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ABSTRACT OF THE DISSERTATION 

 

Real Options Models for Better Investment Decisions in Road Infrastructure under Demand 

Uncertainty 

 

By 

 

Ke Wang 

 

Doctor of Philosophy in Civil Engineering 

 

 University of California, Irvine, 2017 

 

Professor Jean-Daniel Saphores, Chair 

 

An efficient transportation system requires adequate and well-maintained infrastructure to 

relieve congestion, reduce accidents, and promote economic competitiveness. However, 

there is a growing gap between public financial commitments and the cost of maintaining, 

let alone expanding the U.S. road transportation infrastructure. Moreover, the tools used to 

evaluate transportation infrastructure investments are typically deterministic and rely on 

present value calculations, even though it is well-known that this approach is likely to 

result in sub-optimal decisions in the presence of uncertainty, which is pervasive in 

transportation infrastructure decisions. In this context, the purpose of this dissertation is 

to propose a framework based on real options and advanced numerical methods to make 

better road infrastructure decisions in the presence of demand uncertainty.  

I first develop a real options framework to find the optimal investment timing, 

endogenous toll rate, and road capacity of a private inter-city highway under demand 

uncertainty. Traffic congestion is represented by a BPR function, competition with an 

existing road is captured by user equilibrium, and travel demand between the two cities 
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follows a geometric Brownian motion with a reflecting upper barrier. I derive semi-

analytical solutions for the investment threshold, the dynamic toll rates and the optimum 

capacity. The result shows the importance of modeling congestion and an upper demand 

barrier – features that are missing from previous studies.  

 I then extend this real options framework to study two additional ways of funding 

an inter-city highway project: with public funds or via a Public-Private Partnership (PPP). 

Using Monte Carlo simulation, I investigate the value of a non-compete clause for both a 

local government and for private firms involved in the PPP. 

Since road infrastructure investments are rarely made in isolation, I also extend my 

real options framework to the multi-period Continuous Network Design Problem (CNDP), 

to analyze the investment timing and capacity of multiple links under demand uncertainty. 

No algorithm is currently available to solve the multi-period CNDP under uncertainty in a 

reasonable time. I propose and test a new algorithm called “Approximate Least Square 

Monte Carlo simulation” that dramatically reduces the computing time to solve the CNDP 

while generating accurate solutions. 
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CHAPTER 1 INTRODUCTION 

 

An efficient transportation system requires an adequate and well-maintained transportation 

infrastructure to relieve congestion, reduce accidents, improve freight productivity, and enhance 

economic competitiveness. However, there is a growing gap between resources invested by the 

public sector and the cost of maintaining, let alone expanding, the road transportation 

infrastructure in the United States. Indeed, the 2013 ASCE infrastructure report card gave roads 

nationwide a “D”. While capital investments reached $91 billion annually for all levels of 

government, this falls dramatically short of the $170 billion that the FHWA estimates are needed 

annually to significantly improve road conditions and performance (ASCE, 2013). Taxes on 

gasoline and diesel are the primary sources of transportation funding at the state and federal 

levels, accounting for 90% of the Highway Trust Fund (Lowry, 2015). However, road 

infrastructure funding is declining due to a lack of adjustment of fuel taxes to inflation 

(Dumortier et al., 2017) and to improvements in fuel efficiency. Indeed, between 1980 and 2012, 

average fleet fuel efficiency increased from 15.97 to 23.31 miles per gallon (U.S. DOT Bureau 

of Transportation Statistics, 2015).  

Historically, the U.S. road infrastructure has been mainly funded by the public sector 

because of its ability to raise revenue, its cost advantage and its financial risk tolerance (Jacobson 

and Tarr, 1995). For example, of the $89 billion spent on road capital investments in the U.S. in 

2012, only $0.6 billion came from the private sector (Werling and Horst, 2014). In contrast, 

private capital dominates in many other types of infrastructure investments, including rail, 

pipelines, telecommunications, and electrical energy. In fact, international experience 

demonstrates that road infrastructure could also be privately owned or managed. For example, 
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more than 37% of highways by length in the European Union is under concession, and 3 out of 4 

km under concession are operated by private firms (Albalate et al., 2009). 

One popular alternative to better involves the private sector is Public-Private Partnerships 

(PPP). There are two main advantages of PPP for infrastructure investment (Yescombe, 2002). 

First, the public sector can tap private capital to finance infrastructure during difficult fiscal 

times, which is often the case nowadays. Second, the public sector may benefit from private 

sector expertise and experience to build and operate infrastructure more efficiently. In the U.S., 

24 states and the District of Columbia have used public-private partnerships to help finance and 

build at least 96 transportation projects worth a total $54.3 billion by 2011 (Reinhart, 2011). 

However, PPP is more widely used outside of the U.S., including in Canada, the U.K., Spain, 

Australia and South Korea (Brown et al., 2009). 

In spite of their apparent advantages, there are concerns about Public-Private Partnerships. 

PPP project agreements are long-term, complicated and inflexible. As a result, PPP agreements 

may reduce the government’s flexibility to make necessary policy adjustment since such changes 

may affect the profitability of a PPP project (Kashani, 2012). For example, the PPP contract for 

the California SR-91 toll lanes contained a non-compete clause that forbade the government 

from increasing highway capacity. Eventually, SR-91 toll lanes were purchased by Caltrans 

before the end of the concession period to remove the non-compete clause. 

Another obstacle to a more widespread use of PPP and involvement from the private 

sector is the inadequacy of some of the tools commonly used to assess transportation 

infrastructure investments. Indeed, these tools are typically deterministic and rely on present 

value calculations, even though it is well-known that this approach is likely to result in sub-

optimal decisions in the presence of uncertainty (Dixit and Pindyck, 1994), which is pervasive in 
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transportation infrastructure decisions. For roads, this uncertainty is driven by travel demand 

uncertainty, which depends on future land use developments, competing infrastructure, but also 

general economic conditions and fuel prices, not to mention the long time it takes to plan, design, 

and build new roads. In a widely cited paper, Flyvbjerg et al. (2006) examined the accuracy of 

demand predictions for 27 rail projects and 183 road projects around the world. They found that 

for the first year of operation, the difference between predicted and actual demand exceeded 20% 

in half of the road projects they examined. These discrepancies may have partly been caused by 

overly optimistic forecasts trying to tilt investment decisions in favor of a project, but they also 

highlight that predicting travel demand is far from an exact science. 

In this context, the purpose of this dissertation is to propose a framework based on real 

options techniques and advanced numerical methods to make better road infrastructure decisions 

in the presence of demand uncertainty.  The real options approach was selected in this 

dissertation because it provides powerful tools from finance for dealing with investments in non-

financial (i.e., “real”) assets, under uncertainty. These tools include stochastic dynamic 

programming, contingent claims analysis, and stochastic calculus (for a basic introduction, see 

Dixit and Pindyck, 1994). In particular, a real options framework can address the main weakness 

of the traditional NPV method, which is that it ignores the flexibility of altering investment 

decisions under uncertainty as new information becomes available over time. 

Chapter 2 reviews the literature related to real options applications to transportation 

infrastructure investments and network design problems. This review provides a landscape of the 

literature dealing with applications of real options to transportation infrastructure investments 

and suggests avenues for contributing to this area of knowledge. 
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Chapter 3 proposes a real options framework to handle demand uncertainty for a private 

intercity highway project. The traffic congestion effects on the existing and proposed highways 

are captured by a BPR function. Travel demand between the two cities follows a geometric 

Brownian motion with a reflecting upper barrier (RGBM) that corresponds to total highway 

capacity between the two cities. This framework considers three critical decisions: the dynamic 

toll rate, the optimal timing of the investment, and the optimal capacity of the new highway. The 

proposed framework is then tested on data from the California SR-125 toll road project, which is 

treated as a private intercity highway. 

Chapter 4 revisits the optimal investment timing problem for a public inter-city highway 

from the government’s point-of-view. The “Rule of a Half” is used to approximate the consumer 

surplus of the project. The system optimal toll rate charged on the new highway is derivated to 

be constant regardless of demand and of highway capacities. Monte Carlo simulation is used to 

solve the optimal demand threshold. In addition, the investment timing problem is solved in a 

PPP framework (build-operate-transfer, to be specific). The government gives a concession to a 

private company who takes responsibility for financing, planning, designing, constructing, 

operating and maintaining the new highway. The value of a non-compete clause, which forbids 

the government from expanding the old highway during the concession is calculated using real 

options methods. 

Chapter 5 expands the real options method to the multi-period Continuous Network 

Design Problem (CNDP), which aims to find the investment timing and optimal highway 

expansion plan for a road network. Analytical methods, finite difference method and Least 

Square Monte Carlo simulation (LSMC) are not applicable for solving the multi-period CNDP, 

because of the complexity of this problem. I, therefore, propose an algorithm that I call 
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“Approximate Least Square Monte Carlo simulation” (ALSMC) to solve the multi-period NDP. 

This algorithm applies least square regression to estimate the value of the termination payoff 

function without knowing the optimal capacity improvement plan. In each iteration, only a multi-

period CNDP with deterministic demand needs to be solved, which dramatically (from days to 

minutes) reduces the computing time of each termination payoff function. The ALSMC is tested 

on a simple example where an exact solution is available, compared to other approaches 

available to deal with the single period CNDP, and illustrated on a small network for a multi-

period CNDP. 

Finally, Chapter 6 summarizes the main findings of this dissertation and makes some 

suggestions for future research. 



 
 

CHAPTER 2 LITERATURE REVIEW 

 

Chapter 2 reviews the literature related to real options applications to transportation 

infrastructure investments and network design problems. The application of real options papers 

is classified into 2 groups. One group, discussed in Section 2.1, focuses on the investment timing 

of transportation infrastructure. The other group of papers (Section 2.2) evaluates government 

guarantees in a public-private partnership. Section 2.3 reviews algorithms for deterministic 

Continuous Network Design Problem (CNDP) and multi-period CNDP with stochastic demand. 

 

2.1. REAL OPTIONS APPLICATION IN TRANSPORTATION 

Table 2-1 summarizes 10 published papers since 2004 that rely on Real Options (RO) to analyze 

transportation infrastructure investment problems. Out of these 10 papers, 6 papers deal with 

road projects and 4 papers are concerned with rail or transit projects. First, I review these papers 

according to their solution methods (simulation in 2.1.1 and analytical solutions in 2.2.2). Then, I 

discuss four critical assumptions involved in the modeling process of these papers: capacity 

choice, infrastructure competition, toll authority, demand uncertainty and the investor’s objective 

(Section 2.1.3 to 2.1.6). 
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Table 2-1. Applications of real options to private-funded transportation projects 
Authors 
(year) 

Option(s) Methodology Toll/ 
transit fare 

Model 
solution 

Case study Main findings 

Garvin and 
Cheah 
(2004) 

Project 
deferment 

Binomial model with 
travel demand 
uncertainty 

Pre-
determined 

Simulated 
solution 

Dulles 
Greenway toll 
road project 
(Virginia) 

The deferment option has a 
significant value under demand 
uncertainty. 

Zhao et al. 
(2004) 

Right of way, 
highway 
expansion, and 
rehabilitation 

Least-square Monte 
Carlo (MC) simulation 
with uncertainty in 
travel demand, land 
price, and highway 
deterioration  

Fixed Simulated 
solution 

Hypothetical 
example 

Increasing land price could lead to 
highway expansion even when 
demand is fixed. Increases in demand 
encourage expansion, land reserve 
and rehabilitation. 

Saphores and 
Boarnet 
(2006) 

Project 
deferment 

Continuous time real 
options model with 
population uncertainty 

Annualized 
costs 
equally 
shared by 
residents 

Analytical 
solution 

None Derived an explicit population 
threshold; for short project implement 
duration, ignoring uncertainty leads 
to investing prematurely; the reverse 
holds if the duration is long enough 
and uncertainty is high. 

Chow and 
Regan 
(2011a) 

Project 
deferment, re-
design 

Least-square MC 
simulation with travel 
demand uncertainty 
between each OD pair 

No toll Simulated 
solution 

Hypothetical 
example 

A real options model to find the 
optimal investment timing with 
capacity design exogenously decided 
from a road network design problem. 

Chow and 
Regan 
(2011b) 

Project 
deferment, re-
design, re-order 
 

Least-square MC 
simulation with travel 
demand uncertainty 
between each OD pair 

No toll Simulated 
solution 

Hypothetical 
example 

Optimal investment timing and 
capacity improvements on a road 
network. They optimize the order of 
investment of link improvement. 

Railway       
Couto et al. 
(2012) 

Project 
deferment 

Continuous time real 
options with travel 
demand uncertainty 

A power 
function of 
demand 

Analytical 
solution 

Hypothetical 
example 

Higher high-speed rail demand 
uncertainty with random shocks 
decreases the demand threshold. 

Godinho and 
Dias (2012) 

Project 
deferment 

MC simulation with 
fuel price, GDP and 
traffic uncertainty 

No toll Simulated 
solution 

Douro Interior 
Concession in 
Portugal 

Deferment option may add 
substantial value to projects. The 
NPV may be biased downward if 
calculated using only expectation of 
variables and ignoring uncertainty.  
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Authors 
(year) 

Option(s) Methodology Toll/ 
transit fare 

Model 
solution 

Case study Main findings 

Pimentel et 

al. (2012) 
Project 
deferment 

Continuous time real 
options model with 
travel demand and 
project cost 
uncertainty 

A power 
function of 
demand 

Analytical 
solution 

Hypothetical 
example 

Optimal investment timing should be 
delayed under demand uncertainty 

Gao and 
Driouchi 
(2013) 

Project 
deferment 

Alpha-maxmin 
multiple-priors 
expected utility with 
population and 
decision-making 
uncertainty 

Annualized 
costs 
equally 
shared by 
residents 

Analytical 
solution 

Hypothetical 
example 

As the ambiguity level in probability 
distributions increases, optimistic 
decision makers will decrease their 
investment threshold while 
pessimistic counterparts will do the 
opposite 

Li et al. 
(2015) 

Project 
deferment, 
technology 
selection 

Continuous time real 
options model with 
population uncertainty 

Fixed Analytical 
solution 

Hypothetical 
example 

Transit investment can induce urban 
sprawl. Ignoring impact of investing 
on urban spatial equilibrium can lead 
to investing too late. Ignoring 
uncertainty can cause premature 
investment 

 

 

 



 

 
 

2.1.1. Simulated Solutions 

Five papers listed in Table 2-1 solve the investment problem by simulation. For example, Garvin 

and Cheah (2004) apply a binomial model to capture the demand uncertainty for a private toll 

road. With an exogenous toll, demand evolves according to a discrete-time process, going up or 

down with known probabilities at each time step. Using Monte Carlo simulation, the authors 

price the deferment option and demonstrate that it can have substantial value under demand 

uncertainty. 

Godinho and Dias (2012) use Monte Carlo simulation to price the deferment option for a 

publicly-funded road. They estimate an autoregressive model with a normally distributed error 

based on historical data to forecast the GDP as a function of its value in the two preceding time 

steps. Moreover, fuel price is assumed to follow a geometric Brownian motion (GBM). They 

show that the deferment option may add substantial value to the social benefit of a project. 

The other three papers rely on Least-Squares Monte Carlo simulation (Longstaff and 

Schwartz, 2001; Gamba, 2003), which is a powerful approach that can handle multiple forms of 

uncertainty and multiple options. 

Zhao et al. (2004) build a multistage stochastic model for a toll highway with multiple 

embedded options: land acquisition, highway expansion, and highway rehabilitation. They 

assume that travel demand and land prices follow a GBM, and that highway service quality may 

decrease from 5 to 1 gradually at each point in time. They find the profit-maximizing solution 

numerically for some examples and report that a higher traffic demand requires more lanes and a 

larger land reserve (right-of-way acquired beyond immediate need). However, increasing land 

prices only drives down the land reserve, but not the number of lanes. At some demand level, 

higher land prices even trigger highway expansion with the same demand level. 



 

 
 

Chow and Regan (2011a, 2011b) incorporate real options into a continuous network 

design problem. Traffic demand between each OD pair is assumed to follow a GBM. The travel 

time on each link is modeled by a BPR function. Using Least-square Monte Carlo simulation, 

they find the optimal investment timing, which link(s) on the road network to invest in, and the 

corresponding optimal capacity. 

 

2.1.2. Analytical Solutions 

The other five papers listed in Table 2-1 provide analytical results. Saphores and Boarnet (2006) 

consider a congestion relief project in a monocentric city where construction costs are recovered 

by taxing land. They derive analytically the socially optimum utility-maximizing timing of that 

investment, assuming that the city population follows a Geometric Brownian Motion with 

reflecting bounds. They conclude that a standard cost-benefit analysis (CBA) may either lead to 

starting the project prematurely or too late, depending on the level of uncertainty and the 

duration of the project construction. 

Gao and Driouchi (2013) model a monocentric city that is analogous to that of Saphores 

and Boarnet (2006). Unlike other studies assuming that future uncertainty is characterized by a 

certain probability, they developed an α-maxmin multiple-priors expected utility framework to 

solve for the option value of a rail transit investment under Knightian uncertainty, which 

measures the ambiguity in population uncertainty with multiple geometric Brownian motions. 

They derive the population threshold as a function of the level of optimism (α) for different 

values of probabilistic ambiguity. They report that as the ambiguity level in probability 

distributions increases, optimistic decision-makers decrease their population threshold while 

their pessimistic counterparts do the opposite. 



 

 
 

Li et al. (2015) also consider a monocentric city model with a stochastic population to 

study the timing and the technology of a transit project. They report that this transit investment 

could induce urban sprawl and that ignoring population volatility could lead to investing 

prematurely. Moreover, in their real options model one transit technology always dominates 

others regardless of population size.  

Pimentel et al. (2012) develop a real options model to examine the optimal timing of 

upgrading to high-speed rail (HSR) a conventional rail line between two cities with three sources 

of uncertainty: travel demand, project cost, and benefit per HSR passenger. Their objective is to 

maximize the net benefits of travelers, which includes time and fare savings. They show 

analytically that increasing demand uncertainty delays the optimal investment time. 

Couto et al. (2012) apply a similar but simplified framework that only accounts for 

uncertainty in demand, which they assume follows a GBM with random shocks to capture 

sudden changes in demand due to unanticipated future events. They report that positive demand 

shocks bring forward the timing of a High-Speed Rail investment and decrease the value of the 

option to defer the transportation investment. 

 

2.1.3. Capacity Choice 

With three exceptions (Zhao et al., 2004 and Chow and Regan, 2011a, 2011b) that solved the 

capacity choice problem by simulation, most of the papers I reviewed assume that the capacity of 

the proposed project is predetermined. However, one important value of project deferment is 

project re-design. Building infrastructure with a lower capacity is cheaper but it may generate 

lower revenues and social benefits in the long run; conversely, building infrastructure with a 

higher capacity is more expensive upfront but it becomes more profitable and more socially 



 

 
 

beneficial once travel demand is sufficiently high. Therefore, it makes sense to endogenize 

capacity, and to chose it jointly with the timing of a transportation investment. 

Another reason for accounting for capacity choice is that traffic or passenger volume 

physically cannot exceed infrastructure capacity. Ignoring capacity limits may lead to 

overestimating future volumes as well as profits or social benefits. Among all papers reviewed 

above, only Zhao et al. (2004) assume that the actual traffic volume is below highway capacity.  

 

2.1.4. Infrastructure Competition and Tolls 

For infrastructure investments, the infrastructure already available in an area should intuitively 

impact the forecasted profits and the social benefits of the infrastructure under planning. 

However, most optimal investment timing studies published to date have ignored potential 

competition from existing infrastructure. As a result, these studies can only set toll or transit 

fares exogenously. For example, Garvin and Cheah (2004) assume that the private sector has no 

toll authority and that the toll is set by the government to slowly increase from $2 to $3 over 40 

years. Zhao et al. (2004) and Li et al. (2015) set fixed toll or transit fares. Chow and Regan 

(2011a, 2011b) did not consider tolls, and their projects are assumed to be publically financed. 

Some papers use taxes to recoup a project’ costs (e.g., see Saphores and Boarnet, 2006; 

or Gao and Driouchi, 2013).  Couto et al. (2012) and Pimentel et al. (2012) set HSR fare as a 

power function of demand in a framework that seeks to maximize passengers’ net benefits 

instead of profits. 

 

2.1.5. Geometric Brownian Motion 

Since my dissertation relies on the geometric Brownian motion, it is useful to review its use in 



 

 
 

transportation problems. The geometric Brownian motion (GBM) has been a popular stochastic 

process in transportation research to model uncertainty in population (Saphores and Boarnet, 

2006; Gao and Driouchi, 2013; Li et al., 2015), railway demand (Pimentel et al., 2012), travel 

demand (Chow and Regan, 2011a; Chow and Regan, 2011b) and highway traffic (Zhao et al., 

2004; Galera and Solino, 2010). The GBM is popular because it has a number of attractive 

properties, apart from allowing for explicit solutions in simple investment models.  Indeed, if a 

variable X follows a GBM, then X is lognormally distributed, and it never becomes negative.  

However, the validity of the GBM hypothesis has only received limited testing in 

transportation. One exception is Marathe and Ryan (2005), who examined airline passenger 

enplanements in the U.S. from 1981 to 2001. After removing seasonal variations, their analysis 

of monthly data suggests that the GBM process might be appropriate to model airline passenger 

data. Galera and Solino (2010) run Dickey-Fuller (1979) test on the annual average daily traffic 

(AADT) for 11 toll highway stretches. They report that the GBM hypothesis could not be 

rejected for traffic volume on highways. We note, however, that their sample is relatively small 

(22 to 31 observations). 

 

2.1.6. Objective Function 

Out of the 10 papers reviewed in this section, 8 papers study the investment problem from the 

government’s point-of-view. The two exceptions are Garvin and Cheah (2004) and Zhao et al. 

(2004), who model projects from the point of view of private investors. Among the 8 papers 

focusing on the problem of the government, three types of objective are maximized: (1) total 

travel time savings (Chow and Regan, 2011a, b; Couto et al., 2012; Pimentel et al., 2012); (2) 

total utility (Saphores and Boarnet, 2006; Gao and Driouchi, 2013; Li et al., 2015); and (3) 



 

 
 

consumer surplus (Godinho and Dias, 2012). Consumer surplus can measure the benefit of 

induced demand, while the other two objectives are only suitable for investments with inelastic 

demand.  

 

2.2 GOVERNMENT GUARANTEE 

Public-Private Partnerships (PPP) is a contractual agreement between the public sector and one 

or more private sectors that allow private sector participation in the delivery and financing of 

infrastructure projects. PPPs have been studied in several fields including law, finance, 

economics, business management, civil engineering, and planning. This literature has been 

growing rapidly in the last decade and includes hundreds of papers, which makes it impractical 

to present a review of this literature. Instead, since I found a number of recent PPP review papers, 

I summarize these reviews to paint a general picture of this literature and contextualize the work 

presented in this dissertation. 

Tang et al. (2010) reviewed 85 empirical and non-empirical studies with interest in risk, 

financing, project success factors, and concession periods. Clerck et al. (2012) examined 125 

papers published between 2004 and 2011 to generate highlights and research trends in tendering 

and risk management in PPP projects. Roehrish et al. (2014) analyzed over 1400 publications 

and summarized publication patterns and emerging PPP research themes. Song et al. (2016) 

conducted a scientometric review of 1036 bibliographic records. Their content analysis found 

that emerging trends in PPP have shifted away from concession pricing and concession periods, 

legislation, governance, procurement management, and critical success factors in PPP projects to 

focus more on risk allocation, performance evaluation, negotiation of concession contracts, real 

options evaluation, and contract management. 



 

 
 

Among active PPP research themes, risk allocation, especially risk sharing mechanisms, have 

attracted much attention (Cheah and Liu, 2006; Huang and Chou, 2006; Chiara et al., 2007; 

Brandao and Saraiva, 2008; Galera and Solino, 2010; Liu et al., 2014). One such mechanism is 

the government guarantee, which is a contract where the government reduces the financial risks 

faced by private firms involved in a PPP. Table 2-2 lists 8 papers since 2006 that study 

government guarantees in PPP transportation projects using real options. 

Build-Operate-Transfer (BOT) is a form of PPP that is commonly used for financing, 

developing and operating transportation projects (Ashuri et al., 2012; Kashani, 2012; Kokkaew, 

2013). In a BOT project, the private sector receives a concession from the public sector to 

finance, design, build, operate, and maintain a facility under the concession contract for a 

specific period. The concession contract allows the private sector to charge facility users and/or 

receive payments from the public sector to recover its investment, as well as its operating and 

maintenance costs. 

The minimum revenue guarantee (MRG) is the most common mechanism for mitigating 

traffic revenue risks in BOT transportation projects (Irwin, 2007). The private sector is 

guaranteed to receive compensation from the government when revenues fall below a 

predetermined level. Cheah and Liu (2006) propose a real options model to value an MRG and a 

revenue cap using Monte Carlo simulation. They applied their model to the Malaysia-Singapore 

Second Crossing. Both the initial traffic volume after construction completion and the annual 

traffic growth rate are assumed to be normally distributed. The toll rate is fixed exogenously. 

They assume that each year, if the actual revenue is lower than a projected level, the guarantee is 

triggered and the government needs to pay the revenue shortfall. Conversely, if the actual traffic 

exceeds a certain level, a revenue cap requires the private sector to pay back the excess revenue. 



 

 
 

Their case study shows that the value of an MRG is more sensitive to the standard deviation of 

initial traffic volume, and the revenue cap is more sensitive to the standard deviation of the 

traffic growth rate. The value of the MRG grows when traffic volatility increases and the 

relationship between the value of the revenue cap and the traffic volatility is not monotonic. 

While most papers consider government guarantees for road projects, Huang and Chou 

(2006) use a real options model to value the MRG and the option to abandon for a rail BOT 

project. MRG is formulated as a series of European options (European options can only be 

exercised at their expiration date). Their analysis of the Taiwan High-speed Rail project shows 

that both MRG and the option to abandon add value to the project from the private-sector’s point 

of view. However, since both the MRG and the option to abandon mitigate the risk of 

unexpected low revenue, they counteract each other and their values are reduced. For example, 

increasing the MRG level decreases the value of the option to abandon. 

Carbonara et al. (2014) develop a real options model to optimize the MRG level that 

ensures the project is profitable to a private entity and economically sustainable and politically 

acceptable to the government. The optimal MRG level also allocates risk fairly between public 

and private sectors. In their model, traffic follows a geometric Brownian motion, and the MRG is 

seen as a series of European options. By Monte Carlo simulation, the authors find the optimal 

MRG for a toll road in Italy. 

Another form of government guarantee is the Minimum Traffic Guarantee (MTG), which 

triggers the compensation from the government when traffic volume on the PPP project falls 

below a certain level. Both Brandao and Saraiva (2008) and Galera and Solino (2010) value the 

MTG using a risk-neutral procedure to determine the discount rate endogenously.  
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Table 2-2. Applications of real options to government guarantees in transportation projects  
Authors 
(year) 

Option(s) Methodology Model solution Case study Main findings 

Road 

Cheah and 
Liu (2006) 

Minimum Revenue 
Guarantee (MRG) 
and revenue cap 

MC simulation with initial 
traffic volume and growth 
rate uncertainties 

Simulated 
solution 

Malaysia-
Singapore 
Second Crossing 
project 

The value of the MRG grows when 
traffic volatility increases; the 
relationship between the value of 
revenue cap and traffic volatility is 
not monotonic. 

Huang and 
Chou (2006) 

MRG and the option 
to abandon 

Compound options pricing 
model with operating 
revenue uncertainty 

Analytical 
solution 

Taiwan High-
Speed Rail BOT 
Project 

MRG and the option to abandon 
counteract each other. Increasing 
MRG level decreases the value of 
the option to abandon. 

Chiara et al. 
(2007) 

MRG  Least-square MC 
simulation with traffic 
volume uncertainty 

Simulated 
solution 

Hypothetical 
example 

Expand LSMC to value multiple-
exercise options. An MRG that 
covers only a short term of the 
concession period can still mitigate 
revenue risk significantly 

Brandao and 
Saraiva 
(2008) 

Minimum Traffic 
Guarantee (MTG) 
and revenue cap  

MC simulation with traffic 
volume uncertainty 

Simulated 
solution 

BR-163 
roadway project 
in Brazil 

Establish a risk-neutral procedure 
using risk premium from Capital 
Asset Pricing Model (CAPM). 

Galera and 
Solino 
(2010) 

MTG Option pricing model with 
traffic volume uncertainty 

Simulated 
solution 

A toll highway 
in Spain 

The value of the guarantee grows 
significantly when traffic volatility 
increases 

Takashima et 

al (2010) 
MRG, the ownership 
transfer guarantee 
and option to defer 
investment 

Option pricing model with 
revenue uncertainty 

Analytical 
solution 

Hypothetical 
example 

Increasing the compensation 
payment in the MRG leads to a 
decrease in the investment 
threshold and an increase in the 
transfer threshold 

Carbonara et 

al (2014) 
MRG and revenue 
cap 

MC simulation with traffic 
volume uncertainty 

Simulated 
solution 

A toll road in 
Italy 

A real options model to find the 
optimal MRG level. 

Liu et al. 
(2014) 

Restrictive 
competition 
guarantee valuation 

MC simulation with traffic 
volume uncertainty 

Simulated 
solution 

A PPP highway 
project in China 

The value of restrictive competition 
guarantee is positively correlated 
with the gap between traffic and 
the level of the guarantee. 
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Brandao and Saraiva (2008) present an MTG real options model, where the MTG is 

modeled as a series of independent European options. The initial traffic follows a triangular 

probability distribution, and later traffic follows a geometric Brownian motion. The toll rate is 

constant throughout the concession period. They assume that the MTG is combined with a 

revenue cap. A case study of the BR-163 roadway in Brazil shows that the MTG transfers 

revenue risks from the private sector to the public sector and that the use of caps can help reduce 

the government’s expose to risks. 

Galera and Solino (2010) develop a real options model to value different levels of 

minimum traffic guarantee by simulation. Traffic is assumed to follow a geometric Brownian 

motion. The minimum traffic guarantee is treated as multiple independent European options. 

They illustrate their model by test it on a toll highway in Spain. They report that the value of the 

guarantee from the private sector’s point of view grows significantly as traffic volatility 

increases.  

Most studies above treat the guarantees as European options, while Chiara et al. (2007) 

develop a model to value the MRG, which is in the form of Bermudan and Australian options, 

and solve it using Lease-square Monte Carlo simulation. Bermudan option can be exercised one 

time on multiple dates, while Australian option can be exercised multiple times on multiple dates. 

The authors argue that European options have fixed exercise time, which is not flexible enough, 

and such “static contract” may cause the government to compensate too much to the private 

sector for low revenue. They apply their model to a hypothetical example with a concession 

period of 30 years. They find that an MRG covering only 15 years can already mitigate 99% of 

the revenue risk, while an MRG covering only 4 years can mitigate 54% of the risk. 
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Out of 8 papers that study government guarantees, only Liu et al. (2014) apply real 

options to evaluate the value of restricted competition for a PPP toll road project. Liu et al. (2014) 

assume that new competitor will enter the market as long as the total market demand exceeds a 

forecasted threshold. The government needs to compensate the project company once a new 

competitor emerges. As in many other studies, the toll rate is determined exogenously. Results 

show that the value of the restrictive competition guarantee can be very significant in a project. It 

is positively correlated with the level of the government guarantee and negatively correlated with 

actual project traffic. 

Most papers reviewed in Section 2.2 set the investment timing exogenously. One 

exception is Takashima et al. (2010), who study studies the value of government guarantees and 

their impact on investment timing. Two guarantees are considered: MRG and ownership transfer 

guarantee, by which the private sector can always transfer the ownership of the project to the 

government for a set compensation. Revenue is assumed to follow a geometric Brownian motion. 

The authors find that an increase in the compensation payment induces a decrease in the 

investment threshold and an increase in the transfer threshold. 

 

2.3 NETWORK DESIGN PROBLEM 

Most investment timing studies using real options model isolate the proposed project from other 

competing infrastructures and do not consider congestion effect. However, there is another field 

of research, called Network Design Problem (NDP) that aims to find the optimal road capacity 

improvement or lane addition plan while modeling the traffic congestion and traffic equilibrium 

explicitly in a context of road network. But there are few papers that consider the investment 

timing in NDP under demand uncertainty. This dissertation bridges the gap by proposing a new 
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algorithm to solve the investment timing and optimal capacity improvement plan for a road 

network in a real options framework. Therefore, I briefly review different NDP categories and 

algorithms developed for single-period NDP (fixed investment timing) and multi-period NDP 

with stochastic demands (the problem to be solved in this dissertation).   

Over the last four decades, how to optimize the design of a physical transportation 

network has emerged as a fundamental problem in transportation research. Related problems 

include road capacity design, public transit network design and facilities location layout. Dozens 

of studies have made remarkable contributions to both model formulations and algorithms (e.g., 

see Abdulaal et al., 1979; Chen and Yang, 2004; Wang and Lo, 2010). 

The network design problem (NDP) is bi-level by nature and can be seen as a static 

version of the non-cooperative, two-person game. In this static game with perfect information, 

each player has only one move. The leader (a transport planner) goes first, with the goal of 

minimizing total travel costs by improving road capacity, and anticipates all possible responses 

of his opponent, the follower (road users). The follower observes the leader’s decision and reacts 

in order to achieve optimal benefits (i.e., minimizing travel time) regardless of external effects 

(system-wide costs). 

The NDP can be classified in different ways: 

(1)  Discrete vs. continuous or mixed, depending on the nature of decision (investment) variables: 

(a) The discrete NDP with binary decision variables only allows adding an entire lane to the 

road network; (b) The continuous NDP allows adding a fraction of a lane; (c) The mixed 

NDP includes both discrete and continuous decision variables.  
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(2) Based on network/demand uncertainty, the NDP is either deterministic, or at least one 

component of the problem (demand, road capacity, travel time, or connectivity) is stochastic. 

The latter aims to find robust investment decision rules under uncertainty. 

(3)  Based on the time horizon, the NDP can be categorized as: (a) single-period NDP, allowing 

a one-time investment with a given investment timing and with the objective of optimizing 

the performance of the road network for a single period; (b) multi-period NDP, where 

decisions include both selecting the size of the investments to improve capacity but also 

their timing, under stochastic demand and/or road capacity, with the objective of optimizing 

the long-term performance of the road network over a given time horizon. Multi-period 

NDP can be more challenging by allowing more than one investment stage on any single 

link. Because the decision-maker has the flexibility to expand, change, delay, and/or 

abandon the future investment if necessary, it is also called as flexible NDP by Ukkusuri 

and Patil (2009), and adaptive NDP by Chow and Regan (2011b). 

(4)  Based on traffic assignment method, the NDP can be called either static NDP or dynamic 

NDP. A static NDP uses static traffic assignment to measure traffic flows and travel times, 

while a dynamic NDP relies on dynamic traffic assignment (Waller and Ziliaskopoulos, 

2001; Karoonsoontawong and Waller, 2007). 

(5)  NDP can also be characterized by the elasticity of demand: (a) An inelastic demand NDP 

assumes that demand, either deterministic or stochastic, is independent of travel time; (b) 

conversely, an elastic demand NDP introduces a demand function to model the relationship 

between demand and travel demand for each OD pair. Because the travelers’ willingness to 

pay is different in an elastic NDP, usually the consumer surplus is used instead of the travel 

time saving in the objective function to measure the performance of the investment. 
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A number of studies have worked on NDP formulations and algorithms. Since the goal of 

Chapter 5 is to propose an algorithm for multi-period CNDP with stochastic demand, I review 

the literature dealing with the deterministic CNDP and the multi-period CNDP models in sub-

sections 2.3.1 and 2.3.2.  

 

2.3.1 Deterministic Continuous NDP (CNDP)  

Abdulaal and LeBlanc (1979) were the first to propose the Hooke-Jeeves algorithm to solve a 

deterministic CNDP, which they tested on a medium-sized realistic network (24 nodes and 76 

links). Since then, many algorithms have been proposed for solving deterministic the CNDP 

(Suwansirikul et al., 1987; Friesz et al., 1992; Yang and Yagar, 1995; Meng et al., 2001; Ban et 

al., 2006). However, none of these algorithms can guarantee global optimality because of the 

non-convexity of the CNDP, which is due to both traffic assignment equilibrium constraints and 

non-linear travel time functions. 

Wang and Lo (2010) formulate the CNDP as a mixed-integer linear program, which 

offers the important property of global optimality for the solution obtained. Following Wang and 

Lo, Luathep et al. (2011) find a link-based global optimization method for the mixed NDP by 

formulating it as a single-level optimization problem with a variational inequality (VI) constraint 

that represents the user equilibrium condition. Li et al. (2012) develop a global optimization 

method based on the concepts of gap function and penalty for the CNDP, which is transferred 

into a sequence of concave programs and solved by a multicutting plane method. 

Since the global optimal algorithms developed so far are much slower than local optimal 

algorithms (Wang et al., 2015), some stochastic global search methods are more attractive in 

practice because of their fast convergence speed and close to global optimal solution, even 
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though they are usually not global optimum guaranteed. One of these methods is differential 

evolution, which is shown by Baskan and Ceylan (2014) that performs much better than 

simulated annealing and genetic algorithm. 

 

2.3.2 Multi-period NDP  

A multi-period NDP involves a time horizon and time-dependent stochastic variables. The 

decision-maker needs to find not only the optimal capacity improvement/addition plan, but also 

the optimal investment timing. There are two types of formulations for multi-period NDP: static 

programming (Patil and Ukkusuri, 2008; Ukkusuri and Patil, 2009) and dynamic programming 

(Chow and Regan, 2011b). 

Patil and Ukkusuri (2008) propose a stochastic mathematical program with equilibrium 

constraints for a multi-period NDP (allowing multi-stage investment) with stochastic and elastic 

demands and solve it using the Sample Average Approximation (SAA) method. Since this 

method is based on Monte Carlo simulation to enumerate demand paths, its solution is stochastic 

and converges to the true solution as the sample size increases. In the SAA method, the sample 

size is increased gradually until the optimal objective function values converge. Patil and 

Ukkusuri (2008) assume that the potential demand follows an independent distribution at each 

time period, so that realized demand does not give the decision maker any new information about 

future demand.  

Ukkusuri and Patil (2009) relax their assumption about demand independence at each 

time period and use a scenario tree to model demand. In this approach, during the 

implementation period (when the investment opportunity is valid) possible demand levels can 

vary at each stage, while during the post-implementation period (when the investment 
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opportunity is expired) demand can only go up or down by a fixed amount with known 

probabilities. 

Chow and Regan (2011b) argue that Ukkusuri and Patil’s formulation “would not 

explicitly treat future period investment as options as adapted processes (that depend on the 

realization of all the stochastic elements up to that point).” Chow and Regan (2011b) then rely on 

real options to formulate a multi-period stochastic network design problem, and they apply Least 

Square Monte Carlo (LSMC) simulation to solve two simplified cases of investment timing and 

optimal capacity for a CNDP. Their first case is a myopic situation where the solution only 

optimizes the objective at the time of the investment and does not consider possible 

consequences in subsequent time periods. Their second case assumes that the optimal capacity is 

determined at time 0 and cannot be changed in the future, even if the investment is delayed and a 

new capacity improvement plan should be preferred as demand evolves. 
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CHAPTER 3 OPTIMAL INVESTMENT TIMING AND CAPACITY CHOICE OF A 

PRIVATE INTERCITY HIGHWAY UNDER DEMAND UNCERTAINTY 

Equation Chapter 3 Section 1 

3.1. INTRODUCTION 

Given the large investments needed to plan, design, build and maintain road infrastructure, 

private investors expose themselves to demand uncertainty and to financial risks from lower-

than-expected traffic demand on their private roads, so it is critical to model demand uncertainty 

properly when analyzing road infrastructure investments. Since it is well known that the 

traditional net present value (NPV) approach is inadequate in the presence of uncertainty (Dixit 

and Pindyck, 1994), I apply the Real Options (RO) approach in a continuous time framework to 

capture the value of the flexibility to invest under uncertainty in road infrastructure. The purpose 

of this chapter is to analyze the decision to build a private toll road between two cities while 

accounting for congestion and uncertainty in travel demand. 

This chapter makes several contributions. First, I derive semi-analytical results for the 

optimal investment timing with an endogenous toll rate while modeling congestion with a BPR 

function and accounting explicitly for the competition between an existing highway and a new 

highway linking the same two cities. Second, I model travel demand uncertainty, and my 

formulation accounts for induced travel demand. Third, I expand my framework to find the 

optimal road capacity under demand uncertainty.  

This chapter is organized as follows. Section 3.2 presents the methodology for analysis, 

derive some results, and contrast the real options method with the traditional NPV method. 

Section 3.3 applies the framework to a case study with data from the California State Route 125 

South Bay Expressway project. Section 3.4 expands the methodology to find the optimal road 
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capacity. Section 3.5 discusses the results, summarizes limitations, and suggests ideas for future 

work. 

 

3.2. METHODOLOGY  

3.2.1. Project Overview 

I consider two growing cities, A and B, linked by a controlled access highway whose capacity is 

denoted by ko. For simplicity, this highway is the only surface transportation link between A and 

B.  As tourism and trade grow between these two cities, this existing highway is increasingly 

congested, so a new road is needed. A private company is considering building and operating a 

new highway, which will be financed by tolls charges on the new highway. 

 

 

Figure 3-1. 2-link road network 

 

Upfront costs of the new highway project include three components: land acquisition; 

project planning and design; and construction costs. The cost of land acquisition is given by the 



 

27 
 

present value of agriculture rents: 
0

/t

A AR e dt Rρ ρ
∞

− =∫ . Second, the cost of project planning, 

design, and environmental approval, is denoted by CP. Third, construction costs ar assumed to be 

given by L Cn C⋅ , where Ln  is the number of lanes of the new highway and CC is the cost of 

construction per lane. The duration of the permitting, planning and construction phases is 

assumed to be known, and it is denoted by ∆. Finally, once the new highway starts operating, the 

private company needs to spend a fixed amount m per time period on maintenance and 

operations.  

To recoup its costs and make a profit, the private company collects tolls from users of the 

new highway. In each time period, the flow of toll revenues at time t ($ per year) is given by:  

 ( ) ( ) ,nR t Npq t=  (3.1) 

where p is the toll rate ($ per vehicle), qn(t) denotes the volume of traffic (vehicles per hour) on 

the new highway at t, and N is a factor that converts revenues from $/hour to $/year. 

The net present value (NPV) of the new highway project’s total profits is the discounted 

flow of revenue, minus upfront costs, and minus the discounted flow of maintenance and 

operations costs: 

( ) t tA
P L C

R
R t e dt C n C me dtρ ρ

ρ

+∞ +∞
− −

∆ ∆

 Ω = − + + − 
 

∫ ∫                               (3.2) 

The private company would like to determine the optimal timing of investing into the 

new highway project as well as the capacity of this new highway and the endogenous toll rate in 

order to maximize the expected net present value of its profits. I make two additional 

assumptions. First, the capacity of the new highway is limited to a handful of values 

corresponding to the number of lanes in each direction. Second, I assume that the optimal toll 

rate is dynamic and changes based on travel demand. 
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To solve this problem, I first treat highway capacity as pre-determined, find the optimal 

investment timing and value of the project for each capacity. I then discuss how to choose 

between different capacities. Figure 3-2 presents an overview of my methodology. 

 

 

Figure 3-2. Overview of Methodology 

 

3.2.2. Traffic Congestion and Equilibrium 

As mentioned above, the flow of revenues collected depends on traffic qn(t). Given q(t) (= qo(t) + 

qn(t)), the total traffic volume between the two cities, I derive the traffic volume on the new 

highway, qn(t), under user equilibrium, as a function of q(t). 
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First, to model the travel time on each highway, I use the following Bureau of Public 

Roads (BPR) function: 

 1 ,i
i i

i

q
T

k

δ

τ ω
  
 = ⋅ + ⋅     

 (3.3) 

where (omitting the time argument from τi and qi to lighten the notation): 

• i is “o” for the old highway and “n” for the new highway;  

• τi denotes the travel time on highway i when the traffic volume is qi vehicles per hour;  

• Ti is the free flow travel time; 

• ki denotes road capacity; 

• ω indicates by how much travel time increases over free flow travel time at capacity; and 

• δ determines how fast travel time increases with the traffic volume qi(t). Common values 

of ω and δ are 0.15 and 4, respectively. 

The BPR function is widely used in traffic assignment partially because of its simplicity, but 

it is important to remember that the BPR function underestimates travel time when traffic 

volume is close to capacity. One way to mitigate this problem is to increase the values of ω and δ. 

Horowitz (1991) estimated the value of ω and δ using actual highway traffic flow data. For 

example, for a freeway with a design speed of 60 mph, the estimated values of ω and δ  are 0.83 

and 5.5 respectively, leading to a congested travel time that is 83% higher than the free-flow 

travel time. Another way to prevent traffic from getting too close to capacity is via access control, 

which is implicitly assumed here. 

Under user equilibrium, travelers are indifferent between the old and the new highways 

because their generalized travel costs are equal. The generalized travel cost on highway i, 

denoted by ci, has three components: 1) the monetary value of travel time, which is the product 
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of the value of time ξ and travel time τi; 2) variable costs, ντi, which include fuel cost and are 

assumed to be proportional to travel time τi; 3) and an endogenous toll p for the new highway 

only. Hence: 

 o o o

n n n

c v

c v p

ξ τ τ
ξ τ τ

= ⋅ + ⋅
= ⋅ + ⋅ +





 (3.4) 

Equating co with cn, substituting the expressions of τo and τn from Equation (3.4), and 

rearranging to obtain dimensionless quantities gives: 

 ( ) 0,n n PAX Q X Bδ δ− − + =+  (3.5) 

where the new dimensionless variables are 

 

( )

,

,

.
o

n
n

o

o

p

T v

q
X

k

q
Q

k

P
ω ξ


=




=

⋅ ⋅ +




=


 (3.6) 

and the equation parameters are given by 

 

,

.

n o

o n

n o

o

T k
A

T k

T T
B

T

δ

ω

 
= ⋅ 

 

−=
⋅









 (3.7) 

A represents the ratio of the contribution of congestion to travel time for both old and new 

highways at the same traffic volume, and B is the ratio of the difference in free flow travel times 

divided by the excess travel time at capacity on the old highway. 

To avoid corner solutions where all the traffic uses only one of the highways when travel 

demand is low, additional assumptions are needed. Since the toll rate on the new highway is 
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endogenous, and the private firm is assumed to maximize profit, we do not need to worry about 

having cn<co because the private firm will set the toll rate so that the last driver per unit of time 

who wants to drive between the two cities is indifferent between the two highways (i.e., the toll 

rate will be such that the free flow generalized travel costs on the old highway with no traffic 

( ( ) oTξ ν= + ⋅ ) will be equal to the generalized travel costs on the new highway with all the low 

flow traffic ( ( ) (1 )low
n

n

q
T

k

δ

ξ ν ω τ 
= + ⋅ ⋅ + ⋅ + 

 
).  

However, to prevent all the traffic from using the old highway, we need the free flow 

generalized travel costs on the new highway with no traffic and no toll ( ( ) nTξ ν= + ⋅ ) to be 

smaller than or equal to the generalized travel costs on the old highway with low traffic 

( ( ) (1 )low
o

o

q
T

k

δ

ξ ν ω  
= + ⋅ ⋅ + ⋅  

 
, which leads to the condition: low

n

q B

k A

δ
 

≥ 
 

. From Equation 

(3.7), this condition is automatically satisfied if n oT T<  because then B<0 (A is always positive). 

In the rest of this paper, we, therefore, assume that n oT T<  to ensure user equilibrium. 

 

3.2.3. Endogenous Toll Rate 

Because costs are predetermined and not impacted by traffic volumes on the new highway, the 

optimal toll rate at any point in time needs to maximize the private company’s instant toll 

revenue. Multiplying both sides of Equation (3.5) by ( ) oN p q k
δδ δ  and rearranging leads to: 

( ) ( ) ( ) ( ) ( )
( )

, , 0,o

o

p q
AR p q R p q Np q q N p q k B

T v

δδ δδ δ

ω ξ
 

− − + + =     + 
              (3.8) 
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which can be seen as an implicit function of three variables: ( )( ), ,  ,  0f R p q p q = . R(p, q) can 

be derived from Equation (3.8) as a function of p and q. The optimal toll rate p can then be 

obtained as a function of q from the first-order condition 0
R

p

∂ =
∂

. 

Taking the partially derivative of Equation (3.8) and setting 0
R

p

∂ =
∂

 leads to: 

( ) ( ) ( ) ( )
( ) ( )1 1

= 1 0o o

o

p qf
Nq R q Np q q N k BN k p q

p T v

δ
δ δδ δ δ δδ δ δ

ω ζ
− −∂ − + + + =  ∂ +

       (3.9) 

Once R(q) and p(q) are known from Equations (3.8) and (3.9), we can get ( ) ( )
( )n

R q
q q

p q
= . 

For the special care where n oT T= , Equation (3.8) and (3.9) can be solved to get: 

       

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1

1
1

1

1

1
1

o

o

n

n o

o

q
p q T v

k

q q q

q
R q Np q q q NT v

k

δ
δ

δ

δ
δ

δ

δ β ω ξ
δ

β

δ β β ω ξ
δ

−

+
−


= + +

 = −

 = = − +
 +

                       (3.10) 

where β ∈[0,1] is the real root of the continuous function: 

( ) 1( ) 1 0.
1

o

n

k

k

δ
δ δ δ

δ
δφ β β β β

δ
−= − − + =

+
              (3.11) 

This equation has a real root between 0 and 1 because ϕ(β) is continuous, ϕ (0)>0, and ϕ (1)<0. 

When Tn < To, R(q) and p(q) do not have simple expressions. In that case, the private 

company has a competitive advantage, which allows it to charge a toll larger than the toll when 

Tn = To under any given total demand. With very low travel demand, the optimal toll is 0 when 

Tn = To; by contrast, when Tn < To the optimal toll can be as much as ( ) ( )o nv T Tξ + − , in which 

case travel costs on the two highways are equal and all travelers use the toll road. Let us call “toll 
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premium” this increase in toll caused by the difference between To and Tn. We can solve the 

endogenous toll problem for the new highway project with Tn < To: 

( ) ( ) ( ) ( )1 1 
1 1

o o o n

o o

q q
p q T v toll premium v T T T

k k

δ δ
δ δ

δ δ
δ δβ ω ξ ξ β ω

δ δ
− − 

= + + = + + − + + 
      (3.12) 

Equation (3.12) is valid for both Tn < To and Tn = To, and the traffic on the new highway 

when Tn < To is given by Equation (3.10). Therefore, the annual revenue of the new highway 

when Tn ≤  To is given by: 

( ) 1

1 2R q q qδβ β+= +                                                               (3.13) 

where 

( )( )
( )

( )( ) ( )

1

1

2

1
,

1

1 .

o

o

o n

T v
N

k

N T T v

δ

δ

δ ω ξ β β
β

δ
β ξ β

− + −
= +

 = − + −

    (3.14) 

Next, the expected NPV of the new highway project can be expressed as:  

( ) ( ) ( ){ } ( ) ( ){ }( )1

1 20 0 t tA
P L C

R
q E q t q q E q t q q e dt C n C me dt

δ ρ ρβ β
ρ

+∞ +∞
+ − −

∆ ∆

 
Ω = = + = − + + + 

 
∫ ∫   (3.15) 

In next section, let us specify how demand evolves over time, and in Section 3.2.5, based 

on these assumptions, let us calculate the expected NPV of the new highway project as a 

function of the initial demand q. 

 

3.2.4. Stochastic Demand 

A major challenge facing the private company is the uncertainty in travel demand between the 

two cities. Unlike most previous studies that allow for infinite demand growth (e.g. Chow and 

Regan, 2011a and 2011b), I assume that travel demand has an upper reflecting barrier to reflect 

that the capacity of each highway is finite.  
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To model uncertainty in travel demand between city A and B at time t, which is denoted 

by q(t), I assume that q(t) follows a reflective geometric Brownian motion, which can be written 

(Harrison, 1985, pp. 80):  

( ) ( ) ( ) ( ) ( )
( ) ( ]0,  

dq t q t dt q t dW t dU t

q t q

µ σ= + −


∈
                                 (3.16) 

where q  is the upper reflecting barrier; μ is the expected demand growth rates; σ is the demand 

volatility; dW(t) is a standard Wiener process; and U(t) is a non-decreasing process with U(0) = 0. 

U(t) increases only when ( )q t q=  to keep q(t) below q . In particular, when q goes to infinity, 

U(t) disappears, and the process q(t) becomes a geometric Brownian motion (GBM). 

The GBM is a popular stochastic process for modeling traffic demand uncertainty, 

partially because it allows for explicit solutions in simple investment models. Assuming that 

demand follows a GBM ensures that demand is never negative, which is an advantage over the 

standard Brownian motion. The GBM assumes that demand changes around an exponential trend, 

which is likely reasonable in developing countries or in fast-growing regions. In that case, an 

upper barrier is necessary to limit the growth of demand, and I show in Section 3.3.1.1 that the 

expected growth rate of the RGBM is constant when demand is far from the upper barrier, and it 

slows down gradually as demand gets close to the upper barrier. 

q(t) is the traffic flow (vehicles per hour) used in the BPR function to calculate travel 

times. For simplicity, I ignore intraday traffic variations, weekday-weekend pattern and traffic 

seasonality to only focus on annual demand trends. 

Another common assumption in previous studies (e.g. Chow and Regan, 2011b; Li et al., 

2015) is that travel demand, traffic, and/or population size follow a single stochastic process, 

which is independent of transportation infrastructure investments. A more realistic setting is to 
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allow for demand induced by new infrastructure. In this paper, to model induced demand, I first 

assume that when the new highway is built, the annual growth rate of travel demand increases 

from μ to α (but the demand volatility is assumed unchanged for simplicity), and second, that the 

upper barrier on travel demand q , which equals ko before investment, rises to ko+kn. The new 

highway gives travel demand more potential to grow especially if the old highway capacity is 

almost fully utilized. 

 

3.2.5. NPV of the New Highway Project 

Under demand uncertainty, the expected NPV of the new highway project is given by Equation 

(3.15). One challenge is to calculate the expected NPV of the project, denoted by Ω(q), because 

to my knowledge, there is no analytical expression for ( ) ( ){ }1
0E q t q

δ +
 when q(t) follows an 

RGBM. 

Dixit and Pindyck (1994, pp. 178-180 and 255) showed how to use contingent claim 

analysis to calculate Ω(q(0)) without knowing explicitly E(q(t)|q(0)). Their model assumes the 

revenue itself follows an RGBM, the growth rate of revenue must be smaller than the discount 

rate, and there is no construction duration. I adopt their method to my framework. 

First, let us consider the project with no construction duration. When the private company 

invests at t = 0 with initial demand q, the NPV is Ω(q). When delaying the investment by a small 

time dt, the expected change in the NPV of the new highway is: 

( ) ( ) ( ) ( ) ( ) ( )
0

CP dt CP dt
E d q dt R dt e E R CP dt dt mdt e mdt

ρ ρρ − + − +Ω = Ω − + + + −          (3.17) 

The first term on the right-hand side Equation (3.17) is the capital appreciation that the 

private company can obtain from delaying the investment, and the second term is the present 

value of expected revenues right after construction completion from time 0 to dt, which will be 
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missed if the investment is delayed by dt. Instead, the company will collect the future revenue 

from time CP to CP+dt, which is discounted to the present (third term in Equation (3.17)). When 

CP, the concession period length, is large enough and revenue is capped due to the upper barrier 

on demand, the third term is approximately zero, regardless of the values of the growth rate and 

of the discount rate. The fourth term is the maintenance costs that would not happen from time 0 

to dt if the investment is delayed by dt. Instead, the company needs to pay the maintenance costs 

from time CP to time CP+dt, which is discounted to the present (last term in Equation (3.17)). 

Again, when CP is large enough the last term is approximately zero. 

Because q follows a GBM locally, based on Ito’s Lemma, the left side of Equation (3.17) 

equals: 

( ) ( ) ( )2 21

2
E d q q dt q q dtα σ′ ′′Ω = Ω + Ω                                           (3.18) 

Combining Equations (3.17) and (3.18) give the following Cauchy–Euler equation: 

( ) ( ) ( ) ( )12 2

1 2

1
+

2
q q q q q q q m

δβα σ ρ β+′ ′′Ω +  +− = − Ω Ω                            (3.19) 

When q hits the upper barrier o nq k k= + , it bounces down to stay below the barrier. So 

at the upper barrier, we have the boundary condition:  

( ) 0q′Ω = .                                                              (3.20) 

Solving Equations (3.19) and (3.20) gives the expression of ( )qΩ when the construction 

duration is 0. To capture construction duration, I then deduct the revenue loss due to construction 

from ( )qΩ . I ignore the upper barrier o nq k k= +  and assume that demand follows a GBM 

during construction, which leads to overestimating demand during construction and revenue loss. 
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Therefore, Equation (3.21) is a downward biased approximation of the NPV of the project with 

construction duration: 

( ) ( ) 1
1

1 2 3 1q q q g q
δ θγ γ γ+Ω = + − +                                              (3.21) 

where 
( )

1

4 5

1 1

1

1 q
g

q

δ

θ

δ γ γ
θ −

+ +
= − ,                                                                                                 (3.22) 

            1θ is the positive real root of 2 2 2(2 ) 2 0σ θ α σ θ ρ+ − − = , 
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1
2 2

1 2

1

2

1
2

        when 1 0 
2

1
2

ln( )
                when 1 0

1 2

2

e

q

δσδ α ρ

δσβ ρ δ α
δσρ δ α

γ
δσβ ρ δ α

α δ σ

  
+ + − ∆      


  

− + + ≠  
   − + + =  

   − − + + = 
    + +   

                          (3.23) 

( )
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2

2 2

        when 0

ln( )
     when 0

2

e

q

α ρ

β ρ α
ρ α

γ
β ρ α

σα

− ∆
− ≠ −= 

− − =
 +
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                                                                            (3.24) 

( )
3

A P L Cme R C n Cρ ρ
γ

ρ

− ∆ + + +
=                                                                                    (3.25) 

( )
( )

( )

2

1

2

4

2

1

             when 1 0 
2

1
2

                                          when 1 0
2

β δσρ δ α
δσρ δ α

γ
δσβ ρ δ α

  
− + + ≠  

    − + + =  
   ∆ − + + =   

                         (3.26) 
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                  when 0

                      when 0

β ρ α
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β ρ α

 − ≠ −= 
 ∆ − =

                                                                       (3.27) 
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It is noteworthy that when a GBM is unbounded, its growth rate α must be smaller than 

the discount rate ρ, to prevent the NPV from growing to infinity. However, with an upper barrier 

that limits the growth of demand, no limit is needed on the value of α. Without loss of generality 

and in order to keep the derivation for the rest of this paper concise, I assume that 

( )
2

1 0
2

δσρ δ α 
− + + ≠ 

 
 and that 0ρ α− ≠ . 

 

3.2.6. Real Options Model 

In this case, the total travel demand q(t) is stochastic and follows a reflective geometric 

Brownian motion (RGBM).  

This stochastic case can be formulated as a dynamic programming problem. The private 

company holds an option, which gives it the right (not the obligation) to invest in a new highway, 

so at every point in time, it faces a binary decision: invest or continue waiting. This optimal 

stopping problem can be solved using Bellman's optimality principle (Dixit and Pindyck, 1994): 

 ( ) ( ) ( )1
max ,  |

1
F q q F q dq q

dtρ
 = Ω Ε +   + 

                           (3.28) 

where F(q) is the value of the new highway project. The value of this option only depends on 

travel demand. Ω(q) is the termination payoff function, which is the expected NPV achieved by 

investing immediately. Since no immediate profit is generated by postponing the investment, the 

second term on the right-hand side of Equation (3.28) is simply the discounted option value in 

the next period.  

It can be shown that there exists an optimal demand threshold, which is denoted by q*, 

such that when travel demand is lower than q*, it is optimal to postpone the investment, and it is 

optimal to invest immediately when q(t) is higher than q* (Dixit and Pindyck, 1994). At q*, the 
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private company is indifferent between investing and waiting. Therefore, F(q) satisfies the 

following equations: 

( ) ( ) *>0                                  when F q q q q= Ω ≥                                  (3.29)                             

( ) ( ) *1
|        when 

1
F q E F q dq q q q

dtρ
= + ≤  +

                                  (3.30) 

The expression of Ω(q) was derived in Section 3.2.5. Let us now derive the expression of 

F(q) when *q q≤ . By Ito’s Lemma (Dixit and Pindyck, 1994), since q(t) follows a GBM locally 

Equation (3.30) can be expressed as: 

 ( ) ( ) ( )
2

2 2

2

1 1 1
|

1 1 2

F F
F q F q dq q F q q q dt

dt dt q q
µ σ

ρ ρ
  ∂ ∂= Ε + = + +     + + ∂ ∂  

         (3.31) 

Rearranging Equation (3.31) gives: 

2
2 2

2

) 1 F )
)

2

F q q
F q q q

q q
ρ µ σ∂ ( ∂ (( = +

∂ ∂
                            (3.32) 

To derive the option value function, I solve the ordinary differential equation (3.32) to 

find the general solution: 

2 *

2( )        when F q g q q qθ= ≤                                                   (3.33) 

where g2 is an unknown constant and θ2 is the positive root of 2 2 2(2 ) 2 0σ θ µ σ θ ρ+ − − = . 

Since when q gets close to 0, F(q) should also be close to 0, F(q) does not include a power 

function with the negative root of 2 2 2(2 ) 2 0σ θ µ σ θ ρ+ − − = . To find g2 and q*, I use the 

following two boundary conditions (Dixit and Pindyck, 1994): 

 Continuity:              ( ) ( )* *F q q= Ω                                                                 (3.34) 

Smooth-Pasting:      * *) )F q q
q q

q q

∂ ( ∂Ω(=
∂ ∂

                                                      (3.35) 



 

40 
 

Proposition 1. Under demand uncertainty assumed above, the travel demand threshold q* is the 

real root of: 

( ) 1 11

2 1 2 2 2 3 2 1 1( 1) 1 ( ) 0q q g qθδθ δ γ θ γ θ γ θ θ −−− − + − − + − =                        (3.36) 

To derive Equation (3.36), substitute g1 and combine Equations (3.34) and (3.35). When 

*q q< , the travel demand space is divided into two regions: when current travel demand 

exceeds q*, the private company should invest immediately; when current demand is smaller than 

q*, waiting is optimal; and when current demand is equal to q*, the private company is indifferent 

between investing and waiting.  

If *q q> , q* is unreachable. If current demand is below q , it still follows a GBM locally 

and waiting is optimal. Once current demand is at the upper barrier, demand does not follow a 

GBM, and the q* solution is not valid anymore. Moreover, the demand will decrease from the 

upper barrier for sure, so the private company must invest immediately or never. Therefore, the 

investment timing depends on the following condition:  

( ) 0qΩ >                                                              (3.37) 

The idea behind Equation (3.37) is simple: if the investment generates positive expected 

profit at q , the private company should invest immediately. Any demand below q  belongs to 

the waiting region. The value of g1 is determined by ( ) ( )F q q= Ω . The smooth-pasting 

condition is unnecessary. If Equation (3.37) is not satisfied, the private company should never 

invest. 

Once I get the demand threshold q*, the coefficient g2 of Equation (3.33) can be solved by 

( )
( ) 2

*

2
*

q
g

q
θ

Ω
=                                                             (3.38) 



 

41 
 

3.2.7. Traditional NPV Method 

For reference, it is useful to derive the solution of the deterministic case when there is no travel 

demand volatility, and travel demand q(t) grows at a constant rate µ (so ( ) ( )dq t q t dtµ= ) until 

it reaches the upper barrier oq k= . Once demand reaches q , it stays at q . After investing, travel 

demand can continue to grow at rate α instead of µ. The new upper barrier o nk k+ is ignored, 

since the demand level at the time of investment is under ko, and then far away from o nk k+ . 

Because the change of travel demand is deterministic, I can find the total travel demand at any 

given time point t before investment: 

( ) ( )0      0 t        

                     t      

t

upper

upper

q e T
q t

q T

µ ≤ ≤= 
>

                                        (3.39) 

where 

( )log log 0
upper

q q
T

µ
−

=                                                       (3.40) 

Because the private company has no motivation to delay the project in order for the 

demand to hit the upper barrier after construction completion, the investment time T should 

always be less than or equal to 
upper

T − ∆ . Therefore, the demand at the time of investment is 

( )0 Tq eµ
, and demand after the investment is ( ) ( )0 T tq T t q eµ α++ = . The NPV of the project, 

which depends on initial travel demand q(0) and T, is as follows: 

( )( ) ( )( ) ( )0 ,  t TA
n

R
q T R q T t m e dt c y eρ ρ

ρ

+∞
− −

∆

  
 Ω = + − − +   

  
∫                            (3.41) 

The traditional NPV method, given an initial total travel demand q(0), can be used to find 

the optimal investment timing T*, which maximizes the NPV, by solving first-order conditions. 

When T* = 0, the corresponding q(0) is the demand threshold q*. Once the travel demand reaches 
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q*, the private company should invest in the new highway project immediately to obtain the 

highest NPV. To find q*, I solve the first-order condition (a polynomial equation of q): 

( )( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )
1 1

1

1 2 3

0

1 0 0 0
1

P

T

e e
q q

T

δ α ρ δ α ρ
δρ δ µ β ρ µ γ ργ

ρ δ α

+ − ∆ + −
+

=

∂Ω −= − + + − − =
∂ − +

     (3.42) 

The solution of Equation (3.42) gives the investment threshold under the Jorgensonian 

rule, which shows that investing becomes optimal when the marginal return of capital equals the 

user cost of capital. In the next section, I show numerically that when demand volatility is close 

to 0, the stochastic investment threshold from the real options approach converges to the 

deterministic threshold I just derived.  

 

3.3. NUMERICAL EXAMPLE 

In this section, I illustrate on a case study the framework developed in Section 3.2. Unless stated 

otherwise, the parameter values used in this case study are the ones listed in Table 3-1. These 

values are inspired by the California SR-125 toll road project that links Otay Mesa Road and the 

SR-54 in Spring Valley (California Department of Transportation, 2009; see Figure 3-3).  

The SR-125 toll road was a public-private project. It lasted from May 2003 to November 

2007 and had a price tag of $658 million (U.S. Department of Transportation, 2014). The costs 

of this project might have been different if it had been completely private. Moreover, the SR-125 

and its alternative are not highways that directly link two cities. Because of these simplifications 

and of the hypothetical parameter values (e.g., RA, m, v and ξ) used in this numerical example, 

results from the analysis in this section should only be seen as an illustration of my proposed 

framework with somewhat realistic parameter values. 
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Table 3-1. Definition and base value of key parameters 
Name Description Numerical example 

in Section 3.3 
Unit 

Project-specific parameters   
Cp Costs of planning, design and environmental approval 58 million $ 
Cc Construction cost of new highway per lane 125 million $ 
RA Agriculture rent 7 million $ 
m Maintenance and operating costs of new highway 1 million $ 
nL Number of lanes of the new highway 2 lane 
kL Capacity per lane 2,000 vph 
kn Capacity of new highway on each direction 4,000 vph 
ko Capacity of old highway on each direction 4,000 vph 
N Ratio of traffic per year to vph 7,300 n.a. 
Tn,To Free-flow travel time on new and old highway 0.15, 0.25 hours 
CP Concession period length Infinite years 

∆  Construction duration 4.5 years 
Other parameters  
cn,co Individual travel cost on new and old highway n.a. n.a. 
qn(t),qo(t)  Traffic volume on new and old highway at time t n.a. vph 
q(t) Travel demand between two cities at time t n.a. vph 

ω,δ Parameters of BPR function 0.15, 4 n.a. 
ρ  Annual continuously compounding discount rate 7% n.a. 

,µ α  Annual demand growth rate before and after 
investment 

2%, 3% n.a. 

σ  Travel demand volatility  0 - 10% n.a. 
q  Upper barrier of travel demand 8000 vph 
ξ Value of time 20 $ per hour 
v Variable cost rate  10 $ per hour 
n.a. = not applicable. 

 

The SR-125 toll road is 10-mile long, and it has 2 lanes in each direction. The alternative, 

which consists of portions of the SR-54, I-805, and SR-905, is 15 miles long and it has between 

3 and 5 lanes in total. Since the SR-54, I-805 and SR-905 are partially occupied by traffic 

between OD pairs that are no considered in this model, for simplicity, I, therefore, set the 

equivalent capacity of the alternative to the SR-125 to 2 lanes in each direction (4 lanes total). I 

use 2,000 vehicles per hour per lane as the ultimate capacity. 
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Figure 3-3. California SR-125 (from http://tollroadsnews.com/) 

 

In the rest of this section, I first compare the simulated NPV with the analytical NPV. I 

then analyze the demand threshold for different parameter values and discuss their impacts on 

the timing of the optimal investment. For the deterministic case, I solve Equation (3.42) to get 

the demand threshold, and use Equation (3.36) for the stochastic case. Because there is no 

closed-form solution to polynomial equations of degree five or higher with arbitrary coefficients, 

I use the Newton-Raphson algorithm to find the solutions. 
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3.3.1. NPV of the SR-125 

3.3.1.1. Simulated NPV 

To simulate the NPV of this project, I first need to find the simulated E{q(t)|q(0)} for each time 

point. Because the RGBM can be seen locally as a GBM with a restriction at q , simulated q(t) 

paths are generated with q0 = 1000, q =4000, µ= σ=3% and t∆ =0.001 year as follows: 

Step 1: ( ) ( ) ( )
2

min ,  0 exp
2

q t q q t W t
σµ σ

    ∆ = − ∆ + ∆   
    

; 

Step 2: ( ) ( ) ( )
2

+ min ,  exp
2

q t t q q t t W t
σµ σ

    ∆ ∆ = ∆ − ∆ + ∆   
    

; 

…… 

Step n: ( ) ( )( ) ( )
2

min ,  1 exp
2

q n t q q n t t W t
σµ σ

    ∆ = − ∆ − ∆ + ∆   
    

; 

Steps 1 to n are repeated 100,000 times to generate 100,000 simulated q(t) paths and then 

E{q(t)|q(0)} is calculated from: ( ) ( ){ } ( )
100000

1

1
0

100000
i

i

E q t q q t
=

= ∑ . 

The expectation of q(t) is shown in Figure 3-4 for 100,000 simulation paths.  Because the 

initial demand is far from the upper barrier, it takes about 200 years for the expectation of 

RGBM to be stationary. Once the demand is higher than 3,000 vph, the gap between the GBM 

and the RGBM is substantial. Ignoring the upper barrier leads to significantly overestimating the 

expected travel demand and the NPV of the new highway project, especially when demand is 

high and the old highway is already congested. 
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Figure 3-4. Simulated expectation of the RGBM and of the GBM 

 

It is noteworthy that the sample size and step size Δt in the RGBM simulation are critical 

because theoretically the RGBM follows a GBM only when Δt→0 and a large sample size is 

needed to generate reliable values of the expectation of the RGBM. A large sample size is easy 

to satisfy. However, a finite step size, no matter how small it is, will lead to overestimating the 

expectation value at each time point, since the demand is less likely to be reflected back. Since 

the analytical NPV tends to underestimate the NPV when taking construction duration into 

account, the NPV based on simulated expectations of the RGBM and the analytical NPV form 

upper bound and lower bound of the true project NPV with a non-zero construction duration. 
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3.3.1.2. Comparison of simulated NPV and analytical NPV 

Figure 3-5 compares both NPVs for the SR-125 project with the parameters listed in Table 3-1 

and various values of σ . The initial demand is set at 4,000 vph, which is the highest possible 

demand between two cities before the new highway construction. Table 3-2 shows the values of 

the NPVs calculated analytically and by simulation. When the annual demand volatility is under 

10%, the gap between two NPVs is less than 1%. Because the true NPV is between two bounds, 

the error of the analytical NPV is within 1% when σ is under 10%. 

The construction duration of the SR-125 is assumed to be 4.5 years, and the highest 

acceptable demand volatility level is 10% to keep the analytical NPV accurate. Like the results 

shown in Figure 3-5 and Table 3-2, analytical and simulated NPVs are calculated with various 

construction durations. I list the highest acceptable demand volatility level for each construction 

duration: 16% (0.5 year), 15% (1 year), 11% (2.5 years) and 9% (6.5 years). These volatility 

levels are important when discussing the demand threshold in Section 3.3.2. 
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Table 3-2. Analytical NPV and simulated NPV with different demand volatilities. 
Demand 

volatility (%) 
Analytical NPV 
($100 million) 

Simulated NPV 
($100 million) 

Difference between 
NPVs ($100 million) 

Difference (% of 
analytical NPV) 

1% 18 18 0 0.0% 

2% 17.6 17.6 0 0.0% 

3% 16.9 16.9 0 0.0% 

4% 16.1 16.1 0 0.0% 

5% 15.2 15.2 0 0.0% 

6% 14.1 14.1 0 0.0% 

7% 13.1 13.1 0 0.0% 

8% 12.1 12.1 0 0.0% 

9% 11.1 11.1 0 0.0% 

10% 10.1 10.2 0.10 1.0% 

11% 9.18 9.28 0.10 1.1% 

12% 8.3 8.46 0.16 1.9% 

13% 7.45 7.65 0.20 2.7% 

14% 6.63 6.83 0.20 3.0% 

15% 5.85 6.13 0.28 4.8% 

16% 5.09 5.4 0.31 6.1% 

17% 4.35 4.74 0.39 9.0% 

18% 3.61 4.12 0.51 14.1% 

19% 2.87 3.63 0.76 26.5% 

20% 2.13 3.02 0.89 41.8% 

21% 1.35 2.51 1.16 85.9% 

22% 0.55 2.07 1.52 276.4% 

23% -0.32 1.58 1.90 n.a. 

24% -1.27 1.19 2.46 n.a. 

25% -2.32 0.77 3.09 n.a. 

n.a. = not applicable. 
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(Note: q0 = 4000 vph, the value of all the other parameters used are listed in Table 3-1) 

Figure 3-5. Analytical and simulated NPV 

 

3.3.1.3. Impact of reflecting barrier on NPV 

Figure 3-6 Panel A shows the impact of the upper barrier on the NPV of the SR-125 toll road 

with α = 1%, σ = 1%, ρ = 7% and an upper barrier of 8,000 vph. Compared to the NPV without 

upper demand barrier, the NPV with an upper barrier is lower because the upper barrier limits 

the potential demand increase and the corresponding toll revenues. The closer the initial demand 

is to the barrier, the more the NPV without the barrier overestimates the value of the project. For 

example, on Figure 3-6 Panel A, when the initial demand is 2,500 vph or lower, the difference 

between the NPVs with and without a barrier is negligible. When the demand reaches 4,000 vph, 

the NPV of the project is $257 million without barrier, but only $97 million (62% lower) with a 

reflective upper barrier at 8000 vph. It shows that the NPV can be significantly overestimated 
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when ignoring the upper demand barrier. It is noteworthy that when ( )
2

1 0
2

δσρ δ α 
− + + < 

 
, 

the NPV without the upper barrier is infinite, while the NPV with barrier is still calculable as 

shown in Panel B of Figure 3-6.  

 

3.3.1.4. Impact of demand volatility and demand growth rate on NPV 

The impact of demand volatility on the NPV with an upper barrier on demand is not 

straightforward because demand uncertainty has two opposite impacts on NPV. First, when 

ignoring the barrier, the NPV is a convex function of demand. Higher demand volatility leads to 

a higher expectation of the NPV while keeping demand expectation constant. Based on Equation 

(3.23), r1, the coefficient of the first term of the expected NPV, is monotonically increasing in σ . 

Therefore, when ignoring the last term of Equation (3.21), a higher demand volatility actually 

raises the value of the project. Second, considering the impact of the upper barrier, a higher 

demand volatility increases the probability that the demand will fall instead of staying at the 

barrier. Based on Equations (3.22) and (3.26), the last term of the expected NPV is 

monotonically decreasing in σ. The SR-125 project has an upper reflecting barrier at 8000 vph. 

Figure 3-7 indicates that when initial demand is less than 4,000 vph, the first impact overcomes 

the second and the NPV increases with higher demand volatility. 
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Panel A                                                                           

 

Panel B 

Figure 3-6. The effect of barrier on the Net Present Value (NPV) of project 
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Figure 3-7. The effect of demand uncertainty on NPV with upper barrier 

 

Figure 3-8. The effect of demand growth rate on NPV with upper barrier 



 

53 
 

Figure 3-8 shows that a higher demand growth rate leads to a greater NPV with an upper 

barrier. When initial demand is 4,000 vph, the NPV is $97 million with 1% growth rate, while 

the NPV is $1.8 billion with a 3% growth rate.  

 

3.3.2. Demand Threshold 

3.3.2.1. Impact of demand volatility and construction duration on demand threshold 

Taking into account the upper reflecting barrier, let us examine the demand threshold for the SR-

125 toll road using the methodology discussed in Section 3.2. Figure 3-9 shows the effects of 

demand volatility σ  and construction duration Δ  on demand threshold. When =0σ , the 

demand threshold is obtained from Equation (3.42). When 0σ > , the demand threshold is solved 

from the stochastic results. As expected, the demand threshold obtained via real options 

converges to the traditional NPV result when demand volatility shrinks to 0. 

 

Figure 3-9. Demand thresholds of new highway with different demand volatilities 
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My results are similar to those of Saphores and Boarnet’s study (2006), but with a caveat. 

When ignoring construction duration, it is optimal to invest later in congestion-relief 

infrastructure as uncertainty increases. By contrast, for projects that require a particularly long 

time-to-build, the demand threshold could rise first and then fall as uncertainty increases, but this 

may happen outside of realistic parameter values. Indeed, Figure 3-10 shows the demand 

threshold with the acceptable demand volatility levels found in Section 3.3.1.2, the demand 

threshold is still a monotonically increasing function of demand volatility. 

 

 

Figure 3-10. Demand thresholds within acceptable demand volatilities 
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Figure 3-11. Demand thresholds within acceptable demand volatilities truncated at 4,000 

vph 

 

In this case, the demand threshold should not exceed the old highway’s capacity of 4,000 

vph, because when the investment decision for the new highway needs to be made, the new 

highway is not available to travelers. Therefore, the demand thresholds plotted in Figure 3-11 are 

truncated at 4,000 vph. With demand uncertainty increasing, the demand threshold stays at 4,000 

vph as long as ( )( )0 4000 0qΩ = > . 

 

3.3.2.2. Impact of other parameters on the demand threshold 

All parameters tested in Figure 3-12 show that optimistic predictions of the project’s profit lead 

to investing earlier. By contrast, any negative event, like excessive upfront costs or lower than 

expected demand, makes it optimal to delay the investment. The decrease in the traveler’s value  
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Figure 3-12. Impact of other parameters on demand threshold 
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Figure 3-13. Values of NPV, investment opportunity and option to defer 

 

of time results in low willingness to pay a toll and then entails revenue loss. Having a high 

discount rate discounts future revenue from the new highway and makes it more difficult to 

recoup upfront costs. Both lead the private company to be more conservative. 

Figure 3-13 illustrates the value of the investment opportunity, the NPV and the value of 

the option to defer. I set the demand uncertainty level to 5% (the value of other parameters is as 

listed in Table 3-1). The demand threshold of 3,376 vph divides the demand space into two 

regions: waiting and investing. Under the demand threshold, the investment opportunity is 

greater than the NPV of investing immediately, so there is a positive value to defer the 

investment. Conversely, a higher demand justifies investing immediately and reduces the value 

Waiting region Investing 

region 

NPV 
Value of investment opportunity 
Value of waiting 

 



 

58 
 

to the deferment option. When the demand increases beyond the threshold, the investment 

opportunity is equal to the NPV, the private company should invest immediately, and the value 

of the deferment option goes to zero. 

 

3.4. CAPACITY CHOICE 

3.4.1 Alternative Capacity 

In Section 3.2 and 3.3, I consider a highway project with a predetermined capacity (2 lanes in 

each direction, kn=4,000 vph). In this section, I show how to decide not only when to invest, but 

also what capacity to choose given an alternative capacity choice with 3 lanes in each direction 

and kn=6,000 vph. With the flexibility to re-design the new highway’s capacity, the decision-

maker can build a 4-lane highway (2 lanes each way) when demand is low to reduce construction 

spending, and add 2 lanes (one in each direction) when demand is high enough to increase profits.  

For the new capacity choice (6 lanes, 3 in each direction), the construction costs are 

assumed to increase by 50% compared to the 4-lane project. The upper barrier on demand is set 

at 12,000 vph, which is the total capacity of the old and new highways. I assume that the demand 

uncertainty level is σ = 5% for the rest of this paper. Figure 3-14 shows that the NPV of the 

projects is monotonically increasing with the initial travel demand irrespective of capacity. Since 

the 6-lane project has higher construction costs, it is not favored when demand is low, so its NPV 

is lower than the NPV of the 4-lane project at first. The 6-lane project becomes more attractive 

when demand increases, so when demand is sufficiently high, its NPV surpasses the NPV of the 

4-lane project.  Therefore, there exists an indifference travel demand q% , at which the private 

company is indifferent between building 4 lanes or 6 lanes. In particular, considering two 

capacity choices, n
k and

a

n
k  (

a

n nk k< ), I can say ( ) ( ), , a

n nq k q kΩ ≤ Ω  if and only if q q≥ % . 
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Figure 3-14. NPVs of two capacity choices 

 

Some papers call the indifferent demand a “trigger threshold” (Li et al., 2015) at which 

point the optimal capacity (or technology) choice shifts from one project to another. Ideally, 

when the demand for travel is smaller than the threshold, the smaller road capacity project is 

preferable because it is cheaper; conversely, when demand is higher than the threshold, the 

project with the larger road capacity is more profitable. However, Section 3.4.2 shows that the 

answer can be more complicated. 

First, I solve the 6-lane project problem as a fixed capacity investment timing problem, 

similar to what I do in Section 3.3. Then I plot the 6-lane project’s NPV ( )a qΩ , the value of the 

investment opportunity ( )aF q  and the demand threshold a*q along with ( )qΩ , ( )F q  and *q  

found in Section 3.3. The comparison is shown in Figure 3-15. Since ( )aF q > ( )F q over the 
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demand space, the 6-lane project is always a better choice regardless of demand level. However, 

there are circumstances when one capacity option does not dominate the other. I list all three 

possible cases of capacity choice problems and discuss how to solve them in Section 3.4.2. 

  

Figure 3-15.  Value of investment opportunities with different capacity choices 

 

3.4.2. Capacity Choice Cases 

Solving the “value-matching” and “smooth-pasting” conditions for projects with fixed capacity 

nk and
a

n
k  separately, I am able to get the value of four variables: 2g , 2

ag , *q  and a*q . 2g  and 2

ag  

are coefficients in ( )F q  and ( )aF q , respectively. *q  and a*q are the optimal demand thresholds 

of the 4-lane project and 6-lane project, respectively. Based on their values and existence of q% , I 

Waiting 

region 

Investing 
region 

(6-lane) 

NPV (4-lane) 
Investment opportunity (4-lane) 
NPV (6-lane) 
Investment opportunity (6-lane) 
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can summarize the 3 cases that may arise when comparing two capacity choices nk and
a

n
k  

(assuming nk <
a

n
k ): 

(1) There is no indifferent demand q%  between 0 and the upper barrier q . 

Solution: the capacity that gives a higher NPV dominates the other, and the problem 

simplifies to a single capacity problem. 

(2) First, q% exists. Second, 2 2

ag g> . Proposition 2 proves that the high-capacity demand 

threshold is greater than or equal to the indifferent demand, a*q q≥ % . So when demand 

falls in ( a*0 q ， , the high-capacity project’s value of waiting ( )aF q is higher than the 

low-capacity project’s value of waiting and investing. When demand falls in 
a*,  q q   , 

the high-capacity project’s value of investing is higher than the low-capacity project’s 

value of waiting and investing. 

Solution: the high-capacity project dominates the low-capacity project. Then the problem 

can be simplified to a single capacity problem.  

(3) First, q% exists. Second, 2 2

ag g> . Proposition 2 proves that the low-capacity demand 

threshold is smaller than or equal to the indifferent demand, *q q≤ % . So when demand 

falls in ( *0 q ， , the low-capacity project’s value of waiting is greater than the high-

capacity project’s value of waiting and investing. 

Solution: one waiting region is ( *0 q ， , other regions will be discussed later. 

 

Proposition 2. In case (2), when q% exists and 2 2

ag g> , then the high-capacity demand threshold 

is greater than or equal to the indifferent demand, a*q q≥ % . In case (3), when q% exists and 
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2 2

ag g> , then low-capacity demand threshold is smaller than or equal to the indifferent demand, 

*q q≤ % . 

Proof: 

First, I assume that q% exists, 2 2

ag g> and a*q q< % . An example is shown in Figure 3-16 Panel A. 

If a*q q< % , then ( ) ( ) ( )* * *a a a a aF q q q= Ω < Ω . However, if 2 2

ag g> , ( ) ( ) ( )aF q F q q> ≥ Ω  for 

any given q. This is a contradiction. Therefore, if q% exists and 2 2

ag g< , then a*q must be greater 

than or equal to q% . 

Similarly, I can prove that if q% exists and 2 2

ag g> , then *q must be smaller than or equal 

to q% . The case shown in Figure 3-16 Panel B cannot happen. 

 

 

 

 

 

 

 

 

 Panel A                                                                          Panel B 

Figure 3-16. Examples of impossible cases 

 

In the first and second cases of the capacity choice problem, one capacity can be easily 

rejected, and the other one is the optimal capacity. However, in the third case, no capacity 
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dominates the other over the demand space. To create a scenario that satisfies the third case, I 

change some parameter values of the 6-lane project: first, the upper barrier of demand is set to 

8,650 vph (instead of 12,000 vph) due to the limit of population size and economy activities; 

second, the planning cost, maintenance cost, and land cost are doubled. The construction 

duration is extended to 5.5 years. In that case, the solution is q%  =3,734 vph, 1 =0.0113ag  and 

1 =0.0114g . Since 1

ag  is slightly smaller than 1g , we are in the third case. The demand threshold 

for the 4-lane project is *q  = 3,376 vph, which is smaller than the indifference demand q% = 3,734 

vph.  

Dixit (1993) described a trigger strategy where the whole [ *q , q ] region belongs to the 

investment region. However, Décamps et al. (2006) proved that q%  never belongs to the investing 

region. Because 
( )q

q

∂Ω
∂

is smaller than 
( )a q

q

∂Ω
∂

 at q% , according to smooth-pasting condition, 

by waiting for a small interval of time dt, the expected gain dominates the expected cost. 

Therefore, there is another waiting region 
* *

1 2,  q q   around the indifference demand 

(
* * *

1 2q q q q< < <% ) (see Figure 3-17).  

The method used to calculate q* is discussed in Section 3.2.6. Similarly, 
*

1q  and 
*

2q  can be 

characterized by the following 4 boundary conditions (2 value-matching conditions and 2 

smooth-pasting conditions): 

( ) ( )* *

1 1 = wF q qΩ                                                                   (3.43) 

            
( ) ( )* *

1 1 =wF q q
q q

q q

∂ ∂Ω
∂ ∂

                                                        (3.44) 

         ( ) ( )* *

2 2 = a

wF q qΩ                                                                 (3.45) 
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( ) ( )* *

2 2 =
a

wF q q
q q

q q

∂ ∂Ω
∂ ∂

                                                      (3.46) 

where Fw(q) is the value of investment opportunity by waiting around the indifference demand. 

The form of Fw(q) is 3 4

3 4( )
w

F q g q g q
θ θ= + . θ3 and θ4 are the positive and negative root of 

2 2 2(2 ) 2 0σ θ µ σ θ ρ+ − − = , respectively. 3g  and 4g  are the coefficients to be determined. 

There are 4 equations and 4 unknown variables: 3g , 4g , 
*

1q  and 
*

2q  . 

 

 

 

 

 

 

      

 

 

Figure 3-17. The third case of capacity choice problem  

 

The values of 
*

1q  and 
*

2q  are 3,570 vph and 3,875 vph, respectively. So for the third case, 

there are two waiting regions and two investing regions. When demand is between 3,570 vph and 

3,875 vph, the deferment option can add more value than investing immediately with either 

capacity choice. At the indifference demand, the value of investing is $1.27 billion, while the 

value of delaying is $1.30 billion. The value of the deferment option itself is $30 million, which 

increases the NPV by 2.3%. It might be insignificant to consider the relatively small waiting 
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region around the indifferent demand. However, for important transportation projects that have 

substantial impacts on revenue social welfare and for which shifting between capacity choices is 

costly, for example, bus transit and light rail transit, when current travel demand is close to the 

indifference point, the investor should wait until demand increases or decreases further into one 

investing region and then invest with the corresponding capacity choice. 

 

3.5. DISCUSSION 

This chapter develops an analytical framework under demand uncertainty to find the optimal 

timing to invest in a road project between two cities, and to estimate the endogenous toll to 

finance this project. Having a BPR function to model congestion makes it harder to derive a 

closed form solution for traffic on the new highway under user equilibrium. However, I 

successfully define a profit-maximizing and endogenous toll, with which the traffic on the new 

highway is proportional to the travel demand between two cities, and the revenue collected each 

time point is a power function of demand. Therefore, whether the private sector has toll authority 

to adjust toll rate makes a huge difference to the project’s earning power. When the power of the 

BPR function is 4, the revenue at each time grows about 4 times faster than demand does, while 

with fixed toll the revenue growth rate is the same as the demand growth rate. 

Demand uncertainty and the demand barrier play an important role in predicting project 

revenue and in determining the timing of the investment timing. With an upper barrier, the 

demand is limited to the sum of the capacities of both highways, and the value of the project is 

substantially reduced when compared to the case where demand is allowed to grow at a constant 

rate forever. The impact of demand uncertainty on revenue could be positive or negative. When 
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demand is far away from the upper barrier, ignoring uncertainty will lead to underestimating 

revenue, while the opposite holds when demand is close to the upper barrier. 

When the project can be implemented instantly, I derive the exact solution of the Net 

Present Value (NPV) of the new highway project. Under increasing demand uncertainty, the 

demand threshold is also increasing until demand reaches the capacity of the old highway and 

cannot grow anymore. The option to defer adds significant value to the project and traditional 

NPV calculations that ignore demand volatility lead to investing prematurely. However, when 

construction takes time (a more realistic case), the approximate closed-form solution of the NPV 

is downward biased. Combined with simulation results, I find that within a reasonable range for 

demand uncertainty, the closed-form solution can provide an accurate estimation of true NPV 

and demand threshold increases with uncertainty. 

By formulating the capacity choice of the new highway in terms of a number of lanes, the 

optimal capacity can be found by comparing every pair of capacity choices. First, the investment 

timing problem is solved with each capacity choice. Then, based on their NPVs and option 

values, one capacity choice could dominate the other, or each capacity choice could have its own 

demand threshold and investment region. It is noteworthy that the indifference in demand level, 

at which both capacity choices have the same NPV, belongs to the waiting region. My example 

shows that the extra value added by delaying the investment at the indifference demand level is 

trivial. But the waiting region between two investing regions could be more important for transit 

and rail technology selection, because two different technologies, such as BRT and light rail, 

have more substantial differences in passenger capacity and costs. 
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CHAPTER 4 PUBLIC ALTERNATIVES TO COMPLETE AN INTERCITY HIGHWAY 

UNDER DEMAND UNCERTAINTY 

Equation Chapter 4 Section 1 

4.1. INTRODUCTION 

In Chapter 3, I proposed a real options model to solve a series of optimal decisions for a private-

funded highway project. This chapter considers the point of view to the government, which aims 

to build an inter-city highway to relieve growing congestion on an existing highway. The 

government is facing two options: one is to finance the project using public funds; the other 

option is to enter into a Public-Private Partnership (PPP). For the first alternative, I derive the 

government’s optimal toll rate that minimizes the total travel time. “Rule of a Half” is used to 

measure the consumer surplus with induced demand. By Monte Carlo simulation, the optimal 

demand threshold and the value of the public-funded inter-city highway are calculated. For the 

second alternative, the government initiates a Build-Operate-Transfer (BOT) contract with the 

private sector. With toll regulation and investment timing determined by the government, the 

private sector’s successful participation depends on the profitability of the new highway project, 

which would be undermined by the government’s potential expansion of the existing highway in 

future. Using real options method, I evaluate the demand threshold and the value of the old 

highway expansion from the government’s point of view. With the potential expansion of the 

existing highway under consideration, the value of the new highway project is estimated for both 

public and private sectors. Moreover, the value of the new highway project is re-estimated with a 

non-compete clause that forbids the government from expanding the existing highway during the 

concession period. The value of the non-compete clause is analyzed from both sectors’ point of 

view. 
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This chapter is organized as follows. Section 4.2 discusses my modeling framework, 

including finding the optimal toll rate, demand uncertainty, the government’s objective and the 

proposed solution method. Section 4.3 illustrates the modeling framework on a numerical 

example. Section 4.4 evaluates the investment opportunity for both public and private sectors in 

a PPP project, and the impact of a non-compete clause in a PPP contract. Section 4.5 concludes. 

 

4.2. METHODOLOGY 

4.2.1. Project Overview 

Let us revisit the investment timing problem of a new intercity highway project introduced in 

Chapter 3, assuming this time that it is a public project. A local government is responsible for 

funding, designing, building and operating this new intercity highway that links city A and city B. 

The government faces the same land acquisition cost 
AR

ρ  , project planning, and design costs Cp, 

construction costs per lane Cc, construction duration Δ, and annual maintenance and operations 

costs m as the private firm does (see Section 3.3.1.)  The government is also able to set a flexible 

toll rate and to collect toll revenue from users of the new highway. As in Section 2.3, I assume 

that the new highway capacity is predetermined. 

What changes compared to the framework considered in Chapter 3 are the toll and the 

objective, because instead of maximizing profits the goal of the government is to maximize 

social benefits. The optimal toll rate and the NPV of the new highway project from a social 

planner’s point of view are discussed below from Section 4.3.2 to 4.3.5. 
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4.2.2. System Optimal Toll 

In Chapter 3, the investor of the new highway, a private company, can set an endogenous toll 

rate to maximize its revenues at any time. In this chapter, the government can also set an 

endogenous toll rate. However, instead of maximizing revenue, the objective of government is to 

minimize the total travel cost at each time point, given travel demand q. Since the toll collected 

on the new highway will be used to recover (at least part of) the investment costs, the toll 

expense is not considered a cost in the “system” and is excluded from the objective function but 

it enters into the traffic equilibrium condition (where users chose between both highways): 

( ) ( ) ( )
,

    1 1
o

o o
o o o o

q p
o o

q q p
Min v T w q v T w q q

k k v

δ δ

ξ ξ
ξ

       
    + + + + + − −       +        

                       (4.1) 

Subject to: 

1 = 1o o
o n

o n

q q q p
T w T w

k k v

δ δ

ξ

      −
   + + +       +      

               Traffic equilibrium                (4.2) 

 0, 0oq p≥ ≥                                                                                                                    (4.3) 

Table 4-1 defines all notations. The Lagrangian multiplier method can be used to solve 

this nonlinear optimization problem with an equality constraint. The new objective function with 

the Lagrangian multiplier is: 

( )
 1 1 1oo o o

o n o

o n o

p q qq q q p q
Min L T w q T w T w

k v k v k

δ δ δ

λ
ξ ξ

      −     −
      = + − + + + − +          + +            

(4.4) 

with three first-order conditions: 

( ) 0o

L
q q

p
λ∂ = − − + =

∂
,                                                                                                      (4.5) 
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( ) ( ) ( )
1 0
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o n o n
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q qL q
T T w T T

q k k

δδ

δ δδ
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,                                                        (4.6) 

1 1 0o o
n o

n o

L q q p q
T w T w

k v k

δ δ

λ ξ

      ∂ −
   = + + − + =      ∂ +      

.                                                 (4.7) 

Combining Equations (4.5) to (4.7), I find the system-optimal toll: 

( ) ( )
1

o np v T T
δ ξ

δ
= + −

+
                                           (4.8) 

The system-optimal toll is independent of travel demand and only depends on the free-flow 

travel time of both highways. The optimal system toll is always smaller than the private’s firm 

optimal toll rate, which includes a toll premium ( ) ( )o n
v T Tξ + − . Therefore, under the system 

optimal toll rate, the generalized free-flow travel cost of the new highway is smaller than the 

generalized free-flow travel cost of the old highway. It is noteworthy that when travel demand 

( )

1/

1
o n

n

n

T T
q k

T w

δ

δ
 −<  + 

, the demand is too low and all travelers use the new highway, so 0oq = . 

When ( )

1/

1
o n

n

n

T T
q k

T w

δ

δ
 −≥  + 

, the solution of qo is the positive real root of Equation (4.9). A 

closed-form solution of qo as a function of q only exists when δ equals 1, 2, 3 or 4. 

( ) 0o o
n o

n o

q q q p
T T

k k w v

δ δ

δ ξ
   − − − =    +   

                                      (4.9) 
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Table 4-1. Definition and base value of key parameters. 

Name Description Numerical 
example in 

Section 4.2-4.4 

Unit 

Project-specific parameters   
Cp Costs of planning, design and environmental 

approval 
58 million $ 

Cc Construction cost of new highway per lane 125 million $ 
Cex Expansion cost of the old highway 250 million $ 
RA Agriculture rent 7 million $ 
m Maintenance and operating costs of new 

highway 
1 million $ 

nL Number of lanes of the new highway 2 lane 
kL Capacity per lane 2,000 vph 
kn Capacity of new highway in each direction 4,000 vph 
ko Capacity of old highway in each direction 

before expansion 
4,000 vph 

koex Capacity of old highway in each direction 
after expansion 

6,000 vph 

N Ratio of traffic per year to vph 7,300 n.a. 
Tn,To Free-flow travel time on new and old 

highway 
0.15, 0.25 hours 

CP Concession period length 40 years 

∆  Construction duration 4.5 years 
p System-optimal toll rate 2.4 $/vehicle 
τ Toll rate regulated by the government 3 $/vehicle 
Other parameters  
q2,n(t),q2,o(t)  Traffic volume on new and old highway at 

time t after new highway investment 
n.a. vph 

q2,oex(t) Traffic volume on the old highway at time t 
after the old highway expansion 

n.a. vph 

q1(t), q2(t) Travel demand between two cities without 
and with the new highway investment, at time 
t 

n.a. vph 

ω,δ Parameters of BPR function 0.8, 4 n.a. 
ρ  Annual continuous compounding discount 

rate 
7% n.a. 

,µ α  Travel demand growth rate before and after 
investment 

2%, 3% n.a. 

σ  Travel demand percentage volatility  5% n.a. 

1q , 2q  Upper barrier of travel demand 4000, 8000 vph 

ξ Value of time 20 $ per hour 
v Variable cost rate  10 $ per hour 

n.a. = not applicable. 
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4.2.3. Stochastic Demand 

I keep the same assumptions about demand uncertainty as in Chapter 3. Without the new 

highway investment, the demand between the two cities, denoted by q1(t), follows a geometric 

Brownian motion with a growth rate μ and a volatility σ. A reflecting upper barrier 1 oq k= caps 

the demand. With the investment, the demand between the two cities denoted by q2(t), has a 

higher growth rate α and a higher reflecting upper barrier, 2 o nq k k= + . 

 

4.2.4. Consumer Surplus 

The amount of revenue that remains (if any) after accounting for all construction, land cost and 

operating costs is not the most important concern for a social planner.  The main purpose of 

building a new highway is to relieve congestion, save travel time, reduce fuel cost and eventually 

increase social benefit. 

Because of induced demand, to calculate the social benefit of time savings economists use 

the Rule of a Half (RoH). The RoH has been widely used in transportation investments (Winkler, 

2015). As shown in Figure 4-1, the RoH assumes a nearly-linear demand function. Area A in 

Figure 4-1 represents the consumer surplus before the new highway construction. The new 

highway leads to a travel cost reduction between two cities and induces more travel demand. The 

gain in consumer surplus is a trapezoid (area B+C). The RoH states that the benefits of induced 

travel are worth half the per-trip saving to existing travelers. At each time t, the consumer surplus 

CS of the new highway is: 

( ) ( )( ) ( ) ( ) ( )( )1 2 1 2 1

1
 area B + area C = 

2
,CS t t tq q TS q TS qtq t= ⋅ + ⋅ −     

  ( ) ( ) ( )1 2

2

tq
tT

tq
S

+
=                                                                              (4.10) 
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where TS is travel cost saving per traveler resulting from the new highway investment:  

( ) ( )( ) ( ) ( ) ( )( )2, 21

1 2 =,
o

o

o o

q q tq t
TS q q v T w

k
t

k
t

δδ

ξ
  

+ −  


      


 
 
 

                     (4.11) 

and ( )( )2, 2oq q t  is traffic on the old highway after the new highway construction, which is the 

positive real root of Equation (4.12): 

( ) ( ) ( )
( )

2 2, 2, 0o o

n o

n o

q t q t q t p
T T

k k w v

δ δ

δ ξ
−   

− − =    +   
                                      (4.12) 

 

Figure 4-1. Vehicle Travel Demand Curve Illustrating the Rule of a Half 

 

4.2.5. NPV of the New Highway Project 

The objective of the government is to maximize expected social benefit, which is the expected 

present value of consumer surplus and toll revenue over time, minus maintenance costs and 

upfront costs. Therefore, the NPV of investing immediately with initial demand q0 is:  

( ) ( ) ( )( ) ( )( )0 1 2 2 0, t A
P L C

me R
q E N CS q t q t R q t e dt q C n C

ρ
ρ

ρ

+∞ − ∆
−

∆

   +  Ω = + − + +    
   

∫    (4.13) 
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where ( )( ) ( )( )2 2, 2oR q t qp q t=  is the toll revenue at time t. See Table 4-1 for notations and 

parameter values. N is a factor that converts consumer surplus and revenue from $/hour to $/year. 

Because q2,o, which is needed in the calculation of consumer surplus and revenue, cannot 

be obtained analytically, and there are two RGBM demands, q1(t) and q2(t) involved, ( )0qΩ  can 

only be calculated by numerically. For that purpose, I use Monte Carlo simulation. 

 

4.2.6. Demand Threshold 

As discussed in Section 3.2.6, the government’s investment timing problem can be formulated as 

a dynamic programming problem. The government holds an option to invest in a new highway, 

so at every point in time, it faces a binary decision: invest immediately or continue waiting. The 

optimal stopping problem can be solved using Bellman's equation. There exist an optimal 

demand threshold q*, such that when travel demand is lower than q*, it is optimal to postpone the 

investment, and it is optimal to invest immediately when travel demand is higher than q* (Dixit 

and Pindyck, 1994).  

( ) ( )
1 when 

when 

ex

ex

bq q q
F q

q q q

θ ≤= Ω >
                                           (4.14) 

where 1bq
θ  is the value of waiting, and b is a coefficient to be determined, and θ1 is the positive 

root of 2 2 2(2 ) 2 0σ θ µ σ θ ρ+ − − = . 

The continuity and smooth-pasting conditions need to be solved to obtain the demand 

threshold. The challenge is obtaining ( )qΩ and its first order derivative. Since ( )qΩ can only be 

obtained by Monte Carlo simulation, a least-square regression model of ( )qΩ  is used to 

approximate its first order derivative.  
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Continuity:              ( ) ( )* *F q q= Ω                                                                                (4.15)                                                              

  Smooth-Pasting:      * *) )F q q
q q

q q

∂ ( ∂Ω(=
∂ ∂

                                                                     (4.16)                                                    

 

4.2.7. Monte Carlo Simulation 

Figure 4-2 shows the procedure used for calculating ( )qΩ  and its first order derivative by 

Monte Carlo simulation and finding the optimal demand threshold. 

 

Figure 4-2. Find the optimal demand threshold by Monte Carlo simulation 
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4.3 A NUMERICAL EXAMPLE 

In this section, I illustrate the public investment real options model developed in Section 4.2 on a 

case study with data inspired from the California SR-125 toll road project. Section 3.3 gives a 

brief introduction to the California SR-125 toll road and its competing highway. Unless 

specifically stated otherwise, the parameter values used in the numerical examples below are 

those listed in Table 4-1. 

 

Figure 4-3. Values of NPV, investment opportunity and option to defer (the new highway 

project) 

 

Figure 4-3 illustrates the value of the investment opportunity, the NPV and the value of 

the option to defer. The demand threshold of 2,416 vph divides the demand space into two 

regions: waiting and investing. Under the demand threshold, the investment opportunity is 

Waiting region Investing region 
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greater than the value Ω(q) of investing immediately, so there is a positive value to defer the 

investment. Conversely, a higher demand justifies investing immediately and gives less value to 

the deferment option. When the demand increases beyond the threshold, the value of the 

investment opportunity is equal to Ω(q), so the government should invest immediately, and the 

value of waiting goes to zero. 

The relationship between demand volatility and demand threshold is similar to what I 

found in Section 3.3. A higher volatility leads to delaying the investment. Underestimating 

demand uncertainty will cause investing prematurely. 

 

Figure 4-4. Demand thresholds of new highway with different demand volatilities 
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4.4 THE VALUE OF THE NON-COMPETE CLAUSE IN PPP 

In this section, I discuss another option the government has to get the new highway built. Build–

operate–transfer (BOT) is a form of project financing, wherein a private entity receives a 

concession from the public sector to finance, design, construct, and operate a new highway with 

a predetermined capacity kn. After Δ years of planning, design and construction, the private 

sector can collect tolls from new highway’s users to recoup the planning cost Cp, construction 

cost nLCC, and annual maintenance cost m. During the concession period, the toll is regulated by 

the government to be τ . At the end of the concession period CP, the operation of the new 

highway is transferred to the government. 

The government expects significant congestion relief once the new highway is 

constructed. However, if future demand keeps growing, the government may find it necessary to 

also expand the old highway capacity to koex at the cost of Cex. For simplicity, I assume that the 

construction duration of the old highway expansion is also Δ, and the expansion will not induce 

more travel demand. 

If the PPP project cannot provide a competitive rate of return similar to alternative 

projects of comparable risk, the private sector may request a non-compete clause in the PPP 

contract that during the concession period the government cannot expand the old highway. This 

would give the private firms who entered into the PPP some reassurance that the profitability of 

the project will not be reduced by competing projects owned by the government, and therefore 

guarantee a higher rate of return. 

This section is organized as follows. Section 4.4.1 finds the demand threshold and value 

of the old highway expansion from the government’s point-of-view. Section 4.4.2 finds the 

demand thresholds and values of the new highway project with and without the non-compete 
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clause from the government’s point-of-view. Section 4.4.3 finds the demand thresholds and 

values of the new highway project with and without the non-compete clause from the private 

sector’s point-of-view. Section 4.4.4 evaluates the value of the non-compete clause. 

 

4.4.1. Value of the Old Highway Expansion 

The optimal investment timing of the old highway expansion can be formulated as a dynamic 

programming problem. The value of the expansion has the same form as Equation (4.17). There 

exists an optimal demand threshold qex, such that when travel demand is lower than qex, it is 

optimal to postpone the expansion. Otherwise, it is optimal to expand the old highway 

immediately. Continuity and smooth-pasting conditions need to be solved to obtain the demand 

threshold.  

( ) ( )
2

ex

ex

when 

when 

ex ex

ex

b q q q
F q

q q q

θ ≤= Ω >
                                           (4.17) 

where 2

exb qθ
 is the value of waiting, and bex is a coefficient to be determined, and θ2 is the 

positive root of 2 2 2(2 ) 2 0σ θ α σ θ ρ+ − − = . 

( )ex qΩ  is the NPV of expanding the old highway immediately. Its expression is given by 

Equation (4.18). Since I assume that there is no induced demand after expansion, from the 

government’s point-of-view the NPV of expansion is simply the expected present value of total 

travel cost savings with an infinite time horizon, minus the expansion cost Cex. 

( ) ( ) ( )( )ex 0 2 2 0

t

ex exE N q t TS q t e d Cq t qρ
+∞

−

∆

   − 
  

Ω = ∫                          (4.18) 

where: 

• N is a factor that converts travel cost savings from $/hour to $/year, 
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• ( )( )2exTS q t  is travel cost savings per traveler at time t caused by the old highway 

expansion: 

( )( ) ( ) ( ) ( )
2

2, 2, ,o oex

o

o

ex

oex

q t q t
T w

k k
TS q t v

δ δ

ξ
    
 −        

+


=                              (4.19) 

• and ( )( )2, 2oexq q t  is the traffic volume on the old highway after expansion. It is the 

positive real root of Equation (4.20): 

( ) ( ) ( )
( )

2 2, 2, 0.oex oex

n o

n oex

q t q t q t
T T

k k w v

δ δ
τ

δ ξ
−   

− − =    +   
                           (4.20) 

Using parameter values listed in Table 4-1, ( )ex 0qΩ  and its first order derivative can be 

obtained by Monte Carlo simulation. Using a similar procedure as shown in Figure 4-2, the value 

of qex can be found to be 4,994 vph, at which point the social benefit of the expansion option is 

$690 million. The coefficient bex is 4.2574. The values of expansion, waiting and investing 

immediately over the demand space are shown in Figure 4-5.  
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Figure 4-5. Values of NPV, investment opportunity and option to defer (old highway 

expansion) 

 

4.4.2. Public Sector’s Value of the New Highway Project 

From the government’s point-of-view, the value of the new highway project is:  

 ( ) ( )
1 when 

when 

g g

g

g g

b q q q
F q

q q q

θ ≤= Ω >
                                              (4.21) 

where 1

gb qθ
 is the value of waiting, and bg is a coefficient to be determined, 

           ( )g qΩ  is the value of starting the new highway project immediately. 

 

4.4.2.1. Without the non-compete clause 

From the government’s point-of-view, the value of starting the new highway project immediately 

is given in Equation (4.22). The first term is the expected present value of consumer surplus over 

Waiting region Investing region 

NPV 
Value of investment opportunity 
Value of waiting 
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time. The second term is the value of the old highway expansion. The last term is the discounted 

cash flow of maintenance cost after concession period plus upfront land cost. 

( ) ( ) ( )( ) ( )0 1 2 0 ex 0, t t A
g

CP

R
q E N CS q t q t e dt q F q me dtρ ρ

ρ

+∞ +∞
− −

∆

    Ω = + − +   
    
∫ ∫        (4.22) 

 

4.4.2.2. With non-compete clause 

With the non-compete clause, the government is not allowed to expand the old highway until the 

end of the concession, at which point the value of expansion is ( )( )exF q CP . Therefore, the value 

of the project with the non-compete clause is the expected present value of ( )( )exF q CP  as the 

second term in Equation (4.23).  
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∫ ∫

 (4.23) 

 

4.4.3. Private Sector’s Value of the New Highway Project 

4.4.3.1. Without non-compete clause 

From the private sector’s point-of-view, the value of starting the new highway project 

immediately is given by Equation (4.24). The first term is the expected present value of revenue 

before the old highway expansion. The second term is the expected present value of revenue 

after the old highway expansion. The last term is the discounted cash flow of maintenance costs 

during the concession period plus upfront costs. 
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( )( ) ( )( )
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2 0 2 0     
ex

ex

p

T CP CP

t t t

ex P L C

T

q
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∫ ∫ ∫

   (4.24) 
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where ( )( ) ( ) ( )( )2 2 2,oR q t Np q t q t= − ,                                                                                   (4.25) 

exR is the annual revenue that the private sector collects after the expansion of the old 

highway: 

( )( ) ( ) ( )( )2 2 2,ex oexR q t Np q t q t= − ,                                       (4.26)   

Tex is the first time ( )2q t  reaches exq , which triggers then old highway expansion with 

Δ years of construction. The value of τ is calculated by simulation. 

 

 
4.4.4.2. With the non-compete clause 

With the non-compete clause, the new highway project keeps generating revenues during the 

whole concession period without being undermined by competition from the other highway. 

( ) ( )( )0 2 0

CP CP

NC t t

p P L Cq E R q t e dt q me dt C n Cρ ρ− −

∆ ∆

    Ω = − + +   
    
∫ ∫                       (4.27) 

 

4.4.4. Value of the Non-compete Clause 

The value of the NPV for both the public and private sectors with and without the non-compete 

clause (Equations (4.22), (4.23), (4.24) and (4.27)) can be calculated by simulation. Since the 

demand threshold of the new highway project is determined by the government, I calculate the 

corresponding demand threshold for Equations (4.22) and (4.23), and use the thresholds to 

calculate the NPV of the project for both the public and the private sectors. The results are 

plotted in Figure 4-6 and 4-7.  

Without the non-compete clause, the public sector’s optimal demand threshold of the new 

highway project is 2,039 vph, and the private sector’s threshold is higher, at 2,127 vph. With the 

non-compete clause, the threshold increases to 2,127 vph and 2,607 vph for the public and 
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private sector, respectively. I assume that the starting time of the PPP after negotiation between 

both sectors is 2,300 vph, no matter if the non-compete clause is included. I calculate the 

expected profit and at 2,300 vph, which is $48.5 million without the non-compete clause and 

$73.8 million with the non-compete clause. The corresponding internal rates of turn for the 

private sector are 7.4% and 7.7%, respectively. The non-compete clause does not make the 

project much more attractive to the private sector. However, it causes a significant social benefit 

loss to the public. By signing the non-compete clause, the social benefit drops from $942 million 

to $795 at 2,654 vph. Figure 4-8 shows that the social benefit loss of the new highway project is 

much higher than the profit gain under the non-compete clause, which implies that the non-

compete clause is not an efficient form of government guarantee. Even if the government 

subsidizes the private sector directly, the social benefit loss should be at least equal to the profit 

gain. 
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Figure 4-6. Values of NPV, investment opportunity and option to defer (without clause) 
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Figure 4-7. Values of NPV, investment opportunity and option to defer (with clause) 
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Figure 4-8. Value of the non-compete clause  

 

4.5 DISCUSSION 

This chapter revisited the optimal investment timing problem for a public inter-city highway 

from the government’s point-of-view. The “Rule of a Half” was used to measure the consumer 

surplus of the project. I analytically derived the system optimal toll rate to be charged on the new 

highway, which was assumed to constant regardless of the demand level and highway capacities. 

The objective function is not analytically calculable, so Monte Carlo simulation was used to 

obtain the termination payoff function and its derivative and to solve the optimal demand 

threshold. With predetermined capacity, the demand threshold divides the demand space into a 

waiting region and an investing region, just as in Chapter 3. Interestingly, for the same SR-125 
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project, the government’s demand threshold is lower than the private firm’s, which implies that 

social-benefit-maximizing leads to investing earlier compared to a profit-maximizing company. 

Like the private firm, however, the government also tends to delay the investment as demand 

volatility increases.  

In Section 4.4, I evaluated the new highway project in a build-operate-transfer framework. 

The government releases a concession to a private concessionaire who takes responsibility for 

financing, planning, designing, constructing, operating and maintaining the new highway. The 

private sector collects tolls, which are regulated by the government, to recover investment costs 

during the concession period.  My focus was the analysis of the non-compete clause, which 

forbids the government from investing in the old highway during the public-private partnership. 

Real options methods were used to value the sequential options of the new highway construction 

and the old highway expansion under demand uncertainty. I found that the non-compete clause 

does increase the private sector’s expected profit, but it has little impact on the internal rate of 

return of the project. However, the social benefit loss is much larger, which implies that in the 

negotiation of PPP contract, the non-compete clause may not be the best form of government 

guarantees to ensure the private sector’s profitability.  

 



 

 
 

CHAPTER 5 SOLVING THE MULTI-PERIOD NETWORK DESIGN PROBLEM WITH 

APPROXIMATE LEAST-SQUARE MONTE CARLO SIMULATION 

 

5.1. INTRODUCTION 

Chapter 3 and 4 analyze the timing and the capacity of a toll road project between two cities 

under uncertainty for a very simple road network with only two centroids (city A and B) and two 

links (the old highway and the new highway) where traffic from/to centroids outside the network 

and any additional transportation infrastructure are neglected. In this chapter, I expand the real 

options method to the multi-period Continuous Network Design Problem (Multi-period CNDP), 

which is more complex than the inter-city highway project in several ways: (1) the road network 

has multiple centroids and links; (2) the decision-maker is facing multi-dimensional stochastic 

demand between OD pairs; (3) the decision-maker needs to select a continuous capacity 

improvement plan for each link, so capacity is no longer limited to a small number of integer 

values. 

By increasing the dimensions of centroids, links, stochastic variables and decision 

variables, the analytical and finite difference methods used in Chapter 3 and 4 are no longer 

applicable. Least Square Monte Carlo simulation (LSMC) proposed by Longstaff and Schwartz 

(2001) is a simple yet powerful approach to solve the investment timing and capacity choice 

problem for projects in a road network. However, the LSMC method follows an iterative 

procedure, and the value of the termination payoff function for the CNDP needs to be solved 

repeatedly given a set of simulated demands for each iteration. Solving the CNDP with 

stochastic demand is very time-consuming (typically measured in days on a desktop computer, 

even for a small network with a few centroids and links). When the objective of the CNDP 

covers the whole concession periods, a network investment timing and capacity choice problem 



 

 
 

using LSMC may require calculating the values of the termination payoff function thousands of 

times, which would result in years of computation time (on a PC), making the problem 

unsolvable. 

In this chapter, I propose an algorithm, which I called “Approximate Least Square Monte 

Carlo simulation” (ALSMC), to solve the multi-period CNDP in a reasonable amount of time on 

a PC. The Approximate Least Square Monte Carlo simulation applies least square regression to 

estimate the value of the termination payoff function without knowing the optimal capacity 

improvement plan. For each iteration, only a multi-period CNDP with deterministic demand 

needs to be solved, which dramatically reduces the computing time of each termination payoff 

function from days to minutes. 

This chapter is organized as follows. Section 5.2 presents the original LSMC algorithm 

and introduces the ALSMC algorithm. The ALSMC is tested on a small road network in Section 

5.3. Section 5.4 discusses the results, summarizes limitations, and suggests ideas for future work. 

 

5.2. METHODOLOGY  

In Section 5.2.1, I first introduce the original Least Square Monte Carlo (LSMC) simulation. 

Then, I propose an approximation of the termination payoff function in Section 5.2.2, which 

combined with the original LSMC becomes the Approximate LSMC simulation method. In 

Section 5.2.3, the Approximate LSMC is tested on a simple example, and the approximate results 

are compared with the exact solution. 

 

 

 



 

 
 

Table 5-1. Notation 

Notation Definition 

Set notation 

A  Set of links 
rs  OD pair, rs RS∈   
a  Link, a A∈    
Variables to determine 

ay
 

Link capacity improvement for link a 

maxy
 

The maximum link capacity improvement allowed for each link 

ax
 

Link flow for link a with investment 

,0ax  Link flow for link a without investment 

*
y  Vector of optimal link capacity improvement *

ay , a A∈   
β

y  Vector of approximate link capacity improvement a

β
y , a A∈   

tq  Vector of ,  rs

tq rs RS∈  
rs

tq  Traffic demand between OD pairs rs  at time t 

i

tq  Vector of  on -th simulated demand path at time ,  rs

tq i t rs RS∈  

Parameters given 

aC  Parameter in link performance function for link a 

aB
 

Parameter in link performance function for link a 

ad
 

Unit cost of link capacity improvement 

ak
 

Capacity of link a 

,

rs

a pδ
 

Link-path incidence indicator 

T Implementation period, the expiration date of the investment 
opportunity 

CP Concession period 
Δ Construction duration 
P Number of demand path used in LSMC 
P’ Number of demand path used in the approximation of termination 

payoff function 

 

5.2.1. Least Squares Monte Carlo Simulation 

Least Squares Monte Carlo simulation (LSMC) is a powerful approach for approximating the 

value of American options by simulation, especially when dynamic factors follow some general 

stochastic processes that render unsolvable the partial differential equation characterizing the 

value of the option, and when the value of the option depends on multiple dynamic factors that 

make finite difference and binomial techniques impractical. The LSMC approach can accurately 



 

 
 

approximate the value of the option with high computational speed in a parallel environment. Let 

me first briefly outline the LSMC approach developed by Longstaff and Schwartz (2001) and 

extended by Gamba (2003) to solve multi-option valuation problem. 

The investment opportunity can be treated as an American option, which is an option that 

can be exercised once at any time before the expiration date. Least-Square Monte Carlo 

simulation approximately assumes that an American option has multiple but finite N exercise 

times before it expires at time T, and the exercise time interval is Δt = T/N. The exercise time can 

be treated as continuous by increasing N. The Bellman equation corresponding to the optimal 

stopping problem in discrete time can be written: 

( ) ( )( ) ( ) ( ){ }1

*

1, max , , , ,
n n n n n n n

r t

n t t t n t t n t tF t t e E F t
+

− ∆
+

 = Ω Φ =
 

q q y q q q q               (5.1) 

where ( ),
nn tF t q  is the option value function at time tn given state variables 

nt
q . ( )*,

nt
Ω q y  is 

the termination payoff function that can be obtained by exercising the option immediately at time 

tn with the optimal decision y*.  

 ( ) ( )* arg max ,
n nt t= Ω

y

y q q y   (5.2) 

The second term on the right-hand side of Equation (5.1) is the continuation value 

( ),
nn ttΦ q , which is given by the expected conditional option value ( )

11,n n nt n t tE F t
++

 
 

q q  at time 

tn+1 discounted to time tn. If the termination payoff value is greater than the continuation value, 

then it is optimal to exercise the option at time tn. Otherwise, it is better to wait and to get a 

higher expected option value at time tn+1. 

 

  



 

 
 

The LSMC Algorithm 

The LSMC algorithm can be summarized in the following steps: 

Step 1. Given 0q  at time t0, the dynamics of the state variables { },
n

rs

t tq rs RS= ∀ ∈q  in the 

future is simulated by generating P paths for { }, 1,2,...,
nt

n N= =q q . Let us denote by 

n

i

tq the vector of demands between all OD pairs at time tn along the i-th simulated path. 

The value of ( ),
nn tF t q is obtained by backward dynamic programming. 

Step 2. At time tN, the continuation value is zero, because the option expires after time tN. For 

each time tn < tN, ( )( )*,
n n

i i

t tΩ q y q  can be calculated analytically or by simulation given 

n

i

tq . Therefore, at time tN, the option value function is given by: 

                         ( ) ( )( ){ }*, max , ,0
N N N

i i i

N t t tF t = Ωq q y q                                               (5.3) 

Step 3. For tn from tN-1 back to t1: 

a. For paths with ( )( )*,
n n

i i

t tΩ q y q >0, which are called “in the money” paths, calculate

( ) ( )
0

ˆˆ ,
n n

M
i i

n t m m t

m

t fβ
=

Φ =∑q q . ( )mf X  is the basis function of X. There are many choices of 

basis functions, including Hermite, Legendre, Laguerre, Chebyshev, Gegenbauer and 

Jacobi polynomials (Longstaff and Schwartz, 2001). One choice is the simple powers of 

the state variables: 

2

0 1 2( ) 1; ( ) ;  ( ) ;     ...    ;  ( ) M

Mf X f X X f X X f X X= = = =                          (5.4) 

Use original least square to estimate the ˆ
mβ  for the M-polynomial least square regression 

model above. Longstaff and Schwartz (2001) states that if the stochastic state variables 

have state-dependent volatility, then weighted least squares or generalized least squares 



 

 
 

might be more robust than ordinary least squares because the residuals from the 

regression may be heteroskedastic. However, I find that original least-square perform as 

well as weighted least-square in my numerical examples. Each sample observation in the 

regression model is the realized continuation value along one “in-the-money” path:  

( ) ( )
11, ,

n n

i i r t i

n t n tt e F t
+

− ∆
+Φ =q q                                               (5.5) 

b. For “in the money” paths, update  

( ) ( )( ) ( ){ }* ˆ, max , , ,
n n n n

i i i i

n t t t n tF t t= Ω Φq q y q q                              (5.6) 

c. For other paths, update  

( ) ( )ˆ, ,
n n

i i

n t n tF t t= Φq q                                                     (5.7) 

Step 4. For t0, the expected continuation value is the average value of all paths: 

( ) ( )
0 10 1

0

, ,
r t P

i

t t

i

e
t F t

P

− ∆

=

Φ = ∑q q . If ( )( )
0 0

*,t tΩ q y q < ( )
00, ttΦ q , then the best strategy is to 

defer the investment. If, however, ( )( ) ( )
0 0 0

*

0, ,t t ttΩ ≥ Φq y q q , then the best strategy is to 

invest at time t0. 

 

The estimation of the continuation value has been proven to converge to the true value 

when the number of paths K and the number of basis functions J goes to infinity (Stentoft, 2004), 

and the estimation errors are asymptotically normally distributed (Clément et al., 2002). One 

concern with the basis function is that when the number of state variables increases, it seems that 

the number of basis functions also grows exponentially with the dimension of the problem. 

However, Longstaff and Schwartz (2001) show the number of basis functions needed to obtain 

convergence grows much slower than exponentially. 



 

 
 

5.2.2. Approximation of the Termination Payoff Function 

The greatest challenge in solving multi-period CNDP with LSMC is how to determine the 

optimal capacity design y* and the value of ( )( )*,
n n

i i

t tΩ q y q , given 
n

i

tq . Since the optimal 

capacity depends not only on the initial demand 
n

i

tq at time tn, but also on future demands 
1nt +

q , 

2nt +
q , …, 

n CPt +
q , solving y* relies on the enumeration of future demands. Therefore, calculating 

( )( )*,
n n

i i

t tΩ q y q  is extremely time-consuming.  Taking the test network in Section 5.3 as an 

example, calculating a single ( )( )*,
n n

i i

t tΩ q y q  with 10 concession periods using 2000 paths takes 

hours on a recent personal computer, even with parallel computation. Moreover, for the test 

network design problem with 5 implementation periods and 2000 paths, the LSMC method 

requires ( )( )*,
n n

i i

t tΩ q y q  being solved 10000 times, which takes years to finish. 

The goal of solving flexible network design problem is to know whether or not capacity 

improvement should be implemented at t0 given 
0t

q , and if yes, what the optimal capacity design 

should be, in addition to finding the value of the investment opportunity. Because the LSMC 

method requires the value of ( )( )*,
n n

i i

t tΩ q y q  for each time point on each path, the optimal 

capacity design needs to be solved for each time point on each path. However, it is unnecessary 

to know the optimal capacity design for any future time point. If it is better to delay the 

investment, the decision maker only needs to solve the flexible network design problem with the 

newly evolved demands at the next time point. If we could generate accurately enough estimated 

values of the termination payoff function ( )*ˆ ,
n

i

tΩ q y  without knowing the optimal capacity 

design y*, it would be possible to substantially reduce the computation time of the flexible 

network design problem. This is the idea behind my approach. 



 

 
 

I calculate ( )*ˆ ,
n

i

tΩ q y  with the approximate capacity design y β
 as follows: 

(1) Randomly choose P′  out P demand paths. 

(2) For each demand 
n

j

tq  on path j, 'j P∈  and n 1,2,..., N= , instead of solving y* that relies on 

path enumeration, find an approximate ya that optimizes the objective with only a single 

path of demands 
n

j

tq , 
1n

j

t +
q ,…, 

n CP

j

t +
q .  

( )
1

arg max , ,..., ,
n n n CP

a j j j

t t t+ +
= Ω

y
y q q q y                                 (5.8) 

(3) Based on ya and the single path of demands 
n

j

tq , 
1n

j

t +
q ,…, 

n CP

j

t +
q , calculate the termination 

payoff value ( )
1

, ,..., ,
n n n CP

j j j

t t t

β
+ +

Ω q q q y  

(4) Estimate ( ) ( )
0

ˆˆ
n n

M
j j

t m m t

m

fβ
=

Ω =∑q q . ( )
nm

j

tf q  is the basis function of 
n

j

tq . Use least-square to 

estimate ˆ
mβ  for the M-polynomial least square regression model above. Each sample 

observation in the regression model is ( )
1

, ,..., ,
n n n CP

j j j

t t t

β
+ +

Ω q q q y  from step (3).  

(5) Estimate ( ) ( )
0

ˆˆ
n n

M
i i

t m m t

m

fβ
=

Ω =∑q q  for all  and 'i P i P∈ ∉ . 

(6) Run the original LSMC using ( )ˆ
n

i

tΩ q  as the termination payoff value of each point on all 

demand paths. If the result shows that investing immediately is preferred, then a 

stochastic NDP needs to be solved to obtain the optimal capacity at time 0. If the result 

shows that waiting is preferred, then the investor should simply repeat the ALSMC at the 

next time point, until the result changes to investing immediately or the investment 

opportunity expires. 



 

 
 

Finding the approximate y β
 only requires a single simulated path of demands, which 

simplifies the stochastic NDP to a deterministic NDP and then dramatically reduces 

computations. By least-square regression, optimal objective values of deterministic NDP samples 

are used to estimate the stochastic NDP’s objective value. However, because 

( )
1

argmax , ,..., ,
n n n CP

j j j

t t t

β β
+ +

= Ωy q q q y , the deterministic NDP with y β
 tends to overestimate the 

stochastic NDP’s objective value with y*, ( ) ( )
1 1

*, ,..., , , ,..., ,
n n n CP n n n CP

j j j j j j

t t t t t t

β
+ + + +

Ω ≥ Ωq q q y q q q y . 

 

5.2.3. A Simple Example 

Let us test this approach on a very simple investment timing problem with endogenous and 

continuous capacity that can also be solved analytically. Let us then compare the Approximate 

LSMC solution with analytical solutions obtained via real options and the tradition NPV method. 

Consider a proposed highway project that is designed to generate revenues of 1/2

tq K  

dollars each year. The length of the concession period CP is 10 years. qt is the stochastic demand 

at year t; it is assumed to follow a geometric Brownian motion with an annual drift rate μ = 3% 

and annual volatility σ = 3%. The annual discount rate ρ is 7%. The capacity of the project is K, 

which is decided at the time of investment and cannot be changed after. The upfront costs 

include construction cost $15*K and a start-up cost $100. The investor can delay the investment 

infinitely, and the investment opportunity never expires. The construction duration Δ is 1 year, so 

if the investment happens at time t, the investor can collect revenues from time t+1 to t+CP. 



 

 
 

Equation (5.9) shows the NPV of the investment at demand level q0 with a given capacity 

K. With endogenous capacity K* which maximizes the NPV (Equation (5.10)), the new NPV is 

updated by Equation (5.11): 

 ( ) 1/2

0 0, 15 100
CP

t

t

t

q K E q e q K Kρ−

=∆

 
Ω = − − 

 
∑   (5.9) 

 ( )
2

0

*

0
900

CP
t

t

t

E q e q

K q

ρ−

=∆

 
 
 =
∑

  (5.10) 

 ( )( )
( ) ( ) ( )

( )

2

2
0

* 2

0 0 0, 100 100
60 60

CP
t

CP
t

t

E q q e
e e

q K q q

ρ
µ ρ µ ρ

µ ρ

−
− − − − ∆

=∆

 
   −   Ω = − = −

−

∑
          (5.11) 

Since ( )0tE q q  has a closed-form expression, this investment problem can be solved 

analytically using real options. The demand threshold is q* = 26.98. When q0 < 26.98, it is better 

to delay the investment, otherwise it is better to invest immediately. For example, when q0 = 20, 

delaying the investment has a value of $348.59, while investing immediately is worth $335.05.  

Let us compare the analytical results when q0 = 20 with the solution obtained using 

Approximate Least-Squares Monte Carlo simulation, assuming that ( )0tE q q and K* are not 

known. First, I simulate P demand paths with T implementation period (T = 20 years) and CP 

concession period (CP = 10 years). The original problem has an infinite implementation period, 

so the investment opportunity never expires. However, Least-Square Monte Carlo simulation 

must have an option expiration date, so I set a long enough implementation period T. Second, I 

randomly choose 'P  out of P paths (for now, set 'P  = P). For each time tn and path j ( 'j P∈ ), 

with the current demand 0 n

j

tq q= , the approximate capacity K β  is calculated as: 



 

 
 

( )

2

,...,
900

n

n n

CP
j t

t t

j j t

t t CP

q e

K q q

ρ

β

−
+

=∆
+∆ +

 
 
 =
∑

                                                    (5.12) 

Obviously, 
n

j

tK  is not the optimal capacity K*(
n

j

tq ), because the value of
n

j

tK depends on 

the simulated demand level, instead of the expected demand level, from tn+1 to tn+10 on path j. 

The NPV of the project with 
n

j

tK and simulated demands is: 

( ) ( )
10

1/2
0.07

1

,..., 15 ,..., 100
n n n n n n

j j j j t j j

t t t CP t t t t CP

t

K q q q e K q q
β β−

+∆ + + +∆ +
=

Ω = − −∑           (5.13) 

I use 
n

j

tΩ as the dependent variable and 
n

j

tq as the independent variable ( 1,  2,  ...,  j P= ; 

n =1, 2, ..., t T ) to estimate the least-square regression model. Therefore, the exact NPV function 

of Equation (5.11) can be replaced by the approximate NPV function. An example of 

approximated NPV function generated by simulation is Equation (5.14): 

( ) 3 2

0 0 0 0
ˆ 0.0022* 0.9163* 4.1681* 130.5669q q q qΩ = + + −               (5.14) 

Figure 5-1 shows all the 
n

j

tΩ with the analytical NPV function given by Equation (5.11). 

After using Equation (5.14) to approximate ( )0qΩ , the original LSMC simulation can be 

applied to calculate the value of the investment opportunity when the initial demand is 10. The 

result is compared with the analytical value. I repeat the Approximate LSMC simulation 10 

times with different numbers of paths (P=500, 1000, 2500 and 5000), and then plot the errors in 

Figure 5-2. It shows that even with a small number of paths, the error between the analytical 

value and approximate value of investment opportunity is within 1%. As the number of paths 

increasing, the approximate value of the investment opportunity converges. With 5000 paths, the 

difference between the exact and the approximated solution is within 0.5%. However, as I 



 

 
 

discussed above in Section 5.2.2, the approximated value of investment opportunity tends to be 

slighted higher than the exact one. 

 

 

Figure 5-1. Least square estimation of Ω as a polynomial function of q 

 

The simulated demand matrix has P paths and T implementation periods, therefore P*T 

samples in total. The original LSMC uses P samples in least-square regression at each iteration, 

while the approximation of the termination payoff function uses P′*T samples in least-square 

regression. Setting P′= P, as I did above, means that the sample size used in the second least-

square regression model is T times as large as the sample size used in the first least-square 

regression model. Because the approximation of the termination payoff function is very time-

consuming and the original LSMC takes almost no time, I can raise P to P = P′*T to improve 

the accuracy of the approximate LSMC without increasing the computation time. Figure 5-3 



 

 
 

shows the effects of increasing P on the accuracy of the approximate LSMC simulations, 

keeping P′=250. We see that when P = P′*T = 5000, the approximate LSMC simulation has the 

best accuracy. When P is smaller or larger than P′ *T, the two sample sizes used in the 

approximation of the termination payoff function and LSMC are unbalanced, which shows that 

overall accuracy is impacted by the smaller sample size. 

 

 

Figure 5-2. The error of approximate value of investment opportunity 

 



 

 
 

 

Figure 5-3. The impact of P on the accuracy of ALSMC ( P′  = 250) 

 

5.3. TEST NETWORK 

Let us now test the approximate LSMC method on the network shown in Figure 5-4, which has 

been extensively used in the literature (Abdulaal and LeBlanc, 1979; Friesz et al., 1992; Wang 

and Lo, 2010). This test network has 6 nodes, 16 links, and 2 OD pairs (1-6 and 6-1). The path 

set for each OD pair contains 8 paths. The values of the link travel cost parameters Ca and Ba, 

construction costs da, and link capacity ka, which all come from Friesz et al. (1992) are shown in 

Table 5-2. 

 



 

 
 

 

Figure 5-4. Test network 

 

Table 5-2. Network Characteristics 

Link Ca Ba ka da 

1 1.0 10.0 3.0 2.0 
2 2.0 5.0 10.0 3.0 
3 3.0 3.0 9.0 5.0 
4 4.0 20.0 4.0 4.0 
5 5.0 50.0 3.0 9.0 
6 2.0 20.0 2.0 1.0 
7 1.0 10.0 1.0 4.0 
8 1.0 1.0 10.0 3.0 
9 2.0 8.0 45.0 2.0 
10 3.0 3.0 3.0 5.0 
11 9.0 2.0 2.0 6.0 
12 4.0 10.0 6.0 8.0 
13 4.0 25.0 44.0 5.0 
14 2.0 33.0 20.0 3.0 
15 5.0 5.0 1.0 6.0 
16 6.0 1.0 4.5 1.0 

 

This test network was used as a single-period CNDP with deterministic demands (Friesz 

et al., 1992; Wang and Lo, 2010; Luathep et al., 2011). I need to introduce a time horizon and 

select additional parameters to expand the test network to a multi-period CNDP with stochastic 



 

 
 

demands. The demand for each OD pair follows a reflective geometric Brownian motion with μ 

= 3% and σ = 3%; these GBM processes are assumed independent for different OD pairs. The 

initial demands are 5 and 10 for OD 1-6 and 6-1, respectively. The upper barriers of demand are 

10 and 20 for OD 1-6 and 6-1, respectively. The annual discount rate is 7%.  

The investor has a one-time opportunity to improve the capacity of any links in the test 

network. For each link, the maximum capacity improvement ymax is 20. Since Least-Square 

Monte Carlo applies a backward procedure and must have an expiration date, I assume that the 

length of the implementation period T is 5 years. So the investor can invest in year 0, 1, 2, 3, 4 

and 5. The investment opportunity expires after year 5. A longer implementation can be used to 

approximate the case that the investment opportunity never expires. However, it does not impact 

the demonstration of ALSMC algorithm. The construction duration Δ is 1 year. The length of the 

concession period CP is 10 years. So if the investment is made in year 5, the concession period is 

from year 6 to year 15. 

 

5.3.1. Net Present Value of the Project 

The NPV of the capacity expansion project is the total social cost saving by investing 

immediately with the optimal capacity design. The total travel cost saving at each time point is 

given by the difference between a baseline of total travel costs without investment and total 

travel costs with the optimal capacity design. Total social cost saving is given by the present 

value of all expected total travel cost savings minus upfront investment costs:  
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subject to the capacity improvement constraint: 

max 0            ay y a A≤ ≤ ∀ ∈                                       (5.16) 

In Equation (5.15), ( ),0xa tq is the equilibrium traffic on link a at time t given demand qt 

without capacity improvement, ( )x ,a tq y is the equilibrium traffic on link a at time t given 

demand qt with capacity improvement plan y. Both ( ),0xa tq  and ( )x ,a tq y can be solved using 

incremental traffic assignment. In ALSMC, ( )0Ω q  is approximated by a least-square regression 

model based on the total social cost saving on a single simulated demand path, with approximate 

capacity design y β , which is solved using differential evolution. In Section 5.3.2, I explain how 

to solve CNDP with a single simulated demand path (deterministic CNDP) using differential 

evolution. 

 

5.3.2. Differential Evolution 

The Differential Evolution (DE) is a simple and powerful genetic algorithm which was 

introduced by Storn and Price (1995) to solve various optimization problems. The DE guides the 

initial population towards the vicinity of the global or near-global optimum solution for a given 

optimization problem through repeated cycles of mutation, crossover, and selection (Liu et al., 

2010). In the DE, three control parameters are used to operationalize the optimization process. 

The first one is the number of populations (NP), which is the number of solution vectors used in 

the solution process. The second one is the mutation factor (MF), which is used to obtain mutant 

vector from three selected solution vectors in the population; Storn and Price (1995) recommend 

setting MF between 0.5 and 1. The last parameter is the crossover rate (CR), which is the 

probability of consideration of the mutant vector. The recommended range for the crossover rate 



 

 
 

is [0.8, 1] by Storn and Price (1995). In this study, MF and CR are 0.5 and 0.9, respectively. The 

DE algorithm can be summarized as follows. 

 

Differential Evolution Algorithm: 

Step 1: Initial N (= 12) random capacity improvement plan yi (i=1, 2, …, N) between 0 and ymax. 

Step 2: For each parent yi, solve ( ),0xa tq  and ( )x ,a tq y  using incremental traffic assignment. 

Then, calculate Ω using Equation (5.15). 

Step 3: Generate child for each parent yi: 

With a 90% chance, do mutation and crossover: yi,a = yi,a + MF*( yk,a – yg,a) for all link a. 

k and g are two random chosen parents other than parent i. For 10% chance, the child yi 

is the same as the parent. 

If child yi,a < 0, set yi,a = 0; If yi,a > ymax, set yi,a = ymax. 

Step 4: For each child yi, solve ( ),0xa tq  and ( )x ,a tq y  using incremental traffic assignment. 

Then, calculate Ω using Equation (5.15). 

Step 5: For i N∈ , compare the Ω value of parent yi and child yi. If the Ω value of parent is 

greater than the Ω value of child, replace the parent with the child. Otherwise, keep the 

parent. 

Step 6: Among all parents, find the best parent ybest and Ωbest. 

Step 7: Repeat step 3-6, until Ωbest does not improve for 50 iterations or 500 iterations are 

reached.  

Many algorithms solved the test network (shown in Figure 5-4) with a single period. 

Differential evolution is also used to solve the test network with a single period, in order to 

compare their performance. The deterministic demands of two scenarios are shown in Table 5-3. 



 

 
 

Figure 5-5 and 5-6 shows that DE converges within 500 iterations for both scenarios, which 

takes less than 1 minute on a 64-bit Windows 7 Intel i7-2600 4-core 3.4GHz processor with 

parallel computation. The solutions of two scenarios are compared with 18 algorithms proposed 

in previous papers (see Appendix A). 

 

Table 5-3. Traffic demand scenarios for deterministic CNDP 

Scenario Demand from node 1 to node 6 Demand from node 6 to node 1 
Maximum 
improvement ymax 

I 5 10 10 
II 10 20 20 

 

 

 

Figure 5-5. Convergence of Differential Evolution (low demand scenario) 



 

 
 

 

Figure 5-6. Convergence of Differential Evolution (high demand scenario) 

 

5.3.3. Solving Multi-period CNDP with Stochastic Demand using ALSMC 

ALSMC simulation is executed in Matlab 2016b with P = 4000 and P′  =800. All Matlab codes 

are attached in Appendix B. The total computation time is 88 hours on a 64-bit Windows 7 Intel 

i7-2600 4-core 3.4 GHz processor with parallel computation.  The result shows that, at year 0, it 

is better to delay the investment, because the value of deferment is 4581, compared to the 

termination payoff value 2861. Allowing an option to defer the investment increases the value of 

the investment oppotunity by 60.1%. It also shows that even with a smaller sample size (P = 

1000 and P′  =200), the values of investing immediately are already stable over different trials. 

But a larger sample size is necessary to get the value of waiting to converge. 

 

 
 
 



 

 
 

Table 5-4. Value of investing immediately and waiting at t=0 

Trials (P=1000, P′=200) Value of investing at t = 0 Value of waiting at t = 0 

1 2,818 4,676 
2 2,885 4,358 
3 3,025 4,719 
4 2,888 4,573 

Combination of all samples 
(P=4000, P′=800) 

2,861 4,581 

 

It is not practical to solve the same multi-period stochastic CNDP with the same sample 

size using the original LSMC simulation approach. The original LSMC method requires solving 

the termination payoff function repeatedly, which could be extremely time-consuming. Therefore, 

I am unable to compare the value of investment opportunity generated by ALSMC and LSMC. 

Instead, I calculate the value of investing immediately (termination payoff function) at time 0 

based on 2000 simulated demand paths from time 1 to 10. Differential evolution is applied to 

find the optimal capacity improvement plan y* at time 0 and then the value of investing 

immediately. The total computation time is 20 hours. The value of investing immediately is 2887, 

which is very close to the approximated value from ALSMC, 2861. The error is within 1%. It 

shows that Approximate Least Square Monte Carlo simulation can provide an accurate value of 

the termination payoff function. 

 

5.4. DISCUSSION 

In this chapter, I propose a new algorithm - which I called “Approximate Least Square Monte 

Carlo simulation” (ALSMC) - that complements the original Least-square Monte Carlo 

simulation to solve the multi-period stochastic Continuous Network Design Problem (CNDP). 

The ALSMC has significant advantages over the original Least-square Monte Carlo simulation 

on real options problems with hard-to-solve termination payoff function. The original Least-



 

 
 

Square Monte Carlo (LSMC) simulation requires repeatedly solving the termination payoff 

function for each sample. For the multi-period CNDP with stochastic demands, solving explicitly 

the termination payoff function relies on demand path enumeration and finding the optimal 

capacity design. Usually, global search algorithms can be used to find the optimal capacity 

design with a large number of simulated demand paths, which is very time-consuming. By 

contrast, ALSMC solves each termination payoff function approximately based on a single 

simulated demand path, which reduces computation time dramatically. Then the termination 

payoff function is estimated as a polynomial function of demands using least-square regression.  

In Section 5.2.3, ALSMC is tested on a simple example that can be solved analytically. 

Therefore, I am able to compare the exact solution with ALSMC solution. ALSMC is shown to 

converge with the number of demand paths increasing. Although ALSMC solution tends to 

overestimate the termination payoff function and the value of investment opportunity, the gap 

between the exact value and ALSMC’s value is very smaller (within 0.5%). 

In Section 5.3, ALSMC is tested on a multi-period stochastic CNDP with 16 links and 2 

OD pairs. Differential evolution, which I show as a fast and accurate global search algorithm, is 

used to solve the termination payoff function with a single demand path. 2000 termination payoff 

functions are solved to estimate the least-square regression model. The ALSMC solution shows 

that delaying investment brings 60% more value to the project than investment immediately at 

time 0. The “exact” termination payoff is also calculated based on demand enumeration, which is 

about 1% greater than the ALSMC value. However, solving the “exact” termination payoff takes 

20 hours, and the whole multi-period stochastic CNDP with 2000 number of paths and 5 

implementation periods requires solving the “exact” termination payoff function 10,000 times, 



 

 
 

which leads to a total computation time of 200,000 hours. ALSMC reduces the computation time 

to 88 hours and generates accurate enough solution. 



 

 
 

CHAPTER 6 CONCLUSIONS 

 

6.1. SUMMARY OF FINDINGS AND CONTRIBUTIONS 

The contributions of this dissertation can be summarized as follows. For a private inter-city 

highway project (Chapter 3): 

(1) It provides an analytical framework to find the optimal timing, the endogenous toll and the 

optimal capacity under demand uncertainty. 

(2) It derives an analytical solution that enforces traffic equilibrium while using a BPR function 

to model congestion. 

(3) The profit-maximizing toll and revenue are derived as power functions of demand between 

two cities. Whether the private firm has the authority to adjust toll rates makes a huge difference 

to the project’s value. When the power of the BPR function is 4, the annual revenue grows about 

5 times as fast as demand does, while with fixed toll the revenue growth rate is the same as the 

demand growth rate. 

(4) Results show that the demand barrier has a significant influence on project revenues and 

therefore on the timing of the investment. With an upper barrier, the demand is limited to the 

sum of the capacities of both highways, and the value of the project is substantially reduced 

when compared to the case where demand is allowed to grow at a constant rate forever.  

(5) When the project can be implemented instantly, the expression of the Net Present Value 

(NPV) of the new highway project is derived. Under increasing demand uncertainty, the demand 

threshold is also increasing until demand reaches the capacity of the old highway and cannot 

grow anymore. The option to defer adds substantial value to the project and traditional NPV 

calculations that ignore demand volatility lead to investing prematurely. However, when 



 

 
 

construction takes time (a more realistic case), the approximate closed-form solution of the NPV 

is downward biased. Combined with simulation results, I find that within a reasonable range for 

demand uncertainty, the closed-form solution can provide an accurate estimation of true NPV 

and that demand threshold increases with uncertainty. 

(6) By formulating the capacity choice of the new highway in terms of a number of lanes, the 

optimal capacity can be obtained by comparing every pair of capacity choices. First, the 

investment timing problem is solved with each capacity choice. Then, based on their NPVs and 

option values, one capacity choice could dominate the other, or each capacity choice could have 

its own demand threshold and investment region. It is noteworthy that the indifference demand 

level, at which both capacity choices have the same NPV, belongs to the waiting region. An 

illustration shows that the extra value added by delaying the investment at the indifference 

demand level can be trivial, but the waiting region between two investing regions could be more 

important for transit and rail technology projects. 

In Chapter 4, this dissertation considers the financing of an inter-city highway when it is 

funded by the government or by a Public-Private Partnership (PPP). In that case, 

(7) It shows how to solve the optimal investment timing problem from the government’s point-

of-view by Monte Carlo simulation. The “Rule of a Half” is used to approximate consumer 

surplus with induced demand. The system optimal constant toll rate is derived analytically, and it 

is always smaller than the profit-maximizing toll. A case study shows that the government’s 

demand threshold is lower than the private firm’s demand threshold. As for the private financing 

case, the investment should be delayed when demand volatility increases.  

(8) A real options framework is developed to evaluate the non-compete clause in a public-private 

partnership. The non-compete clause does increase the private sector’s expected profit; however, 



 

 
 

the social benefit loss is much larger, which implies that during the negotiation of a PPP contract, 

the non-compete clause may not be a preferable form of government guarantee to ensure the 

private sector’s profitability. 

In Chapter 5, this dissertation extended the proposed real options framework to solve the 

multi-period continuous network design problem (CNDP) with stochastic demand. Contributions 

include: 

(9) A new algorithm, called Approximate Least Square Monte Carlo simulation (ALSMC). The 

ALSMC can solve the multi-period stochastic CNDP significantly faster than the original LSMC 

by solving multiple deterministic CNDP to approximate the stochastic CNDP’s termination 

payoff function. The ALSMC is tested on a small multi-period stochastic CNDP with 16 links 

and 2 OD pairs. Differential evolution is used to solve the deterministic CNDP repeatedly. The 

“exact” termination payoff is also calculated based on demand enumeration, which is about 1% 

greater than the ALSMC value. With 4000 sample size, the ALSMC simulation takes 88 hours to 

finish, while the original LSMC simulation would require solving the stochastic CNDP 

repeatedly, which could take 200,000 hours in computation time. 

 

6.2. FUTURE RESEARCH 

This dissertation assumes that demand is inelastic to transportation infrastructure investment, but 

it would be more realistic to model demand with a stochastic demand curve that ensures that 

demand is both stochastic and elastic to travel cost.  

When studying the capacity choice problem in Chapter 3, future expansions of the new 

highway are ignored. By allowing for capacity expansion of a low-capacity project when demand 

grows later, allowing for future expansions would add more flexibility to the low-capacity 



 

 
 

project and possibly make it more desirable than the high-capacity project. Another improvement 

would be to model demand elasticity using a stochastic demand curve. The real options method 

can also be used for a transit investment timing and technology selection problem, which may 

produce different results. 

Future research on Public-Private Partnerships could look at the development of a real 

options model that considers the negotiation of the concession period, toll regulation, demand 

threshold and government guarantees simultaneously. This model would help find the optimal 

PPP contract that ensures a minimum rate of return for the private sector while maximizing the 

social benefits of the project. Moreover, the risk could be explicitly considered when looking for 

an optimum solution. 

A case study for a large size real road network with actual demand data would better 

illustrate the accuracy and computational speed of the Approximate Least-Square Monte Carlo 

simulation. One problem that may rise when network size increases is the “curse of 

dimensionality” (where computations increase exponentially with network size). For an actual 

network with thousands of OD pairs, if we assume that the demand of each OD pair follows a 

different stochastic process, then the number of demand paths grows exponentially, and the 

problem becomes too large to solve. One solution is to classify OD pairs into groups and assume 

that the demand growth rates of OD pairs in the same group follow the same stochastic process. 

This approach would reduce the number of stochastic variables and keep the problem solvable. 

Another approach is to use Approximate Dynamic Programming to overcome the curse of 

dimensionality (Powell, 2009). All these ideas are left for future work. 



 

 
 

APPENDIX A. Solution of the Deterministic CNDP using Differential Evolution 

 

The benchmark network shown in Figure 5-4 has been used by many CNDP algorithms (see 

Table 5-4). However, instead of measuring multi-period outcomes of the capacity improvement 

plan, all previous papers only solved a single period of the CNDP. To compare the performance 

of DE with other algorithms, I solved the same single period CNDP with two demand scenarios 

used in previous papers. Table A-2 and Table A-3 compares DE solutions with solutions 

reported by papers listed in Table A-1. DE gives one of the best solutions for both scenarios 

within a reasonable computation time.  

 

Table A-1. Abbreviations of algorithms for solving CNDP 

Abbreviation Name of algorithm Source 

IOA Iterative optimization-assignment algorithm Allsop, 1974 
HJ Hooke-Jeeves algorithm Abdulaal and LeBlanc, 

1979 
EDO Equilibrium decomposed optimization Suwansirikul et al., 1987 
MINOS Modular in-core nonlinear system Suwansirikul et al., 1987 
SA Simulated annealing algorithm Friesz et al., 1992 
SAB Sensitivity analysis-based algorithm Yang and Yagar, 1995 
AL Augmented Lagrangian algorithm Meng et al., 2001 
GP Gradient projection method Chiou, 2005 
CG Conjugate gradient projection method Chiou, 2005 
QNEW Quasi-Newton projection method Chiou, 2005 
PT PARATAN version of gradient projection method Chiou, 2005 
RELAX Single-level nonlinear program wirh relaxation 

scheme 
Ban et al., 2006 

PMILP Path based mixed-integer linear program Wang and Lo, 2010 
LMILP Link based mixed-integer linear program Luathep et al., 2011 
NFFN Filled function method Hellman, 2010 
DIRECT Dividing rectangles Hellman, 2010 
EGO Efficient global optimization Hellman, 2010 
PMC Penalty with multicutting plane method Li et al., 2012 
DE Differential Evolution this dissertation 
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Table A-2. Comparison of results for demand scenario I (low demand) 

Algorithmsa Variables Objective 

y3 y6 y7 y12 y15 y16 Za Gapb 

IOA 0 6.95 0 0 5.66 1.79 214.335 7.33% 
HJ 1.2 3 0 0 3 2.8 218.297 9.31% 
EDO 0.13 6.26 0 0 0.13 6.26 201.197 0.75% 
MINOS 0 6.58 0 0 7.01 0.22 211.25 5.78% 
SA 0 3.1639 0 0 0 6.724 201.626 0.96% 
SAB 0 5.8352 0 0 0.9739 6.1762 204.218 2.26% 
AL 0.0062 5.2631 0.0032 0.0064 0.7171 6.7561 202.997 1.65% 
GP 0 5.8302 0 0 0.87 6.109 203.78 2.04% 
CG 0 6.1989 0 0 0.0849 7.5888 200.225 0.26% 
QNEW 0 6.0021 0 0 0.1846 7.5438 200.619 0.46% 
PT 0 5.9502 0 0 0.5798 7.1064 202.42 1.36% 
RELAX 0 5.1946 0 0 0 7.5962 199.65 -0.03% 
PMLP 0 5.19 0 0 0 7.5 199.628 -0.04% 
LMILP 0 5.24 0 0 0 7.585 199.627 -0.04% 
DE 0 5.1922 0 0 0 7.3496 199.700 0.00% 

a. Refer to Table A-1 for more information of each algorithm. 
b. The objective of each link capacity improvement plan is recalculated by incremental assignment with step size = 0.001 trip, which 
provides a more accurate value of Z than the value provided in the original paper who proposed the corresponding algorithm. 
c. The percentage represent to which extent the solution provided in previous papers is inferior/superior to the DE solution. 
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Table A-3. Comparison of results for demand scenario II (high demand) 

Algorithmsa 
Variables Objective 

y1 y2 y3 y6 y7 y8 y9 y12 y14 y15 y16 Za Gapb 

IOA 0 4.55 10.65 6.43 0 0.59 0 0 1.32 19.36 0.78 557.842 6.69% 

HJ 0 5.4 8.18 8.1 0 0.9 0 0 3.9 8.1 8.4 561.487 7.39% 

EDO 0 4.88 8.59 7.48 0.26 0.85 0 0 1.54 0.26 12.52 540.198 3.32% 

MINOS 0 4.61 9.86 7.71 0 0.59 0 0 1.32 19.14 0.85 557.143 6.56% 

SA 0 0 10.17 5.777 0 0 0 0 0 0 17.28 533.33 2.00% 

SAB 0.019 2.225 9.339 9.047 0 0.018 0 0.082 0.02 2.143 18.98 536.183 2.55% 

AL 0 4.615 9.88 7.6 0.002 0.6 0.001 0.113 1.318 2.727 17.58 532.69 1.88% 

GP 0.101 2.182 9.342 9.044 0 0.008 0 0.038 0.009 1.943 18.99 535.664 2.45% 

CG 0.102 2.18 9.343 9.044 0 0.007 0 0.036 0.008 1.948 18.99 535.693 2.45% 

QNEW 0.092 2.152 9.141 8.85 0 0.011 0 0.038 0.013 1.971 18.58 535.914 2.50% 

PT 0.101 2.18 9.334 9.036 0 0.008 0 0 0.009 1.943 18.97 535.575 2.43% 

RELAX 0 4.614 9.910 7.374 0 0.592 0 0 1.315 0 20 522.65 -0.04% 

PMLP 0 4.41 10 7.42 0 0.54 0 0 1.18 0 19.5 522.794 -0.01% 

LMILP 0 2.722 9.246 8.538 0 0 0 0 0 0 20 526.488 0.69% 

NFFN 0 0.354 9.881 7.494 0 0.617 0 0 1.321 0 20 529.814 1.33% 

DIRECT 0 4.623 9.872 7.412 0 0.59 0 0 1.312 0 20 522.647 -0.04% 

EGO 0 4.374 7.374 17.06 0 0 0 2.893 0.432 16.15 11.2 571.619 9.33% 

PMC 0 4.691 9.978 7.554 0 0.633 0 0 1.766 0 19.67 522.796 -0.01% 

DE 0 4.755 10.03 7.392 0 0.717 0 0 1.590 0.018 20 522.862 0.00% 

a. Refer to Table 5-4 for more information of each algorithm. 

b. The objective of each link capacity improvement plan is recalculated by incremental assignment with step size = 0.001 trip, which 

provides a more accurate value of Z than the value provided in the original paper who proposed the corresponding algorithm. 

c. The percentage represent to which extent the solution provided in previous papers is inferior/superior to the DE solution.  
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APPENDIX B. Matlab Code for Approximate Least-Square Monte Carlo Simulation 

%%%%%%%%%%%%%%%%%%%%%%%%     Main    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc;clear; 
% <1> Parameter setting  
P = 4000; % Number of simulated demand paths  
n = 800; % P'  
t = 1; % option exercise interval (year)  
T = 5; % Implementation periods (years)  
CP = 10; % Concession period (years)  
m = 1 + T + CP; % length of simulated demand paths (years)  
degree = 5; % Highest degree of polynomial basis function  
num_od = 2; %number of OD pairs  
q_start = [5,10]; % Initial demands  
qhigh = [10,20]; % Upper barrier of demands  
discount = 0.07; % Discount rate  
mu = 0.03; % Annual demand growth rate  
sigma = 0.03; % Annual demand volatility 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% <2> Generate stochastic demand paths  
q = zeros(P,m,num_od); % Allocate memory for demand paths  
for  od = 1: num_od 
    for  i = 1:m 
        if  i==1 
            q(:,1,od) = ones(P,1)*q_start(od); 
        else  
            w = normrnd(0,sqrt(t),[P,1]); % Random term  
            q(:,i,od)=min(qhigh(od),q(:,i-1,od).*ex p( (mu-
sigma^2/2)*t*ones(P,1) + sigma*w )); 
        end  
    end  
end  
q(:,1,:)=[]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% <3.1> Estimate NPV for the first n demand paths u sing differential 
evolution  
NPV = NPV_network(q(1:n,:,:),n,T,CP,discount);   
% <3.2> Least-Square regression  
NPV_State=reshape(NPV(:,1:T),[T*n,1]); 
X = polynomial(q(1:n,1:T,:), degree); 
Alpha = regress(NPV_State,X); 
% <3.3> Estimate NPV for ALL demand paths using the  Least-Square model 
from <3.2>  
X = polynomial(q(:,1:T,:), degree); 
estNPV = X*Alpha; 
% <3.4> Estimate NPV of investing immediately at ti me 0  
X = polynomial(q_start, degree); 
estNPV0 = X*Alpha; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% <4> Least-Square Monte Carlo simulation  
estNPV = reshape(estNPV,[P,T]); 
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estNPV = max(0,estNPV); 
value = zeros(P,T); % Value of continuation  
dotime = T*ones(P,1); % Indicate when to invest  
B = zeros(T-1,2*degree+1); 
for  i = T-1:-1:1 
    idx = find(estNPV(:,i)>0);  %use only in-the-money paths  
    X = polynomial(q(idx,i,:), degree); 
    if  i == T-1 
        Beta = regress(estNPV(idx,T)*exp(-discount) ,X); 
        estDefer = X*Beta; 
        B(i,:) = Beta; 
        % Est. continuation is smaller than exercise   
        idx_do = estDefer <= estNPV(idx,i);  
        value(:,T) = estNPV(:,T); 
    else  
        Beta = regress(value(idx,i+1)*exp(-discount ),X); 
        estDefer = X*Beta; 
        B(i,:) = Beta; 
        % Est. continuation is smaller than exercise   
        idx_do = estDefer <= estNPV(idx,i);  
    end     
    value(:,i) = value(:,i+1)*exp(-discount); 
    value(idx(idx_do),i) = estNPV(idx(idx_do),i); 
    dotime(idx(idx_do),1)= i*ones(size(idx(idx_do), 1),1); 
     
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Expected value of waiting at time 0 
ValueOfDefer = mean(value(:,1))*exp(-discount);  
fprintf( 'Value of delaying investment is %8.2f.\n' ,ValueOfDefer); 
fprintf( 'Value of investing immediately is %8.2f.\n' ,estNPV0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%% Functions used in the main code %%%%%%%%%%%%%%%%%%% 
function  X = polynomial(q, degree) 
[row,col,num_od] = size(q); 
if  num_od ==1 && row == 1 
    X = zeros(1,col*degree+1); 
    X(:,1) = 1; 
    i = 2; 
    for  od = 1:col 
        for  k = 1:degree 
            X(:,i) = q(1,od).^k; 
            i = i+1; 
        end  
    end  
else   
    X = zeros(row*col,num_od*degree+1); 
    X(:,1) = ones(row*col,1); 
    i = 2; 
    for  od = 1:num_od 
        State = reshape(q(:,:,od),[row*col,1]); 
        for  k = 1:degree 
            X(:,i) = State.^k; 
            i = i+1; 
        end  
    end  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%% Functions used in the main code %%%%%%%%%%%%%%%%%%% 
function  NPV = NPV_network(q,n,T,CP,discount) 
tic; 
% <1> Calculate NPV of investing immediately for th e first n demand 
paths 
hwait = waitbar(0, 'Wait' ); 
NPV_invest = zeros(n,T); 
for  i = 1:n 
    str = [ 'Running Differential Evolution: ' ,num2str(100*i/n), '% 
finished' ]; 
    waitbar(i/n,hwait,str); 
     
    for  j = 1:T 
        q16 = q(i,j+1:j+CP,1); 
        q61 = q(i,j+1:j+CP,2); 
        NPV_invest(i,j) = DE(q16,q61,CP,discount); 
        toc 
    end  
end  
close(hwait); 
 
% <2> Use Incremental assignment to get baseline NP V without capacity 
expansion  
NPV_base = zeros(n,T + CP); 
parfor  i = 1:n 
    for  j = 1:T + CP   
        NPV_base(i,j) = TAP(q(i,j,1),q(i,j,2),zeros (16,1)); 
    end  
end 
 
% <3> Calculate the difference between NPV with and  without investment  
NPV = zeros(n,T); 
for  i = 1:n 
    for  j = 1:T 
        NPV(i,j) = NPV_base(i,j+1:j+CP)*transpose(e xp(-
discount*(1:CP))) - NPV_invest(i,j); 
    end  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%% Functions used in the main code %%%%%%%%%%%%%%%%%%% 
function  output=DE(q16,q61,CP,discount) 
d=[2 3 5 4 9 1 4 3 2 5 6 8 5 3 6 1]; % Unit construction cost for each 
link  
%%%%%%%%%%%%%%%%%%%%     SETTING    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% How many iterations?  
iterations =  500; 
%How much Population?  
N = 12; 
%How many parameters?  
s = 16; 
Capacity = zeros(s,iterations); 
%Crossover Rate, between 0 and 1?  
CR = 0.9; 
% How much is MF, between 0 and 2?  
MF = 0.5; 
% Give the parameter ranges (minimum and maximum va lues)  
Parmin = 0;  
Parmax = 20; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
y = zeros(s,N); 
z = y; 
CF = zeros(N,CP); 
Obj = zeros(iterations+1,1);    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%<1> Generate sample  
    rd = rand(s,N); 
    y = Parmin + rd.*(Parmax-Parmin);      
 
%<2> Fitness calculation     
    parfor  i = 1:N 
        for  j = 1:CP 
            CF(i,j) = TAP(q16(j),q61(j),y(:,i)); 
        end              
    end  
    F = exp(-discount*(1:CP)) * transpose(CF) + d*y ; 
    best = find(F==min(F),1); 
    Obj(1)=F(best); 
    
    iter = 1;     
    while  iter <= iterations 
     
% <3> Mutation  
    for  i = 1:N 
        rab = randperm(N-1); 
        a = rab(1)+(rab(1)>=i)*1; 
        b = rab(2)+(rab(2)>=i)*1; 
        z(:,i) = y(:,i)+(rand(s,1)<=CR)*MF.*(y(:,a) -y(:,b));  
    end  
        
% <4> regularization  
    z = min(Parmax,max(Parmin,z)); 
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% <5> Fitness calculation  
    parfor  i = 1 : N 
        for  j = 1:CP 
            CF(i,j) = TAP(q16(j),q61(j),z(:,i)); 
        end        
    end  
    G = exp(-discount*(1:CP)) * transpose(CF) + d*z ; 
% <6> Crossover  
    idx = find(G < F); 
    for  i = idx 
        y(:,i) = z(:,i); 
    end  
    F = min(G, F); 
    iter = iter+1; 
    best = find(F==min(F),1); 
    Obj(iter) = F(best); 
end  
output = Obj(iter); % Optimal NPV 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%% Functions used in the main code %%%%%%%%%%%%%%%%%%% 
function  STCost = TAP(q16,q61,capacity) %The input y is a vector of 
16-link capacity improvement  
%       d      A     B     K  
data = [2,     1,   10,    3; 
        3,     2,    5,   10; 
        5,     3,    3,    9; 
        4,     4,   20,    4; 
        9,     5,   50,    3; 
        1,     2,   20,    2; 
        4,     1,   10,    1; 
        3,     1,    1,   10; 
        2,     2,    8,   45; 
        5,     3,    3,    3; 
        6,     9,    2,    2; 
        8,     4,   10,    6; 
        5,     4,   25,   44; 
        3,     2,   33,   20; 
        6,     5,    5,    1; 
        1,     6,    1,  4.5]; 
  
matrix16 = [ 1     0     0     0     1     0     0     0     0     0     
1     0     0     0     0     0; 
     0     1     0     0     0     0     0     1     0     0     0     
0     0     1     0     0; 
     0     1     0     0     1     0     1     0     0     0     1     
0     0     0     0     0; 
     0     1     0     0     1     0     1     0     0     1     0     
0     0     1     0     0; 
     1     0     0     0     1     0     0     0     0     1     0     
0     0     1     0     0; 
     0     1     0     0     0     0     0     1     0     0     1     
0     1     0     0     0; 
     1     0     0     1     0     0     0     1     0     0     1     
0     1     0     0     0; 
     1     0     0     1     0     0     0     1     0     0     0     
0     0     1     0     0]; 
  
matrix61 = [ 0     0     1     0     0     0     0     0     1     0     
0     0     0     0     1     0; 
     0     0     0     0     0     1     0     0     0     0     0     
1     0     0     0     1; 
     0     0     0     1     0     1     0     0     1     0     0     
0     0     0     1     0; 
     0     0     0     1     0     1     0     0     1     0     0     
0     1     0     0     1; 
     0     0     1     0     0     0     0     0     1     0     0     
0     1     0     0     1; 
     0     0     0     0     0     1     0     0     0     1     0     
1     0     0     1     0; 
     0     0     1     0     0     0     1     0     0     1     0     
1     0     0     1     0; 
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     0     0     1     0     0     0     1     0     0     0     0     
1     0     0     0     1];  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
step = 0.1; % Step size of flow loading  
OD61 = q61; % Demand from centroid 6 to centroid 1  
OD16 = q16; % Demand from centroid 1 to centroid 6  
x = zeros(16,1); % Link flow  
  
for  i = step:step:OD16 % For OD pair 1-6  
    t = data(:,2) + data(:,3).*x.^4./(data(:,4)+cap acity).^4;     
    path16 = matrix16*t; % Calculate path travel time          
    row = path16==min(path16); % Find shortest path  
    x = x + transpose(matrix16(row,:))*step; %Load 0.1 flow on the 
shortest path  
end  
for  i = step:step:OD61 % For OD pair 6-1  
    t = data(:,2) + data(:,3).*x.^4./(data(:,4)+cap acity).^4; 
    path61 = matrix61*t; % Calculate path travel time  
    row = path61==min(path61); % Find shortest path  
    x = x + transpose(matrix61(row,:))*step; % Load 0.1 flow on the 
shortest path  
end  
t = data(:,2) + data(:,3).*x.^4./(data(:,4)+capacit y).^4; 
STCost = transpose(x)*t; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
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