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Abstract. Nutrient availability and soil quality influence herbivores through changes in plant traits and

can have cascading effects on herbivore interactions. In complex systems, with many positive and negative

interactions, the consequences of these bottom-up effects are still not well established. We carried out a set

of studies to determine the impact of soil quality (organic compost amendments) on a hemipteran

herbivore (Coccus viridis), two ant mutualists, predators, pathogens, parasitoids of C. viridis, and an

arboreal arthropod community on coffee (Coffea arabica). We also determined the impact of Azteca instabilis

ants on the arthropod community with an exclusion experiment. In an observational study, the carbon to

nitrogen ratio (C:N) of leaf tissue correlated negatively with C. viridis density, however caffeine content did

not correlate with C. viridis. In a field experiment with coffee seedlings, both C. viridis and total arthropod

abundance were greater on high-quality plants than on low-quality plants. Excluding A. instabilis resulted

in higher C. viridis abundance and parasitism rate, and higher spider and total arthropod abundance.

Although A. instabilis attendance of C. viridis only marginally differed across soil quality treatments, in a

second experiment, Pheidole synanthropica ants recruited more workers per C. viridis individual on high-

relative to low-quality plants. Soil quality treatments did not impact predator abundance or fungal

pathogen prevalence. These results suggest soil quality impacts C. viridis herbivores, P. synanthropica ants,

and total abundance of arthropods on coffee, but did not impact the third trophic level. Thus this study

provides a complex case study of pathways in which bottom-up effects influence arthropod interaction

webs.
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INTRODUCTION

Ecologists have long debated how biotic and

abiotic factors control populations and provide

structure to ecological communities (Hairston et

al. 1960, Hunter and Price 1992). For many

terrestrial systems, nutrient availability can have

important consequences on communities

through direct effects on the quality and quantity

of primary producers (plants), and indirect
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effects on herbivores that consume plants (Aw-
mack and Leather 2002). Theory also suggests
that increased productivity can increase the
length of food chains (Fretwell 1977, Oksanen
et al. 1981, Abrams 1993). At the same time, the
presence of some organisms at higher trophic
levels, such as top-predators and mutualists of
herbivores, can have strong community wide
effects that cascade down to influence plant
abundance and quality (Gratton and Denno
2003, Gruner 2004, Kay et al. 2004, Müller et al.
2005). It is now commonly acknowledged that
both bottom-up and top-down forces work
together to shape ecological communities, yet
our understanding of how these forces interact
with one another is still lacking because systems
are often only studied from one point of view
(Hunter and Price 1992).

Nutrient enrichment typically increases popu-
lations of herbivores that are limited by elements
such as nitrogen (N) and other limiting nutrients
(Mattson 1980). For instance, plant nutritional
traits that are altered by fertilization or soil
quality have strong effects on hemipterans
because hemipterans feed on plant phloem,
which is low in amino acid content (Ponder et
al. 2000, Awmack and Leather 2002, Stadler et al.
2002, Morales and Beal 2006, Nowak and Komor
2010). Increases in herbivore density from en-
richment can result in increases in predator
density and pathogen prevalence (Forkner and
Hunter 2000, Raubenheimer and Simpson 2009).
Nutrient enrichment also impacts other interac-
tions like mutualisms between ants and plants, as
well as between ants and honeydew-producing
insects (Baylis and Pierce 1991, Heil et al. 2002).
Ant-hemipteran mutualisms, in particular, struc-
ture tropical arboreal communities (Floren et al.
2002, Davidson et al. 2003) and can be mediated
by the indirect effects of nutrient availability on
host-plant quality (Baylis and Pierce 1991, Cush-
man 1991). Ant abundance increases on plants
with high nutrient availability or with high plant
quality due to increases in honeydew-producing
herbivore abundance (Strauss 1987) or subse-
quent increases in the quality of honeydew
rewards.

Despite this knowledge of nutrient influences
on species interactions, many food webs are
complicated and complexity may attenuate the
effects of nutrient enrichment or productivity. For

instance, fertilization can increase defenses in
some plants, which can actually make plants
more toxic to some herbivores, thereby prevent-
ing higher productivity at consumer levels (Dyer
et al. 2004). Predators can also exhibit intra-guild
predation that may attenuate fertilization effects
at higher trophic levels (Letourneau et al. 2009).
Additionally, defense mutualists of herbivores
can guard herbivores from predators and thereby
prevent the third trophic level from becoming
more productive. Understanding how complex
ecological communities respond to enrichment is
therefore a goal of future studies.

In coffee plantations of southern Mexico, the
complex interaction web of arthropods on coffee
has been well described (Vandermeer et al. 2010).
However, few have investigated the bottom-up
effects of fertilization, soil quality, or plant
quality on the interactions that structure the
web. Here, we investigate the direct and indirect
influence of soil quality on the interactions of an
arthropod community on coffee (Coffea arabica L.
[Rubiaceae]) (Fig. 1). First, in an observational
study, we examined if coffee plant traits are
correlated with the abundance of a honeydew-
producing hemipteran (Coccus viridis Green
[Hemiptera: Coccidae]) throughout the coffee
agroecosystem. Second, in a seedling experiment,
we determined whether improved soil quality
would increase the quality of coffee host plants,
abundance of C. viridis, and in turn the recruit-
ment of Azteca instabilis F. Smith [Hymenoptera:
Dolichoderinae] ants, abundance of predators,
pathogens, and parasitoids of C. viridis, as well as
the overall abundance of the arthropod commu-
nity. In a second experiment, we tested if soil
quality would mediate the recruitment of a
second ant-mutualist (Pheidole synanthropica
Longino [Hymenoptera: Myrmecinae]) to C.
viridis. We hypothesized that increased soil
quality would lead to increased plant quality
and result in higher densities of C. viridis. We
predicted that the presence of A. instabilis ants
would also increase C. viridis density because
previous studies have suggested a positive
relationship between A. instabilis and C. viridis
(Vandermeer and Perfecto 2006). We hypothe-
sized that tending ants (A. instabilis and P.
synanthropica) would be more abundant on
higher-quality plants and have a higher per
capita rate of attendance to C. viridis on high-
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quality plants relative to low-quality plants
because of the increased quality of honeydew
rewards. We hypothesized that predators and
parasitoids would exhibit an interaction between
soil quality and ant exclusion treatments, where
they would be more abundant with increased
soil quality, but only on ant exclusion plants. In
the presence of ants, predators and parasitoids
would be lower under high-quality treatments
because of increased ant guard of C. viridis. We
expected that pathogens of C. viridis would be
more prevalent in the presence of ants and under
increased soil quality, where C. viridis would be
more abundant. Finally, overall abundance of
other arthropods within the community should
also exhibit an interaction between soil quality
and ant treatment, where there are more arthro-
pods on high-quality plants, but only in the
absence of ants. High-quality plants should
provide more resources to host more arthropods,
however A. instabilis indiscriminately removes
arthropods from foliage (Liere and Perfecto 2008)
limiting the effect of soil quality on plants with A.
instabilis.

METHODS

Study system
We conducted all research at Finca Irlanda

(158110 N, 928200 W; 900 m asl; 4500 mm/yr rain;
hereafter Irlanda), a shade coffee plantation in
the Soconusco region of Chiapas, Mexico in
February to July of 2008. There, C. viridis feeds
on the phloem of coffee and forms mutualisms
with ants, including the dominant arboreal ant,
A. instabilis and the ground-nesting P. synan-
thropica (Vandermeer et al. 2010). Coccus viridis
reaches its highest densities near to shade trees
with A. instabilis nests (Vandermeer and Perfecto
2006). Many natural enemies attack C. viridis,
including parasitoid wasps, adults and larvae of
Azya orbigera Mulsant (Coleoptera: Coccinelli-
dae), and entomopathogenic fungus (Lecanicil-
lium lecanii [Zimmerman] Zare and Gams)
(Vandermeer et al. 2010). There are also a number
of rare or low-density coffee herbivores that
include aphids (Toxoptera sp. [Hemiptera: Aphi-
dae]), Lepidoptera, Orthoptera, and Coleoptera.
Coffee also produces the xanthine alkaloid
caffeine that has insecticidal properties in some
herbivores, but weak effects on specialists (Na-
thanson 1984, Guerreiro Filho and Mazzafera
2000, Magalhães et al. 2008). Research suggests

Fig. 1. Coffee interaction web and conceptual pathway of positive and negative interactions between species.

Indirect interactions are shown as dotted lines and direct interactions are shown as solid lines.
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caffeine is induced by C. viridis infestations and it
may deter C. viridis in feeding assays (Lemes
Fernandes et al. 2011).

Field survey
To investigate the hypothesis that plant quality

can impact C. viridis distribution, we determined
the relationship between plant nitrogen and
caffeine and C. viridis in coffee plantations. We
located 11 shade trees housing A. instabilis nests
and surveyed nearby coffee plants for C. viridis (n
¼ 38 coffee plants). In each site, we counted C.
viridis individuals (both healthy and infected
with L. lecanii ) on three randomly selected
branches on at least one plant with high densities
and one plant with low density of C. viridis to
capture variation in density. All coffee plants
were within 5m of ant nests. To correlate caffeine
content and C. viridis, we collected phloem
exudates from 2-3 leaves from each plant using
a method modified from King and Zeevart (1974)
because C. viridis is a phloem feeder. Following 1
h of darkness, we cut the petiole of one newly
expanding leaf and submerged the petiole tip in
5 ml of 20 mmol EDTA for 8 h and then collected
the solution for analysis. We also collected newly
expanding leaf samples for leaf level caffeine, N,
and C analysis.

Soil quality–Azteca instabilis experiment
To investigate hypotheses related to how soil

quality impacts the arthropod interaction web,
we conducted a factorial designed field experi-
ment with coffee seedlings crossing soil quality
with ant exclusion treatments (3 3 2). We
obtained 8-month old coffee (C. arabica var.
Catuai and Catimor) seedlings (mean 16 leaves)
from the Irlanda plant nursery (Feb 2009) and
repotted seedlings in pots (11.5 cm diam. by 15
cm height) with one of three treatments: (1) low
quality that contained a 3:1 mixture of sand and
soil, (2) intermediate quality that contained a
1:2:1 mixture of sand, soil, and organic compost,
and (3) high quality that contained a 1:3 mixture
of soil and organic compost. We obtained soil
from the study site, sand from a nearby
riverbank, and organic compost (worm vermic-
ulture of coffee parchment, chicken manure, and
calcium carbonate) from the Irlanda composting
facility. Weekly, the high- (100 ml) and interme-
diate-treatments (50 ml) received compost ‘tea’

(stewed compost). Watering was unnecessary
because rainfall saturated potted soil almost
daily. We confirmed the quality of soil treatments
by running soil analyses (N ¼ 3) at Universidad
Autonoma de Chiapas in Huehuetan, Mexico
(Appendix A: Table A1). After two months, we
infested seedlings with C. viridis by placing them
in contact with other heavily infested seedlings.
Adults of C. viridis are sessile, but nymphs
(crawlers) are mobile and readily colonize new
plant tissues (Fredrick 1943). Prior to the exper-
iment, we thinned C. viridis to 30 individuals per
plant with cotton swabs. We placed six randomly
selected seedlings, two of each soil quality
treatment, in random order 1 m from the tree
base of 19 selected independent A. instabilis nests
on Inga micheliana trees. Then we randomly
excluded ants from half of plants (one per soil
treatment) by painting Tanglefoot (Grand Rap-
ids, MI) around the stem 3 cm above soil. To
control for any effect of Tanglefoot, we painted a
half circle of it on control plant stems. We re-
applied Tanglefoot and removed encroaching
vegetation as necessary. Each week, for five
weeks after set-up, we counted the number of
C. viridis (excluding crawlers and individuals
infected with L. lecanii ), Toxoptera sp., A. instabilis
workers, A. orbigera, L. lecanii infected C. viridis
(only last 3 wk), parasitized C. viridis (only last 3
wk), and all orders of arthropods on plants;
except Diptera because of the difficulty of
observing them. All measurements were taken
at sites between 6:30 AM and 1:30 PM under
similar weather conditions.

To determine the effect of treatments on plant
traits we examined plant growth rates by
dividing the number of leaves at the end of
experiment by the number at the onset of
treatments. At the completion of the experiment,
we also collected phloem exudates from 2-3
coffee leaves per plant and collected old leaves
for caffeine and nutritional analysis as described
below.

Soil quality–Pheidole synanthropica experiment
To further investigate the hypothesis that soil

quality can indirectly alter the per capita atten-
dance of ants to C. viridis on coffee, we conducted
a second field experiment. Upon completion of
the A. instabilis field experiment described above,
we moved all plants to the outdoor plant nursery
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and investigated the effect of soil quality on
recruitment of P. synanthropica ants to C. viridis.
We removed Tanglefoot from all plants, divided
them into two areas (blocks) of the nursery
(separated by 30 m), and evenly interspersed
them in rows (0.25 m apart). Independent
colonies of P. synanthropica often occur at small
distances (3–4 m; K. Ennis, personal observation),
so we assumed the two blocks were foraged by
independent P. synanthropica colonies. On two
dates (a week apart), we counted P. synanthropica
workers on each plant and calculated means
across the two sample dates.

Plant trait analyses
To aid our understanding of how soil quality

alters plant quality, we measured several plant
nutritional and chemical traits. To prepare
samples for both leaf caffeine and nitrogen
analysis, we dried tissues at 40–458C for 48 h
and ground them in liquid nitrogen with a
mortar and pestle. We analyzed caffeine using a
maximized ultrasonic assisted extraction method
at the University of Toledo. Briefly, we combined
0.1 g of prepped leaf sample with 20 ml of
methanol and extracted caffeine by ultra-sonica-
tion for 4 h at 658C and passed extracts through
13 mm (0.45 lm pores) filter paper. We diluted
aliquots with methanol within the linear working
range of the instrument. We spiked samples with
an internal standard (13C3-caffeine) to control for
instrumental error. We analyzed samples using
liquid chromatography tandem mass spectrom-
etry (LC-ESI-MS/MS, Model Varian 1200L, Agi-
lent, Santa Clara, CA). For the field survey, we
compared new leaves; however for the soil
quality experiment we used old leaves because
there were too few new leaves. We ran each leaf
sample in triplicate to control for variability
within plant. For phloem caffeine, we filtered
un-diluted liquid exudates and analyzed samples
with LC-ESI-MS/MS. To determine leaf nitrogen
and carbon, we analyzed samples with C-H-N
combustion analysis (Perkin Elmer model 2400)
at the Application Technology Research Unit at
the United States Department of Agriculture’s
research facility in Toledo, OH.

Statistical analysis
To determine if plant traits influenced C. viridis

within the field survey, we performed general

linear mixed models (GLMM). Azteca instabilis
nests were treated as a random factor within
model and the carbon to nitrogen ratio (C:N),
and phloem and leaf caffeine concentration were
treated as fixed covariates in model. We per-
formed type III F-tests of significance for main
effects with restricted maximum likelihood
(REML) to estimate the fixed effect parameters
and the variance of random effects (West et al.
2007). Non-significant factors were removed
from the model and we compared all possible
models with Akaike Information Criteria (AIC).
We centered the dependent variable (C. viridis
abundance) around the mean to improve the fit
of GLMM.

To examine treatment effects within the field
experiment, we performed GLMM as described
above. Specifically, models considered soil qual-
ity, exclusion, and sampling date as fixed factors,
and interactions between factors. We included
nest as a random effect. We corrected for multiple
comparisons by performing Bonferroni correc-
tions. To do so, we grouped the arthropod
community into four assemblies: mutualists (C.
viridis, Toxoptera sp., A. instabilis, and A. instabilis
per C. viridis), C. viridis enemies (A. orbigera,
parasitized scales (per C. viridis), and L. lecanii
infected scales (per non-infected C. viridis), other
arthropods (spiders, hemipterans [without C.
viridis and Toxoptera sp.], beetles, other ants),
and total arthropods (minus ants and hemipteran
mutualists). Then we corrected P-values by
dividing them by the number of dependent
variables compared within each group. To meet
assumptions of normality, we transformed all
variables with the natural log (variable þ 0.001);
except we square root transformed total arthro-
pods. We also compared plant growth rate, leaf
C:N, and caffeine (phloem and leaf ) using
GLMM as above. To meet the assumptions of
normality, we natural log transformed (value þ
0.001) growth rate, and phloem caffeine. We used
regression analysis to predict which plant traits
were important to C. viridis abundance. Small
sample size and lack of adequate plant material
resulted in many missing cases and prevented
multiple regression analysis from being conduct-
ed. Instead, we performed individual regressions
between independent variables C:N, leaf caffeine,
and phloem caffeine against C. viridis abundance
(natural log transformed [þ0.001] for all analy-
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ses).
For the soil quality–Pheidole synanthropica

experiment, we compared mean P. synanthropica
per plant and P. synanthropica per C. viridis across
soil quality treatment with GLMM. Because we
were using plants from the previous experiment,
we ensured that the previous exclusion treatment
did not impact results by including this factor in
the model. Area (block) was included as a
random effect. We natural log transformed
variables (value þ 0.001) to meet assumptions of
normality. We analyzed all statistics with SPSS
(16.0).

RESULTS

Field survey
The field survey generally supported the

hypothesis that plant traits alter C. viridis
distribution. Coffee C:N ratio (F1,34 ¼ 4.4, P ¼
0.043, parameter estimate �18.1 6 8.6 [mean 6

SE]) correlated negatively with C. viridis density,
but phloem (F1,10 ¼ 2.5, P ¼ 0.147, parameter
estimate 9.2 6 35.1) and leaf caffeine (F1,34 ¼
0.069, P¼0.794, parameter estimate�9.4 6 6) did
not correlate with C. viridis (all factors included
in best fit model).

Soil quality–A. instabilis experiment
Hemipteran mutualists and A. instabilis ants.—

Coccus viridis was influenced by soil quality, ant-
treatment, and time (Fig. 2A, Table 1). Pair-wise
comparisons revealed high-quality plants had
64% more C. viridis than low-quality plants (P ,

0.001), and 19% more C. viridis than intermedi-
ate-quality plants (P ¼ 0.001). There was 61%
more C. viridis on ant-excluded plants relative to
controls. There was no clear pattern of C. viridis
abundance over time, yet pair-wise comparisons
revealed lower C. viridis abundance in the second
(P , 0.001) and the last time points (P ¼ 0.019)
compared with the first. Unlike C. viridis,
Toxoptera sp. aphids were not strongly influenced
by soil quality, exclusion treatment, or time
effects (Table 1).

Azteca instabilis abundance per plant was
significantly influenced by exclusion and mar-
ginally influenced by soil quality (Fig. 2B, Table
1). Control treatment plants had 26 times more A.
instabilis than exclusion treatment plants. Azteca
instabilis abundance tended to be higher on high-

quality plants relative to low-quality plants. Only
the obvious effect of exclusion treatment influ-
enced the number of A. instabilis per C. viridis
individual (Table 1).

Enemies of C. viridis.—Ant exclusion and time
impacted enemies of C. viridis, however there
was no effect of soil quality treatment (Fig. 3,
Table 2). Azya orbigera larvae abundance in-
creased over time on ant-excluded plants, but
did not change with time on control plants (Fig.
3A). The proportion of L. lecanii infected C. viridis
to un-infected C. viridis was not influenced by
soil quality or exclusion treatments, however it
increased significantly over the three weeks
sampled (Fig. 3B, Table 2). The proportion of
parasitized C. viridis to un-parasitized C. viridis
varied by exclusion treatment and time, but at no
time were more than 3% of C. viridis parasitized,
suggesting parasitism was rare (Fig. 3C, Table 2).

Community level.—Soil quality, exclusion, and
time influenced the arthropod community. Ar-
thropod abundance tended to increase with time
on high- and intermediate-quality plants, but
declined over time on low-quality plants (F8, 209¼
2.7, P ¼ 0.0077; Fig. 4). Ant-excluded plants had
8% more arthropods than control plants (F1, 531¼
6.4, P¼ 0.0118). For specific groups, there was 4.7
times greater abundance of other ants (excluding
A. instabilis) on control plants relative to ant-
excluded plants (species observed included:
Brachymyrmex heeri, Brachymyrmex sp. 2, Pheidole
protensa, Pheidole synanthropica, Xenomyrmex sp.,
Pseudomyrmex ejectus, Procryptocerus hylaeus,
Cephalotes atratus, Wasmannia auropunctata; Ap-
pendix A: Tables A2 and A3). On the contrary,
there were twice as many spiders on ant-
excluded relative to control plants (Appendix
A: Fig. A1, Tables A2 and A3). Coleoptera
abundance per plant increased with time, and
Hemipteran abundance did not vary by any
factor (Appendix A: Tables A2 and A3).

Plant traits.—Soil quality treatments impacted
coffee seedling traits (Table 3). High-quality
plants grew 79% more than low-quality plants
(P , 0.001) and intermediate-quality plants grew
60% more than low-quality plants (P , 0.001).
The C:N ratio of low-quality plants was 28% (P ,

0.001) greater than high- and 24% (P , 0.001)
greater than intermediate-quality plants. Phloem
exudates of high-quality (P ¼ 0.007) and inter-
mediate-quality plants (P ¼ 0.046) contained 2
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times more caffeine relative to low-quality plants.

Leaf caffeine did not differ with soil quality.

Across all plant traits there was no effect of

exclusion (Table 3, Appendix A: Table A4). Plant

C:N ratio negatively correlated with C. viridis

density (mean across five time points) (R2 ¼
0.062, F1,63¼ 4.17, P¼ 0.045). However, leaf (R2¼
0.050, F1,21¼ 1.1, P¼ 0.306) and phloem caffeine

(R2 ¼ 0.016, F1,43 ¼ 0.69, P ¼ 0.410) did not

correlate with C. viridis.

Soil quality–Pheidole synanthropica experiment

Pheidole synanthropica recruitment per plant

was three times greater on high-quality relative

to low-quality plants (P , 0.001) (Fig. 5A, F2, 106¼
9.8, P , 0.001). Neither high- (P¼ 0.059) nor low-

quality plants (P ¼ 0.098) differed from interme-

diate-quality plants in terms of P. synanthropica

per plant. There was no difference in P. synan-

thropica recruitment on plants previously as-

signed to exclusion and control treatments in

the A. instabilis experiment (F2, 106 ¼ 0.25, P ¼
0.622). This suggests there was no effect of

previous experimental legacies (ant pheromones

or Tanglefoot residues). There was no correlation

between the number of C. viridis per plant and

Fig. 2. Soil quality, exclusion treatment, and time effects on the mean (6SE) abundance of C. viridis (A) and A.

instabilis recruitment per plant (B).
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the number of P. synanthropica suggesting that
although we did not control for the number of C.
viridis per plant this was not an important factor.
On high-quality plants there were 3 times as
many P. synanthropica workers per C. viridis
relative to low-quality plants (P ¼ 0.04) (Fig. 5B,
F2, 104 ¼ 3.9, P ¼ 0.024). The number of workers
per C. viridis on intermediate-quality plants did
not differ from high- (P¼0.056) or low-quality (P
¼ 0.987) plants.

DISCUSSION

Our hypothesis that C. viridis would increase
with soil quality was supported, which suggests
changes in soil quality indirectly influenced C.
viridis growth. This effect was likely channeled
through changes in plant quality or productivity.
In the field experiment, high-quality plants had
greater growth rates and lower C:N than low-
quality plants. Growth of phloem-feeding insects
is often limited by amino acid content in the
phloem (Ponder et al. 2000, Awmack and Leather
2002, Nowak and Komor 2010), which is corre-
lated with leaf N in some studies (Nowak and
Komor 2010). The field survey data also support-
ed this hypothesis because C:N was correlated
with C. viridis density across adult coffee plants

(Table 1), although there was only a marginal

correlation between C:N and C. viridis in the

experimental study. Other greenhouse experi-

ments support this finding (Lemes Fernandes

2007). However, unlike in Lemes Fernandes et al.

(2011), caffeine concentration was not correlated

with C. viridis abundance in our study. Caffeine

may not have impacted C. viridis in our study

Table 1. Effects of soil quality, exclusion, and time

treatment on C. viridis, Toxoptera sp. aphids, and A.

instabilis ants.

Source df F P�

C. viridis
Intercept 1, 19 373.6 0.000004
Soil quality 2, 421 16.4 0.000004
Ant 1, 421 0.3 0.000004
Time 4, 184 6.2 0.000412
Soil 3 Ant 2, 421 0.02 .0.999
Soil 3 Time 8, 184 0.3 .0.999
Ant 3 Time 4, 184 1.1 .0.999
Soil 3 Ant 3 Time 8, 184 0.4 .0.999

Toxoptera sp.
Intercept 1, 18 15.9 0.003472
Soil quality 2, 332 3.2 0.174792
Ant 1, 332 6 0.060796
Soil 3 Ant 2, 332 3.5 0.12188

A. instabilis
Intercept 1, 18 44 0.000012
Soil quality 2, 523 4.4 0.050928
Ant 1, 523 383.4 0.000004

A. instabilis (per C. viridis)
Intercept 1, 18 42.3 0.000016
Ant 1, 473 222.4 0.000004

� Bonferroni-corrected P value.

Fig. 3. Soil quality, exclusion treatment, and time

impacts on the mean (6SE) abundance of A. orbigera

larvae (A), L. lecanii (per C. viridis) (B), and parasitized

C. viridis (per C. viridis) (C).
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because variation between treatments (0.4 to 10

mg g�1 leaf caffeine) was low compared to the

range (4.2 to 28 mg g�1) found in Lemes

Fernandes (2007). It is also possible that the

presence of predators, pathogens, parasitoids,

and ant-mutualists attenuated caffeine effects.
Surprisingly, C. viridis was more abundant on

seedlings without ants than on plants with ants,
rejecting our hypothesis that C. viridis density
would increase in the presence of A. instabilis.
Other studies have supported (Philpott et al.
2008) and contested (Reimer et al. 1993; Uno,
unpublished data) this finding. The response of C.
viridis to exclusion may depend on the given ant
mutualist and predators within the community.
Lower density of C. viridis on plants with A.
instabilis may be due to predation by A. instabilis
ants, as has been observed in other ant-hemip-
teran mutualisms (Offenberg 2001). It also could
be that exclusion treatments lowered the abun-
dance of non-flying predators, leading to in-
creased C. viridis densities (Mueller et al. 1988,
Piñol et al. 2009). Other combined factors, such as
parasitism and infection, may have also contrib-
uted to differences observed between exclusion
and control treatments.

Our results support our hypothesis that soil
quality influences ant-hemipteran mutualisms
because Azteca instabilis marginally responded
to soil quality (at the per plant level) and P.
synanthropica responded strongly to treatments

Table 2. Effects of soil quality, exclusion, and time

treatment on natural enemies of C. viridis.

Source df F P�

A. orbigera
Intercept 1, 55 40.9 0.000003
Soil quality 2, 240 2.5 0.261771
Ant 1, 344 11.6 0.00219
Time 4, 176 9.6 0.000003
Soil 3 Ant 2, 240 0.6 .0.999
Ant 3 Time 4, 176 3.2 0.043788

L. lecanii (per C. viridis)
Intercept 1, 119 11.8 0.002415
Soil quality 2, 117 1.6 0.619926
Ant 1, 117 0.1 .0.999
Time 2, 127 5.1 0.02217
Soil 3 Ant 2, 117 0.6 1.64142
Soil 3 Time 4, 127 0.8 .0.999
Ant 3 Time 2, 127 0.03 .0.999
Soil 3 Ant 3 Time 4, 127 0.4 .0.999

Parasitoids (per C. viridis)
Intercept 1, 89 17.4 0.000216
Ant 1, 109 9.9 0.006336
Time 2, 154 7.9 0.001632

� Bonferroni-corrected P value.

Fig. 4. Soil quality, exclusion treatment, and time impacts on the mean (6SE) abundance of total arthropods

(without ants and their mutualists).
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(at the per plant and per C. viridis levels). For P.
synanthropica and C. viridis, this is evidence that
soil quality caused an interaction modification,
which has important ecological and evolutionary
implications (Wootton 1994, Mooney and
Agrawal 2008). Several other studies have dem-
onstrated increased ant recruitment to honey-
dew-producing insects on fertilized host plants
(Baylis and Pierce 1991, Billick et al. 2005,
Morales and Beal 2006) or on plants varying by
genotype or hybridization (Wimp and Whitham
2001, Mooney and Agrawal 2008). Here, the
likely mechanism behind the increased recruit-
ment per C. viridis on high- relative to low-
quality plants is the increased N in honeydew
that likely limits ants like P. synanthropica (Baylis
and Pierce 1991, Davidson et al. 2003). There are

Table 3. Type III effects of soil quality and exclusion

fixed factors on plant traits.

Source df F P

Growth rate
Soil quality 2, 88 29.9 ,0.001
Ant 1, 88 1.7 0.195
Soil 3 Ant 1, 88 1.5 0.236

Carbon:nitrogen
Soil quality 2, 48 40.6 ,0.001
Ant 1, 50 0.3 0.566
Soil 3 Ant 2, 52 0.7 0.502

Phloem caffeine
Soil quality 2, 34 3.7 0.036
Ant 1, 34 0.03 0.836
Soil 3 Ant 2, 33 0.148 0.836

Leaf caffeine
Soil quality 2, 17 0.85 0.447
Ant 1, 16 0.38 0.549
Soil 3 Ant 2, 16 0.8 0.468

Fig. 5. Soil quality treatment effect on the mean (6SE) number of P. synanthropica per coffee seedling (A) and

number of P. synanthropica (per C. viridis) (B).
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several possibilities for why we observed differ-
ences between the recruitment in the two ant
species. First, the A. instabilis study had much
greater variation between site locations and a
smaller number of replications were used relative
to the P. synanthropica experiment, therefore the
former experiment might have had more envi-
ronmental variation and reduced statistical pow-
er to capture treatment effects. Coccus viridis
densities on our seedlings may not have been
high enough to attract A. instabilis away from
other honeydew-producing insects on adjacent
plants (Livingston et al. 2008). Differences in ant
response to soil quality could also be a result of
differences in species dominance, discovery
ability, or foraging strategy between the two ant
species.

Our hypotheses that soil quality would impact
organisms at the third trophic level (C. viridis
enemies) and that there would be an interaction
between plant quality and ant exclusion treat-
ments were rejected. Nonetheless the predator A.
orbigera increased in abundance after the third
week on ant-excluded plants. Many of the A.
orbigera individuals observed on the ant-exclud-
ed plants were early instar larvae, suggesting
that they were eggs that hatched after adult
oviposition. The higher abundance of A. orbigera
on ant-excluded plants is particularly surprising
because A. orbigera larvae have waxy extensions
that deter ants from removing them, and
parasitism of A. orbigera larvae is lower in the
presence of A. instabilis relative to the absence of
this ant (Liere and Perfecto 2008). The number of
C. viridis exhibiting symptoms of infection from
L. lecanii relative to the number of healthy C.
viridis also increased with time, however there
was no differences across exclusion or soil quality
treatment. Lecanicillium lecanii was the most
important top-down regulating agent of C. viridis
in this study. By the end of the final week, there
were three times more L. lecanii-infected C. viridis
individuals than healthy C. viridis individuals.
Although parasitism rates of C. viridis varied by
time and exclusion treatment, rates were so low
that these results may not be biologically
relevant.

Soil quality, exclusion, and time influenced
total arthropod abundance, however we did not
observe a hypothesized interaction between soil
quality and ant exclusion. Arthropod abundance

likely increased on high-quality plants because
these plants had greater leaf area than low-
quality plants, which likely led to more arthro-
pods per plant due to more plant resources per
plant. The presence of A. instabilis also led to
fewer total arthropods on coffee. Similarly, the
number of C. viridis, Toxoptera sp., A. orbigera
larvae, spiders, and parasitized scales was also
reduced in the presence of A. instabilis. Other
studies have demonstrated that A. instabilis
reduces the abundance of specific arthropod
groups on coffee (Philpott et al. 2008) or on
shade trees (Philpott et al. 2004, Gonthier et al.
2010), however this study is the first to suggest
that A. instabilis reduces overall arthropod
abundance. This finding corroborates the work
of others that show ants have community wide
impacts on arboreal arthropod communities
(Wimp and Whitham 2001, Floren et al. 2002,
Kaplan and Eubanks 2005, Styrsky and Eubanks
2007, Rosumek et al. 2009).

Although our soil quality treatments impacted
plant quality traits and the arthropod communi-
ty, increased fertilization many not have been
solely responsible. Increased N in the plant
tissues of high-soil-quality plants might suggest
that fertilization was important, but other soil
characteristics, like organic matter, water reten-
tion, pH, and the microbial community may have
also influenced plant-animal interactions. Dis-
secting the components of soil quality and
evaluating their impact on plant-animal interac-
tions remains an important research avenue with
relevance to both ecologists and agricultural
producers.

Bottom-up effects of soil quality, nutrient
fertilization, and plant quality traits can have
far reaching effects on higher trophic levels
within ecological communities. Improved plant
quality can increase abundance at the second
trophic level and in some instances the third
trophic level (Forkner and Hunter 2000, Gruner
2004). Although we found strong impacts of soil
quality on herbivores and some impacts on ant-
mutualists, we did not find any effects on
predators, parasitoids, and pathogens. Also, we
did not observe interactions between soil quality
and ant exclusion despite both treatments having
important effects on some components of the
arthropod community. Perhaps it is not surpris-
ing that our results are complicated given the
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complexity of the coffee arthropod interaction
web studied. Interactions between herbivores
and mutualists may have attenuated the transfer
of productivity from herbivores to predators or
perhaps our study was too short to observe these
effects. We conclude that bottom-up effects are
important factors to consider within the coffee
agroecosystem, but further research is needed in
these systems and other systems where there is
substantial variation in soil quality. Few other
studies have investigated the bottom-up effects
of soil quality on arthropod communities in
human-dominated ecosystems, such as coffee
plantations. Our results will lend important
insights into the consequences of changes in soil
quality given land-use change, agricultural in-
tensification, nitrogen deposition, and forms of
natural variation in soil quality.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Table A1. The effect of soil quality treatment on soil quality traits (means 6 SE).

Soil quality treatment N (%) P (ml/l) K (ml/l) Organic matter (%)

Low 0.17a 6 0.01 16a 6 2 49a 6 3 4.6a 6 0.1
Intermediate 0.21a 6 0.02 68b 6 17 88a 6 1 5.3b 6 0.1
High 0.34b 6 0.03 29a,b þ 1 189b 6 19 10.7c 6 0.1

Note: Common letters denote means that are not significantly different (P¼ 0.05) from one another, as determined by Tukey’s
HSD.

Table A2. Numbers of organisms (mean 6 SE) within the coffee community in soil quality and ant treatments

averaged across time.

Organism Low, ant Low, no ant Int, ant Int, no ant High, ant High, no ant

C. viridis 31.12 6 2.562 54.62 6 3.631 42.79 6 4.414 75.14 6 8.69 57.96 6 5.918 82.98 6 5.445
Toxoptera sp. 0.34 6 0.285 1.84 6 0.824 5.46 6 4.218 7.98 6 5.407 0.46 6 0.228 5.85 6 2.138
A. instabilis 3.19 6 0.459 0.07 6 0.04 3.86 6 0.574 0.07 6 0.04 4.98 6 0.634 0.29 6 0.135
A. instabilis (per C. viridis) 0.151 6 0.027 0.008 6 0.006 0.208 6 0.077 0.007 6 0.004 0.205 6 0.047 0.011 6 0.006
A. orbigera 0.04 6 0.026 0.48 6 0.179 0.09 6 0.03 0.41 6 0.119 0.11 6 0.038 0.14 6 0.071
L. lecanii infected C. viridis

(per uninfected C. viridis)
0.39 6 0.154 1.38 6 0.681 1.94 6 1.364 2.38 6 1.407 1.17 6 0.675 0.28 6 0.085

Parasitized C. viridis
(per C. viridis)

0.02 6 0.018 0.01 6 0.004 0 6 0.001 0.05 6 0.028 0 6 0.001 0.01 6 0.003

Total arthropods� 0.49 6 0.093 0.55 6 0.067 0.66 6 0.136 0.75 6 0.111 0.72 6 0.161 0.74 6 0.1
Coleoptera 0.21 6 0.075 0.52 6 0.174 0.41 6 0.109 0.62 6 0.148 0.38 6 0.141 0.25 6 0.096
Hemiptera 0.18 6 0.047 0.15 6 0.037 0.13 6 0.037 0.17 6 0.046 0.18 6 0.065 0.31 6 0.058
Other ants 5.53 6 2.311 0.8 6 0.558 5.64 6 2.076 0.21 6 0.088 7.66 6 2.806 2.91 6 2.155
Spiders 0.11 6 0.032 0.2 6 0.044 0.11 6 0.035 0.29 6 0.052 0.14 6 0.046 0.21 6 0.06

� Total arthropods without ants and their hemipteran mutualists (C. viridis and Toxoptera sp.).
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Table A3. Effects of soil quality, exclusion, and time

treatments on arthropod groups.

Source df F P�

Other ants
Intercept 1, 19 7.2 0.06
Soil quality 1, 316 39.9 0.000004
Ant 2, 316 0.8 .0.999
Time 4, 168 3 0.076
Soil 3 Ant 2, 316 0.1 .0.999
Soil 3 Time 8, 168 0.2 .0.999
Ant 3 Time 4, 168 0.1 .0.999
Soil 3 Ant 3 Time 8, 168 0.1 .0.999

Spiders
Intercept 1, 20 56.2 0.000004
Ant 1, 494 14.9 0.000524
Time 4, 196 3.1 0.070856

Hemiptera (non-ant mutualists)
Intercept 1, 18 48.8 0.000008
Ant 1, 497 1.7 0.77896

Coleoptera
Intercept 1, 21 41.4 0.000008
Soil quality 2, 387 4.1 0.069364
Ant 1, 387 0.4 .0.999
Time 4, 212 8.6 0.000008

� Bonferroni-corrected P value.

Table A4. The effect of soil quality and ant exclusion

treatments on mean (6 SE) plant traits.

Source Low Intermediate High

Plant growth rate�
Control 1.6 6 0.1 2.5 6 0.2 2.6 6 0.2
Ant exclusion 1.5 6 0.1 2.6 6 0.2 3.1 6 0.2

C:N ratio
Control 23.3 6 0.4 18.3 6 0.6 17.5 6 0.6
Ant exclusion 22.1 6 0.9 18.1 6 0.6 17.8 6 0.6

Phloem caffeine (lg/l)
Control 0.13 6 0.07 0.28 6 0.05 0.23 6 0.05
Ant exclusion 0.12 6 0.02 0.25 6 0.08 0.22 6 0.06

Leaf caffeine (mg/g)
Control 5.05 6 0.94 5.74 6 1.00 5.03 6 1.45
Ant exclusion 5.04 6 1.67 3.67 6 0.90 7.26 6 0.09

� Plant growth rate was equal to the division of final by
initial total number of leaves.

Fig. A1. Influence of exclusion treatment on the

abundance of spiders (mean 6 SE).
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