the fundamental in previous periods.

Therefore each regressor in the new CG specification has the exact same stochastic properties, so
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the regression suffers from perfect multicollinearity.

It is straightforward to show analytically that the time series properties of the fundamental

do not affect the correct regression specification to use when measuring information frictions. I

highlight the error in CG’s algebra which results from their use of the generalized inverse of a

non-invertible matrix. In the end, I find the original CG method is still the correct way to measure

information frictions when individuals observe one signal and the fundamental has higher-order

dynamics.

With the appropriate benchmark established, I then compute the analytical results from

measuring information frictions of a higher-order process when individuals use a revised signal

in addition to a current signal. I find a new bias expression which consists of two sets of terms:

the bias from the AR(1) case, and the sum of covariances between the forecast update (i.e. the

regressor) and the forecast error made last period of the state multiple periods ago. The second

set of terms is called the lagged backcast error and is present due to the interaction of revised

data and the additional lags in the fundamental. Forecasting an AR(p) requires individuals to

make expectations of the fundamental value in each of the previous p periods. A revised signal

provides information about last period which is useful for forecasting all horizons extending

backwards. The new bias term reflects individuals using information about the last period to

update their forecasts of two, three, or more periods ago. This update is not captured in the

current period forecast update, and thus shows up in the residual as omitted variable bias.

The nature of the fundamental process therefore does alter the structural constituents of

the bias. At the same time, the nature of the fundamental process does not change the correct

method for recovering information frictions. Both of these findings together imply that the

correct specification with revised data is the same as in the AR(1) case, which is the same as

originally suggested in chapter one: regress average forecast errors on the average forecast

update plus the revised signal innovation. The latter term is new and helps capture all of the

learning from the revised signal so that the coefficient on the original regressor (i.e. forecast

update) can cleanly recover the degree of information frictions. This implies that the exercise

83



conducted in chapter one was theoretically justified even though it assumed an AR(1) for all

variables, since higher-order dynamics on their own do not introduce any additional bias. At the

same time the original CG paper is theoretically justified given their informational framework

consisting of only current period signals, despite their new specification suggesting otherwise.

However, there is additional bias due to higher-order dynamics of the process when

estimating the original CG method without my correction if individuals observe revised signals.

To assess the relevance of this new bias I conduct numerical simulations of the forecasting

environment, varying the time series properties of the fundamental in an effort to find any

patterns. I make two main findings. First, the size of the new bias is quantitatively small relative

to the bias caused by revised data. The direction and magnitude of the bias depend on the

persistence and propagation of the fundamental. For instance, the bias caused by higher-order

dynamics is larger when the process has highly cyclical dynamics versus a similar process (in

terms of unconditional variance) with smooth dynamics. Highly cyclical processes also cause

the higher-order dynamics bias to be negative. That said the overall size is always small, due to a

combination of heavy discounting and canceling out by successive covariance terms. Second,

the bias caused by revised data decreases in the lag order of process if it has cyclical behavior.

This suggests an intriguing connection between the total bias and higher-order dynamics that

works by affecting the forecast update term itself. Overall, my findings suggest researchers do

not need to be worried about higher-order dynamics introducing sizable bias into estimates of

information frictions, regardless the specific nature of the process.

This paper is a natural follow-up to the first chapter, which sits in the literature that uses

surveys of expectations to measure information frictions. This line of research gained momentum

following two methodological contributions from Coibion and Gorodnichenko (2012, 2015), the

former linking fundamental shocks to survey reactions while the latter connected forecast errors

and forecast updates. Several authors have recently measured the expectations formation process

directly through new surveys on businesses, such as McClure, Coibion and Gorodnichenko

(2022), Candia et al. (2023), and Ropele, Gorodnichenko and Coibion (2024). Many of the
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variables targeted in these studies exhibit higher-order dynamics, making it vital to understand

their interaction with all features of the information framework.

A recent trend in the literature has been to test the limits of the original CG method. A

notable example is Bordalo et al. (2020) who use the CG test to identify irrational behavior by

forecasters in the form of overreacting to new information. Other authors have similarly used

the CG framework to argue that households do not use Bayesian updating for their beliefs, such

as D’Acunto et al. (2021) who study consumer grocery purchases. The bias I identify due to

higher-order dynamics could potentially reverse these results, but in practice it is too small to

qualitatively make a difference. Gemmi and Valchev (2022) demonstrate that forecaster surveys

exhibit bias due to strategic considerations, which results in an omitted variable bias in the CG

method. While their approach is similar, the omitted variable bias I identify is due to the time

series properties of the fundamental, not an assumption about individual incentives.

Finally, this paper connects to the real-time forecasting literature which can trace its

modern roots to the development of the real-time data set by Croushore and Stark (2001). Many

authors have used these data to create ARIMA forecasting models which use the full set of data

vintages. Some prominent examples include Jacobs and van Norden (2011), Kishor and Koenig

(2009), Galvão (2017), and Bańbura et al. (2013) in the handbook of forecasting. These papers

demonstrate how revised data signals can improve forecasting models, but also that forecasters

may not fully appreciate that fact (Clements, 2012). This paper brings the insights from the

real-time forecasting literature to questions of measuring information frictions with a unique

focus on the role of higher-order dynamics.

The paper proceeds as follows. First I provide motivation by estimating the time series

properties of key macroeconomic variables originally studied in CG. In section 3.3 I analyze

the CG specification for measuring information frictions both with and without revised data. I

demonstrate why the existing method and correction term are still valid despite higher-order

dynamics, and characterize the bias caused by the interaction between revised data and higher-

order dynamics. Section 3.4 contains simulations which quantify the economic importance of
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this new bias and study its dependence on the time series properties of the fundamental. Section

3.5 concludes.

3.2 Dynamic properties of macroeconomic data

I begin by modeling the time series properties of key macroeconomic variables used in

the original CG paper as well as in chapter one. Both papers assumed each variable followed

an AR(1), which is a commonly-used starting point for authors disentangling trends from

cyclical components (Kamber, Morley and Wong, 2018). Since this paper is concerned with

the interaction between revised data and higher-order dynamics, my modeling objective is to

characterize the autocorrelation structure of each macroeconomic variable in the form of an

AR(p) model with statistically-identified optimal lag lengths.1 The goal is not out-of-sample

forecasting or to propose a true representation of each variable, but to motivate the importance of

my research question by demonstrating the higher-order properties of many real-world variables.

I apply the modeling methodology of Box, Jenkins and Reinsel (1994) in three steps.

First, I transform variables when necessary to ensure they are stationary by taking logged

differences, using the augmented Dickey-Fuller test for unit roots (Dickey and Fuller, 1979).

Second, I fit four autoregressive models to the data with lag lengths of p = 1 . . .4. Third, I

use Bayesian Information Criteria to identify the most parsimonious model with the highest

likelihood given the data. I ensure all variables come from the same data vintage to avoid the

impact of data revisions.

Table 3.1 contains the results. One series, real consumption growth, has optimal lag

length of 0, but I choose the next-best model according to BIC to ensure compatibility with the

rest of the paper. Out of the remaining 13 variables, BIC only chooses an AR(1) for two series:

real GDP and housing starts. The rest exhibit some form of higher-order dynamics and often

include three or four lags in the process. This underlines the importance of understanding how

higher-order dynamics interact with revised data when measuring information frictions.
1I exclude moving average terms from the estimation to match the original CG paper.
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Table 3.1. AR Model Selection for Macroeconomic Variables

Lag length ρ1 ρ2 ρ3 ρ4

Nominal GDP growth 4 0.41 0.13 0.14
(0.050) (0.058) (0.049)

Real GDP growth 1 0.44
(0.044)

GDP price inflation 3 0.51 0.13 0.27
(0.051) (0.064) (0.067)

Real consumption growth 4 0.03 0.04 0.11 0.24
(0.061) (0.059) (0.050) (0.049)

Real nonresidential investment growth 2 0.41 0.13
(0.054) (0.076)

Real residential investment growth 2 0.59 -0.14
(0.038) (0.049)

CPI inflation 3 0.58 -0.04 0.30
(0.070) (0.098) (0.070)

Housing starts growth 1 0.21
(0.056)

Industrial production growth 2 0.65 -0.21
(0.047) (0.054)

Unemployment rate 2 1.64 -0.68
(0.036) (0.037)

Employment growth 3 -0.49 -0.47 -0.26
(0.086) (0.083) (0.093)

Treasury bill 3 month rate 4 1.24 -0.51 0.45 -0.22
(0.039) (0.054) (0.050) (0.047)

Treasury bond 10 year rate 3 1.11 -0.27 0.14
(0.051) (0.083) (0.060)

AAA Corporate bond rate 4 1.22 -0.39 0.34 -0.17
(0.087) (0.144) (0.146) (0.083)

Notes: Lag length determined by BIC. Standard errors are in parentheses. All variables converted
to lag differences except unemployment rate, treasury bill rate, treasury bond rate, and corporate
bond rate. All models estimated on quarterly data from 1965 to 2019.
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3.3 Analysis of higher-order dynamics

I study an economy in which a continuum of individual forecasters use imprecise data

signals to forecast a fundamental economic variable. The set-up is similar to the environment of

chapter one but with a focus on higher-order dynamics.

3.3.1 Model set-up

The fundamental xt follows an AR(p) which I represent in state-space form:

State: zzzt ≡



xt

xt−1

...

xt−p


=



ρ1 ρ2 . . . ρp

1 0 . . . 0

0 . . . . . . ...

0 . . . 1 0


zzzt−1 +



1

0
...

0


wt

= ΦΦΦzzzt−1 +SSSwt

where wt ∼ N(0,τ−1
w ) is an i.i.d. shock which drives the fundamental, and ΣΣΣw = E[(Swt)(S′wt)].

Individual forecasters receive two noisy private signals, one of xt and one of xt−1:

Measurement: yyyit ≡

yit

rit

=

1 0 . . . 0

0 1 . . . 0

zzzt +

ψit

νit


= HHHzt +uuuit

where ψit ∼ N(0,τ−1
ψ ) and νit ∼ N(0,τ−1

ν ) are i.i.d. idiosyncratic noise shocks unique to each

individual, and ΣΣΣu = E[uuuituuu′it ].
2 All shocks are uncorrelated with each other and across time. The

2In chapter one, the shock νit was common across individuals to represent a data revision published by the
statistical office. Changing this to an idiosyncratic shock sharpens the results regarding higher-order dynamics.
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matrix of forecast errors P can be determined by solving the Ricatti equation:

PPP = ΦΦΦ(PPP−PPPHHH ′′′(HHHPPPHHH ′′′+ΣΣΣwww)
−1HHHPPP)ΦΦΦ′+ΣΣΣu

I denote KKK = PPPHHH ′′′(HHHPPPHHH ′′′+ΣΣΣwww)
−1 as the Kalman gain, which represents the weight individuals

place on their new information when forming forecasts. The Kalman gain measures the degree

of information frictions. A large Kalman gain means individuals place more weight on new

information relative to their prior beliefs, implying a small degree of information frictions. For

example, when the fundamental is an AR(2) the Kalman gain is a 2×2 vector: KKK =

K1 Kr

K2 Kr2

.

K1 and K2 are the weights placed on the current signal yit for forecasting xt and xt−1, respectively,

while Kr and Kr2 are the weights placed on the revised signal rit for forecasting xt and xt−1,

respectively.

The optimal h-period-ahead forecast of the state-vector zt+h is given by:

Eit [zzzt+h] = Eit−1[zzzt+h]+KKKΦΦΦ
hHHH(yyyit −Eit−1[yyyit ]) (3.1)

where Eit−s[xt+h] is the mean-square error minimizing forecast of xt+h conditional on information

observed in period t − s by individual i. Averaging across all individuals produces Et−s[xt+h],

where I drop the i subscript for the expectations operator. I choose h= 0 without loss of generality

in the following sections for ease of exposition.3

3.3.2 New CG specification for measuring information frictions

The original CG specification assumed the fundamental followed an AR(1) and forecast-

ers only observe one current signal, which implies τν = 0 and HHH =

[
1 0 . . . 0

]
. In this case,

3Solving for h > 0 adds additional terms in the future which are necessarily uncorrelated with information in the
present, so these terms do not affect measures of information frictions or the bias.
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CG suggested estimating the Kalman gain using the following regression model:

xt −Et [xt ] = β (Et [xt ]−Et−1[xt ])+ εt (3.2)

Call equation (3.2) the univariate model. This model regresses average forecast errors on the

average forecast update, generating estimates of β which map directly into the Kalman gain:

K1 =
1

1+β̂
. When the fundamental follows an AR(p), CG suggest a new regression model:

xt −Et [xt ] = β11 (Et [xt ]−Et−1[xt ])+β12 (Et [xt−1]−Et−1[xt−1])

+ · · ·+β1p
(
Et [xt−(p−1)]−Et−1[xt−(p−1)]

)
+ εt (3.3)

Call equation (3.3) the multivariate model. This model directly nests the univariate one, the

difference being (p−1) new forecast update terms regarding the fundamental in previous periods:

xt−1,xt−2, . . . ,xt−(p−1). The authors show the estimated coefficients from this model also map

directly into the Kalman gains:4

β11 =
K1

K2
1 +K2

2 + · · ·+K2
p
−1

β12 =
K2

K2
1 +K2

2 + · · ·+K2
p

. . . β1p =
Kp

K2
1 +K2

2 + · · ·+K2
p

At face value both of these properties are appealing and intuitive. However, the new

forecast updating terms are only included due to an incorrect algebra step. To show this I follow

4The online appendix of CG incorrectly writes the denominators as (K1 + · · ·+Kp)
2.
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the CG procedure outlined in their appendix starting from equation (3.1):5

(III −KKKHHH)(Et [zzzt ]−Et−1[zzzt ]) = KKKHHH(zzzt −Et [zzzt ]) (3.4)

This equation relates forecast errors to forecast updates, similar to regression specifications (3.2)

and (3.3). To isolate forecast errors as the dependent variable requires taking the inverse of KKKHHH,

but this square matrix is not invertible. For an AR(2), this looks like

KKKHHH =

K1

K2

[1 0

]
=

K1 0

K2 0


Instead CG take the generalized inverse of KKKHHH which they claim produces the following:

zzzt −Et [zzzt ] = {KKKHHH}+(III −KKKHHH)(Et [zzzt ]−Et−1[zzzt ])

xt −Et [xt ]

xt−1 −Et [xt−1]

...

xt−p −Et [xt−p]


=

(K2
1 +K2

2 + . . .)−1



K1 . . . Kp

0 . . . 0
... . . . 0

0 . . . 0





1−K1 0 . . . 0

−K2 1 . . . 0
... 0 . . . 0

−Kp 0 . . . 1





Et [xt ]−Et−1[xt ]

Et [xt−1]−Et−1[xt−1]

...

Et [xt−(p−1)]−Et−1[xt−(p−1)]


The top row of this system of equations is equation (3.3). However, the entire system cannot be

correct since every other row implies there is no forecast error for past variables; for example,

the value of the second row is xt−1 −Et [xt−1] = 0. In reality there should be some error of the

past since it is never perfectly revealed. I demonstrate this by deriving the true expression for
5First plug in yyyit = HHHzzzt , and then notice that Eit−1[uuuit ] = 0. Next average both sides across all individuals so∫

uuuitdi = 0. Finally subtract KKKHHHEt [zzzt ] from both sides and rearrange.
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xt−1 −Et [xt−1] when p = 2 in appendix A.2.2.6

The problem with this procedure comes from taking the generalized inverse of KKKHHH which

in general has different properties than the inverse of a non-singular matrix. I avoid this issue by

expanding out equation (3.4) without taking the generalized inverse:



xt −Et [xt ]

xt−1 −Et [xt−1]

...

xt−p −Et [xt−p]


=



1−K1
K1

(Et [xt ]−Et−1[xt ])

K−1
2 (Et [xt−1]−Et−1[xt−1])− (Et [xt ]−Et−1[xt ])

...

K−1
p (Et [xt−(p−1)]−Et−1[xt−(p−1)])− (Et [xt ]−Et−1[xt ])


(3.5)

Equation (3.5) reveals the correct relationship between forecast errors and forecast

updates for an AR(p). First note that past forecast errors are non-zero and depend on current plus

lagged forecast updates.7 More importantly, the first row matches the univariate model exactly,

both by the coefficient mapping and the number of regressors. This means that even when the

fundamental has higher-order dynamics the univariate model is the correct method to measure

information frictions. When the fundamental has any number of lags p, current forecast errors

are only predictable by the current forecast update.

The dynamic properties of the fundamental do not change the ability of the univariate

model to measure information frictions. Intuitively this is because the univariate model works

by evaluating the usage of new information in forecasts. The dependent variable contains the

portion of the fundamental which the average forecast misses. This is regressed on the forecast

update, which contains how individuals incorporate new information into their forecasts. Both

variables are driven by the same stochastic process, the surprise in the observed signal, so the

6The expression in the appendix includes a revised data signal. Simply set Kr = Kr2 = 0 to find the expression
with only one current signal.

7The goal of this exercise was to demonstrate the structural relationship between forecast errors and updates, so
the presence of time t information on the right-hand side is not an issue. It does, however, mean the relationship is
non-causal and cannot be implemented in real-time. Later I will derive a regression specification that can in theory
be used in real-time to recover K2, . . .Kp.
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regression contains a tight mapping back to the Kalman gain. This is purely an informational

mechanism; it reflects how individuals use data signals to update their forecasts of the state, not

the underlying properties of the state itself. If the state is composed of many lags as in the AR(p)

case, individuals will update their forecasts of each lag according to the same learning from

their signals. The different Kalman gain parameters (K1,K2, . . . ) capture how that same signal

observation affects each horizon’s forecast (xt ,xt−1, . . . ).

To measure these gain parameters I propose the following method.

Proposition 4 (Measuring higher-order Kalman gains) When the fundamental follows an

AR(p) and forecasters observe one data signal of the present, the Kalman gain parameter

Ks for s ∈ (2,3, . . . , p) can be estimated from the following regression:

Et [xt ]−Et−1[xt ] = βs(Et [xt−(s−1)]−Et−1[xt−(s−1)])+ εt (3.6)

where Ks =
K1
β̂s

, and K1 is estimated from the univariate model (3.2).

Call equation (3.6) the univariate+ model. The proof for this proposition comes from expanding

out equation (3.4) and noticing that the forecast update for each forecast horizon s ∈ (0,1, . . .)

has a similar structure:

Et [xt−(s−1)]−Et−1[xt−(s−1)] = Ks(xt −Et−1[xt ]) (3.7)

This precisely shows that all average forecast updates are driven by the same learning process,

xt −Et−1[xt ]. To get the equation in the proposition, first set s = 1 in equation (3.7) to find

1
K1
Et [xt ]−Et−1[xt ] = (xt −Et−1[xt ]). Plug this into the right-hand side of equation (3.7) to find

equation (3.6) from the proposition. To run this regression on survey data, individual forecasters

must report their current forecasts of the variable s-periods in the past, which in practice is not

often reported.

However, I can numerically simulate the model to confirm the accuracy of proposition 4
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as well as the claim that the univariate model will always recover K1 while the multivariate model

will not always recover Ks for s ∈ (1,2, . . .). I create 500 draws of the fundamental, noisy signals

for each individual, and their optimal forecasts across time. I compute the average forecast error

and forecast updates for xt and xt−1 for each draw of the economy, and then I estimate the two

univariate regressions (3.2), (3.6), and the multivariate regression (3.3). I compare the average

implied Kalman gain from each model with the true value as dictated by the steady-state Kalman

filter.

Table 3.2 shows results from simulating an AR(2) using different autoregression parame-

ter values. In general, the two univariate models (original CG specification (3.2) for K1 and the

model from proposition 2 (3.6)) almost always perfectly recover the true values of K1 and K2.

This supports the claim that estimating information frictions does not require additional terms due

to higher-order dynamics, since the univariate models entirely capture the effect of information

flows. The multivariate model performs significantly worse for many parameterizations of the

fundamental. For instance, when (ρ1,ρ2) = (1.4,−0.5), the multivariate estimates K1 = 0.97

when the true value is 0.77, a bias of 20 percentage points. However, this is not always the case;

when (ρ1,ρ2) = (0.1,0.65), the estimated K1 from the multivariate model is very near to the true

value. The same is not true for estimates of K2 produced by the multivariate model, which are

rarely close to the true value and often wildly inaccurate.

In summary, the time series properties of the fundamental do not change the method for

measuring information frictions from forecasting data. The univariate model still applies for

any AR(p) because it directly measures how new information is used. When individuals only

observe one data signal, they update their forecasts of all horizons using the information in that

signal, so including additional forecast update terms is not necessary. Doing so can produce

inaccurate estimates of information frictions. Next I demonstrate how the time series properties

of the fundamental introduce bias to the univariate model when individuals observe a revised

signal alongside their current signal.
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Table 3.2. Comparing univariate and multivariate models of information frictions - AR(2)

Estimate of K1 Estimate of K2

ρ1 ρ2 True Uni Multi True Uni Multi

1.90 -0.90 0.82 0.82 1.08 0.24 0.24 -0.65
1.40 -0.90 0.78 0.78 0.92 0.20 0.20 -0.36
1.00 -0.90 0.75 0.75 0.81 0.15 0.15 -0.14
0.50 -0.90 0.73 0.73 0.72 0.08 0.08 0.15
1.40 -0.50 0.77 0.77 0.97 0.22 0.22 -0.47
0.90 -0.20 0.72 0.72 0.81 0.17 0.17 -0.22
0.90 0.09 0.72 0.72 0.83 0.18 0.19 -0.24
0.60 -0.80 0.72 0.72 0.73 0.10 0.10 0.04
0.60 -0.20 0.69 0.69 0.74 0.12 0.12 -0.14
0.60 0.35 0.71 0.71 0.76 0.14 0.14 -0.15
0.30 -0.90 0.72 0.72 0.70 0.05 0.05 0.39
0.30 -0.50 0.69 0.69 0.68 0.06 0.06 0.12
0.30 -0.20 0.68 0.68 0.68 0.06 0.06 -0.03
0.30 0.35 0.68 0.68 0.70 0.07 0.07 -0.08
0.30 0.65 0.70 0.70 0.71 0.08 0.08 -0.01
0.10 -0.90 0.72 0.72 0.69 0.02 0.02 1.39
0.10 -0.50 0.69 0.69 0.67 0.02 0.02 0.51
0.10 -0.20 0.67 0.67 0.67 0.02 0.02 0.03
0.10 0.35 0.68 0.68 0.68 0.02 0.02 -0.15
0.10 0.65 0.70 0.70 0.69 0.03 0.03 0.16
0.10 0.85 0.72 0.72 0.65 0.03 0.03 1.82

Notes: True Ks refers to the Kalman gain parameter derived from the steady-state Kalman filter.
Univariate refers to model (3.2) for K1 and model (3.6) for K2,K3,K4. Multivariate refers to
model (3.3). The values in each of these columns are the average implied estimate of the Kalman
gain across all simulations given that row’s autoregression model. Each simulated economy
had 750 individuals and 750 time periods. Each AR model had 500 economies generated. I fix
τw = 1,τψ = 2.
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3.3.3 Measurement bias: revised data and higher-order dynamics

I reintroduce the revised signal by letting τν > 0 and analyze how the interaction of

revised data and higher-order dynamics introduces a novel bias to measurements of information

frictions. The previous section showed the method for measuring information frictions when the

fundamental is an AR(p) is the same as when the fundamental is an AR(1), which means using

the original CG univariate model (3.2). In that case, the structural relationship between average

forecast errors and average forecast updates is:

xt −Et [xt ] =

(
1−K1

K1

)
(Et [xt ]−Et−1[xt ])

If individual forecasters also observe a revised data signal, this structural relationship changes

according to proposition 5:

Proposition 5 (Structural equation with revised data) When the fundamental is an AR(p)

and forecasters observe two data signals, one of the present and one of the past, the true

structural relationship between average forecast errors and average forecast updates is:

xt −Et [xt ] =

(
ρ1(1−K1)−Kr

ρ1K1 +Kr

)
(Et [xt ]−Et−1[xt ])

+

(
ρ2Kr

ρ1K1 +Kr

)
(xt−2 −Et−1[xt−2])+

(
ρ3Kr

ρ1K1 +Kr

)
(xt−3 −Et−1[xt−3])

+ · · ·+
(

ρpKr

ρ1K1 +Kr

)
(xt−p −Et−1[xt−p])+

(
Kr

ρ1K1 +Kr

)
wt

The proof is in appendix A.2.1. There are two sets of new terms on the right-hand side relative to

when forecasters only observe the current signal. The first set consists of the final term, wt , which

is the current period fundamental. This term is also present in the structural bias equation from

chapter one when the fundamental follows an AR(1), so it is not due to higher-order dynamics.

The second set consists of p− 1 terms: (xt−2 −Et−1[xt−2]),(xt−3 −Et−1[xt−3]), . . . ,(xt−p −

Et−1[xt−p]). Each term is the forecast error made last period (t − 1) when forecasting the
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fundamental value 2, . . . , p periods ago, also known as lagged backcast errors. These terms are

new relative to the AR(1) case and reflect the unique interaction of revised data with higher-order

dynamics. Note that if either ρ2 = ρ3 = · · ·= ρp = 0 (i.e. an AR(1)) or Kr = 0 (i.e. an irrelevant

revised signal), all lagged backcast errors disappear. For ease of exposition I assume p = 2 for

the rest of this section. In that case, ρ3, . . . ,ρp = 0 and there would only be a single lagged

backcast error in proposition 5: xt−2 −Et−1[xt−2].

The presence of these two sets of terms in proposition 5 means trying to estimate

regression specification (3.2) will lead to biased estimates of β . Specifically the bias is given by

the normalized covariance between these terms and the forecast update. In the AR(2) case with

only a single lagged backcast error, this covariance looks like:

E [(Et [xt ]−Et−1[xt−1])(xt−2 −Et−1[xt−2])]

E[Et [xt ]−Et−1[xt ]]2
+

E [(Et [xt ]−Et−1[xt−1])wt ]

E[Et [xt ]−Et−1[xt ]]2
(3.8)

There are two forces biasing the estimates from the original CG regression. The first

force represented by the first term in (3.8) comes from the interaction of higher-order dynamics

with the revised signal observation. The second force comes from the novel learning granted

by the revised signal that is not represented in the forecast update. The revised signal grants

individuals an additional noisy measurement of the state in the previous period, which they will

use to update their forecasts. However, the additional weight forecasters place on the past state is

not captured by the average forecast error and thus ends up in the regression residual. When the

revised signal noise is idiosyncratic it washes out in the aggregate which makes this biasing force

strictly positive. If the signal noise was common across individuals, like in chapter one, this term

would only be positive if the revised signal is sufficiently precise relative to the current signal.

To understand where the lagged backcast term comes from I compute the ARMA repre-
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sentation of the optimal forecast in appendix A.2.2:

Et [xt ] =
K1xt +(ρ2K2 +Kr)xt−1 +ρ2(Kr2(1−K1)+K2Kr)(xt−2)

1+φ1L+φ2L2

where φ1 = (ρ2K2 −ρ1(1−K1)+Kr) and φ2 = ρ2(K2Kr − (1−K1)(1−Kr2)). I identify the

interaction of revised data and higher-order dynamics by finding terms with ρ2Kr and ρ2Kr2 , just

as in the coefficient on the bias term in proposition 5. This shows up in the coefficient on xt−2:

ρ2(Kr2(1−K1)+K2Kr). This term constitutes the additional weight in the forecasting equation

due to higher-order dynamics interacting with the revised signal. Whereas terms in Kr alone

represent pure informational effects (i.e. learning about the past), terms in ρ2Kr reflect using the

information in the revised signal to improve backcasts. The forecast thus has additional weight

on xt2 , beyond that from the geometric sequence in lag polynomials, due to learning about xt−1

and needing to forecast xt−2. When I compute the forecast error, these terms are absent:

xt −Et [xt ] =
(1−K1)(1−ρ1L−ρ2L2)xt

1+φ1L+φ2L2

There is an additional moving average term in ρ2xt−2 due to the AR(2) nature of the

state, but this is unrelated to the new learning provided by the revised signal since Kr and Kr2

are absent. This discrepancy between the average forecast (and thus forecast update) and the

forecast error is the reason the lagged backcast error appears in the structural relationship. The

revised signal provides additional information about past values which forecasters use to update

their backcasts; the forecast update ignores these backcast updates, so the relationship between

errors and updates suffers from omitted variable bias.

There is an important subtlety regarding the subject of the bias. The bias described

in equation (3.8) results from estimating the univariate model (3.2) when the true structural

equation is given in proposition 5. However, this bias is relative to the true structural coefficient,

β̄ = ρ1(1−K1)−Kr
ρ1K1+Kr

, and not to the structural coefficient of the univariate model, 1−K1
K1

. This is
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because the presence of revised data changes the structural relationship between forecast errors

and forecast updates. With that in mind, the impact of the bias on estimates of K1 is described

below:

K1 =
1

1+ β̂
− Kr

ρ1
(3.9)

where β̂ is the estimated coefficient from regression (3.2) when the true structural relationship

is given by proposition 5. When the bias is positive and β̂ is larger this will tend to lower the

estimate of K1. I will use equation (3.9) in section 3.4 to numerically calculate the impact of the

bias on estimates of K1.

3.3.4 Bias correction for AR(p)

The two sets of biasing terms in proposition 5 can be understood as omitted variables in

the univariate regression model. However, since both sets of terms are present due to additional

learning from the revised signal, I propose to correct the bias by including a new regressor that

captures this new flow of information. Specifically, adding the difference between the average

forecast of the revised signal and its realization will isolate the knowledge gained from the new

signal and completely remove the bias. This is the same correction I proposed in chapter one for

when the fundamental follows an AR(1). The corrected regression specification is as follows:

xt −Et [xt ] = β (Et [xt ]−Et−1[xt ])+βr(rit −Et−1[xt−1])+ εt (3.10)

The correction is valid when the fundamental follows an AR(p) for the same reason that

the original CG specification is valid for an AR(p) without revised data. The regression works

by relating forecast errors to how individuals incorporate new information in their forecasts.

By including the revised signal innovation as an additional regressor, all of the new learning

from the revised signal is now captured and won’t form part of the regression residual. The
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amount of lags in the fundamental is irrelevant since the regression solely operates on the flow of

information in order to estimate information frictions.

3.4 Simulations

To understand the relevance of the bias caused by higher-order dynamics, I simulate

economies of many individuals using their signals to forecast an economic variable. Specifically,

I generate the fundamental according to a given autoregressive model for T periods. I create I

noisy signals of the fundamental in the current period (yit) and in the previous period (rit), and

compute forecasts for each individual i ∈ I given their signals. I take averages across individual

forecast updates and forecast errors and estimate the original CG regression (3.2). I use the

coefficient estimate β̂ to compute the implied Kalman gain K̂1, which I compare to the true

Kalman gain as determined from the steady-state Kalman filter. To improve statistical accuracy I

average these estimates across many simulated economies.

3.4.1 Benchmark results

To begin I fix the following parameters: τw = 1,τψ = 0.5,τν = 2. These parameters

imply the current signal is four times as noisy as the revised signal, which is a reasonable starting

point given the enhanced precision of data revisions as highlighted in chapter 2. Table 3.3 shows

the results of simulating four economies with different AR(p) models. The second row describes

the average bias across simulations of estimating K1 from regression (3.2), computed as the

difference between the estimate K̂1 and the actual K1. Rows three and four decompose this bias

into the two forces described by proposition 5: bias from observing the revised signal (row 3) and

bias from the interaction of the revised signal and higher-order dynamics (row 4). Row three is

computed as the covariance of the regressor with the fundamental wt , while row four is computed

as the covariance of the regressor with the sum of lagged backcast errors ∑
p
j=2(xt− j−Et−1[xt− j]),

where p is given by the column number. The model in the first column is an AR(1) which has

no bias due to higher-order dynamics, though I still calculate the covariance with the lagged
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backcast error term, xt−1 −Et−1[xt−1], as a validation check.

Table 3.3. Bias decomposition: benchmark parameters

AR(1) AR(2) AR(3) AR(4)

True K1 0.36 0.39 0.39 0.41

Total bias -0.286 -0.248 -0.214 -0.206
Bias from revisions -0.287 -0.242 -0.207 -0.194
Bias from dynamics 0.000 -0.002 -0.008 -0.008

ρ1 0.60 0.60 0.60 0.60
ρ2 - -0.80 -0.80 -0.80
ρ3 - - 0.60 0.60
ρ4 - - - -0.80

Notes: Total bias is the difference between the true K1 and the estimated K̂1 produced by the
original CG specification (3.2). Bias from revisions is the normalized covariance between the
average forecast update and the fundamental shock wt multiplied by

(
Kr

ρ1K1+Kr

)
. Bias from

dynamics is the sum of normalized covariances between the average forecast update and lagged
backcast errors multiplied by

(
ρsKr

ρ1K1+Kr

)
for s ∈ (2, . . . , p). Each simulated economy had 750

individuals and 750 time periods. Each AR model had 100 economies generated; the bias figures
are averages across all economies.

For the benchmark parameters, the CG specification produces overall negatively-biased

estimates of the Kalman gain, finding stronger information frictions (i.e. smaller Kalman gains)

than actually exist.8 The vast majority of this bias comes from the revised signal, which is

associated with the wt term in equation (3.8) and was the subject of chapter one. Higher-order

dynamics are responsible for a very small portion of the overall bias on K1. As an example, the

bias in K1 caused by higher-order dynamics is less than 5% of the total bias for an AR(4).

The bias to the coefficient estimate of β1 (not shown) is larger than the bias to the Kalman

gain estimate, but its impact on K1 is mitigated by the coefficient on the lagged backcast error

term from proposition 5: ρpKr
ρ1K1+Kr

. In particular, Kr is always much smaller than K1; under

benchmark parameters and the AR(4) model, Kr = 0.15 compared to K1 = 0.41. Therefore

8Recall the condition from chapter one to determine if the coefficient estimate β̂ will be positively biased:
τν

τw
> ρ1

Kr
K1

. Since this is true in table 3.3, we’d expect the bias on K̂ to be negative according to equation (3.9).
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the impact of bias to the coefficient estimate is severely reduced when applied to K1. This is

not surprising, since the average forecast update already contains most of the new information

learned in period t, so the influence of lagged backcast errors must be small.

Interestingly, increasing the lag order of the fundamental lowers the magnitude of the

total bias, from -0.286 for an AR(1) to -0.206 for an AR(4). Since the third row is quantitatively

small across all models, this must be due to a diminishing covariance between average forecast

errors and the fundamental wt , which we see across the fourth row. This means the additional

learning from the revised signal is less important when estimating information frictions when the

fundamental has higher-order dynamics. Intuitively, the signal of xt−1 provides less information

about xt when the additional lags are heavily weighted, so the resulting bias should be lower.

The benchmark parameters use large weights for each lag which is why we see decreasing bias

as we add lags to the model.9

Another way to consider how the relative weights for fundamental lags impact the bias is

by assessing the roots of the process’s characteristic equation. The autoregressive parameters

chosen for table 3.3 dictate covariance-stationary processes that have at least one pair of complex

conjugate roots for each model.10 As a result these processes exhibit sinusoidal impulse response

functions, varying above and below 0 with dampening amplitude over time (Hamilton, 1994).

To assess whether the shape of the process affects the bias caused by higher-order dynamics

or not I repeat the simulation exercise but for a set of parameters that guarantee a covariance-

stationary process with at least one real root at all lag lengths. Table 3.4 shows the results.11

When comparing across tables, the models with real roots display smooth exponential decay in

response to a shock, while the complex roots of table 3.3 generate an oscillating response over

time.

Under the new parameterization that ensures real roots, higher-order dynamics make

9Larger weights also increase the unconditional variance of the process, which I examine in the following
section.

10The AR(4) model has two pairs of complex conjugate roots, while the AR(3) has one real root and two complex
roots.

11There are two real roots for the AR(2), one real root for the AR(3), and two real roots for the AR(4).
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Table 3.4. Bias decomposition: smooth impulse response

AR(1) AR(2) AR(3) AR(4)

True K1 0.36 0.36 0.36 0.36

Total bias -0.286 -0.293 -0.295 -0.296
Bias from revisions -0.287 -0.294 -0.296 -0.298
Bias from dynamics 0.000 0.004 0.005 0.007

ρ1 0.60 0.60 0.60 0.60
ρ2 - 0.10 0.10 0.10
ρ3 - - 0.05 0.05
ρ4 - - - 0.10

Notes: Total bias is the difference between the true K1 and the estimated K̂1 produced by the
original CG specification (3.2). Bias from revisions is the normalized covariance between the
average forecast update and the fundamental shock wt multiplied by

(
Kr

ρ1K1+Kr

)
. Bias from

dynamics is the sum of normalized covariances between the average forecast update and lagged
backcast errors multiplied by

(
ρsKr

ρ1K1+Kr

)
for s ∈ (2, . . . , p). Each simulated economy had 750

individuals and 750 time periods. Each AR model had 100 economies generated; the bias figures
are averages across all economies.

an even smaller contribution to the total bias despite a larger total bias. Total bias no longer

decreases as lag length rises, the opposite result from table 3.3 but as expected given the relatively

more valuable revised signal for a process with smooth exponential decay. Finally, the impact of

higher-order dynamics on the bias has turned positive, which reflects the positive lag weights.

Overall, higher-order dynamics can materially affect the bias only when the process has strongly

cyclical behavior. Variables with many lags exhibit greater total bias, but this comes from the

revised signal itself, and not its interaction with higher-order dynamics.

3.4.2 Unconditional variance of the process

The previous section showed higher-order dynamics make a quantitatively small contri-

bution to the overall bias, though the precise magnitude depends on the cyclical properties of

the fundamental. To address this more specifically I conduct two exercises. First, I compare

the bias contribution across all new parameterizations with increasing unconditional variance as
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determined by the autoregression parameters. Higher unconditional variance reduces the value

of the revised signal relative to the current signal, since the latter has better predictive power.

In turn this should lower the bias caused by the revised signal. To see this result in a simpler

environment, table 3.5 simulates an AR(1) with increasing values for ρ1. Raising ρ1 causes the

unconditional variance to rise: τ−1
w

1−ρ2
1
. As the degree of persistence increases, the total bias (and

thus bias caused by the revised signal) decreases in size. The rise in unconditional variance is

matched by a rise in K1, which is partly responsible for lowering the total bias as individuals

shift weight from the revised signal to the current signal.

Table 3.5. Bias as AR parameters vary, AR(1)

ρ1 True K1 Total Bias

0.2 0.34 -0.37
0.3 0.34 -0.35
0.4 0.34 -0.33
0.5 0.35 -0.31
0.6 0.36 -0.29
0.7 0.36 -0.26
0.8 0.37 -0.24
0.9 0.38 -0.23

Notes: Total bias is the difference between the true K1 and the estimated K̂1 produced by the
original CG specification (3.2). Each row had 100 economies simulated, with 750 individuals
and 750 time periods. The bias figures are averages across all simulations.

For the second exercise I vary the autoregression parameters in a way that preserves the

unconditional variance of the process, to asses if the bias contribution changes more in response

to one lag parameter versus any other. I simulate an AR(2) in table 3.6 by picking ρ1 and ρ2 to

target three unconditional variances. The first block has the variance of the process from table

3.3, the second block has the variance of the process from table 3.4, and the variance of the third

block is arbitrarily chosen as roughly double the variance of the second block.

As the unconditional variance rises the total bias falls, evident by comparing the bias in

the bottom row of each block. At the same time, within each block the total bias falls as ρ1 rises.
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Table 3.6. Bias as AR parameters vary, AR(2)

Bias
Variance ρ1 ρ2 True K1 Total Revisions Dynamics

1.8 0.2 -0.67 0.36 -0.311 -0.307 0.005
1.8 0.5 0.17 0.36 -0.311 -0.311 0.006
1.8 0.6 -0.60 0.37 -0.255 -0.252 -0.006
1.8 0.6 0.10 0.36 -0.294 -0.295 0.004
1.8 0.8 -0.49 0.38 -0.226 -0.223 -0.010
1.8 0.8 -0.40 0.38 -0.222 -0.220 -0.011
3.1 0.2 0.65 0.36 -0.432 -0.428 0.021
3.1 0.6 -0.80 0.39 -0.248 -0.243 -0.002
3.1 0.8 0.04 0.37 -0.249 -0.250 0.002
3.1 0.9 -0.75 0.40 -0.200 -0.195 -0.012
3.1 1.1 -0.63 0.41 -0.173 -0.169 -0.017
3.1 1.1 -0.48 0.41 -0.174 -0.171 -0.016
8.0 0.4 -0.93 0.39 -0.274 -0.267 0.009
8.0 1.0 -0.06 0.39 -0.208 -0.209 -0.003
8.0 1.2 -0.27 0.41 -0.175 -0.173 -0.012
8.0 1.3 -0.88 0.44 -0.154 -0.147 -0.020
8.0 1.3 -0.41 0.43 -0.157 -0.154 -0.017
8.0 1.5 -0.77 0.45 -0.136 -0.129 -0.024

Notes: Variance is the unconditional variance of the process given AR parameters in columns
1 and 2. Total bias is the difference between the true K1 and the estimated K̂1 produced by
the original CG specification (3.2). Bias from revisions is the normalized covariance between
the average forecast update and the fundamental shock wt multiplied by

(
Kr

ρ1K1+Kr

)
. Bias

from dynamics is the sum of normalized covariances between the average forecast update and
lagged backcast errors multiplied by

(
ρsKr

ρ1K1+Kr

)
for s ∈ (2, . . . , p). Each row had 300 economies

simulated, with 1000 individuals and 1000 time periods. The bias figures are averages across all
simulations.
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Both of these results match the AR(1) case: higher unconditional variance and more first-order

persistence lower the total bias. On the other hand, the bias caused by higher-order dynamics

appears to rise as the unconditional variance increases. When the variance is 1.8, the average

absolute value of the bias is 0.007, or 2.6% of the total, while this doubles to 0.014, or nearly 8%

of the total when the variance rises to 8.0. This opposing force thus slightly elevates the total

bias for higher variance processes, but the overall magnitude is still quite small compared to the

contribution of revisions.

3.4.3 Signal precisions for AR(2)

Next I vary the precisions of the current and revised signals to understand their relation-

ship to the bias caused by higher-order dynamics. Specifically, I normalize both precisions by the

variance of the fundamental and vary the ratio τν

τψ
. When this ratio is greater than 1 the revised

signal is more precise than the current signal. In the benchmark case this ratio was 4.

Table 3.7 simulates an AR(2) when τψ ranges from 20% to 1000% the size of τν . The

bias caused by higher-order dynamics begins small and negative and grows more negative as τψ

rises. There is an inflection point when τψ is half the value of τν , at which point the bias begins

to slowly fall towards 0, which it reaches only once current signal precision is four times as

large as revised signal precision. Even at its maximum size, this bias is small, so the total bias is

overwhelmingly driven by the revised signal. Total bias decreases as τψ rises, since individuals

shift weight from the revised signal to the relatively more accurate current signal.

3.4.4 Using calibrated data series

To give a rough idea of how strong the bias can be for real data series, I perform

simulations in table 3.8 using the estimated parameters from section 3.2 and decompose both

types of bias. As shown in the previous section, the size of the total bias heavily depends on the

signal precisions, but these are inherently unobservable. Thus the results of this exercise should

not be understood as true calibrated estimates of bias from measuring information frictions on
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Table 3.7. Bias as signal precisions vary

Bias
τψ

τν
True K1 Total Revisions Dynamics

0.2 0.22 -0.198 -0.194 -0.003
0.3 0.30 -0.198 -0.192 -0.006
0.4 0.36 -0.188 -0.180 -0.007
0.5 0.41 -0.174 -0.167 -0.007
0.6 0.45 -0.161 -0.154 -0.007
0.7 0.48 -0.148 -0.142 -0.006
0.8 0.51 -0.137 -0.131 -0.006
0.9 0.54 -0.127 -0.121 -0.005
1.0 0.57 -0.117 -0.112 -0.005
1.1 0.59 -0.109 -0.104 -0.005
1.2 0.61 -0.101 -0.097 -0.004
1.5 0.65 -0.083 -0.080 -0.003
2.0 0.71 -0.062 -0.060 -0.002
4.0 0.82 -0.03 -0.03 0.000

10.0 0.92 -0.01 -0.01 0.000

Notes: Total bias is the difference between the true K1 and the estimated K̂1 produced by the
original CG specification (3.2). Bias from revisions is the normalized covariance between
the average forecast update and the fundamental shock wt multiplied by

(
Kr

ρ1K1+Kr

)
. Bias

from dynamics is the sum of normalized covariances between the average forecast update and
lagged backcast errors multiplied by

(
ρsKr

ρ1K1+Kr

)
for s ∈ (2, . . . , p). Each row had 500 economies

simulated, with 1000 individuals and 1000 time periods. The bias figures are averages across all
simulations.

107



real data, but instead background understanding for how the bias may vary across different data

series.12

Table 3.8. Calibrated simulations

Bias
True K1 Total Revisions Dynamics

Nominal GDP growth 0.35 -0.33 -0.33 0.00
Real GDP growth 0.35 -0.32 -0.32 0.00
GDP price inflation 0.36 -0.33 -0.33 0.01
Real consumption growth 0.34 -0.50 -0.50 0.00
Real nonresidential investment growth 0.35 -0.34 -0.34 0.00
Real residential investment growth 0.35 -0.28 -0.28 0.00
CPI inflation 0.36 -0.29 -0.29 0.00
Housing starts growth 0.34 -0.36 -0.36 0.00
Industrial production growth 0.36 -0.26 -0.26 -0.01
Unemployment rate 0.47 -0.12 -0.12 -0.03
Employment growth 0.37 -0.23 -0.23 -0.01
Treasury bill 3 month rate 0.42 -0.16 -0.16 -0.02
Treasury bond 10 year rate 0.40 -0.18 -0.18 -0.01
AAA Corporate bond rate 0.42 -0.17 -0.17 -0.01

Notes: The specific AR parameters for each variable are taken from table 3.1. Each row had 100
economies simulated, with 500 individuals and 500 time periods. The bias figures are averages
across all simulations.

Most of the calibrated variables do not suffer bias due to higher-order dynamics, even

strongly persistent series like CPI inflation or nominal GDP. Unemployment has the highest share

of total bias caused by higher-order dynamics, of nearly 25%, due to its highly cyclical nature

from complex conjugate roots. The other data series with relatively large bias contributions due

to higher-order dynamics also have similar time series properties, such as the financial variables

and employment growth. This is not surprising given the simplicity of the calibration exercise,

but it helps demonstrate how the simulation results can apply to real-world data.

12Also note that many of these data series do not receive data revisions in the traditional sense, or any revisions at
all (such as the CPI). As such the results in table 3.8 should be viewed as upper-bounds on the total bias.
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3.4.5 Discussion

The main lesson from these simulations is that the bias caused by higher-order dynamics

is small across nearly all parameterizations. This should come as no surprise given where it

comes from: the covariance between the forecast update and lagged backcast errors. All of the

non-zero covariance between these terms is based on values far into the past, starting with xt−2,

and as such they are heavily discounted by the Kalman filter mechanism. Combined with a

generally low value for the Kalman gain on revised data, Kr, the magnitude of the bias resulting

from the revised signal interacting with higher-order dynamics must necessarily be small.

More relevant is how the bias due to the revised signal alone may vary depending on the

higher-order properties of the fundamental. Adding additional lags tended to lower the total bias,

as did increasing the unconditional variance of the process. Holding that variance constant, the

total bias was monotonically decreasing in the degree of first-order persistence, ρ1. This suggests

the interaction of information flows with time series behavior can have first-order effects on

measurement of information frictions without considering a dynamic information structure.

3.5 Conclusion

I showed the leading method for estimating information frictions from surveys of fore-

casters can be applied without modification to variables with higher-order dynamics. This

emphasizes the key mechanism of the CG method: using information flows to predict forecast

errors. When the information framework changes, such as when it includes a revised signal, then

higher-order dynamics introduce a novel bias in the CG method by interacting with observations

of past values. Through numeric simulations I demonstrated that this bias is quantitatively small

relative to the bias from observing revised data, which underlines the importance of information

flows rather than higher-order dynamics. I proposed a correction term to the regression that

isolates the additional information gained from the revised signal and verified its accuracy relative

to the uncorrected CG method. These results suggest the corrected regression is the appropriate
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way to measure information frictions when individuals observe revised data, regardless of the

time series properties of the variable they are forecasting.

Chapter 3 is currently being prepared for submission for publication; Tyler L. Paul.

The dissertation author was the principal author on this paper.
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A.1 Appendix - Chapter 1

A.1.1 State-space representation

I write the information framework in the following state-space representation:

ξt = Fξt−1 +wt

Zit = H′
ξt +vt

ξt =

 xt

xt−1

 F =

ρ 0

1 0

 wt =

wt

0


H′ =

1 0

0 1

 vt =

ψit

νt



where Q = E[wtw′
t] =

τ−1
w 0

0 0

 and R = E[vtv′t] =

τ−1
ψ 0

0 τ−1
ν

. Applying the Kalman filter

provides the recursive forecasting formula:

Eit [ξξξ t ] = FFFEit−1[ξξξ t−1]+KKK(ZZZit −HHH ′′′FFFEit−1[ξξξ t−1])

which gives us equation (1.1) in the text. The matrix KKK is the Kalman gain matrix. The

first row corresponds to weights placed on the signals for forecasting xt , and the second row

corresponds to weights placed on the signals for for forecasting xt−1. The matrix is a function

of the squared forecast error matrix is a function of the squared forecast error matrix, PPPt+1 =

E[Eit [ξξξ t+1]−ξξξ t+1]
2, which I find by solving the following Ricatti equation:

PPPt+1 = FFF(PPPt+1 − (PPPt+1HHH(HHH ′′′PPPt+1HHH +RRR)−1HHH ′′′PPPt+1))FFF ′′′+QQQ
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Once solved, I can write each gain parameter as follows:

K =
(τψ)(1+κ(ρ2τw + τν))

(τψ)(1+κ(ρ2τw + τν))+ τw(1+ τνκ)

Kr =
ρτwτνκ

(τψ)(1+κ(ρ2τw + τν))+ τw(1+ τνκ)

Kb =
ρτw(τψ)κ

(τψ)(1+κ(ρ2τw + τν))+ τw(1+ τνκ)

Kb
r =

τνκ(τw + τψ)

(τψ)(1+κ(ρ2τw + τν))+ τw(1+ τνκ)

κ =
1+κ(ρ2τw + τν)

(τψ)(1+κ(ρ2τw + τν))+ τw(1+ τνκ)

where κ is the filter’s steady-state mean-squared error, and Kb refers to the Kalman gain

parameters applied to both signals when forecasting xt−1.
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A.1.2 Modeling revisions as news

When a revision contains news it must reveal information about the state that was

unavailable in the previous period. To model this I assume the fundamental is composed of

two shocks, only one of which is noisily observed in the initial period. For ease of exposition I

assume the revised signal is also idiosyncratic. the new model is:

State: xt = ρxt−1 +ut +wt

Current signal: yit = ρxt−1 +ut +ψit

Revised signal: rt = xt−1 +νit

The current signal is a noisy observation of the state less the fundamental shock wt . This shock

is only observed in the revised signal one period later. The optimal forecasting equation when

h = 0 is:

Eit [xt ] = Eit−1[xt ]+K(yit −Eit−1[yit ])+Kr(rt −Eit−1[rt ])

=

(
ρ −ρK −Kr

ρ

)
Eit−1[xt ]+Kyit +Krrt

To convert the above into a relationship between forecast error and forecast update, I use the

following two equivalences:

yit = ρxt−1 +ut +ψit = xt −ut +ψit

rt =

(
1
ρ

)
(xt −wt −ut)+νit

Similar to section 1.2.2, in order to convert both signals into equivalent information content

about xt I must account for the differences in fundamental shocks observed. Once averaged

119



across forecasters and rearranged, the relationship between forecast error and forecast update is:

xt −Et [xt ] =

(
ρ −ρK −Kr

ρK +Kr

)
(Et [xt ]−Et−1[xt ])+ut +

(
Krwt

ρK +Kr

)

This relationship is similar to equation (1.4), with the fundamental shock ut and wt both appearing

in the residual. Thus the bias when estimating equation (1.3) is still present when data revisions

contain news rather than noise.
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A.1.3 Additional revised signals

Since many data series undergo several rounds of revisions, I now consider a model with

two revised signals. The new model is:

State: xt = ρxt−1 +wt

Current signal: yit = xt +ψit

1st Revised signal: r1t = xt−1 +ν1t

2nd Revised signal: r2t = xt−2 +ν2t

The optimal forecasting equation is:

Eit [xt ] = Eit−1[xt ]+K(yit −Eit−1[xt ])+K1r(r1t −Eit−1[xt−1])+K2r(r2t −Eit−1[xt−2]) (A.11)

which now includes the difference between the second revised signal and the backcast of xt−2

made in period t−1. With similar manipulations to the main text I find the following relationship

between average forecast error and average forecast update:

xt −Et [xt ] =

(
ρ2 −Λ

Λ

)
(Et [xt ]−Et−1[xt ])+

(
ρK2r

Λ

)
(wt−1 −Et−1[wt−1]) (A.12)

+

(
ρK1r +K2r

Λ

)
wt −

(
ρ2

Λ

)
εt (A.13)

where Λ = ρ2K +ρK1r +K2r and εt = K1rν1t +K2rν2t . In addition to the same upward bias

caused by the current period fundamental wt , there is a new term which entirely depends on

the presence of the second revised signal (in other words, when K2r ̸= 0). This measures

the forecast error of predicting wt−1 given information in period t − 1. Intuitively, this term

appears because the forecaster made a (non-zero) prediction of wt−1 in period t −1. Since the

difference in information content between r1t and r2t is wt−1, to account for the new information

I must include the forecast error of wt−1. The mechanism is identical to the appearance of wt as
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described in the main text; however, because the forecast of wt in period t−1 is the unconditional

mean of 0, there was no expectations term associated with the wt term.

If I apply my correction term I find the following relationship:

xt −Et [xt ] =

(
ρ2 −λ

λ

)
(Et [xt ]−Et−1[xt ])−

ρ2K1r

λ
(r1t −Et−1[xt−1])

+

(
ρK2r

λ

)
(wt−1 −Et−1[wt−1])+

(
K2r

λ

)
wt −

(
K2r

λ

)
ν2t

where λ = ρ2K +K2r. By controlling for the impact of r1t on the forecast update, I remove K1r

from Λ as well as the weight placed on wt and the noise term ν1t . However, the correction term

is now insufficient to make the residual orthogonal to the regressors. The fundamental shock wt

is still present in addition to last period’s fundamental forecast error. The latter is correlated with

both the forecast update and the revised signal innovation, while the former is only correlated

with the forecast update.

There are two takeaways from this exercise. First, if the true information structure

available to forecasters includes multiple revised signals, my regression specification (1.17) will

produce biased estimates of both β and βr. These biases would confound the estimates in section

1.4 which may partially explain some of the null findings. On the other hand, the size of the bias

depends on K2r which may be small in practice.

Second, each additional revised signal introduces a new ‘bump’ to ones forecast, as

past expectations of fundamental shocks are revised according to the new information. In a

generalized environment with m revised signals we’d expect relationship (A.13) to have m terms:

wt ,wt−1, . . . ,wt−m. This is the case when the state follows an AR(1). I anticipate the interaction

with p lags of the state to be more complex.
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A.1.4 Modeling NIPA data releases with a lag

Since NIPA variables are published with a full quarter lag, this section considers an

alternative model to capture these dynamics. Now I let yit = xt−1 +ψit and rt = xt−2 +νt be the

signals. After performing the same manipulations as before, I find a slightly different relationship

than (1.16):

xt+h −Et [xt+h] =

(
ρ −K

K

)
(Et [xt+h]−Et−1[xt+h])

−
(

ρh+1Kr

K

)
(rt −Et−1[xt−2])+ργ̃t (A.14)

where γ̃t = ∑
h−1
j=0 ρh−1− jwt+ j is a summation of fundamental shocks beginning with wt , and

thus unobserved by forecasters in period t under this new informational assumption. To recover

the degree of information frictions from (A.14), I need both an estimate of ρ and the average

backcast Et−1[xt−2]. As mentioned previously, the SPF has backcasts for the level of all variables,

so this is empirically feasible.

123



A.1.5 Proofs of propositions

Proposition 1

First I will prove the difference equation representation of the average forecast error.

Expanding out xt+h and plugging in the average forecast equation, average forecast error looks

like:

xt+h −Et [xt+h] = ρ
hxt + γt+h −Et−1[xt+h]−ρ

hK(xt −Et−1[xt+h])

where γt+h = ∑
h
j=1 ρh− jwt+ j. Iterating xt backwards one period and re-arranging gives the

equation in the proposition.

= ρ
h+1xt−1 +ρ

hwt + γt+h −ρ
h+1Et−1[xt−1]−ρ

hK(ρxt−1 +wt −ρ
h+1Et−1[xt−1])

= ρ
h+1(1−K)(xt−1 −Et−1[xt−1])+ρ

h(1−K)wt + γt+h

To find the average forecast update, subtract Et−1[xt+h] from both sides of the average forecast

equation, iterate xt backwards one period and rearrange.

Proposition 2

To find the structural relationship with an informative revised signal I start from the

average forecasting equation. Using the result from the text, I can rewrite it as follows:

Et [xt+h] = ρ
hEt−1[xt ]+ρ

hK(xt −Et−1[xt ])+ρ
hKr

(xt −Et−1[xt ])−wt +ρνt

ρ

ρ
hEt [xt ] = ρ

h(1−K − Kr

ρ
)Et−1[xt ]+ρ

h(K +
Kr

ρ
)xt −ρ

hKr
(wt −ρνt)

ρ

Cancel out ρh, subtract ρ(1−K)−Kr
ρ

Et−1[xt ] and ρK+Kr
ρ

Et [xt ] from both sides to find:

ρ(1−K)−Kr

ρ
(Et [xt ]−Et−1[xt ]) = (K +

Kr

ρ
)(xt −Et [xt ])−Kr

(wt −ρνt)

ρ
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Rearranging terms and dividing through by ρK+Kr
ρ

gives us the equation in proposition 2.

ρ(1−K)−Kr

ρK +Kr
(Et [xt ]−Et−1[xt ])+Kr

(
wt −ρνt

ρK +Kr

)
= xt −Et [xt ]

Proposition 3

This section shows the steps to compute the bias equation (1.5). First I address the

numerator:

E
[
(Et [xt+h]−Et−1[xt+h])

((
ρhKr

ρK +Kr

)
wt −

(
ρh+1Krνt

ρK +Kr

))]

where I have ignored the term γt+h as argued in the body of the text. Using the forecasting

equation I can rewrite the forecast update as:

Et [xt+h]−Et−1[xt+h] = ρ
h (Kwt +(ρK +Kr)xt−1 +Krνt − (ρK +Kr)Et−1[xt−1])

The two values in the error term εt = ρh Krwt−ρKrνt
ρK+Kr

, wt and νt , are i.i.d. and dated time t, so there

is no correlation with expectations or values from t −1 or earlier. Multiplying together, I find the

numerator of the bias is

(Et [xt+h]−Et−1[xt+h])εt = ρ
2h
(

KKrτ
−1
w −ρK2

r τ−1
ν

ρK +Kr

)

To compute the denominator I must find the squared expectation of the average forecast update.

To start I use the representation of the average forecast update from equation (1.13):

Et [xt+h]−Et−1[xt+h] = ρ
h (Kwt +Krwt−1)+(1−ρL)(Krνt)

1−GL
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where G = (ρ −ρK −ρKr). I represent the first term in wt and wt−1 of this expression as the

following ARMA(1,1):

h̃t = Gh̃t−1 + w̃t +
Kr

K
w̃t−1

where w̃t = ρhKwt . Let the second term be

j̃t = G j̃t−1 + ν̃t −ρν̃t−1

where ν̃t = Krνt . Since w̃t+s and ν̃t+u are independent of each other for all s and u, I can ignore

the cross-product term when squaring and only consider the autocovariances of both h̃t and j̃t . I

find the autocovariances by solving the Yule-Walker equation:

γk = Gγk−1 +E[w̃t h̃t−k +
Kr

K
w̃t−1h̃t−k]

When k > 1, the terms in the bracket equal 0. When k = 1, only the second term is non-zero:

γ1 = Gγ0 +E
[

Kr

K
w̃t−1h̃t−1

]
= Gγ0 +ρ

2hKKrτ
−1
w

When k = 0 the equation becomes:

γ0 = Gγ1 +ρ
2h

τ
−1
w (K2 +K2

r +GKKr) = Gγ1 +ρ
2h

τ
−1
w (K2 +Kr(1−K)(ρK +Kr))

Plugging in γ1 and solving, I find the autocovariance of ht is:

E[h2
t ] = γ0 = ρ

2h
τ
−1
w

(K2 +K2
r +GKKr)

1−G2

Using the same method for jt , I find its autocovariance is:

E[ j2
t ] = γ0 = ρ

2hK2
r τ

−1
ν

(1−2ρG+ρ2)

1−G2
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Summing both together gives the denominator of the bias term, which when combined with the

numerator gives equation (1.5) in the text. Notice how the horizon enters the numerator and

denominator equally, which causes it to cancel and not affect the size of the bias.
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A.1.6 Predicting forecast updates with data revisions, other horizons
and controls

Table A.9. Data Revisions Predicting Aggregate Forecast Updates, h=0

Forecast Updates Data Revision p-value

Nominal GDP -0.13 0.35
Real GDP 0.01 0.95
GDP price index inflation 0.03 0.87
Real consumption 0.15 0.05
Real nonresidential investment 0.00 0.94
Real residential investment 0.01 0.95

Consumer price index 0.55 0.00
Housing starts 0.23 0.00
Industrial production 0.01 0.59
Unemployment rate 1.21 0.00
Employment growth 0.60 0.00
Treasury bill 3 month rate 1.00 0.01
Treasury bond 10 year rate 2.00 0.00
AAA Corporate bond rate 1.13 0.00

Notes: Each row shows the estimated coefficient α̂1 from regression model (1.18) with h = 0.
The variables in the top panel are from the NIPA. Data used for estimation are from 1968Q4 to
2019Q4. Standard errors are computed using the Newey-West method with automatic bandwidth
selection to correct for serial correlation. Estimates are bold if I reject the null hypothesis of
ignoring revised data releases at the 10% level.
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Table A.10. Data Revisions Predicting Aggregate Forecast Updates, h=1

Forecast Updates Data Revision p-value

Nominal GDP -0.05 0.58
Real GDP 0.11 0.05
GDP price index inflation 0.11 0.45
Real consumption 0.11 0.09
Real nonresidential investment 0.03 0.43
Real residential investment 0.02 0.63

Consumer price index 0.04 0.24
Housing starts -0.05 0.19
Industrial production 0.01 0.02
Unemployment rate 1.36 0.00
Employment growth 0.38 0.00
Treasury bill 3 month rate 1.32 0.00
Treasury bond 10 year rate 2.01 0.00
AAA Corporate bond rate 1.15 0.00

Notes: Each row shows the estimated coefficient α̂1 from regression model (1.18) with h = 1.
The variables in the top panel are from the NIPA. Data used for estimation are from 1968Q4 to
2019Q4. Standard errors are computed using the Newey-West method with automatic bandwidth
selection to correct for serial correlation. Estimates are bold if I reject the null hypothesis of
ignoring revised data releases at the 10% level.
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Table A.11. Data Revisions Predicting Aggregate Forecast Updates, h=2

Forecast Revisions Data Revision p-value

Nominal GDP -0.04 0.67
Real GDP -0.09 0.34
GDP price index inflation 0.18 0.08
Real consumption 0.00 1.00
Real nonresidential investment 0.04 0.20
Real residential investment 0.01 0.90

Consumer price index 0.05 0.01
Housing starts -0.08 0.03
Industrial production 0.01 0.03
Unemployment rate 1.40 0.00
Employment growth 0.23 0.00
Treasury bill 3 month rate 1.38 0.00
Treasury bond 10 year rate 1.90 0.00
AAA Corporate bond rate 1.11 0.00

Notes: Each row shows the estimated coefficient α̂1 from regression model (1.18) with h = 2.
The variables in the top panel are from the NIPA. Data used for estimation are from 1968Q4 to
2019Q4. Standard errors are computed using the Newey-West method with automatic bandwidth
selection to correct for serial correlation. Estimates are bold if I reject the null hypothesis of
ignoring revised data releases at the 10% level.
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Table A.12. Data Revisions Predicting Aggregate Forecast Updates, h=3

Forecast Revisions Data Revision p-value

Nominal GDP 0.08 0.21
Real GDP 0.11 0.33
GDP price index inflation 0.06 0.65
Real consumption 0.08 0.16
Real nonresidential investment -0.01 0.60
Real residential investment -0.03 0.26

Consumer price index 0.02 0.36
Housing starts -0.02 0.23
Industrial production 0.01 0.02
Unemployment rate 1.34 0.00
Employment growth 0.13 0.00
Treasury bill 3 month rate 1.41 0.00
Treasury bond 10 year rate 1.76 0.00
AAA Corporate bond rate 1.06 0.00

Notes: Each row shows the estimated coefficient α̂1 from regression model (1.18) with h = 3.
The variables in the top panel are from the NIPA. Data used for estimation are from 1968Q4 to
2019Q4. Standard errors are computed using the Newey-West method with automatic bandwidth
selection to correct for serial correlation. Estimates are bold if I reject the null hypothesis of
ignoring revised data releases at the 10% level.
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Table A.13. Data Revisions Predicting Aggregate Forecast Updates
With controls, one-year ahead

Forecast Updates Data Revision p-value Realtime signal p-value

Nominal GDP -0.15 0.51 0.17 0.01
Real GDP -0.02 0.93 0.18 0.01
GDP price index inflation 0.06 0.88 0.28 0.00
Real consumption 0.26 0.23 0.12 0.34
Real nonresidential investment -0.08 0.51 0.36 0.00
Real residential investment -0.05 0.81 0.17 0.17

Consumer price index -0.05 0.18 0.12 0.00
Housing starts -0.05 0.54 0.19 0.00
Industrial production 0.03 0.09 0.02 0.80
Unemployment rate 1.31 0.00 0.02 0.14
Employment growth 0.23 0.38 0.75 0.00
Treasury bill 3 month rate 1.41 0.00 0.00 0.99
Treasury bond 10 year rate 1.70 0.00 0.04 0.01
AAA Corporate bond rate 1.13 0.00 0.03 0.01

Notes: Each row shows the estimated coefficient α̂1 from regression model (1.18) for one-year
ahead forecasts, as well as the estimated coefficient on the first data release. The variables in the
top panel are from the NIPA. Data used for estimation are from 1968Q4 to 2019Q4. Standard
errors are computed using the Newey-West method with automatic bandwidth selection to correct
for serial correlation. Estimates are bold if I reject the null hypothesis of ignoring revised data
releases at the 10% level.
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A.1.7 Main empirical results for all horizons

Table A.14. Average Forecast Errors and Average Forecast Updates, h=0

CG Model Revised Model

Variable β pval R2 β pval βr pval R2

Nominal GDP 0.43 0.00 0.06 0.43 0.00 -0.12 0.10 0.06
Real GDP 0.37 0.09 0.04 0.38 0.05 -0.05 0.34 0.04
GDP price index inflation 0.42 0.11 0.06 0.40 0.09 0.04 0.71 0.05
Real consumption 0.13 0.45 0.00 0.07 0.72 -0.07 0.26 -0.01
Real nonresidential investment 0.56 0.00 0.04 0.53 0.01 0.05 0.59 0.04
Real residential investment 0.73 0.00 0.10 0.77 0.00 -0.06 0.27 0.09

CPI inflation 0.80 0.00 0.39 1.08 0.00 -0.43 0.00 0.53
Housing starts 0.38 0.00 0.05 0.54 0.00 0.37 0.00 0.17
Industrial production 0.50 0.00 0.15 0.50 0.00 0.05 0.54 0.15
Unemployment rate 0.22 0.00 0.15 0.43 0.00 -0.46 0.00 0.23
Employment growth 0.54 0.00 0.40 0.53 0.00 0.07 0.08 0.39
Treasury bill 3 month rate 0.22 0.00 0.20 0.16 0.00 0.37 0.00 0.32
Treasury bond 10 year rate 0.15 0.00 0.09 0.15 0.00 -0.13 0.36 0.10
AAA Corporate bond rate 0.10 0.02 0.02 -0.08 0.32 0.49 0.00 0.18

Notes: The CG model refers to estimates of (1.3), while the Revised Model refers to estimates of
(1.17). All forecasts are of xt . The variables in the top panel are from the NIPA. Data used for
estimation are from 1968Q4 to 2019Q4. Standard errors are computed using the Newey-West
method with automatic bandwidth selection to correct for serial correlation. Estimates that are in
bold are statistically significant at the 10% level.
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Table A.15. Comparing estimates of K between CG and Revised model, h=0

Variable Test stat pval CG K REV K Difference

Nominal GDP 0.07 0.79 0.70 0.70 0.00
Real GDP 1.02 0.31 0.73 0.72 0.00
GDP price index inflation 2.53 0.11 0.71 0.71 -0.01
Real consumption 3.00 0.08 0.88 0.93 -0.05
Real nonresidential investment 0.16 0.69 0.64 0.65 -0.01
Real residential investment 1.02 0.31 0.58 0.57 0.01

CPI inflation 12.65 0.00 0.56 0.48 0.07
Housing starts 2.84 0.09 0.72 0.65 0.07
Industrial production 2.09 0.15 0.66 0.67 0.00
Unemployment rate 16.76 0.00 0.82 0.70 0.12
Employment growth 0.96 0.33 0.65 0.65 -0.01
Treasury bill 3 month rate 3.44 0.06 0.82 0.86 -0.04
Treasury bond 10 year rate 0.05 0.82 0.87 0.87 0.00
AAA Corporate bond rate 11.16 0.00 0.91 1.09 -0.18

Notes: The test statistic is a chi-squared adjusted for heteroskedasticity. CG K and REV K refer
to the K recovered from both model estimates according to the expression K = 1

1+β̂
. Estimates

that are in bold are statistically different at the 10% level.
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Table A.16. Average Forecast Errors and Average Forecast Updates, h=1

CG Model Revised Model

Variable β pval R2 β pval βr pval R2

Nominal GDP 0.83 0.00 0.05 0.85 0.00 -0.11 0.29 0.05
Real GDP 0.77 0.02 0.06 0.82 0.02 -0.14 0.27 0.06
GDP price index inflation 0.76 0.09 0.07 0.67 0.13 0.21 0.02 0.09
Real consumption -0.01 0.95 -0.01 0.08 0.81 0.13 0.06 0.00
Real nonresidential investment 0.88 0.02 0.05 0.88 0.06 0.10 0.35 0.05
Real residential investment 1.05 0.00 0.07 1.04 0.00 0.15 0.07 0.08

CPI inflation 0.52 0.10 -0.01 0.82 0.00 -0.24 0.01 0.01
Housing starts 0.82 0.01 0.02 1.03 0.01 0.14 0.21 0.03
Industrial production 0.91 0.01 0.08 0.91 0.01 -0.16 0.05 0.09
Unemployment rate 0.42 0.00 0.12 0.62 0.00 -0.53 0.02 0.15
Employment growth 1.50 0.00 0.36 1.39 0.00 0.31 0.00 0.38
Treasury bill 3 month rate 0.27 0.00 0.07 0.20 0.01 0.39 0.06 0.08
Treasury bond 10 year rate 0.04 0.68 -0.01 0.05 0.64 -0.17 0.53 -0.01
AAA Corporate bond rate 0.10 0.12 0.00 -0.09 0.44 0.56 0.03 0.05

Notes: The CG model refers to estimates of (1.3), while the Revised Model refers to estimates of
(1.17). All forecasts are of xt+1. The variables in the top panel are from the NIPA. Data used for
estimation are from 1968Q4 to 2019Q4. Standard errors are computed using the Newey-West
method with automatic bandwidth selection to correct for serial correlation. Estimates that are in
bold are statistically significant at the 10% level.
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Table A.17. Comparing estimates of K between CG and Revised model, h=1

Variable Test stat pval CG K REV K Difference

Nominal GDP 0.85 0.36 0.55 0.54 0.01
Real GDP 1.57 0.21 0.56 0.55 0.01
GDP price index inflation 1.15 0.28 0.57 0.60 -0.03
Real consumption 1.81 0.18 1.01 0.93 0.09
Real nonresidential investment 0.00 1.00 0.53 0.53 0.00
Real residential investment 0.00 0.97 0.49 0.49 0.00

CPI inflation 1.31 0.25 0.66 0.55 0.11
Housing starts 1.28 0.26 0.55 0.49 0.06
Industrial production 0.00 0.96 0.52 0.52 0.00
Unemployment rate 4.48 0.03 0.70 0.62 0.09
Employment growth 3.66 0.06 0.40 0.42 -0.02
Treasury bill 3 month rate 2.28 0.13 0.79 0.83 -0.04
Treasury bond 10 year rate 1.63 0.20 0.96 0.95 0.01
AAA Corporate bond rate 4.08 0.04 0.91 1.10 -0.18

Notes: The test statistic is a chi-squared adjusted for heteroskedasticity. CG K and REV K refer
to the K recovered from both model estimates according to the expression K = 1

1+β̂
. Estimates

that are in bold are statistically different at the 10% level.
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Table A.18. Average Forecast Errors and Average Forecast Updates, h=2

CG Model Revised Model

Variable β pval R2 β pval βr pval R2

Nominal GDP 0.40 0.25 0.00 0.39 0.27 0.09 0.19 0.00
Real GDP 0.87 0.02 0.05 0.86 0.02 0.07 0.45 0.04
GDP price index inflation 1.10 0.01 0.08 0.93 0.01 0.26 0.00 0.10
Real consumption 0.12 0.84 -0.01 0.05 0.92 0.18 0.15 0.01
Real nonresidential investment 0.58 0.31 0.00 0.61 0.26 0.21 0.06 0.03
Real residential investment 0.85 0.05 0.03 0.96 0.01 0.23 0.04 0.05

CPI inflation -1.02 0.34 0.00 -0.55 0.57 -0.12 0.35 -0.01
Housing starts -0.34 0.26 0.00 -0.35 0.12 0.00 0.99 0.00
Industrial production 0.95 0.01 0.03 0.92 0.10 -0.08 0.65 0.02
Unemployment rate 0.72 0.00 0.17 1.02 0.00 -0.94 0.00 0.21
Employment growth 2.09 0.00 0.28 1.97 0.00 0.57 0.00 0.32
Treasury bill 3 month rate 0.40 0.00 0.05 0.14 0.20 1.38 0.00 0.16
Treasury bond 10 year rate -0.16 0.27 0.00 -0.15 0.30 -0.01 0.98 -0.01
AAA Corporate bond rate 0.10 0.41 0.00 -0.26 0.08 1.03 0.01 0.09

Notes: The CG model refers to estimates of (1.3), while the Revised Model refers to estimates of
(1.17). All forecasts are of xt+2. The variables in the top panel are from the NIPA. Data used for
estimation are from 1968Q4 to 2019Q4. Standard errors are computed using the Newey-West
method with automatic bandwidth selection to correct for serial correlation. Estimates that are in
bold are statistically significant at the 10% level.
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Table A.19. Comparing estimates of K between CG and Revised model, h=2

Variable Test stat pval CG K REV K Difference

Nominal GDP 0.02 0.89 0.71 0.72 0.00
Real GDP 0.19 0.67 0.54 0.54 0.00
GDP price index inflation 2.78 0.10 0.48 0.52 -0.04
Real consumption 0.73 0.39 0.89 0.95 -0.06
Real nonresidential investment 0.07 0.79 0.63 0.62 0.01
Real residential investment 0.47 0.49 0.54 0.51 0.03

CPI inflation 0.32 0.57 -44.69 2.24 -46.93
Housing starts 0.00 0.96 1.51 1.53 -0.02
Industrial production 0.33 0.57 0.51 0.52 -0.01
Unemployment rate 7.84 0.01 0.58 0.50 0.09
Employment growth 0.68 0.41 0.32 0.34 -0.01
Treasury bill 3 month rate 6.80 0.01 0.71 0.88 -0.17
Treasury bond 10 year rate 2.05 0.15 1.19 1.18 0.01
AAA Corporate bond rate 8.41 0.00 0.91 1.36 -0.45

Notes: The test statistic is a chi-squared adjusted for heteroskedasticity. CG K and REV K refer
to the K recovered from both model estimates according to the expression K = 1

1+β̂
. Estimates

that are in bold are statistically different at the 10% level.
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Table A.20. Average Forecast Errors and Average Forecast Updates, h=3

CG Model Revised Model

Variable β pval R2 β pval βr pval R2

Nominal GDP -0.46 0.21 0.00 -0.42 0.26 -0.22 0.07 0.02
Real GDP -0.42 0.03 0.01 -0.39 0.11 -0.11 0.30 0.01
GDP price index inflation 1.29 0.00 0.10 1.24 0.00 0.08 0.18 0.10
Real consumption -0.42 0.31 0.00 -0.12 0.70 0.03 0.69 -0.01
Real nonresidential investment 0.99 0.12 0.01 1.16 0.05 -0.08 0.48 0.01
Real residential investment -0.56 0.52 0.00 0.43 0.58 0.15 0.29 0.00

CPI inflation -0.89 0.33 0.00 -0.24 0.75 -0.15 0.42 -0.01
Housing starts -0.29 0.46 0.00 -0.02 0.91 0.31 0.00 0.04
Industrial production -0.08 0.85 -0.01 -0.21 0.61 -0.34 0.03 0.03
Unemployment rate 0.83 0.00 0.12 1.17 0.00 -1.08 0.01 0.15
Employment growth 2.29 0.00 0.15 2.28 0.00 0.41 0.10 0.15
Treasury bill 3 month rate 0.67 0.00 0.08 0.26 0.08 1.97 0.00 0.21
Treasury bond 10 year rate -0.06 0.42 -0.01 -0.05 0.72 -0.55 0.06 0.00
AAA Corporate bond rate 0.08 0.61 -0.01 -0.30 0.02 1.30 0.01 0.11

Notes: The CG model refers to estimates of (1.3), while the Revised Model refers to estimates of
(1.17). All forecasts are of xt+3. The variables in the top panel are from the NIPA. Data used for
estimation are from 1968Q4 to 2019Q4. Standard errors are computed using the Newey-West
method with automatic bandwidth selection to correct for serial correlation. Estimates that are in
bold are statistically significant at the 10% level.
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Table A.21. Comparing estimates of K between CG and Revised model, h=3

Variable Test stat pval CG K REV K Difference

Nominal GDP 0.31 0.58 1.85 1.71 0.13
Real GDP 0.22 0.64 1.73 1.64 0.09
GDP price index inflation 0.52 0.47 0.44 0.45 -0.01
Real consumption 5.23 0.02 1.73 1.14 0.60
Real nonresidential investment 3.00 0.08 0.50 0.46 0.04
Real residential investment 12.40 0.00 2.28 0.70 1.58

CPI inflation 0.42 0.52 9.49 1.31 8.18
Housing starts 0.99 0.32 1.40 1.02 0.38
Industrial production 1.72 0.19 1.09 1.26 -0.17
Unemployment rate 5.17 0.02 0.55 0.46 0.08
Employment growth 0.02 0.90 0.30 0.31 0.00
Treasury bill 3 month rate 8.25 0.00 0.60 0.79 -0.20
Treasury bond 10 year rate 0.36 0.55 1.07 1.05 0.02
AAA Corporate bond rate 4.62 0.03 0.93 1.42 -0.49

Notes: The test statistic is a chi-squared adjusted for heteroskedasticity. CG K and REV K refer
to the K recovered from both model estimates according to the expression K = 1

1+β̂
. Estimates

that are in bold are statistically different at the 10% level.
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A.2 Appendix - Chapter 3

A.2.1 Proofs of propositions

Proposition 5

First I prove the proposition for an AR(2) and then demonstrate how this extends to the

AR(p) case. The average forecast equation for the AR(2) state vector zzzt is as follows:

 Et [xt ]

Et [xt−1]

=

 Et−1[xt ]

Et−1[xt−1]

+
K1 Kr

K2 Kr2


1 0

0 1



 xt

xt−1

−
 Et−1[xt ]

Et−1[xt−1]




where Kr,Kr2 are the weights placed on the current and lagged signal innovations for forecasting

the current and lagged states, respectively. Averaging across individuals removes the idiosyncratic

noise terms, since Et−1[ψit ] = Et−1[νit ] = 0. The goal is derive the relationship between average

forecast errors, xt −Et [xt ], and the average forecast update, Et [xt ]−Et−1[xt ]. The average

forecast of xt is:

Et [xt ] = Et−1[xt ]+K1(xt −Et−1[xt ])+Kr(xt−1 −Et−1[xt−1])

Using properties of the state I can rewrite xt−1 as:

xt−1 =
1
ρ1

xt −
ρ2

ρ1
xt−2 −

wt

ρ1

If I plug this into Et−1[xt−1] I find:

Et−1[xt−1] =
1
ρ1

Et−1[xt ]−
ρ2

ρ1
Et−1[xt−2]
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since Et−1[wt ] = 0. Using these two expressions I can rewrite the third term of the average

forecast above:

xt−1 −Et−1[xt−1] =
1
ρ1

(xt −Et−1[xt ])−
ρ2

ρ1
(xt−2 −Et−1[xt−2])−

wt

ρ1

Plugging this into the average forecast and grouping terms gives

Et [xt ] = Et−1[xt ]+

(
ρ1K1 +Kr

ρ1

)
(xt −Et−1[xt ])−

(
ρ2Kr

ρ1

)
(xt−2 −Et−1[xt−2])−Kr

(
wt

ρ1

)

Finally I subtract
(

ρ1(1−K1)−Kr
ρ1

)
Et−1[xt ] and

(
ρ1K1+Kr

ρ1

)
Et [xt ] from both sides and rearrange to

find the expression in the proposition:

xt −Et [xt ] =

(
ρ1(1−K1)−Kr

ρ1K1 +Kr

)
(Et [xt ]−Et−1[xt ])

+

(
ρ2Kr

ρ1K1 +Kr

)
(xt−2 −Et−1[xt−2])+

(
ρ1Kr

K1 +Kr

)
wt

Note that when the fundamental follows an AR(1), this implies ρ2 = 0, and the expression

collapses to the same bias equation from chapter one.

To extend this case to an AR(p), first note that the average forecast equation is the same

as that of an AR(2), since it does not depend on the lag length of the fundamental. Next, rewrite

xt−1 as:

xt−1 = ρ
−1
1 (xt −ρ2xt−2 −ρ3xt−3 −·· ·−ρpxt−p −wt)

Substituting this into the average forecast equation and rearrange to find

Et [xt ] =

(
ρ1(1−K1)−Kr

ρ1

)
Et−1[xt ]+

(
ρ1K1 +Kr

ρ1

)
xt

−
(

ρ2Kr

ρ1

)
(xt−2 −Et−1[xt−2])−

(
ρ3Kr

ρ1

)
(xt−3 −Et−1[xt−3])

−·· ·−
(

ρpKr

ρ1

)
(xt−p −Et−1[xt−p])−

(
Kr

ρ1

)
wt

142



I subtract
(

ρ1(1−K1)−Kr
ρ1

)
Et−1[xt ] and

(
ρ1K1+Kr

ρ1

)
Et [xt ] from both sides, as in the AR(2) case,

and rearrange to find:

xt −Et [xt ] =

(
ρ1(1−K1)−Kr

ρ1K1 +Kr

)
(Et [xt ]−Et−1[xt ])

+

(
ρ2Kr

ρ1K1 +Kr

)
(xt−2 −Et−1[xt−2])+

(
ρ3Kr

ρ1K1 +Kr

)
(xt−3 −Et−1[xt−3])

+ · · ·+
(

ρpKr

ρ1K1 +Kr

)
(xt−p −Et−1[xt−p])+

(
ρ1Kr

K1 +Kr

)
wt

When the fundamental follows an AR(p), there are p+1 terms alongside the average forecast

update. The first p terms are backcast errors made of increasingly distant horizons from t −2 to

t − p. The final term is the fundamental shock wt .

A.2.2 ARMA representations for forecasting equations

This section describes the steps I use to find the ARMA representation of the average

forecasting equations for an AR(2) when there are two signals in the measurement equation.

Using the model set-up from the text, the forecast for the current state is given by:

Et [xt ] = Et−1[xt ]+K1(xt −Et−1[xt ])+Kr(xt−1 −Et−1[xt−1])

= (ρ1(1−K1)−Kr)Et−1[xt−1]+ρ2(1−K1)Et−1[xt−2]

+ (ρ1K1 +Kr)xt−1 +ρ2K1xt−2 +K1wt

=
1

1−GL
(ρ2(1−K1)Et−1[xt−2]+K1xt−1 +Kr(xt−1)) (A.15)

143



The forecast for the lagged state is given by:

Et [xt−1] = Et−1[xt−1]+K2(xt −Et−1[xt ])+Kr2(xt−1 −Et−1[xt−1])

= (1−ρ1K2 −Kr2)Et−1[xt−1]−ρ2K2Et−1[xt−2]

+ (ρ1K2 +Kr2)xt−1 +ρ2K2xt−2 +K2wt

=
1

1+ρ2K2L
(HEt−1[xt−1]+ (1−H)xt−1 +ρ2K2xt−2 +K2wt) (A.16)

where G = ρ1(1−K1)−Kr and H = 1−ρ1K2 −Kr2 . After iterating equation (A.16) backwards

one period I can plug equation it into (A.15) to find:

Et [xt ] =
ρ2(1−K1)

1+φ1L+φ2L2

(
(1−H)xt−2 +ρ2K2xt−3 +K2wt−1

)
+

1+ρ2K2L
1+φ1L+φ2L2 ((ρ1 −G)xt−1 +ρ2K1xt−2 +K1wt)

=
K1xt +(ρ2K2 +Kr)xt−1 +ρ2(Kr2(1−K1)+K2Kr)(xt−2)

1+φ1L+φ2L2 (A.17)

where φ1 = (ρ2K2 −ρ1(1−K1)+Kr) and φ2 = ρ2(K2Kr − (1−K1)(1−Kr2)). Note that when

the state follows an AR(1), that implies ρ2 = 0, so equation (A.17) collapses to:

Et [xt ] =
K +KrL
1−GL

xt

which is the same equation found in chapter one. To find the forecast error, simply subtract

(A.17) from xt to find:

xt −Et [xt ] =
(1−K1)(1−ρ1L−ρ2L2)xt

1+φ1L+φ2L2

Next I compute the backcast equation Et−1[xt ] by iterating equation (A.15) backwards
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one period and plugging it into (A.16) to find:

Et [xt−1] =
K2xt +[K1(1−Kr2)+K2(Kr −ρ1)+Kr2 ]xt−1

1−Π1L−Π2L2

+
[Kr(1−ρ1K2)−ρ1Kr2(1−K1)](xt−2)

1−Π1L−Π2L2

where Π1 = (1−K1)(ρ1 +ρ2(1−ρ1K2 −Kr2)−Kr −ρ2K2) and Π2 = ρ2K2G. When the funda-

mental follows an AR(1), the backcast becomes:

Et [xt−1] =
K1 +KrL
1−GL

xt−1

which is similar to the equation for Et [xt ] except xt is replaced with xt−1. This is because there is

no need for learning about higher-order dynamics when the fundamental has no higher-order

dynamics.
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