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ABSTRACT

Primate sequence comparisons are difficult to interpret due to the high degree of sequence 

similarity shared between such closely related species.  Recently, a novel method, phylogenetic 

shadowing, has been pioneered for predicting functional elements in the human genome through 

the analysis of multiple primate sequence alignments. We have expanded this theoretical 

approach to create a computational tool, eShadow, for the identification of elements under 

selective pressure in multiple sequence alignments of closely related genomes, such as in 

comparisons of human to primate or mouse to rat DNA.  This tool integrates two different 

statistical methods and allows for the dynamic visualization of the resulting conservation profile.  

eShadow also includes a versatile optimization module capable of training the underlying Hidden 

Markov Model to differentially predict functional sequences. This module grants the tool high 

flexibility in the analysis of multiple sequence alignments and in comparing sequences with 

different divergence rates.  Here, we describe the eShadow comparative tool and its potential 

uses for analyzing both multiple nucleotide and protein alignments to predict putative functional 

elements.  The eShadow tool is publicly available at http://eshadow.dcode.org/.
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Introduction

Cross-species sequence comparisons between distantly related genomes, such as those of humans 

and rodents, have been instrumental in defining evolutionarily conserved elements with critical 

biological roles, whether they function as coding exons (Gilligan et al., 2002; Pennacchio et al., 

2001), regulatory elements (Ghanem et al., 2003; Loots et al., 2000; Nobrega et al, 2003), or 

microRNAs (Lim et al., 2003).  Four widely used tools intended for generating genomic 

alignments are web-accessible and augmented by easy-to-use graphical interfaces: Blast2Seq

(Tatusova & Madden, 1999), PipMaker (Schwartz et al., 2000), Vista (Mayor et al., 2000) and 

zPicture (http://zpicture.dcode.org). Also, several genome browsers provide an effortless access 

to precomputed genome-scale sequence alignments for any region in the human genome. These 

include Ensembl (Hubbard et al., 2002), the ECR Browser (http://ecrbrowser.dcode.org/), Pip 

Dispenser (Schwartz et al., 2003), Vista Browser (Couronne et al., 2003) and the Genome 

Browser at UCSC (Karolchik et al., 2003). 

However, a deeper understanding of the biology and the evolution of Homo sapiens will 

require comparisons not only to distantly related genomes, such as rodents and fishes, but also to 

our closest relatives, the great apes. In such comparisons, it is very challenging to extract 

statistically significant differences since the genomes of humans and their primate relatives are 

very similar at the nucleotide level (>90%) (Anzai et al., 2003; Britten, 2002; Hellmann et al., 

2003; Silva & Kondrashov, 2002). Available comparative sequence analysis tools and 

methodologies have, in general, been developed to analyze more distant evolutionary 

relationships and are not fine-tuned to analyze recent evolutionary events. Such tools are not 

sensitive enough to allow for meaningful comparisons involving recent segmental duplications in 

the human genome (Bailey et al., 2002), dynamically evolving clusters of paralogous genes such 

as the zinc finger transcription factor families (Shannon et al., 2003), or slowly diverging 
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genomic intervals such as the HOX-clusters (Balavoine et al., 2002). But most importantly, in 

light of the emerging sequence of the chimpanzee genome, we require new resources that will 

permit meaningful comparisons between humans and other primates.  Such tools will advance 

our ability to extract functional information from primate comparisons and expand our current 

understanding of human health and biology. 

Recently, a novel approach, phylogenetic shadowing, was developed to compute and 

statistically evaluate conservation profiles of multiple sequence alignments from closely related 

species.  This statistical method permitted the accurate prediction of exons and transcriptional 

regulatory elements in human-primate comparisons, and validated the use of this approach for 

deciphering primate-specific functional DNA sequences (Boffelli et al., 2003). Based on the 

successful use of the phylogenetic shadowing method we have created a publicly accessible 

automated tool, eShadow that applies this strategy to the analysis of any closely related 

sequences.   Also, eShadow extends the phylogenetic shadowing approach to include the analysis 

of multiple protein alignments, and to reduce the number of species required for the 

identification of functional elements.  The eShadow tool incorporates two distinct approaches for 

finding functional elements - Hidden Markov Model Islands (HMMI) and Divergence Threshold

(DT) scans of multiple (or pairwise) sequence alignments.  Here, we report the computational 

design and algorithms underlining the eShadow tool, and we suggest several applications 

including the analysis of (1) coding exons, (2) noncoding elements, and (3) protein domains.  We 

show that by overlapping HMMI predictions with a distribution of open reading frames (ORF) 

and fully conserved splice sites, eShadow can also be used to highlight regions with coding 

potential. Finally, we demonstrate how this program is trainable, and highly flexible to be 

generalized to human/baboon pairwise comparisons.
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RESULTS

eShadow Computational Design and Visualization Scheme

eShadow is an interactive computational tool for aligning, visualizing, and evaluating 

evolutionarily conservation profiles in multiple and pairwise nucleotide or protein alignments of 

closely-related sequences.  The tool works best in alignments between sequences characterized 

by divergence rates less than the average human vs mouse neutral substitution rate of 0.46 

substitutions per site (Waterston et al., 2002).  eShadow analysis proceeds in three major steps: 

(1) generating multiple sequence alignments (MSAs), (2) visualizing MSAs as percent variation 

plots, and (3) statistically evaluating MSAs to detect regions of high conservation (Figure 1). 

eShadow  generates MSAs using the multiple aligner program ClustalW.  This tool creates 

alignments by first constructing a phylogenetic tree based on sequence similarity, and then 

follows with successive pairwise alignments in the order provided by the tree.  ClustalW is able 

to align multiple closely related sequences (such as human/baboon/chimp or mouse/rat genomic 

sequences, which are ≥ 80% identical) up to 200kb in length. While performing protein 

alignments, ClustalW weighs amino acid substitutions according to the divergence rates of the 

sequences being aligned, and assigns residue-specific gap penalties which are adjusted locally, 

resulting in increasing or increasing the score depending on the potential secondary structure of 

the protein (Chenna et al., 2003; Thompson et al., 1994).

eShadow visualizes MSAs as percent variation (or mismatch) plots. The percent of 

mismatched nucleotides or amino acids is calculated in a sliding window of user-defined length; 

where the percent identity y, in a window size w, centered at a given position x, is plotted at the 

(x,y) coordinate.  The peaks and valleys of the conservation plot correspond to regions of low 

and high variation, respectively, and 0% variation signifies 100% sequence identity in the MSA.  

To increase plasticity for the visual representation of the data, eShadow uniquely allows users to 
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interactively choose the base organism, modify parameters and annotation files, features absent 

from all other available multiple or pairwise sequence alignment tools.   

The eShadow analytical module implements two different statistical methods of scanning 

MSAs to detect slow-mutating regions: (1) Hidden Markov Model Islands (HMMI), and  (2)

Divergence Threshold (DT).  While Hidden Markov Model methods are extensively used to 

detect functional elements in raw genomic and protein sequences as well as in sequence 

alignments, DT methods are typically used for the analysis of conservation plots. HMMI 

implementations include gene prediction (Burge & Karlin, 1997; Krogh, 1997), CpG island 

localization (Takai & Jones, 2002), noncoding RNAs identification (Rivas & Eddy, 2001), 

protein domain (Truong & Ikura, 2002) and protein fold predictions (Bienkowska et al., 2000) . 

We used a two-state HMMI to analyze conservation profiles and to predict conserved (slowly 

diverging) regions. This method does not utilize a sliding-window, rather it analyzes the 

underlying distribution of matches and mismatches in the alignments.  The DT method 

distinguishes conserved elements based on their length and the level of complete

nucleotide/amino acid identity.  In contrast to the HHMI approach, DT analysis is performed by 

scanning the alignment summary for regions corresponding to the number of matches x in a 

sliding window of predefined length y.  The DT method is employed by most pairwise alignment 

programs and is probably the most commonly used approach for biologists to define 

evolutionary conservation (Schwartz et al., 2000).

The analytical component of the eShadow tool also contains several optional features: (1) 

an open reading frame (ORF) detection block and (2) an optimization module to assist during the 

characterization of conservation patterns across alignments.  By superimposing ORF predictions, 

eShadow’s HMMI detection module identifies nucleotide regions with high potential to code for 

proteins, possibly differentiating coding from noncoding conserved elements.  The optimization 
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module allows the user to train the program to identify parameters that would distinguish 

features similar in nature to a set of know elements (exons or regulatory elements) from the 

background noise. We have implemented three complementary optimization methods into the 

eShadow tool:  (1) Baum-Welch (Durbin R., 1998), (2) Maximum Likelihood (Durbin R., 1998), 

and (3) Golden Section Search (Press W.H., 1988).

Applications for the eShadow tool

eShadow has been designed for comparing sequences with relatively small interspecies 

divergence rates, preferably classified to the same class or order. The detection of such elements 

is very difficult by currently available computational means, and is critical for molecularly 

distinguishing biological functions unique to small clades of organisms (Cooper et al., 2003). 

Unlike most available comparative sequence analysis tools, eShadow can be dynamically 

adjusted and trained to accommodate evolutionary relationships as distant as human and mouse 

or as close as two primates.  However, other tools such as Pipmaker and VISTA are more 

effective in pairwise analysis of distantly related sequences and are specifically designed for 

such applications (Schwartz et al., 2000; Mayor et al., 2000).  The particular analytical scope of 

the eShadow tool is to assist in the discovery of elements distinctly shared by classes of 

organisms tightly clustered on the same branch of the evolutionary tree.  Here, we illustrate three 

major applications for the eShadow tool: (1) identification of coding exons, (2) prediction of 

conserved noncoding elements and (3) evaluation of protein domains in alignments.

Detecting Coding Exons

The two statistical methods implemented into the eShadow tool were tested for the ability to 

detect conserved elements across 4 genomic intervals and to accurately predict the known coding 

regions corresponding to 5 exons from 4 different genes (ApoB; Plasminogen; LXR-alpha; 
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CETP).  These 4 genomic intervals have been extensively sampled across multiple primate 

species and currently represent the only dataset for which there are 13 to 16 unique primate 

sequences available (Boffelli et al., 2003).  Even though the set of sequenced primates slightly 

varied for each tested region, the available sequences for each genomic interval spanned the 

primate phylogeny evenly, resulting in similar substitution rates per human base pair in all tested 

cases (Supplement Table S1).  We optimized the parameters for each analytical method to detect 

regions with slow-mutation rates and found a set of common parameters that identified all the 

exons present in these genomic intervals. The HMMI method detected all exons [parameters: 

eS= 0.85; eF=0.77; T=0.1 (Details in Supplementary Materials; Figure S1)] while the DT 

method missed the shortest exon [parameters: % variation=15; length=100bp] (Figure 2).

Despite the tremendous advances achieved in DNA sequencing technologies, obtaining 

the sequence of dozens of closely related vertebrate-sized genomes is still not a practical goal.  

We therefore asked whether single human/primate pairwise alignments might contain enough 

information to distinguish conserved (slow-mutating) from neutral (fast-mutating) regions.  This 

task is highly intricate since the substitution rate decreases significantly when switching from an 

MSA to a pairwise alignment (Supplement Figure S2). Figure 3 illustrates eShadow’s ability to 

predict the ApoB exon from a single human/primate [Allouatta seniculus] pairwise alignment 

(Figure 3C) as accurately as it can be predicted from a human/mouse (Figure 3A) or a primate 

MSA (Figure 3B). Similar results were obtained in 54 other exons analyzed in human/baboon 

alignments (Table 1).  These results suggest that if properly analyzed, single human/primate 

pairwise alignments have the potential to be as informative for exon identification as 

human/rodent alignments are.  

Detecting Conserved Noncoding Elements
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Since humans and rodents share the majority of their protein coding genes (Waterston et al., 

2002)  it has been hypothesized that most of the phenotypic differences between clades of 

mammals are attributed to differences in noncoding sequences.  In some cases, these differences 

may involve substantial changes in regulatory sequences that have occurred during the ~80 Myrs 

separating the rodent and human lineages (Dermitzakis & Clark, 2002; Scemama et al., 2002), 

limiting H/M comparisons to functions that are more globally shared by mammals and 

vertebrates.  The phylogenetic shadowing approach has been shown to be suited for the 

identification of lineage-specific noncoding conserved elements through comparisons of several 

closely related primate genomic regions (Boffelli et al., 2003). Since this approach is limited by 

the amount of sequence data available for species tightly-clustered on the same branch of the 

phylogenetic tree, we tested eShadow’s ability to recapitulate conservation patterns when the 

number of input sequences is reduced from >10 different species to only 2 or 3.  We also limited 

our analysis to organisms evolutionarily close to humans and in the primate lineage– such as 

baboon and chimp (genome sequences expected to be generated in the foreseeable future). 

We analyzed 53kb from the Wingless-type MMTV Integration Site Family, Member 2 

gene locus (WNT2), which has been deeply sequenced in many species, including chimps and 

baboons in addition to humans and mice (Thomas et al., 2003).  H/M comparisons identified all 

translated and untranslated (UTR) exons, included in a collection of 62 Evolutionary Conserved 

Regions (ECRs; ≥100bps and ≥70%) (Figure 4).  We addressed whether eShadow primate-

specific comparisons can possibly recapitulate the H/M conservation patterns, as well as identify 

additional primate-specific conserved elements through the use of human/baboon/chimp (H/B/C) 

comparisons.  The eShadow HMMI module was first trained on the WNT2 exons, and the 

optimized parameters were used to analyze the conservation pattern across the entire 53 kb 

genomic interval.
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While the H/B/C alignment demonstrated ~12% nucleotide variation, the conservation 

pattern clearly distinguished regions with different evolutionary rates. HMMI predictions 

(0.98/0.90/0.005) identified 26 ECRs, including all the WNT2 coding exons. While this number 

(26) is approximately three times less then the corresponding number for H/M ECRs (62), in 

general, strings of smaller H/M ECRs were incorporated within larger H/B/C ECRs, such that 

68% (42) H/M ECRs were recapitulated in H/B/C ECRs. On a per base pair basis, the sum of all 

human nucleotides classified as highly conserved either in rodent (H/M) or primate (H/B/C) 

comparisons were highly similar spanning 15kb in H/B/C and 17kb H/M alignments. Four 

primate-specific ECRs lacked a highly homologous counterpart in the mouse ortholog.  These 

elements could either represent regions that did not accumulate enough mutations throughout 

primate evolution due to chance alone, or could be primate specific elements.  Computationally 

distinguishing between these two possibilities is not yet feasible; rather the true biological 

relevance of these lineage-specific elements must be determined experimentally.  

To evaluate the specificity and sensitivity by which the eShadow tool is able to 

recapitulate H/M conservation profiles from a single human/primate alignment, we analyzed a 

test set of four completely finished baboon BACs spanning ~677kb that were syntenic to 

contiguous regions in both the human and mouse genomes (Table 1). This analysis was 

performed using fixed HMMI parameters trained on the WNT2 region (0.98/0.90/0.005).  These 

regions exhibited strong correlations between the H/B HMMI predictions and the ECRs present 

in the H/M alignments. We estimated the sensitivity of recapitulating H/M conservation patterns 

by HMMI modeling of H/B alignments to be ~59.3% and the specificity ~77.6% (Table 1).  To 

provide a measure of H/B exon-detection sensitivity we calculated the number of exons 

identified by the HMMI approach across these four baboon BACs.  Exons were scored as 

“detected” if it contained a partial or a full overlap with the HMMI prediction.  62% (54/87) of 
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all exons were detected by this approach. That also corresponds to 83% (25/30) of the long exons 

(>150bps) suggesting that the eShadow approach works more efficiently for detecting longer 

elements (Table 1). These results imply that similar analysis may be used to define primate 

specific elements in the human genome in an unbiased manner by comparing a minimum number 

of different primate sequences and therefore suggest the use of the eShadow tool for 

computationally identifying primate-specific elements when the genome sequence of additional 

primates become available. 

Identifying Conserved Protein Domains

Discovering deleterious mutations within candidate genes is fundamental to elucidating the 

genetic basis of human disorders.  For most genes, the significance of any particular amino acid 

change is mostly unknown and requires comprehensive structural and functional studies.  Multi-

species protein alignments (MPA) can provide valuable information about the phylogenetic 

relationships between species and identify evolutionarily constraints in regions that are central to 

structural and biochemical interactions (Cline et al., 2002).  Evaluating evolutionaryrates at 

specific sites through the use of likelihood-ratio tests (LRTs) has been extensively used to 

characterizeamino acid rate changes likely to underlie functional constraints on proteins 

(Knudsen et al., 2001).  Evolutionary rate analysis complements existing approachesfor the 

identification of conserved residues. Despite the intuitive correlation between conserved residues 

and functionally significant protein domains, distinguishing conservation associated with 

genuine biological interactions solely resulting from the shared phylogeny is a very difficult task 

(Pollock & Taylor, 1997). 

One application for the eShadow tool includes the analysis of MPAs to detect protein 

domains under selective pressure using HMMI predictions. This strategy is particularly 

promising since HMM profiling is one of the most successful strategies for detecting statistically 
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significant regions of protein homology (Madera & Gough, 2002) and is already implement by 

homology-based protein motif search tools such as the Pfam database. The eShadow tool can 

also be used to visualize the distribution of nonsynonymous amino acid changes within MPA.  

To illustrate this we have mapped all cystic fibrosis (CF) missense mutations documented in the 

Cystic Fibrosis Mutation Database to the CFTR MPA built from seven different species and 

correlated their distribution with the eShadow HHMI predictions.  80% of the documented CF 

missense mutations (32/40) were enclosed by regions of high protein homology as identified by 

HMMI (0.77/0.65/0.1) (Figure 5).  At the same time, 95% the most common CF disease causing 

alleles (16 CF missense mutations; 3 single amino acid deletions) were found to be present in 

HMMI predicted domains.  

DISCUSSION

We have developed a computational web-based tool, eShadow, that is highly proficient in 

performing phylogenetic shadowing analysis for closely related nucleotide and protein 

sequences.  eShadow amplifies the information content from pairwise or multiple alignments by 

combining independent mutations present in each different lineage, and detects regions with the 

lowest cumulative density of mutations through the use of two different statistical methods, DT 

and HMMI. This tool also includes a parameters-optimization module for the HMMI model that 

can be amended to any particular evolutionary history underlying the input sequences and trains 

the program to predict conserved elements in a wide variety of alignments.  Unlike other 

available tools that analyze conservation across alignments using static parameters, eShadow, 

permits for dynamic modifications of all parameters and picture settings creating conservation 

plots in real-time. 

eShadow can be used to detect coding exons, protein domains and conserved noncoding 

elements. While eShadow identifies exons, exon-intron boundaries are not exactly delineated; 
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therefore this tool provides a good starting point for transcript analysis that could benefit from 

external gene prediction information.  When protein alignments are analyzed eShadow can be 

used to highlight protein domains that are conserved across multiple species and may be 

involved in vital biochemical processes such as protein-protein contacts or DNA binding.  We 

have also indicated how amino acid mutational analysis can be superimposed on HHMI 

predictions in MPAs and this analysis can be used to evaluate missense mutations.

We have shown that eShadow can recreate most of the information obtained from 

human/mose alignments when human/baboon/chimp or human/baboon alignments are analyzed.  

A 53kb three-way primate alignment analysis for the WNT2 locus recovered 68% of the 

human/mouse conserved elements, as well as identified several primate-specific conserved 

elements.  While the functional significance of these lineage-specific sequence elements is 

presently unknown, we speculate that they may potentially represent sequences that underlie 

noncoding functions shared by primates but not by other mammals. Regulatory modifications of 

conserved genes have been proposed to define the major molecular differences that set different 

organisms phenotypically apart (Boffelli et al., 2003), suggesting one potentially very interesting 

application for eShadow that cannot currently be performed by any other publicly available 

computational tool.  Although we have focused on primate sequence alignments, eShadow can 

be tuned to align closely related sequences from any species.  In addition, eShadow may be 

uniquely applicable to other problems including alignments between recent segmental 

duplications.  Such duplications can often generate new functional gene copies that do not have 

true orthologs in other species and are therefore not amenable to standard cross-species 

comparative analysis (Bailey et al., 2002; Shannon et al., 2003).  eShadow therefore adds an 

important set of capabilities to the current comparative genomics toolkit, providing unique 
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access to species- and lineage-specific elements throughout sequenced genomes from any 

evolutionary clade.
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METHODS

Hidden Markov Model Islands

We used a two-states HMM method to predict slow diverging regions in MSA. We modeled the 

distribution of matches and mismatches assuming that they correspond to two mutation states 

[slow and fast], with different probabilities of emitting a match (eS and eF in slow- and fast-

mutation states, respectively), and under the assumption that the probability T of transferring 

from state to state is equal in both directions (Supplement Figure S1). The emission probability 

of a state relates to the average sequence conservation of that particular state, while the transfer 

probability is inversely proportional to the average length of regions in the alignment. Viterbi

algorithm was used to predict the underlying distribution of slow-mutation states. 

Parameters Optimization

Baum-Welch (Durbin R., 1998), Maximum Likelihood (Durbin R., 1998), and Golden Section 

Search (Press W.H., 1988) were used for optimizing parameters. Only Maximum Likelihood and 

Golden Section Search utilize user-provided annotation files (base sequence) as a training 

dataset. Maximum Likelihood scans MSAs and sets emission probabilities equal to the observed 

number of matches per length of sequence in a particular state; the transition probability is 

estimated as a number of transitions from state to state divided by the total length of the base 

sequence.  The guided Baum-Welch optimization tests different paths through the sets of slow-

and fast-mutation states and identifies the set that maximizes the likelihood probability for the 

HMMI. This method does not require annotation (it is used as an initial guess, if available) to 

calculate HMMI parameters, instead it scans through all the possible regions of slow-mutation 

and identifying regions and HMMI parameters that will maximize the log-likelihood of the 

model given the distribution of matches and mismatches. Golden Section Search (Brent’s 

method) is a one-dimensional approach for determining the minimum (or optimum) of a 
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nonlinear function, and is used to fine-tune the HMMI parameters by cyclically optimizing the 

probability parameters until full convergence is achieved.  Every parameter optimization is 

performed while the other two variables are fixed. This is achieved by sampling the surface and 

identifying the local minimum of the penalty function. We define the scoring function S as a 

discrepancy in the location of the HMMI predictions and the locations of functional regions (G):

HMMGHMMG LLLS  2 ,

where GL , HMML , and HMMGL   are the lengths of guiding regions and HMMI predictions, and 

the length of their overlap, respectively. An exact fit for the HMMI predictions and guiding 

regions will zero the scoring function S, while any discrepancies will increase it. This method 

iterates and converges to the point of the local minimum, due to the discrete nature of the scoring 

function.  Usually there are several local extremum points in the three-dimensional surface of 

HMMI probability parameters in Baum-Welch and Golden Section Surface optimizations. The 

implemented procedure converges to one of the extremum points depending on the input 

parameters. Therefore, when HMMI generates no predictions or there is a large discrepancy 

between the predicted and the expected elements, parameters need to be modified accordingly.

Open Reading Frame (ORF) Detection

ORFs are identified in all six reading frames, excluding the ones <60 bp in length, and are 

illustrated as gray bars. Stop codons from all sequences are collapsed onto the reference 

sequence. All ORFs internally spanned by HMMI predictions >75% in length are preserved, 

identifying the most probable frame of translation for each HMMI. At the final step every frame 

is truncated in order to confirm the standard AG-GT exon-intron splice-site (Burset et al., 2000).  

AG and GT dinucleotides are required to be evolutionary conserved in all the species throughout 

the alignment and the pair closest to HMMI edge is used to define the exon boundaries. 
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Independently generated ORF and HMM predictions that overlap with each other are demarcated 

by different colors: red (positive strand); blue (negative strand) (Figure 3C).

Output option

The text output option of the eShadow tool provides the user with a detailed summary for the 

alignment and exhaustive information about the detected slow-mutating regions. This module 

calculates the number of mismatches in all the pairwise sequence comparisons for the base 

sequence versus each different sequence and compares it to the whole MSA. This serves as an 

estimate of evolutionary divergence between different species as well as it characterizes the 

substitution rate in the MSA. The second part of the summary data consists of a module 

calculating the discriminative power introduced by each additional species used in the multiple 

sequence alignment. The program presents the tabulated data identifying the n most distant 

species, where n varies from 2 to the maximum number of species in the initial alignment, by 

analyzing all the possible combinations of n species and extracting one with the highest 

substitution rate per base sequence (Supplementary Figure S2). This is done by a sequential 

grouping of sequences that introduce the largest number of mutations into the MSA.  Every 

group of n sequences that is presented is the optimal group that has the maximum possible 

amount of mutations in all the possible sets of groups of n sequences.

This section also contains a report of all the slow-mutating regions identified by the 

selected methods, providing the coordinates of the predicted elements in the base sequence and 

indicating their parameters.  HMMI predictions also contain scores that reflect confidence 

(statistically evaluating predicted regions versus background noise for a given set of parameters). 

Every predicted slow-mutating interval I of the HMMI collects a score S(I), which reflects a log 

likelihood probability of this interval not to be a fast-mutating region:



I. Ovcharenko et al.

18


 




Ii i

i

AfastmP
AslowmP

IS )
)|(
)|(

log()( ,

where the summation is done across all the base pairs in the interval and )|( AkmP i   is the 

posterior probability of the observed state k at the position i in the alignment A, which has a 

known structure of complete matches/mismatches. We prioritized longer conserved intervals 

over the shorter ones by not normalizing interval scores based on length. 
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Table 1.  Evaluating eShadow’s performance on recapitulating human/mouse conservation 

patterns in human/baboon alignments. Sequences for the WNT2 region were obtained by 

excising ~53 kb from the ~2 Mb region [NISC Comparative Sequencing Program has sequenced 

for the CFTR locus sequencing project (Thomas et al., 2003)].  4 baboon BACs spanning CECR, 

PCQAP, SNAP29, and TCF4 gene loci were downloaded from NCBI (Acc# AC091672, 

AC128639, AC129881, AC113267). Human and mouse sequences were obtained from UCSC 

database, coordinates and alignments are available in Supplementary Materials.

Detected coding exonsGene Locus Sensitivity Specificity Common region
length** all > 150 bps

WNT2 67.9% 61.1% 52.8kb 5/5 4/4
CECR 55.7% 82.5% 63.4kb 7/20 5/7
PCQAP 51.1% 89.8% 123.4kb 13/20 8/8
SNAP29 46.0% 89.6% 125.1kb 19/27 7/10
TCF4 61.4% 56.7% 137.8kb 10/11 1/1
Average 59.3% 77.6% 100.5kb 54/87 (62%) 25/30 (83%)

**Common region lengths are defined as regions of homology (kb) flanked by at least one ECR 

and one HMMI prediction. HMMI parameters used: 0.98/0.90/0.005. 
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Figure 1. Schematic dataflow of the eShadow program.

Figure 2. Predicting exons in multiple primate alignments.  eShadow exon prediction and 

conservation plots for Apo-B (1.4kb) (A), Plasminogen (1.2kb) (B), LXR-alpha (1.35kb) (C), 

and CETP (1kb) (D) loci using multiple primate alignments. HMMI  predictions (0.85/0.77/0.1) 

are in beige and DT regions (15/100) are in green. The locations of known exons are depicted as 

red bars. Sequences are available at NCBI, acc# AY190030-AY190042, AY192729-AY192785.

Figure 3. Predicting exons in single primate pairwise alignments.  eShadow analysis for Apo-B 

(1.4kb) region using human/mouse (a), human and 14 primate sequences (b) and 

human/Allouatta seniculus sequences (c); 50 bps sliding window was utilized to smoothen the 

conservation profile. Right panel shows human/mouse (d) and human/ Allouatta seniculus (e) 

sequence comparisons plotted with standard 50% to 100% thresholds and 100 bps sliding 

window.  Exons (blue) and evolutionary conserved regions (ECRs) (red) are indicated in (d) and 

(e) zplots (http://zpicture.dcode.org). HMMI predictions (beige), ORF predictions (gray), exon 

annotations (red) and exon predictions (yellow) are visualized in eShadow plots (a-c).   Percent 

variation- y axis, size in bp- x axis. (a-c). Percent identity- y axis, size in kb- x axis (d,e).

Figure 4. eShadow analysis for the WNT2 region. Human/mouse conservation plot (A) compared 

to human/baboon/chimp eShadow conservation plot (B). Human/mouse alignments were 

generated and visualized by the zPicture program (http://zpicture.dcode.org), using standard 

parameters (≥100bp; ≥70%) and conserved elements corresponding to exons (blue), UTRs 

(yellow), intronic (pink) and intergenic (red) elements are indicated (A). Human/baboon/chimp 

alignment plot (B) depicting regions of conservation (purple) and HMMI predictions (beige).  y
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axis corresponds to- percent identity (A) and percent variation (B). x axis corresponds to size in 

base pairs (A,B).

Figure 5. eShadow application in multiple protein alignment analysis. Human, baboon, cow, 

sheep, mouse, rat, and rabbit CFTR proteins were aligned using eShadow and highly 

homologous regions were predicted using the HMMI module (0.77/0.65/0.1).  Mutations known 

to cause cystic fibrosis (http://www.genet.sickkids.on.ca/cftr) are mapped to the CFTR MPA and 

annotated as red tick marks.
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