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ABSTRACT
Toller's group~theoretical analysis of multiparticle
scattering ampl;tudes, which leads naturally to a Regge-poleéiypé
expansion, 1s extended to give a precise meaning to the multi-Regge
pole hypothesis. An essential step in this diréction is achieved by
the introduction of generalized Toller>variables, which are tailored
té the description of the asymptotic behavior of a production process

in several subenergies.
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I. INTRODUCTION

.The choice of appropriate variables for the description of
a multiparticle amplitude has posed a long-lasting problem to both
theoreficians and experimentaiists in particle physics. No clear-cut
choice seems to have emerged, and it is likely that there is no
privileged set of variablgs in general. However, on the basis of a
_group theoretical analysis of the production amplitude, Tollerl was
able to single out a definite set of variables which is particularly
convenient for the description of a multiparticle process in the 1limit
of the total energy going to infinity while a specified momentum
transfer is held fixed. 1In his analysis, Toller has also reformulated
the Regge pole hypothesis without recourse to the analytic continuation
of the crossed-chaﬁnel partial-wave expansion, thus giving an
unambiggous meaning to multiparticle Regge pole behaviér,

In the present paper we show how the Toller analysis can be
extended to the definition of variables which are appropfiate to the
description of the simultaneous asymptotic behavior of a production
amplitude in several independent»subenergies.2 In terms of these
variables the formulation of a multi-Regge-pole hypothesis.follows
naturally from the fac£orizability of Regge pole residues.

The statement of multi-Regge behavior achieved here 1is
qualitatively similarlto conjectures made by a number of authors.5—8
Some of these earlier conjectures, however, involve vague or

inconsistent statements about the complete choice of variables.
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Other conjecturesjemploy variablés whiéh, even if correct, are not the
natural choices on the basis of group theory.‘ We believe.that the
variables aséociated with the Toller approach will prove to be the
most useful, even if no assumption of Regge asymptétic_behavior is
made.9
In Section II we review the &ariables defined by Toller'for

the study of the asymptotic behavior of a scattering or production

process in one energy‘variable. In Section III these results are

generalized in the case of spinless particles to the asymptotic behavior.

in several independent energy variableé, with some réstriction on the
number of outgoing'particles. These restrictions are removed in
Section IV. Section V contains a preciée formulation of the multi-
Régge—pole hypothesis, and the géneralization to include spin is
presented in Section VI; Appendices A and B describe a way of
calculating the Toller variables in terms of invariants, and the
example of the one-particle production process is worked out in detail

in Appendix C.

a

-
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IT. REVIEW OF_THE,TCLLER VARTABLES FOR TWO CLUSTERS
In order to define a set of variables apprqpri@tejto the
description of asymp@otic behavior in mglt%particle.prqduqtion,v_
we fifst decompose the corresponding amplitude into two‘qiusters

as shown in Fig. 1.

A and B, linked by a four-momentum transfer QAB"

We label by p,, " 'p {or collectively p,) the four momenta .
1A NA A ‘ :
in the cluster A, and by plB"

+1,A
pNB+l’B (or pB) those in clusterVB{
adopting the convention that particles in group A are outgoing if their

energies are positive, with the reverse holding for group B. Thus

energy momentum conservation can be written

R N | o
};_ Pip = E: Pig = Qg | (1;.1)
1= i=]l .

In particular we are interested in processes where two particles

are incoming and NA + NB outgoing, so we choose

Ejp<O 3  E,>0,i=2..N +1

. i = Deen
Eyg >0 5 Ep <O, i=2eNp+1.

A Iorentz invariant'connected'part with N + NE + 2 lines

‘ A
depends on B(NA +4NB +2) - 10 = B(NA + NB) - L independent variables.

We propose to subdivide these variables into four groups:

(1) The invariant momentum transfer tan = g
(2) A group of ’B(NA +2) - 10 =W, - L “internal" variablestl

for cluster A, to be designated collectively as VA'
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(3) A group éf 3NB -l internal variablesvfor_cluster B,
to be designated as VB. | |
(&) A”éétvof three variables--twc rotation angles and one boost,
designated collecﬁively éé'vgab;-which specify those Lorentz
transformations of clustef B relative to cluster A (or Qice
versa) that keep fixed the mémentum cOmpénents "parallel" to

%s- |
~ The precise meaning.of the variables VA’ VB, and gab will be
elucidated below but the reader may verify immediately that the

sum of all four sets is 1 + (3NA - k) + (3N - k) + 3 = 5(N, + Ng) - b,
the required total number of ﬁariables. In the following sectidns,
-'tﬁérefore, When.decomposed into two clusters the amplifude will'

ab

‘ be'designated‘by f(VA, g #AB’ VB).

We shall be interested mainly in space-like momentum
transfers, so to elucidate the meaning of our variables lét us go

to a Lorentz frame where points in the positive 2z direction

Q‘AB
(in the four-vector sense). ‘To specify the frame completely we

' further require the three-vector D.°, to point in the z

1A
direction, while 5;; is contained in the yz plane with
positive y component. Let this frame of reference be designated
as "frame a,"” four-vectors in this frame carrying a superécript a.
In any other ffame four-vectors can be expressed thrgugh an approvriate

Lorentz transformation. In particular we designate by w?  the transform-

ation carrying the four-momenta from frame a to the laboratory frame:

) a a
Pia,p = MWD Py, g -
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The four-vectors piA' are thus of the form

a 2 2 ,1/2
plA, = {—(lnlA + ‘-‘lA) 2 O) O’ ZlA}

a 2 2 2.1/ -
Pop = [(m2A tzpy v )T 05 ¥y 20, ZQA}
a [, 2 2 2 1/2
_ + z +y + ) X
pNA+l,A = [(mNA+l,A AR RS XNA+1,A 7T ,A
' IT.2)
Ry ZNA+-1,A} ’ ( e
subject to the condition
NA+1 , o i
. a a’ ‘
Z Pip = ap = [O’ 0, 0 V’tAB] .'
i=1 :
It follows that when t is given, the complete specification of

AB

the four vectors p?A requires 3NA - 4 independent variables.ll

This is our set VA'~

In frame a specification of the four-vectors p?B

requires BNB'-‘l independent Variables,~once the mass shell conditions

plus the constraint

NBﬂ a a N
Z_ Pip = %3
i=1

are taken into account. The crucial step in the Toller method 1s now to

split this latter set into 3NB - L internal variables plus three parzmeters
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describing the relative orientation of cluster B with respect to

. cluster A. The split may be achieved by defining a frame b

o

in wﬁich the B four-vectors are specified by jNB - b parameters
tﬁréuéh expressions completely analogous tQ (11.2), apart from
opposite sigﬁs for the enérgy compqnents. This is our.vériable -
set. VB' ‘The four-vectors P?B are then obtaiﬁed by applying to
p?B a Lorentz transformation that preserves Q:B = XB , i.e., -
QAB' This

transformation-may be parametrized by & rotation through an

an element_ofvthe little group with respect to

angle 2vab' around the =z axis, a boost of magnitude ZQab
in the x direction, and a finai rotation around the =z axis

through an angle 2uab. ‘Thus we have -

a .ab  ab, b ab, b
Pig &, v ) p Lg™) p

iB ~ iB

ab
183 Pip

= IL(

2

.'The angle ‘2pab corresponds to a rigid rotatioﬁ'bf the
set of momenta Py about the =z axis in frame a while QQab

is a corresponding rotation of in frame b. By sﬁraightforward

A

calculation " cosh 2§ab turns out to be linearly related to the
square of the total energy in the barycentric system, 1i.e., to

ab . .
but for our purposes £ will be a more convenient

>

2
Spp = (Pyg=P1,)

variable than the total energy.12 Note that the range of the variables

ab . : v
g

a

1s

Os‘gab<<><> , O_<_|.1ab<2n, O_<,vab<2n,_ : (11.3)

independently of the wvalues of all the other variables.
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III. EXTENSION OF THE TOLLER VARIABLES: TO AN ARBITRAEY

NUMBER OF CLUSTERS

Let us now study the more general mul?i—cluster groupihg
of final partiﬂés shovn in'Fig. 2, realiziﬁg that fhe.groqping
chosen is a.matter of convenience. (We shall see-in Sec. V that
different groupiﬁgs allow the énalysis 6f different aéyﬁptétic
limits). Again the arrows represeht'the convéntion for the signs
of the energy components. We consider the case in which only
particles 1A and 17 are incoming and each cluster contains
at least two outgoing particles. Each internal line connecting

-a pair of clusters I and J carries four‘momentum' QIJ and:

we consider a region where 21l the Q__are spacelike.

1J
In the previous sectionvit was helpful to introduce two

different frames, in'both of whiéh QAB points along the 2z axis.

These two frames differ by an elgment gab of the little group

with respect to Q In frame .a the four vector set Py is

AR
in conventional form while in f?ame b 1t is Py that is
convenﬁional;» In a similar fashion, for the multi-cluster
grouping, two frames differing by an eiement gij of the little
group with reépect to QIJ méy'be defined for each internal
monmentum transfer. Therefore there will be two framss asscciated
with each internal cluster’ J which will be labeled frame j&’
if cluster J occurs od the "left” side of the z-pointing

momentum transfer, and jr if cluster J occurs on the "right

side. The Lorentz transformation carrying us from frame J
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to frame j = will be denoted by q° . To summarize,

L | ik kf ‘
p° = L )p '
: Y D RO :
1 r o
Y L(qa) p ¢, P bl n(g™) p ', etc. (ITI.1)

o
i

It will be shown thaﬂ the transformdtions qJ are'completely

137 tJK and the internal J-cluster variables.

A subset VJ of 5NJ - L internal variables for cluster J

determined by t

‘may be defined essentially as in the previous section. To make

the choice concrete we begin by taking V, to be the parameters

A
specifying the four-vector set Py in frame a&, exactly as

before. The set VB presents a slightly different problem because the

 spacelike vector QBC fulfills the role played by the timelike Pig
in Fig. 1. However, given t_, < O, and the constraint
BC
N_+1
_ : B .
i=2 '
with the piB all negative timelike, we can find a frame br in which
Qup Points in the positive z direction while Qy. has its
$pacelike part pointing in the same direction. That is
br P
0T - [o, 0, 0, V -tAB} (111.3)
b b ) )

. b -
N , r2|1/2 r
Qo = [tBC + (zBC ) } , 0, 0. z >0\. (III.A)
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The‘frame br is further defined by the conventional form -

r i

b P b, b /. b - Db
r f 2 :Try2 r\2) 1/2 rog ry
pr = - [m?_B + (y2B) + (Z?B) ‘} Q»} y2B .>. 0, 22B I
. 3 : . b
Py RN A T-E (Kbr)2'+ ( br)e . Zbr)Q 1/2 xbr‘ y T Zb
Pz 7 5B - 738/ 7 V3B 5B » ¥ap7 Y3pr Fsp{

Just

leading to a set of" 5NB -4 parametérs constituting VB,

as before.ll
By corresponding criteria the frame b# next may be de-

fined, in which vQBC points in the positive =z direction:
b, : o ' ,
Qg = [o, 0, 0, \/-tBC} ; (111.5)

while has its Spaéeliké part pointing in the positive - z

Yp

direction, and the outgoing four vectors maintain conventional

form. Evidently the frame bz' is reached from the frame br by a
pure boost in the =z direction--of magnitude determined'by' ZBE and
Eqgs. (ITI.%) and (1II.5). Thus, the Lorentz transformation  qb

together with t,,, and t

AB BC”

is completely determined15 by VB’

.From this point-on the analysis proceeds in the same
fashion; through successive applications of L(gij) and L(qj)
we eventually reach the final frame Zr . The,complete‘colléction
of variables is BNJ - b for each cluster, plus fouf for each

internal line (one from t ‘and three from gak) . .Since there

JK
is one more cluster than internal line, the total number of
variables is 3N - L4, if N is the total number of outgoing

particles. This is the well known result, usually expreséed as

3(N+2) - 10, where N+2 is the total number of lines in the

t

BC

from
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connected part. . In appendices A and ‘B we show how to relate -
these generalized Toller variables to Lorentz invariants.

To summarize; the momenta Pys Pgsee Py in the;laboratory

. frame.arerbtalned from our variables, VA’ VBf"VZ’ tAB"tBC"'tYZ’
ab be z '
g , 8 )"'gy ’ by
. a af/
‘a ab br
c
R -t ab { b be r
b = L) L(e™) L[q (40 Ty tBC>} L) 2 (b Voo o)
o (111.6)

a aby | b

Xy zy °
---L(g™) L {qy (tyyr VY,‘tYZ)].L(gy ) 2y (tyys V).

This prescription is reproduced in tabular‘fbrm in Table I.
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‘Table I. Notation for the :four-momenta -of the external particles
in the different .frames used to describe a multi-cluster diagram,

and for the Lorentz transformations connectingfthese_frames.

Transfor- ) Cluster A v B . C S 7
mation Frame |
Lab. Py Pp P, Py P
a .
u
o ) ) ) a
a@ Pa - Po Py Py,
ab : .
g
b b b b
. b r P xr D r .
| r Py c Y Py
b :
q
b b b b
L L A
b
" be
g |
] C )
c P T D r
r C Y Py
c
q
C [} o)
L L
cd
g .
¥
r
yr PY " pZ
qy .
y
£
Yy Py v,
z
gy
z
z,. b,
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Iv. YCLUSTERS WITH-ONEvOUTGOING,PARTICLEY
~Let us now consider the‘special-case“of.é'cluster with
only three linés, one outgoing and the remaining two either both
internal or one interﬁal and one (ingoing) eXterhal.
étartiné with the second possibiliﬁy, suppose.that
cluster A of Fig. 2-hasloﬁe outgoing line, i.e., N, = 1.

A

The momenta Py in frame a& are then given by

a 1 a a
I 2 - ney1/2 L
plA = = mlA + (ZlA) } b Q’ O, ZlA
a S a a
L 2 2y 1/2 L .
Do = mo, + (ZZA) } / » 0,0, z, , (1v.1)
L -
with
a a a
L L 4 S . i
Piy * Py = Qp = {o, 0, 0.y _tABj E - (1v.2)
5y )
“a constraint which determines both 214 and Z5p in terms of
tAB' There are thus no free internal parameters VA. The
amplitude furthermore does not depend on the angle Hab. Changing
L a a a
this angle amounts to a rigid rotation of the momenta pB& , pcz---pzl
around the 2z axis. . Formula (IV.1l) shows that pAa with N, =1

would be left unchanged by such a rotation, so changing uab
amounts to a rotation of all momenta--an operétion that leaves

the amplitude invariant.lh It is-amusing to note that ﬁhe formula -

3N, - L, for the number of variables in V,, yields -1 when
A ? . A’
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applied unthinkingly to NA = 1, and that thisresult might be

interpreted as the subtraction of’one.parametér from the‘seﬁ
o . ab
specifyying the little group g
Now consider an internal cluster with NJ = 1. The frame
J, is such that

j i N
T r\2] 1/2 T
Yk = {Em'*(%K)} » 05 05 25 > 0
J 3. _ j] | g
r 4.2 ry2| 1/2 rl - ,
p2J - - {mQJ + (ZQJ) } s O) QJ ngf b (IV'B)
“with
J J J , 4 .
Qg * Py = O3 -[m %‘%th} , (Iv.h)
a constraint that determines er and z, - in terms of t and
arnt M e 2J 1
tJK‘ Once again there are no free variables in VJ, and one may

'anticipate that one of the little group parameters will become superfluous.
Whét happens is that the amplitude depénds on the sum of the two

angles vij and “jk but not on'thesé angles separately. This

fact is implicit in the results of Chgn, Kajantie, and Ranft, who

based their analysis on variables especially suited to single-

. ' . 7
particle clusters.'

To understand the Toregoing point, observe from Eq. (111.6)

K,-»-pz depend only on this sum of angles

because the z-direction boost L(qJ) commutes with either of

that the momenta p

the adjacent rotations about the 2z axis. In other words,
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nw?d, M, 1) 1) 1o, K, 0
= LM, ¢, 00w L) 1o, FF, VN @)

From Formula (IV.3) we see that P with Ny =1 is independent

of rotations about the 2z axis, while the momenta 'pA---pI never
depend on variables glJ, of courée, as soon as cluster J ccntains

more than one outgoing particle, non-vanishing y components

| J -
will appear in the momenta er and there will be a consequent
~ dependence of pJ on vlJ.

The analysis of this section covers any number of single’

(outgoing) particle clusters. Note that the total number of variables

is still 3N - 4, with N the totél number of outgoing particles.’
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V. ASYMPTOTIC BEHAVIOR OF MULTI;PARTICLE
. AMPLITUDES
Let us now exploit the variables'aefined in the previous
section to extend the Regge—polenhypothesis'to the asymptofic
behavior in more than onebvariable of the multi-particle production
amplitudes. Consider first the case where only tﬁo-clusters, A
and Bf, have been defined, B' comprising clusters B >through
Z pf Fig. 2. As shown by Toller,l‘this two-cluster form
can be expanded in terms of its projection onto the unitary irreducible
.represéntations 6f the little group«vithvrespect to QAB' Writing

'this projection.as

L ab .. ab L ab . ab

, = ) xp(=-2inyv
fn (Vas taps Vg dg™ exp(-2imp ) a () exp(-2iny" )
. _ab . :
Xf(VA) g 2 tAB) VB‘ ) b (V'l>

where exp(-2imu) d;n (¢)exp(-2iny) 1is a unitary irreducible representation

of the little group of QAB' The inverse formula for the amplitude
is -
o0

' ab . ab ab ‘ . ab

m,n=~03
(v.2)
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with

ab 2a+1 Sl e
a (ca

ap’ V') = tg 7t “mn ar Taw
C

Z | g "(V.B)"

%

o)

L, .
Here Dm; stands  for the contributions from the discrete re-
presentations at integer values ai, and the contour C runs

along the line Re ¢ = -1 from -1 .- ieo to -1 + 160, The

functions ain can be easily related to déh and play a role:
.énalogous td the Legendre functions of the second kind.

| Assuning  £££ to be meromorphic in the ¢ plane, tﬁe_
leéding term in the asymptotic expansion of fmn is coﬁtrolled

by the position al(tAB) and the residue of the leading pole in

¢ ' - -f-
£, - The poles in (tg «t) 1 not cancellea by zeros of amé 1

are cancelled by the discrete terms_in the expansion.
If we now assume that the residues are factorizable, we have

.ab . A ab 1( B’
£ (Vs l styp Vg ) o~ (Vy,t,g) [eosh 26771 ep (Fapo¥p)
C - 0 :

(V;ha)

or, alternatively

' ab A b
f(VA)g ’tAB}VBv) ¢ (VA,tA_B’ua ) [COSh 2&
~ab ' v

(tyg) 5
ab Oi ¢B ( ab,.AB’VB’) ,

- 00

(\}.L:b)
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with o
- ab ¢ ) )
m:—c):o

. ' o °
-and correspondingly for ¢B . Next consider cluster - B' separated

into two clusters, B and (', with C' comprising all clusters c

~ through Z. The set of variables V becomes Vp, gbc, tBC

Bf
and ‘VC,, while VA,'gab, and t,. remain unchenged. The last

factor in Eq. (V.4) can thus be reexpressed as

¢B (vab be t

» by Vg 8 5 tpor Vo)

and we can expand the dependence in gbc just as before. The

leading term in the asymptotic expansion of .¢B for large ch,

due to a pole at. a2(t in the corresponding complex ¢

BC)

plane, may thus be written

B', ab
. ~7
PG tAB’ B’gbc’ BC’VC') be
g -
o (t' Y. :
~B, ab ab, 2% BC C’ be
\')D (V i/ AB)VB)t C,u ) [COSh gg ] ¢ (V )tBC}VC! )

This procedure can evidently be pursued indefinitely. The general
result for the multi-Regge asymptotic behavior of an amplitude

consisting of clusters A, B,---,.Z, becomes
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JUNCRPN B’gbc’th’ ¢’ V-:y’gy.’tyz""z) @ ey
| | | ,C'_Nf’ e e YR,
~¢A( 5t B’“I ) [césh 2¢ b] l(tAB éB &b tAB’VB’tBC;ubC) [cosﬁ 2§bc]a2(th)
x é(: v, Bc’vc’tcn’“Cdj'"¢;[®Xy’txy’vi’th’“y?) [coéh 2gYZJaL(tYZ),
x 077 by, V) | S - A- (vu6).

The initial and final "vertex functions” each depend ‘on a single
angle and a single momentum transfer, in addition to the variables
of the corresponding élusters, while the intermediate vertices

each Aepeﬁd‘on two angles, two momentum transfers and the internal
~variables of the intérvening cluster. For the 3peciai case of a
single~outgoiné-parﬁicle cluster, an initial or final vertex
becomes independent of ité angle, while an intermediate vertex
depends only on the sum of‘its two aﬁgléé, as was shown ip Sec. IV.

It is.clear from the above discussion thaf for a procéss of

‘given inifial and final pafticles€ different asymptotic formulae
will be obtained depending on the way in which:the outgoing,particles
are assigned to individual clusteré. In each case the asymptotié
behavior will be controiled by the leadingléégge poles of the appropriate

‘quantum numbers.
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VI. GENERALIZATION TO INCLUDE PARTICLES WITHFSPIN..

In this section We éhall'generalize the previous discussions
to include partigles with spin. This objective can readilyyﬁe '
achieved 1in the ianguage of M-functions, for which Lorentz in-

variance reads

M [L(u) D,, L(u) p,--, L(w) p,] =
SA SB --SZ A B Z .
) Db @ (weed®
. o A S A B° B 7z ° 7
S'A)S!B)""S Z
X MS' s! "_"S" (pA) pB)"'; PZ) . v R (VI-l)
A B 7, A

Here we have indicated collectively by SJ the spin indices of

all external particles connected to cluster J; and by

‘Dg St (u) the direct product of the corresponding spin trans-
J d :

formation matrices, which are finite dimensioﬁal representations
- of the homogeneous Lorentz group.
The amplitude introduced by Toller in the two-cluster case

is, in our notation,

ab 2 B ab, -1
A™B T B B

B
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and the - M-function describing the process in-an arbitrary frame

can be written

: a - b
. a L a ab r
A AB v _
)-—\ T .
2 a ab ab
(u ) DS S (u g ) fsv (VA}g }tAB’VB)
B B v A B
A B

(vr.3)
The essential propérty of £ (v ,g N AB,V )} is that the spin
indices are independent of thg thibited continuous variables.
We want to genéraiize this definition'ﬁo the multi-cluster case,
and it is convenient to intfoduce a more- compact notation for the
product of transformations leading from a frame jr to the frame
aj

2, We call this product u and thus have

ab ab
u

ﬁc ab b Dbe
=g qQ g

az gab b bc xy Y yz

u a g - g g . (VI.h4)

We now are in position to define the generalization of (VI.2), namely
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| .
£ . (v ,g sty Vs o8 ?th’Vz)

et BB ¢ ¢ 7"z
S'p’° o’ VA
RO %y -
K Ms S' PP (pA ) pB )..')pz ) o ’ (VI.5)
A8 F

In terms of this amplitude, the M function can be written

MS sse 3 (pA, pB)...} pZ)

A’ %z
a aL a ab r a az Z
= Ms S re+8 (L(u™) pA , L(u™ u™) Py yooy Lu ) pZ
AB Z
- . § S Di . (u ) Ds s,-(ua uao)“..Di . (ua uaz)
' ' Y A” A B B ' Z 2
s'ysSpstes'y _ ‘ .
. .- yz
X fsts'B_..sv ( » ABJVBJ PY=s ’th)Vz) (VI'6)

The analysis of the asymptotic behavior of the amplitude given o

in Eq.'(Vi.5) proceeds for f_ . . along the same steps

: AB Z '
used in the previous section for the spinless case, with only the

addition of appropriate spin indices; each pJ and ¢J acquires
the index s_, whereas £, £t and ¢ depend on all indices
. J mn mn
Sp to. SZ. With these trivial additions all equations in Sec. V
15 |

remain valid in the presence of spin.
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VII. CONCLUSION |

Froh fhe Toller puint of view, the.ﬁulti~Reggelpole
hypdthesis is a naturalAand unambiguous extension of the single-
pole hypothesié-—and'physically_jnst>as pléuSible. Since(
experiments indicate the single-pule model to have app?oximate
.validity, the mulfi—pole model necessarilj»is of great physiual
interest. The asymptotic form (V.6) embodies many striking
: experimental predictions, pafticulérly.if supplemented by the
"periﬁheral assumption” that all vertex functions decrease
rapidly with the increase of the adjacent momentum transfers. A
number of such predictions have‘beeu discusséd by previous authors,
using variables that are less systematiually chosen than ours and _
less general in one respectvor andther. We hope that the‘kinematic
vanalysis'given here will provide a basis for extension of such
- work and will increase confidence in its significance.

.An indirect aspect of the considerations treated in this
paper is the unambiguous meaning achieued for "additiqn" of complex
ungular momentai Considér a three-cluster decomposifion, fo?
exémple, uiuu.the associated gfaph drawn as in Fig. 3. . Suppose

ab. be

that when we make the zab projection of g and the

projection of gbc, we find it possible to identify a pole in

each of these complex variables,vsayﬂat &ab = ai(tAB)' and

. bc . .

factorization to the definition of a gquantity -

then the residue of the pole (product) leads by
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'foi(tAB)’Oé(th)' (4

ab be ap’ v
m n _

t (VIir.1) |

BJ BC)' 2

2

Which may be described as.the amplitude fof.the Regge pole
al(fAB) to interact'with ﬁhe Regge pole a2(tBC) 'to produce
the physical particles in cluster B. The indices n®® and n°°
describe the "spin states” of the ”Reggeons.ﬁ

"Note that although we have not succeeded in defining an
amplitude all of whose externél.particles habe cé@plex angular
momentum, heretofore an unambiguous meaning has been lacking for
more than one Reggeizéd external particle. Cne may hope that
dynamical models bésed on combinations of ”Reggeons” now may be
constructed, since discontinuity formulas will always involve

physical particles in intermediate states and thus never requiﬂe

that all external angular momenta be complex.
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APPENDIX A ‘ .
'EXPRESSION OF THF TOLLER VARIABLES IN TERMS
OF INVARTANTS '
The Toller variables pij, Cijg vij, have been shoﬁn_to
be most naturél ones to describe multi-cluster proceéseg.
However; they have the apparent disadvantage of being defined in
different Lofentz frames. Nevertheless, we shall show they can be
easily expressed in terms of invariant scalar products which can be
compﬁted in any frame, including the laboratory frahéﬂ
We start from a multi-cluster diégram, as is shbwﬁ in Fig. 2,

and the following steps lead us to the desired variables.

(i) From : , : A '
| N,+1 - . I N +1 ) : ;‘
_ ) Vi A
Uy = Pia ~ j{: 21% - Pig (4.1)
71 G=B T=P |

. | : _ 5
we can compute all tIJ = QIJ'

(ii) Introducing the squared invariant mass of cluster I as

sy = Qg = Gp)” = byt - 204y - Q) (4.2)
we can write |
i (s. -t - t_) i (s, -t -t )

A e S : S SRR e v B L (a.3)
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(iii) We introduce the squareq invariant of combined

clustéer I and J as

Sy T (QHI_f QJK)2 ; . | (A-1)

Then ClJ can be readily expressed in terms of this invariant and
the t's and z's defined above as
1£ Jp

1j tyr Ttax T Sty Y 2 Zyr 2k

s
. 272 2
2ty Y \Byr/ tik * ZJK)

(iv) We now choose one particle in cluster I to be particle 2I,

(A.5)

o=

and we compute the scalar product (QIJ . pEI) in frame i& so

that-
i Q D
J 2
ng = -—l?-————l . (A.6)
‘ Vi oo
i v
The y2I component of particle 2I can then be calculated from the
scalar prngqt (QHI . pEI)A
1
. . 12 2
: [ i ”J .
s . - +
yef B A - mfI - (zgf , (A7)
: , i 2
b ()
HI HI
i ' .
while pr is of course zero. .The angle vlJ can be evaluated
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in terms of the above quantities and the scalar product '(ijil pEI)

sin EVIJ =

. R '
Ty 9r ( } [ 2 b (le ‘ ij
B S I 0 N JK> o1 +<Z29+.y27) J cosh 2t ™

3

o

i r .
2 ‘ sy optd
Yo JK (J’H } sinh 2£

(a.8)
where € = -1 if i =a and +1 otherwise.
(v) To compute ptd we follow a procedure analogous to that of (iv).
Choosing a particle in cluster J to be particle‘ 2J, we have
- 9 g " Py |
. Sy (8.9)
IJ
and
3
2 \ 1
" [ Ir Jr] . 2 *
ST (Poy " Qp) * 25 25k I (J_r) ’ (4.10)
2J 3 2 ' 2J 2J
=) a
JK
so that
sin 2u 13 = : 1

J

r P |
Yog

sinh 27

QHI Pog * ZJ I'II '[HT (HI)} [2J QJ) (ygjf cosh 2¢1d
{ |

(4.11)

Following the above procedurs, all the variables of the little groups

involved can be obtained from scalar products of the particle momenta.
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In the above formulae, for the case I = A, we see that Py and
miA replace Q.. and typs and frame a - does not exist.

Correspondingly, when J = Z, APlZ and miz substitute for QJK

and _tJK and there is no frame ZL'

Onée the paraméters of all the little groups are known,
two more steps are required to be able to specify ﬁhe‘conventional

sets, and thus all VA'--VB, from the laboratory momenta. The

first is to determine the overall lLorentz transformation (ua).l
which takes the laboratory momenta to a frame aa , in which set

PA is conventional. The calculation of this transformation if

straightforward. The second is to compute the boost parameter of the
tranéformations qJ. This can réadily be seen to be
1

J LJK <JK>] {tIJ ( i;r

sinh 2q° = = . (A.12)

Vim Vi

In Appendix B we shall discuss the determination of the conventional

sets from the four-momenta of the reaction.
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APPENDIX B _
RELATION OF THE INTERNAL CLUSTER VARIABLES
TO INVARIANTS '

Appendix A gives‘recipes'in terms of'scalar iﬁvariaﬁts fér
the parameters of the successive Loreﬁtz tfansféfma£i§né cdﬁnecting
frames é& through Z. Thé present aﬁpendix will show hqw the internal
variébles_‘VI for clgster I can be related to appropriate Lorentz
scalars. Exéept for cluster A these ihternal‘variables_have been
introduced previously as the independent componenfs of the fourf
.vecths .pI and .QIJ in frame ir’ wherg these vectors gre |
constrained to a certaip cgnvgntional fo?m. (The special case of
VA réferé fo frame. a&.) ‘These momentum components can of course
be related to lab momenta by direct application tovthé latter of the

appropriate sequence of Lorentz transformations, but this somewhat

laborious process may be avoided through the introduction of

Lorentz invariants. We consider separately the cases NI =1, 2, 3
-an@ N2 L.
(1) N = 1.

As pointed out in Sec. IV, there are no free internal variables

for a one-particle cluster. All components of the four-vectors
i i

r r .
QIJ and Po1 and determined by a knowledge othHI and tIJ'
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. 22
i in i
O = (tIJ " (%IJ } » 0, 0, 25 >0
1 .
, 2.2 o . _
ir 2 (lr *r '
Pop = \T[mel + Zop/ | 0, 0, 2y , (B.1)
with
i i i L
T r r N/
= = - EY -2
An elementary calculation thus yields
. 2 .
A S S+ Sl v  (8.3)
IJ - ] ? . :
2y —tHI
. 2 : .
i -m -t + t .
7 r =.‘ 2I HI IJ . - (B.u)

(ii) N_ = 2.

Here there are two independent variables constituting VI.

A natural choice is any two of the three sgalars, QIJ'QHI’ QHI'pEI

and Q which obey the lihear constraint

1J Por’

m

2 2 (
Pyp = M37 =

Qr -~ 9 (B.5)

The conventional set now reads



" with

o ' 1 '
: . o . 2
i
[tIJ +<zIJ) }_,, 0, o, 2
2 o L
2 ' (%\)}
-ﬁnzz * (?21 T \Zo1/ » 05 Yoy

-30-

I <51> ) o

i

i

r r_
p2J p -

3d

i

IJ

 UCRL-1753

>0\

i
r

i)
“ rl

0, Y5I) ABIJ’ 3

i -
r - =\ f_
QHI : (O} O}‘ O) tHI) .

By straightforward calculation from (B.6) and (B.7),

i 1 91g
19 T T T—/—
L1
Jro o SurPer
21 T T —/—
“tur
i i
Zzsp = Yoty o %
i i
YBI = - y2I 2
and as in Eg. (A.10)
. 2
1 r
* QpsPor * 27 IJ) i
Yor = R

r
bt (;IJ)

ol

0]

ir.
>0, 2z

21

2

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)
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s e s N — .
(ii1) Ny =3 |
There are now 5 variables in the set VI. "It is convenient
to.con31der six 1qvar1ants, QHI.QIJ’ VQHIﬁpzl, QHI.pBI, QIJ'pQI’
QIJ'p5I and ng-pBI, .w1th thg single lln??? §onstra1nt

2 2 .(

Ppr = myp = (Qyp - Qpy - Ppp - Py (B.12)
The conventional set is
1
i 327 i
r r r
QIJ = [tIJ +(?IJ> ] s 0, 0, 217 >0
’ 1
i i2 32 s i i
r _ 2. r %) r r '
Por = [mQI +’@21) +C§21 }- » 05 ¥o1 >0, 2ypp (B.13)
' ' 1
i 12 32 3¢ 3 1 Ty
r 2 { Tr\ r) r) T r T
= /- +1 .
Psr = [m'ﬁl’ ginf) +(""51' +("‘31 37 % Va1 Eap
_ ) |
i 12 32 y2¢ 4y 1
r _J {2 ( r) (/ ;) ( r r r r
Pur = {mhl P Ty T ZMI)J > My Yy % ar o

with

i i i i -
r

. |
r T r r r . - 7
“15 * Por * Psp * Pur 7 Y = (0, 0, 0,/=E 1) - (B.1L)

The various z components are easily related to our scalars:

A S S '  (B.152)
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i QP :
T - - Hinl n=2 3  (B.15)

I 2

o Ve

while y2§ .is.sfill given by Eq. (B.11). Next, forming

the two scalars Q--*D and p2I°p5I, we géttwo'relations vhich

1J 3L -
ir , ir
may be solved for ,X5I and yBI :
i - R ' ii
r 1 - r 'r . r _'r
Ys1 T T T Por'Pap * 2oy Z3p * (g Pap * Zpy Zs7)
| y21 .
x (2I 2L o o (B.16)
by (m)
1
. 2
1 i :
g r . 2 . 2
Lok ‘('QTJ Pir * Py %51 - o -(ylr> ‘élr) (B.17)
3T T i 2 31 31 \NSI . )
‘ r
: +
Y10 7 P
when the * sign may be determined by requiring that the pseudoscalar
A 1} v o)
ekuvp QHI QIJ pQI PBI have the same 31gn when computed in the lab

and ir' frames. Finally, the components of p,; are obtained from (B.1Lk).

(iv) N 2 L,

The total number of variables is BNI -4 and it is convenient
to work with BNI - 3 .scalars obéying one constraint. A poésible

‘ch01ce is the set of"- NI dot products QHI‘QIJ’ QHI.p2I'.‘QHI'pNI,I’

the set of NI-l dot products, Py 1o ~plus the set
I}

of N_-2 dot products, ‘DT DD . The constraint is
I =3I 21 NI,I

A . .
15 Por B

2I
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‘unforfunately noh—linear, a fact well known for connected parts
with more than 5 lines.
The procedure for_deterﬁining QOentum Coﬁponents in frame ir

is a straightforward extension of that for NI=5. The =z components
of all vectors except pN{l‘I are given as in Egs.

; L1 i
NI dot products involving QHI' The component y2§ is calculated

(B.15) ﬁy the

from QIJ. PQI just as before, whereas the pair of components
i s o -

r r . '
xnI and an,‘ Wlth n = 5"'NI’_ can, for each n{ be related to
the pair of scalar; QIJ.pnI and pgr-pnI by e?uatlons of the form
: ir o
(B.16) and (B.17). Finally the components of Py,1. 1 "AY be obtained
. . 17‘
from the equation v U
ir ' ir ' ir ir ir ir ' :
PNI+1,I = 91 " 95 " Por T Pap ""'PNI,I‘ (8.18)

(v) The Special Case of End Clusters
When the above procedure is applied to the case I = Z, the
i z
only required ch s t ot r
1y qui e‘ changes are 9 replace QIJ by plZ’ and tIJ, by
miz. With cluster A, on the other hand;'the following changes

are necessary.

(a) Superscript i becomes a .
i r ¢ a

(b) QI§ .is replaced by the negative timelike pli , and t.. by
2
M .
- i 2, , _
| Ac) Qur 1s replaced by Qup » and tHI by tap -

(a i iy ents of [
(d) The signs of the time components o Popr Paprtt s PNA+1,A

are positive.
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. APPENDIX C
THE. SPECIAL CASE OF A THREE-PARTICLE
FINAT, STATE

To illustrate the techniques of this paper, we here work out,

for the one-particle production shown in Fig. L, the detailed relation

between the three Toller variables gab, Cbc, wb = vab + “bc and

s, with s being the

the three more familiar variables, s 13

AR’ Spo’

invariant mass squared of the IJ cluster combination and s being the

square of the total center-of-mass evergy. The remaining two'variables

tAB and tBC -are common to almost all variable sets. |
: . . ' - 2
We begin by comput;ng Spp = (plA - QBC) in the frame» 2,5
where plA is in conventional form while QBC is to be obtained by the

transformation L(gab) acting on the conventional form which QBC

assumes  in frame™ br . The result is
| : | S i i
2 |2 a£2» i » br2 )
Sp 7 e T T T2 [mlA +(ZL’«\>} [th +(ZBC)h
x cosh 262 4+ o zbr ot | | (c.1)
SR BC 1A ’ ’
where '

oB T UAB " |
r EC (c.2)
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Next we compute >SBC = (QAB - plC) in the frame b%’ - where

QAB is in conventional form while Pic is to be obtained by the
: . c .
transformation L(gbc)‘ acting on plg [the form assumed by

P in frame c¢_.] The result.is
1C r | -
L ‘ L
2 2
2 2 cr2 | bL2 }
Spc = tap * Mc * P [mlc ¥ (ZlC)J %AB * (Zma)
be ; beb cr
x cosh 267" + 2 z,5 2. (c.3)
where
t 2
or_ Tec T "mc ” Mic
1C = ’
2 —tBC
2 ' & :
zbz S N I | ,- (c.1)
AB © = - | .
2 v—tBC
Note that si; increases linearly with cosh 2§1J when

the momentum transfers are held fixed. Large values of ‘cosh 2§lJ

thus imply large values of SIJ‘ at fixed values of #AB’ tBC' and
wb; It is dangerous, however, to interchange the variables wF
and s = (plA - plC) in asymptotic analysis. It is true, as we

shall see, that s 1is a linear function of cos wb but it turns

out to be impossible to keep s fixed as s,, and (or) g tend

to infinity.
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‘To establish the foregoing we compute s = (plA - piC) in

the a£ frame, wherev plA' is in conventional form and where

a ‘ . c

ab ab by, ., b be Dbe r

Vplct = L(“ P) g s (L)) L(q ) L(o) C y Vv ) plC
We find

L

1
5 -

. : .2 - 2f
o 2 r) 2 (.
s = 2 [mlc +(ZlC ] [ml,A +(ZlA }

L
E 1
' , 272
a e\ |
L 2 ( r) be
+
290 | M T2, cosh 2¢
%
.ab
} cosh 2f7,
L
AB 2 .2 , ' o
Tha T Me (c.5)

Thus regardless of the value of the angle. wb, 5 1increases without
. b | A . ' ’
limit as ga and (or) gbc increase.

In terms of the Toller variables, Regge asymptotic behavior of the

amplitude means
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ab b be
f(g y bans 0, b, € ) T~
AB BC Cab-—%oo P
Cbc——)co
A [ ab % () B, b ( ‘bc?é(tBC)
£
) (tAB).Lcosh 2¢ ] ¢ (tAB’ w ’tBC)LCOSh‘QD J ¢C(tBC) ,
(c.6)

. : b .

with t t_., and o  fixed.

AB’ "BC

We have noted that replacement of cosh 2§ab

d
by SAB and of

cosh 2§bc by s maintains the structure of this limiting'form,

BC
but introduction of the variable s would require a complicated
prescription, through Fofmulas (c.1), (c.3), and (C.5), as to how s is
~ supposed to vary when SpB and Sue increase. The advantage of the

Toller variables is evident.
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' See Appendix B for a particular choice of internal cluster variables.

The relation is

- o ab, 2 2.\1/2, 2 | 2.,1/2
Spg = My, t My + 2 cosh 2t (mlA + ZlA) (mlB + le) .

See Appendix A for details.
A kinematical dependence on “ab appears if particles 1A or
2A have spin.

When spin is included, discrete.representations corresponding to

half-integer values of ¢, may be present in Eq. (v.3).



Fig. 1.
Fig. 2.
Fig. 3.

Fig. k4.

UCRL-17530
40~
FIGURE CAPTIONS
Decomposition of a multi-particle production amplitude

into two clusters, cluster A containing NA + 1

particles, and cluster B containing N_ + 1 particles.

B
A multi-cluster grouping for the final particles in a
production amplitude.

A three-cluster decomposition which allows a definition
of the interaction of one Regge pole with another.

The two particle-three particle reaction, with single-

particle clusters.
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