UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Functions of Finite Support: a Canonical Learning Problem

Permalink
https://escholarship.org/uc/item/6x2157hg

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Authors
Freivalds, Rusins
Kinber, Elim
Smith, Carl H.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/6x2157h6
https://escholarship.org
http://www.cdlib.org/

The Functions of Finite Support: a Canonical Learning Problem '

Riisipd Freivalds?
Institute of Mathematics and Computer Science
University of Latvia, Raiga bulviris 29, LV-1459, Riga, Latvia and
Elim Kinber
Department of Computer and Information Science
Sacred Heart University, 5151 Park Avenue Fairfield, CT 06432, USA and
Carl H. Smith®
Department of Computer Science
University of Maryland, College Park, MD 20912, USA

Abstract

The functions of finite support have played a ubiquitous role in
the study of inductive inference since its inception. In addition
to providing a clear and simple example of a learnable class,
the functions of finite support are employed in many proofs
that distinguish various types and features of learning. Recent
results show that this ostensibly simple class requires as much
space to learn as any other learnable set and, furthermore, is as
intrinsically difficult as any other learnable set. This makes the
functions of finite support a candidate for being a canonical
learning problem. We argue for this point in the paper and
discuss the ramifications.

Introduction

The starting point for studies in inductive inference is the
model of learning by example introduced by Gold (1967).
This is a simple model of learning algorithms that input exam-
ples of some function and produce programs that are intended
to compute the function generating the examples. Learning
takes place as the “correct” program must be produced after
the learning algorithm has seen only finitely many examples.
The functions used as input are typically (partial) recursive
functions. Using traditional encoding techniques, this class
of functions is rich enough to mode! a wide range of phenom-
ena (Angluin & Smith, 1983). Similar models were used by
philosophers of science who were interested in understanding
the scientific method (Burks, 1958; Carnap, 1952; Carnap &
leffrey, 1971; Popper, 1968; Putnam, 1975).

The mathematically rich study of inductive inference pro-
ceeds by defining variations of Gold’s model and showing
that they give rise to a different class of learnable sets of
functions. For example, the study of team inference (Smith,
1994b) was started by the early result that there are two sets
of functions, each of which is learnable, but their union is not
(Blum & Blum, 1975). The functions of finite support were
one of the two sets used. Subsequently, this example set was
used many times in the study of inductive inference to distin-
guish between two types of learnability.

"This work was facilitated by an international agreement under
NSF Grants 9119540 and 9421640

2Supported by Latvian Science Council Grant No.93.599.

*Supported in part by NSF Grants 9020079 and 9301339 and
the Fulbright Commision. Currently on leave at the University of
Kaiserslautern.

235

One of the criticisms of work in inductive inference is that
the examples used are artificial, or in the case of the functions
of finite support, overly simplistic. The ubiquitous use of, and
the simplicity of the functions of finite support make them
a candidate for being a “‘canonical” learning problem. Re-
cent results (Freivalds et al., 1995, Freivalds, Kinber & Smith,
1995) concerning various notions of complexity for learning
strongly suggest that the reason for the numerous appearance
of the functions of finite support in the literature is because
they play a role for learning analogous to the role played by
the CNF satisfiability problem for general complexity theory
(Garey & Johnson, 1979),

In what follows, we present the Gold model in greater de-
tail and then review the recent results alluded to above. In
an effort to minimize notation, formal definitions have been
placed in the appendix. We conclude with a deeper analysis
of the functions of finite support with respect to learning.

The Gold Model

Virtually all learning by example models are enhancements
or restrictions of Gold’s notion of learning in the limit (Gold,
1967). In this model, an algorithmic device takes input ex-
amples representing the graph of a function (or strings in a
language) and, from time to time, outputs programs. If the
input examples will exhaust the set of all possible examples
and there is a single program that is almost always the pro-
gram produced by the device and this program computes the
function represented by the input, then we say that the de-
vice has learned the function. Clearly, some type of learning
must have taken place as the correct function is produced after
the device has seen only finitely many of the infinitely many
examples. In this way, each algorithmic device will learn a
certain (undecidable) set of recursive functions. The collec-
tion of all such sets, across all algorithms, gives rise to the
collection of all learnable sets of recursive functions.

This model is called “learning in the limit” as it is never
known when the correct program has first appeared as an
output of the learning algorithm. In real life situations, one
frequently never knows when they have completely learned
something. For example, technology frequently introduces
new words into the language. Is anyone willing to say they
know all of any natural language? While many of us claim to
be expert drivers, relatively few drivers know about such fine
points as “heal-toe maneuvers” or “4 wheel drifts.” In some



cases, such as learning single digit multiplication tables, it is
easy to determine when the learning is complete. Such cases
have been studied in the inductive inference community, and
they represent another example of a restriction of the basic
Gold model of learning in the limit.

If the inputs for the Gold model are drawn from some dis-
tribution, the learning device is constrained to operate within
some complexity bounds, and the program produced by the
device need not be correct on every input, but just often
enough with respect to the distribution of inputs and a func-
tion of the number of examples seen, then the PAC model
of learning (Valiant, 1984) results. Similarly, any model of
learning by example can be induced by restricling or aug-
menting the basic Gold model.

We proceed with an example. Below, we describe an algo-
rithm that will learn all the functions of finite support. These
are the recursive functions that take the value zero on all but
finitely many inputs. While the name of this class of func-
tions comes from the branch of Mathematics known as Anal-
ysis, the first use in computer science of a recursive version of
the functions of finite support appears to be in (Meyer, 1972).

The algorithm A we have in mind starts by initializing a
table T to be null and outputs a program for the everywhere
zero function. A then proceeds to perpetually execute the
following three steps:

1. Read another input pair (z,y),

2. Add (z,y) to T'iff y # 0 (indicating that another “support”
point has been located), and

3. Output a program p described below. If the table T" has not
changed, the program produced as output is identical to the
most recent previously produced program.

p has a copy of T and, on input = will output y such
that the pair (z,y) is in 7" and output O if there is no
such pair in the current table 7.

It remains to be verified that A works correctly on any
function of finite support. Since A outputs a new program
only when the table changes, and that happens only when a
nonzero range point of the function is found, convergence to a
single program will be achieved. Furthermore, this final pro-
gram will have all the support points in the table, as otherwise
it wouldn’t be the final program. Finally, this last program is
correct, as all the non zero points are in the table and this is
consulted first by every program that is produced by A. If
the value is not found in the table, then the input cannot map
to a support point and a 0 is the value returned by the final
program.

Gold was primarily interested in language learning. Via
a standard encoding of strings of symbols as natural num-
bers, a language can be viewed as a function that maps en-
codings of strings in the language to 1 and all other inputs
to 0. Gold (1967) proved that any class containing all the fi-
nite languages and one infinite language could not be learned.
Of course, when the finite languages are viewed as functions,

they become the functions of finite support. As mentioned
earlier, the functions of finite support were used to prove the
non union theorem of (Blum & Blum, 1975). The functions
of finite support have infinite VC dimension, so they can-
not be PAC learned. However, using dynamic sampling, the
concept class of all finite subsets of the natural numbers (es-
sentially the functions of finite support) can be PAC learned
(Linial, Mansour & Rivest, 1991).

Learning with a Limited Memory

The observation that humans learn without the benefit of a
perfect memory has stimulated researchers in many fields to
consider some form of memory restricted learning. For exam-
ple, in the field of neural modeling, it has been suggested that
one of the functions of rapid eye movement (REM) sleep is to
discard some memories to keep from overloading our neural
networks (Crick & Mitchison, 1983). Independent simula-
tions have verified that occasional “unlearning” aids in learn-
ing (Hopfield, Feinstein & Palmer, 1983). In a similar vein,
neural networks with a limitation on the type of the weight
in each node were considered in (Siegelmann and Sontag,
1992). The types considered are integer, rational and real.
Each successive type can, potentially, place higher demands
on memory utilization within each node. Each type also ex-
pands the inherent capabilities of the neural networks using
that type of node weights.

Linguists have also considered the effect of memory for
learning. Braine (1971) suggested that human memory is or-
ganized as a cascading sequence of memories. The idea is
that items to be remembered are initially entered in the first
level of the memory and then later moved to successive lev-
els, finally reaching long term memory. In Braine's model,
each of the transitionary memory components are subject o
degradations. Consequently, items to be remembered that are
not reinforced by subsequent inputs may be eliminated from
some level of the memory before they become permanently
fixed in memory. Wexler and Culicover (1980) formalized
many notions of language learning, including one where the
learning algorithm was to have access to the most recently
received data and the machines’ own most recent conjecture.
Their model was generalized in Osherson, Stob & Weinstein,
1986) to allow the learning mechanism access to the last n
conjectures as well as the most recently received data item.
This generalization was shown not to increase the potential
of such mechanisms to learn languages.

Within the study of inductive inference, there have been
similar investigations of learning algorithms that do not re-
member all the dala they have seen, nor remember all the
programs that they have produced as outputs (Jantke & Be-
ick, 1981; Miyahara, 1987; Wiehagen, 1976). Similar re-
sults were obtained. A different approach to memory lim-
ited learning was investigated in (Heath et al., 1991). The
issue addressed in their work is to calculate how many passes
through the data are needed in order to learn.

All off the above mentioned formal approaches restrict the
number of items to be retained in memory without addressing

236



the size of those items. Since standard encoding techniques
can be used to represent many items as a single integer, space
utilization is not accurately addressed by this work. Lin and
Vitter consider memory requirements for learning sufficiently
smooth distributions (Lin & Vitter, 1994). Since they assume
that the inputs are in some readable form, the issue of how
much space it takes to store a number never arises. An atiempt
to rectify this difficult was made by researchers working with
the PAC (probably approximately correct) model of learning
(Valiant 1984). However, their results were not a true measure
of space complexity because they measured space utilization
as a function of the size of the smallest answer, not the size
of the input (Boucheron & Sallantin, 1988; Haussler, 1985).
PAC learning while remembering only a fixed number of ex-
amples, each of a bounded size is considered in (Ameur et al.,
1993; Floyd, 1989; Helmbold, Sloan & Warmuth 1989). The
most general investigation on this line was the observation
in (Schapire, 1990) that the boosting algorithm can be made
reasonably space efficient as well.

Sample complexity gives only a very crude accounting of
space utilization. Learning procedures may want to remem-
ber other information than just prior examples. For example,
all algorithms are based on some underlying finite state de-
vice. The states of the underlying finite state machine can
also be used as a form of long term memory. To see this
point, consider the standard example from automata theory
of the finite state automaton that accepts all strings of length
0 mod 3. This machine has only three states, the start state
sp and s; and so. Every symbol read forces a change of state
from either sg to sy, or from s, to s2 or from s5 to sg. The
only accepting state is sg. In effect, state s; (7 < 2) “remem-
bers” that the input string seen so far is of length i mod 3.
This technique can be applied to learning algorithms. To en-
code a single bit in the state space, just double the number
of states. The second copy of the original state set behaves
the same way as the original. If the machine is in the original
state space, then a “0" is being remembered. If the machine
is in the new state space, then a “1” is being remembered.
In this fashion, an arbitrary amount of information may be
remembered in the state space of an algorithm. The size of
the algorithm may become enormous, but the amount of stor-
age used by the algorithm may still be miniscule as measured
by the techniques mentioned above. Hence, even the sample
complexity metric neglects to count some of the long term
storage employed by learning algorithms.

All of the above mentioned shortcomings of memory limit
learned were address in the model introduced in (Freivalds,
Kinber & Smith, 1995). There, memory utilization was mea-
sured as a function of the number of bits of input seen so far.
Both long and short term memory were considered. The short
term memory is erased every time the learning algorithm pro-
duces an output or reads another data item. All the state infor-
mation, retained data, remembered outputs, and whatever is
kept in the long term memory. It is assumed that each learning
algorithm receives its input in such a way that it is impossi-

ble to back up and reread some input after another has been
read. This model eliminates the possibility of coding lots of
data into a single location as it is the number of bits of mem-
ory that is counted. Furthermore, if the state space is used to
remember something, then this space is also counted as the
state information is also kept in the long term memory. Fi-
nally, this model is a true complexity theoretic accounting of
space utilization as the reckoning is done as a function of the
size of the input.

One of the results that was shown in (Freivalds, Kinber &
Smith, 1995a) is that if some set S is learnable, then it is
learnable by an algorithm that uses linear long storage. In
fact, the linear storage function that comes out of the proof is
¢+ (1 + €) - n, where n is the number of bits of input, ¢ is a
constant large enough to accommodate the state information
of a universal simulator and e is arbitrarily small. Hence, the
space complexity world for learning is very compact. Every-
thing lies between constant and linear space. The idea of the
proof is that the factor n storage is used to remember all the
data seen as input and the € - n factor is used by the universal
simulator to simulate that operation of the learning algorithm
that is purported to exist by the fact that S was learnable. As
n grows large enough, the € - n factor is sufficient to run the
simulation.

Several lower bound results were proven in (Freivalds,
Kinber & Smith, 1995a). In particular, a linear lower bound
on long term memory was shown for learning the functions of
finite support. The idea of this proof is that if the input comes
as a bit string representing the range of an initial segment
of some function of finite support, then the entire bit string
must be remembered. If not, then there would be two differ-
ent bit strings, representing initial segments of two different
functions of finite support, that would drive the learning al-
gorithm into the same memory state. Hence, any algorithm
using less than linear long term memory would converge to
the same answer for two different functions of finite support.
Hence, this alleged learning procedure is erroneous.

Intrinsic Complexity
The complexity of learning has been addressed in for-
mally with the PAC model (Valiant 1984) and Angluin’s
teacher/learner model (Angluin, 1988). These studies care-
fully counted the resources used by various learning algo-
rithms. However, the complexity of learning algorithm is dif-
ferent from the complexity of the learning task.

To see this, consider the following example. We will give
an algorithm to learn all the polynomial time computable
functions. The algorithm uses the enumeration technique of
(Gold 1967). As a preliminary step, define an enumeration
of all and only the linear time computable functions. The ¢t"
program in this enumeration interprets i as an ordered pair
(j, k), and runs the j*" Turing machine (from some standard
list) on any input z for k - = + k steps. The learning algorithm
initially guesses the first program in its enumeration and then
starts reading data. When some data is input that disagrees
with output of the current guess, the learning algorithm con-

237



siders the next program in its list that does not contradict the
input it has seen so far. A moments reflection is all that is
necessary to realize that, given input from some lincar time
computable function, this procedure will, in the limit, con-
verge to a correct program.

In contrast with the simple learning procedure described
above, consider learning the exponential time computable
functions. In fact, the same basic algorithm works. The
only modification necessary is to change the simulation time
bound to something like k* + k. This trivial modification
leaves the essence of ihe algorithm unchanged. It is hard
to argue that the modified algorithm is more difficult to un-
derstand or create. The learning process represented by the
original algorithm and the modified one are essentially the
same. However, due to the cost of exponential simulations
compared with linear simulations, the complexity of the al-
gorithm above for learning the exponential time computable
functions is much greater than its complexity when learning
the linear time functions.

In (Freivalds, Kinber & Smith 1995) a natural notion of re-
ductions between learning problems was presented. The basic
idea of the reduction is to map the examples from one con-
cept into suitable examples to another concept that you know
how to learn. Then, apply the known learning algorithm to
the transformed examples and map the conjectures produced
by the algorithm back to suitable conjectures for the original
concept domain. The formal definition is a bit more intricate
as “suitable” needs careful elaboration. Please refer to the
appendix for these details.

It turns out that the learning of the polynomial time com-
putable functions and the learning of the exponential time
computable functions are reducible to each other (Freivalds,
Kinber & Smith, 1995b). So, by the notion of complexity
of learning problems induced by the natural notion of reduc-
tion, these two learning problems are equivalent. It is also the
case that the functions of finite support are complete with re-
spect to the notion of reduction (Freivalds, Kinber & Smith,
1995b). This means that a set of recursive functions S is
learnable iff there are two mappings, one that transforms ev-
ery function in S into a function of finite support, and one
that transforms the programs that result from giving the trans-
formed function as input to an algorithm that learns the func-
tions of finite support into suitable programs for functions in
S. Another view is that anything that makes learning difficult,
but not impossible, is somehow reflected in the functions of
finite support. This point is elaborated on in the next section.

The Functions of Finite Support Revisited

We have seen in the previous sections that the functions of fi-
nite support are a surprisingly complex learning problem with
respect to space utilization and reductions from other learn-
ing problems. Since learning the functions of finite support
appears so simple, this must be a canonical learning prob-
lem. In this section we attempt to analyze the learning of the
functions of finite support to see what all the components of
learning are.

238

Recalling the algorithm to learn the functions of finite sup-
port, we see that the algorithm has one large loop, the first
step of which is to request more data. After some new data
arrives, a decision must be made as to whether or not it is
important and/or relevant. In the case of learning the func-
tions of finite support, this decision is trivial, a simple test
for 0. In general, a relevancy decision may be more compli-
cated. However, for any learning problem, if the problem is
solvable then there must be a computable algorithm to decide
relevance of new data.

The next component of the algorithm to learn the functions
of finite support is the production of another program conjec-
tures to compute the function represented by the input. Here
again, what happens is very simple. A program is produced
that is correct assuming that all the support points have al-
ready occurred in the input. Briefly, if all the relevant data
is present, then the program produced is correct. In general,
there must be an effective way to generate a correct program
from all the relevant data. The algorithm to learn the func-
tions of finite support is correct because, in part, all the correct
data will arrive by some point. Since all learning by example
takes place by generalizing from a finite set of “relevant” ex-
amples, for learning to happen at all there must be some sub
algorithm that transforms the set of “all relevant data” into a
correct program.

The last observation to make is that while learning the
functions of finite support, one is never quite sure if all the
relevant data (points of support) have been seen as input. No
matter what finite set of data has been observed, there are
infinitely many different functions of finite support that are
consistent with that data. If it were not for this uncertainty,
all learning by example that was possible would be rote learn-
ing, or simple memorization.

In summary, there are three main points: 1. The relevance
of each data item must be effectively determined, 2. The cor-
rect answer must obtainable uniformly from the complete set
of relevant examples, and 3. There is no way to effectively
determine when the complete set of relevant examples has
been observed.

Without the first two points, there can be no learning
by computers. The third point about the indeterminacy of
completion separates rote learning from the more interesting
learning scenarios. Learning of the self describing functions
provides an example matching the only the first two points.
This class of functions contains all those functions that, on
argument 0, evaluate to a complete description of a program
for the function. At first, this class may sound very contrived.
However, since any learning requires the existence of a fi-
nite set of data that enables the learning, the self describing
functions are merely those functions where this data set is
concisely encoded in a single point. Furthermore, this exam-
ple represents the minimal size set of relevant examples and
the most trivial uniform procedure to turn the set of relevant
examples into a correct program. In the Introduction, the ex-
istence of two learnable sets whose union was not learnable



was mentioned. The functions of finite support was one of the
two sets, the self describing functions are the other. Note that
since the relevant data set is a single point, it is very easy (o
know when all the relevant data has been received. The set of
self describing functions is nor complete (Freivalds. Kinber
& Smith, 1995b).

Conclusions

A very simple learning problem, that of learning the func-
tions of finite support was examined in detail. This class can
be learned, but only with requirements on memory utiliza-
tion that match the theoretical maximum. Furthermore, the
set is complete with respect to a very natural notion of re-
duction between learning problems. The functions of finite
support are an ideal canonical learning problem. The straight
forward procedure to learn the functions of finite support is
the clearest schema possible. All of the fundamental com-
ponents of learning are present, in the simplest form in this
example. These components are: assessing relevance of ex-
amples, turning the complete set of relevant examples onto a
solution, and lack of certainty about when the complete set of
relevant examples has been seen.

Acknowledgements

This paper was written while the third author was on sabbat-
ical leave at the University of Amsterdam. The support pro-
vided by the University and the NWO in The Netherlands is
gratefully acknowledged. Rob Schapire pointed out the finite
set result of (Linial, Mansour & Rivest, 1991) to us.

References

Ameur, F., Fischer, P, Hoffgen, K., and auf der Heide, F.
(1993). Trial and error: a new approach to space-
bounded learning. In Proceedings of the Ist European
Conference on Computational Learning Theory, pages
133-144, Oxford University Press.

Angluin, D. (1988). Queries and concept learning. Machine
Learning, 2:319-342.

Angluin, D. and Smith, C. H. (1983). Inductive inference:
Theory and methods. Computing Surveys, 15:237-269.

Blum, L. and Blum, M. (1975). Toward a mathematical the-
ory of inductive inference. [Information and Control,
28:125-155.

Boucheron, S. and Sallantin, J. (1988). Some remarks about
space-complexity of learning, and circuit complexity
of recognizing. In Haussler, D. and Pit, L., editors,
Proceedings of the 1988 Workshop on Computational
Learning Theory, pages 125-138, San Mateo, CA. Mor-
gan Kaufmann.

Braine, M. D. S. (1971). On two types of models of the inter-
nalization of grammars. In Slobin, D. L, editor, The On-
togenesis of Grammar, pages 153-186. Academic Press.

Burks, A. W. (1958). Collected Papers of Charles Sanders
Peirce, volume 7. Harvard University Press, Cambridge,
Mass.

Carnap, R. (1952). The Continuum of Inductive Methods. The
University of Chicago Press, Chicago, Illinois.

Carnap, R. and Jeffrey, R. (1971). Studies in Inductive Logic
and Probability. University of California Press, Berke-
ley, California.

Crick, F. and Mitchison, G. (1983). The function of dream
sleep. Nature, 304(14):111-114.

Floyd, S. (1989). Space-bounded learning and the Vapnik-
Chervonenkis dimension. In Rivest, R., Haussler, D.,
and Warmuth, M., editors, Proceedings of the 1989
Workshop on Computational Learning Theory, pages
349-364. Morgan Kaufmann.

Freivalds, R., Kinber, E., and Smith, C. H. (1995a). On the
impact of forgetting on learning machines. Journal of
the ACM, 42(6):1146-1168.

Freivalds, R., Kinber, E. B., and Smith, C. H. (1995b). On
the intrinsic complexity of learning. Information and
Computation, 123(1).64-71.

Garey, M. and Johnson, D. (1979). Computers and In-
tractability: a Guide to NP- Completeness. W. H. Free-
man & Co., San Francisco, Calif.

Gold, E. M. (1967). Language identification in the limit. In-
Jormation and Control, 10:447-474.

Haussler, D. (1985). Space efficient learning algorithms.
Technical report, University of California at Santa Cruz.
UCSC-CLR-88-2.

Heath, D., Kasif, S., Kosaraju, R., Salzberg, S., and Sulli-
van, G. (1991). Learning nested concept classes with
limited storage. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, pages
T77-782.

Helmbold, D., Sloan, R., and Warmuth, M. (1989). Learn-
ing nested differences of intersection-closed concept
classes. In Rivest, R., Haussler, D., and Warmuth, M.,
editors, Proceedings of the 1989 Workshop on Compu-
rational Learning Theory, pages 41-56. Morgan Kauf-
mann.

Hopfield, J. J., Feinstein, D. ., and Palmer, R. G. (1983). ‘un-
learning’ has a stabilizing effect in collective memories.
Nature, 304(14):158-159.

Jantke, K. P. and Beick, H. R. (1981). Combining postulates
of naturalness in inductive inference. Electronische In-
formationsverabeitung und Kybernetik, 17:465-484,

239



Lin, J. H. and Vitter, J. §. (1994). A theory for memory-based
learning. Machine Learning, 17(2):143~168.

Linial, N., Mansour, Y., and Rivest, R. L. (1991). Results on
learnability and the Vapnik-Chervonenkis dimension.
Information and Computation, 90(1):33-49.

Machtey, M. and Young, P. (1978). An Introduction to the
General Theory of Algorithms. North-Holland, New
York.

Meyer, A. (1972). Program size in restricted programming
languages. Information and Control, 21:382-394.

Miyahara, T. (1987). Inductive inference by iteratively work-
ing and consistent strategies with anomalies. Bulletin of
Informatics and Cybernetics, 22:171-177.

Osherson, D., Stob, M., and Weinstein, S. (1986). Systems
that Learn. MIT Press, Cambridge, Mass.

Popper, K. (1968). The Logic of Scientific Discovery. Harper
Torch Books, N.Y.

Putnam, H. (1975). Probability and confirmation. In Mathe-
matics, Matter and Method, volume 1. Cambridge Uni-
versity Press.

Rescher, N. (1970). Scientific Explanation. The Free Press,
New York.

Rogers Jr., H. (1958). Godel numberings of partial recursive
functions. Journal of Symbolic Logic, 23:331-341.

Schapire, R. (1990). The strength of weak learnability. Ma-
chine Learning, 5(2):197-227.

Schilpp, P. (1963). Library of Living Philosophers: the
Philosopy of Rudelph Carnap, volume 11. Open Court
Publishing Co., LaSalle, IL.

Siegelmann, H. T. and Sontag, E. D. (1992). On the com-
putational power of neural nets. In Proceedigns of the
Fifth Annual ACM Workshop on Computational Learn-
ing Theory, pages 440-449. AMC.

Smith, C. (1994a). A Recursive Introduction to the Theory of
Computation. Springer-Verlag.

Smith, C. (1994b). Three decades of team learning. In Pro-
ceedings of AII/ALT' 94, Lecture Notes in Artificial Intel-
ligence, volume 872, pages 211-228. Springer Verlag.

Valiant, L. G. (1984). A theory of the learnable. Communi-
cations of the ACM, 27(11):1134-1142,

Wexler, K. and Culicover, P. W. (1980). Formal Principles of
Language Acquisition. The MIT Press.

Wiehagen, R. (1976). Limes-erkennung rekursiver funktio-
nen durch spezielle strategien. Elektronische Informa-
tionsverarbeitung und Kybernetik, 12:93-99.

Appendix

The completely formal definitions for the concepts discussed
in the paper appear in this appendix. Some familiarity with
the fundamental notions of recursion theory is assumed. For
an discussion of all the material assumed below, see one of
(Machtey & Young 1978; Smith 1994).

Definition 1 The functions of finite support are the set of all
recursive functions f such that f(z) = 0 for all but finitely
many x's.

Definition 2
1. An inductive inference machine is an algorithmic device

the inputs examples interpreted as ordered pairs from the
graph of some function and outputs programs.

2. Suppose inductive inference machine M is given the entire
graph of some function f and outputs a sequence of pro-
grams: pg, p1, P2, -+ - The M converges on f iff either the
sequence of outputs is finite or there exists an 7 such that
forallj > i,p; = pi.

3. An inductive inference machine M learns a function f iff
M converges on f to a program that computes f.

4. Aninductive inference machine M learns a set of functions
S iff M learns each f in S.

5. A set of functions S is learnable iff there is an inductive
inference machine M that learns S.

Notice that no mention is made of the order in which an
inductive inference machine receives its input is made men-
tion of in the above definition. This is because any inductive
inference machine can be made to operate in a manor which
is independent of the order the inputs arrive in without any
loss of generality (Blum & Blum 1975).

Now we give the definitions of learning problem reduc-
tions. Let the natural numbers serve as names for programs
and p; denote the function computed by program i. Any nat-
ural way of associating names for programs with actual pro-
grams results in what is called a Géddel numbering (Rogers
1958) or an acceptrable programming system.

Definition 3 An admissible sequence for a recursive function
f is a sequence of programs po, pi, - - - such that for some n,
¢p, = f,and foralln’ > n, pnr = pn.

Definition 4 An operator is a mapping from functions to
functions. © is a recursive operator iff there is a recursive
function f such that, for any program i, ©(p;) = @)
Definition 5 Suppose U and V are learnable sets of recursive
functions. Then, U is reducible to V' iff there are recursive
operators © and = such that

1. ©® isinjective on U, and
2. ©(U) CV,and

3. forany f € U and any admissible sequence 7 for O(f),
Z(7) is an admissible sequence for f.

240


http://Po.Pi.P2

	cogsci_1997_235-240



