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Choice-Theoretic MDS
By Pairwise Explosion Of Rank Data

Abstract

A new method is developed for estimating nonmetric multidimensional-
scaling solutions from pairwise explosion of rank-order data. The class of MDS
methods discussed are adaptations of random-utility choice models to the per-
ceptions of dissimilarities and are therefore called choice-theoretic MDS mod-
els. We propose simple alternatives to maximum-likelihood estimation of the
parameters of these models. The estimation techniques are applied to both
simulated data and to a study of perceptions of brands in the Japanese beer
market.

1 Introduction

In recent years we have seen the development of multidimensional-scaling techniques
which incorporate probabilistic assumptions regarding the human perception of sim-
ilarities/dissimilarities (MacKay and Zinnes 1981, 1986; Zinnes and MacKay 1983).
Although their usefulness is largely dependent on the validity of the assumptions on
the probabilistic distribution of perceptual “errors,” those techniques in general have
several advantages over the traditional techniques in that they avoid both the solu-
tion indeterminacy and degeneration problems which often plague MONANOVA-
based techniques and that their results may be analyzed statistically. On the other
hand the use of probabilistic MDS models is hampered by the difficulties associated
with estimation. A maximume-likelihood method is often used for estimation, but it
sometimes takes an inordinate amount of computing time to reach a solution. We
propose a simple and quick estimation technique which can be applied to a series

of MDS models, which we call choice-theoretic MDS models.

1.1 Choice-Theoretic MDS Models

In the last two decades a large number of consumer brand/product-choice models
have been developed and tested. Among those surviving the test of time, the so-

called random-utility models have earned a secure place in the toolbox of consumer
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researchers. Choice-theoretic MDS models are straight adaptations of random-
utility models to the perception of dissimilarities.

The basic assumptions of choice-theoretic MDS models are deceptively simple.
First, it is assumed that the subject’s perception (i.e., internal response) of dissimi-
larity between a pair of objects, s;;, is a function of the underlying distance between
the objects, d;; , in the individual’s perceptual space and an error term, &;;. That
is,

sij = f(dij) + &5 (1)
where f(-) is a monotone transformation of distance. Katahira [1986, 1989] for
example suggested logarithmic, identity, and exponential transformations for f. A
simple linear transformation of d;; is equally permissible (Cooper 1972). And, of
course, much of the modern interest in MDS stems from the development of analyses
based on general monotone transformations (Kruskal 1964a and b). Second, the
error term, &;;, may take many alternative distribution forms. For example, one
may assume that the €;;’s have a common normal distribution (which we will call a
PROBIT model later) or a double-exponential distribution (as in LOGMAP below).
There may be other distributions which are just as reasonable as normal or double-
exponential, although what is or is not reasonable depends on the interpretation
of the error term, as is discussed below. By combining various specifications for
f and €;;, a whole family of models may be developed from the simple structure
of perception (1). One of the early choice-theoretic MDS models is LOGMAP
(Katahira 1986, 1989). In LOGMAP the internal perception of dissimilarity between
two objects, s;;, is given by

sij = log(dij) + €45 (2)
This model assumes that human perception of dissimilarity follows the Weber-
Fechner law: as the true distance, d;;, becomes longer, any incremental distance

felt by the respondent, As;;, becomes progressively less.?

3More precisely, (2) assumes that As;; is approximately proportional to the inverse of d;;.
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LOGMAP’s rationale for introducing the error term in (2) is that, even at the
within-individual level, the perceived dissimilarities may not always be an exact
function of inter-object distances. From time to time s;; may change subtly and
deviate from log(d;;). One may assume that the deviations, the ¢;;’s, at any given
point of time are a sample from a multivariate probabilistic distribution and in-
dependent samples are taken over time, that is, the ¢;;’s at different time points
are generated by a stochastic process. Given this stochastic-process interpretation
of €;;, Chapman and Staelin [1982] showed that the likelihood of a given ranking,
{j1,925 -+ Jm} (where j, is the index of the object ranked r** highest), is given by,

PTOb(j1>j27"'7jm) = PTOb(jl l {j1>j27"-7jm})
'PT‘Ob(j2 I {jZ’j37"')jm})

Prob(js | {JssJas-->Jm}) (3)

......

Prob(jm-1 | {Jm=-1,Jm})-

The expression, Prob(j; | {7, Ji+1,---,Jm}), gives the conditional probability that
i is selected from the set {j;, Jit1,-- -, Jm}-

The above likelihood formulation is known as the ezplosion rule and forms the
basis of the estimation method for LOGMAP. In order to compute the likelihood
(3) one needs the probabilistic specification of the perceptual-error term, ¢;;. In
particular, let each ¢;; have an independent and identical double-exponential (type-

I extreme-value) distribution of the following type.

Prob(e;; < u) = exp{—exp(—pu)} (4)

The parameter (3 is related to the individual’s discriminatory ability. Since the
variance of (4) is 7?/642%, a large value of § implies a high degree of dissimilarity
discrimination. A very well-known result in random-utility theory (McFadden 1974)

states that, under this double-exponential assumption, the probability that object
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J (4 # 1) is judged to be the most dissimilar to object 7 among a set of m objects

{dila d'i?) e 7dim}’ is given by
PT‘Ob(d,‘j = max{dil, d,‘g, e ,d,‘m}) = dg/ Z d,ﬁk (5)
k=1
If we combine the above expression with (3), we have

PTOb(jl’j??' .o 7jm) = (diﬂjl/ Z d?k) ’ (diﬁjz/ E dz‘ﬁk)
{C1} {C2}

(d5,) S di) - (d, /S df)
{Ca} {C4}

() S )

{Cm—l}

- TS & ®)

s=1 {Cs}

where {C,} indicates the set of subscripts {js, js+15 - - - Jm~1, Jm } Over which summa-
tion is performed. As we show in the next section, Katahira [1986, 1989] exploits
this likelihood function to estimate the coordinates of objects in the perceptual
space. He showed that the maximum-likelihood approach was adaptable to a wide
variety of data-collection techniques. Furukawa [1987] also developed an individual-
differences model based on LOGMAP which is similar to INDSCAL (Carroll and
Chang 1970).

2 Pivot Ordering and Maximum-Likelihood Esti-
mation

Consider the following data-collection procedure. Suppose that each of n respon-
dents compares m objects and judges their dissimilarities in the following manner.
For each object 7 (: = 1,2,...,m) the respondent is asked to look at the remaining
(m — 1) objects and rank them according to the dissimilarity from object 7. This

produces m rankings of m — 1 objects. This procedure is called “pivot ordering”



(Katahira 1986, 1989), the pivot being the fixed object against which the dissim-
ilarities of others are judged.* Note that in this procedure the distance between
each object pair (¢,7) is judged twice, introducing some degree of stability in the
estimates.

LOGMAP recovers the object configurations by a maximum-likelihood method
based on (5). The pivot-ordering procedure yields m rankings of m — 1 objects per
respondent, and, since each respondent may give different rankings, the logarithm of
(5) and its derivatives will have to be computed for each individual separately. Then
the overall log-likelihood (for the entire sample) and its derivatives are computed by
summing individual likelihoods and derivatives over all individuals in the sample
and over m rankings per individual. Because it is extremely time-consuming to
compute the second-order derivatives (i.e., the Hessian matrix) for this overall log-
likelihood function, maximization is usually achieved by some first-order method
(e.g., the method of steepest descent). The problem with first-order maximization
methods is that the step size for improving estimates at each iteration may not
be optimal, and many unnecessary steps may be taken before reaching the local
maxima. Osawa [1988] reports that in a case where the number of objects is six and
the number of dimensions is two, the iterations took two minutes on the average on
an IBM 3090-200 before a satisfactory degree of convergence was achieved. Table 1

gives the simulation results from Osawa.
(Insert Table 1 about here.)

The maximum-likelihood estimates are apparently unbiased and accurate, judg-
ing from the standard deviations, but they are costly in terms of computing re-
sources. To compound the problem, the maximum-likelihood method requires that
the number of dimensions of the perceptual space must be specified beforehand,

making it necessary in some cases to compute solutions for several different numbers

4This data-collection procedure is also known in the literature as the method of conditional rank
orders and the method of rotating anchor points.
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of dimensions (and possibly attempt to interpret each solution) before a reasonable

configuration is selected.

3 Pairwise-Explosion Method

We propose another estimation method which utilizes the pairwise explosion of
rankings. At this point it may be emphasized that our view as to the nature of
the error term in (1) is distinctly different from that of Katahira. If the data are
taken from a group of respondents, it is more reasonable for one to expect some
degree of variability in the values of s;; among individuals. One may assume that
the group mean of s;; is f(d;;) and the deviations from the group mean, the ¢;;’s,
are distributed over the individuals within the group according to some multivari-
ate distribution. Because we feel that between-individual variations are relatively
greater than within-individual variations, we will adopt this cross-sectional ratio-
nale in this paper and consider the analysis of rank data obtained from a group
of individuals. In this situation, one needs to derive the unconditional probability
that object j is judged the most dissimilar to object ¢ by a group member. We note
that, in the case of LOGMAP, the unconditional probability expression happens to
be the same as (5), and Osawa [1988] used this expression in LOGMAP to analyze
group data cited above. '

We capitalize the fact that a ranking of m objects may be expressed as m(m —
1)/2 paired comparisons (cf., Cooper and Nakanishi 1983). Table 2(a) gives the

result of pairwise explosion of a ranking obtained from a single respondent.
(Insert Table 2 about here.)

In this m x m matrix, a value of 1 is given to element (¢,7) if object 7 is ranked
higher than j; otherwise, a value of 0 is given.® If the rankings from n individuals in

a sample were pairwise exploded and aggregated, we would obtain a matrix shown

5Such data are normally called row-dominance data.
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in Table 2(b). The n,;; in Table 2(b) gives the number of individuals who gave a
higher rank to object 7 than object j. Of course n;; + nj; = n.

When the pivot-ordering procedure is used, one will have m tables such as Table
2(b), one for each pivot element. Let us write n);; for pivot element h. In the case of
LOGMAP, it may be assumed that ny;; is binomially distributed with parameters
n and mpy; = di./(d8, + dfj). Under this assumption the relative frequency with
which 7 is judged farther from h than j is from k can be expressed as:

)i [Tn) R TRy Ty = dﬁ./dﬂ.
(R)ig [TV (R)ji ™ To(h)ij [ T (h)gi hil Cpj
The approximation improves as the sample size n increases. If we let the usual logit
transformation applied to n); be pyij,
P(ryi; = log(nnyis/nnyi) = B(log dni — log da;).
By averaging p();; with respect to subscripts j and h, we obtain

P(ryi- = ﬂ(log dni — log Jh)

Py ~ B(logd; —logd.)

where dj,. is the geometric mean of dy; over 7 =1,2,...,m (dpx = 0), and d. is the
overall geometric mean of dy;. Noting that p(yi. = p(). and letting p(s. be the value

of p(yi. for ¢ = h , we have
bpi = P(ryi- + Py = ﬂ(log dp; — log (j) ~ ﬂlog(dhg/(iﬂ).

Since the (dp; /J) term in the right-hand side is merely dy; which is normalized
by the overall (geometric) mean d.., no generality is lost by assuming that d.. = 1.

Hence we have an important result.
6hiz/310gdhi (h:1,2,...,m; z=h+1,,m) (7)

We will make the full use of the last expression.
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Let X;; be the t** coordinate of object i. The distances can be converted into
scalar products using the formula developed by Tucker and reported in Torgerson
[1958, p. 258]. If we assume that 372, X;; = O (that is, object coordinates are
measured from the centroid), then we obtain the scalar product b;; by double-
centering the matrix of squared distances:

m m m m
b = dp; - I;ld?u‘/m - ;dii/m + ;;dif/ﬁ

T
= —2 Z-XhtXit-

t=1
We have an estimate of d; in exp(26,;/ ), and therefore the matrix of estimated val-
ues of {by;} may be obtained by double-centering the matrix of {(—0.5) exp(26,:/5)}.
The object coordinates {X;;} (1 =1,2,...,m; t=1,2,...,T) are recoverable by
applying the Eckart-Young [1936] decomposition to the matrix of {by;}.6 It is nec-
essary to determine the number of dimensions in the perceptual space, but we may
use a logic similar to the one we use to select the number of factors in factor anal-
ysis by judging the relative size of eigenvalues. Each of the retained eigenvectors
is multiplied by the square root of the corresponding eigenvalue to obtain object
coordinates.

So far nothing is said about the remaining parameter 3, but the following iter-

ative process gives an estimate very quickly.
1. Set an arbitrary B-value initially and find object coordinates {X;}.
2. Compute inter-object distances {dj;} from the estimated coordinates.

3. Since 6y; = Plogdy; , let 6,; be the dependent variable and logdy; be the

independent variable, and find 3 by a least-squares method.

6Because the {64;} matrix is not symmetric, we have several options. We can symmetrize by
averaging the matrix with its own transpose, or we can investigate the asymmetric structure as
in Cooper [1988]. We choose to symmetrize in the current study and defer investigation of the
asymmetries for future efforts.



Repeat steps (1) through (3) until the value of B converges. Convergence is very

fast — four-digit stability can be obtained in less than 10 iterations.

4 Generalization of the Pairwise-Explosion Method

Before we turn to the simulation results to investigate the properties of the proposed
estimation method, we would like to point out that this method is not limited to
LOGMAP (which we call LOGIT1 hereafter). For example, a variant of LOGIT1
is given by a slight modification of (1).

sij = dij + €ij (8)

This model (to be called LOGIT2 hereafter) is the case where transformation f
in (1) is the identity transformation. If we assume that ¢;;’s are identically and

independently distributed as the double-exponential distribution (4), we have
Prob(d;; = max{di1,diz, .. .,dim }) = exp(Bdi;)/ > exp(Bdix).
k=1

For the pairwise-exploded matrices {ngy;} (A =1,2,...,m), a manipulation anal-

ogous to the LOGIT1 (LOGMAP) case gives the logit transformation of ny; by
pryi; = B(dni — dhj),
with an end result that
6hi = P(hyi- — P(yh = Bdni — d..)

where d.. in this case is the overall arithmetic mean of the dy;’s.
The estimation of object coordinates {X;;} (1 = 1,2,...,m; t=1,2,...,T)

and parameter 3 for LOGIT2 proceeds as follows.
1. Choose initial values of 8 and d.., and estimate squared distances as
di; = (61i/ B+ d.)".
Double-center the {d2,} matrix to obtain the {by;} matrix.

9



2. Find {X;;} by the Eckart-Young decomposition of the {b;;} matrix.

3. Compute {dp;} matrix (normalized such that the overall geometric mean is 1)

and then compute d...

4. Based on the relationship, 6,; &~ B(dp; — d..), re-estimate B by a least-squares
method.

Repeat steps (1) through (4) until the values of both A and d.. converge. In our
simulation the convergence was fast and it took less than 10 iterations before four-
digit stability was achieved.

Next we consider the case in which the €;;’s in (8) are jointly normally dis-
tributed. For this model (which we call PROBIT2), the f in (1) is the identity trans-
formation. We assume that each ¢;; is identically and independently distributed as
a normal distribution with mean 0 and variance ¢?. Under this assumption, T(h)ij
is approximately normally distributed with mean (dj; — dp;) and variance 2¢? for
a reasonably large sample size, n. Hence, if we take the inverse normal (or probit)
transformation of n();;/n,” then we have an estimate of (dp; — di;)/v/20. If we let

probit(-) indicate the probit transformation and
P(ryi; = probit(nyi/n) & (dri ~ dri)/ V20,
by the analogy to the LOGIT2 case we have
8hi = Dy — Py ~ (di — d.)/V20

where d.. is the overall arithmetic mean of the dp;’s.
The last expression suggests the following steps for computing the coordinates

of objects {X;;} and parameter o for PROBIT?2.

1. Choose initial values of ¢ and d.., and estimate squared distances as

“The PROBIT function in SAS is convenient to use in this case.
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Double-center the {d?,} matrix to obtain the {b;;} matrix.

2. Find object coordinates {X;;} by the Eckart-Young decomposition of the {b;}

matrix.

3. Compute {dj;} matrix (normalized such that the overall geometric mean is 1)

and then compute d...

4. Based on the relationship, 6x; & (dp; — d.)/v/20, re-estimate o by a least-

squares method.

Repeat steps (1) through (4) until the values of both ¢ and d.. converge. The
convergence was very fast as before — four-digit stability requiring less than 10
iterations.

Another variant of the above PROBIT2 model may be derived if we choose the
logarithmic instead of the identity transformation in (1) and assume that the error
term is normally distributed. The estimation procedure for this model (which we
call PROBIT1) follows that of LOGIT1 (LOGMAP) very closely, except that the
probit transformation is used in lieu of the logit transformation. It may be pointed
out that those PROBIT models are not easily estimable by the maximum-likelihood
method, because conditional probabilities included in the likelihood function (3)
(i.e., the ezplosion rule) must be evaluated by numerical integration. In this age
of super-computers the maximum-likelihood estimation is a possibility, but our
method is far more efficient in the use of computing resources, so much so that it
is implementable on a personal computer.

We have shown in this section that the pairwise-explosion method is applicable
to PROBIT, as well as LOGIT, models, but it has much wider applications. Indeed

this method is applicable to a wide variety of other models, if

1. the probability that an object pair (5, ¢) is judged more dissimilar than another
pair (h,j) (j # ©), Prob(sp; > sp;), may be expressed as the function of
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underlying distances dj; and dp;, and

2. more importantly, a suitable inverse transformation exists to the function.

The double-exponential (i.e., LOGIT models) and normal (i.e., PROBIT models)
distributions for the perceptual error term ¢;; satisfy those requirements, but there
are other distributional forms which satisfy those requirements. For example, if we
assumed a uniform distribution for ¢;;, it would be a relatively simple matter to
find an explicit function for Prob(sp; > sp;) in terms of dj; and dp;, although one
might be hard-pressed to find a psychological argument for such an assumption.
In the following parts of this paper we will deal only with LOGIT and PROBIT
models, simply because we consider them more important models of dissimilarity

perception.

5 Simulation Studies

In order to assess the usefulness of the proposed estimation method (i.e., the
pairwise-explosion method), we performed some simulation studies. Our purpose
was two-fold: to investigate the statistical properties of the method and to make a
comparative study of alternative models of dissimilarity perception. We compared

the following four models:

LOGIT1: Si; = log(dgj) + €55

LOGIT2: 8 = d,'j + &5

PROBIT1: 8 = log(d,-j) 4 €45

PROBIT2: Si; = d,'j + Eij
LOGIT models assume a double-exponential distribution (with parameter §), and
PROBIT models a normal distribution (with parameter o), for €;;.

The object configuration used in the simulation is given in Figure 1.

(Insert Figure 1 about here.)
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The geometric mean of the inter-object distances is adjusted to 1. Also the centroid
is set at the origin (that is, the mean for the coordinates on each dimension is
equal to 0). For each simulated individual we generated a series of random s;;’s
for each of m pivot elements using the above specifications, and converted the s;;’s
into rankings. Individual rankings were then exploded into paired comparisons,
and individual paired comparisons were summed over all individuals to obtain m
matrices in the form of Table 2(b). Object coordinates {X;;} and other parameters
(e.g., B or o) were estimated from those matrices. The same process was repeated
50 times to obtain the means and standard deviations of the estimates. We were
concerned here with how well the estimated configuration matched the original and
also with how well parameters § and o were estimated. The o-value was chosen so
that the variance of the normal distribution was the same as that of the double-
exponential distribution. Large values of the f8’s or small values of the ¢’s would
imply that individuals are capable of discriminating small dissimilarities among the
objects.

We may add that the estimated configuration from the proposed approach is
rotationally indeterminate. This is not a problem for most practical applications
because usually one is only interested in recovering the relative locations of objects
in the perceptual space, but in simulation studies this property adds another source
of discrepancies from the original configuration. We dealt with this problem by
finding the orthogonal Procrustes rotation (Cliff 1966, Schonemann 1966) which
minimized the sum of squared discrepancies between the estimated and original

configurations.
(Insert Tables 3 — 6 about here.)

Tables 3 — 6 summarize the simulation results. The second column of each table
gives the average of estimated coordinates for each object. The third column gives

the standard deviations of estimated coordinates over 50 trials. The recovery of
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the original configuration seems reasonably good. In general there is no indication
of systematic biases in the estimates for object coordinates. The LOGIT2 model
gives a better set of coordinates than the LOGIT1 model, but this was expected.
By applying the logarithmic transformation to d;;, the distances between objects
were reduced, and thus the variance of the random-error term, ¢;;, was effectively
increased. For the same reason the PROBIT2 model gives better estimates than
the PROBIT1 model. Turning to the estimates of the variance parameters for ¢;;,
the estimates of § for LOGIT models are slightly overestimated, while those of o
for PROBIT models are estimated without apparent biases.

Though the simulation results show that the pairwise-explosion method esti-
mates object coordinates of the original configuration reasonably well, we have no
external criteria to judge its efficiency. Fortunately Table 1 gives the maximum-
likelihood estimates for the LOGIT1 model from the Osawa study. The configura-
tion used by Osawa in his simulation study is not the same as the one used in this
study, but the number of objects (6), the simulated number of subjects (50) and
the number of trials (50) are the same as our study, making it possible to check the
efliciency of our method against the maximum-likelihood method. The standard de-
viations for object coordinates in Table 1 are roughly comparable with those in Table
3, but the configuration used by Osawa were not normalized such that the geometric
mean of the inter-object distances was unity. When one takes this fact into account,
the object coordinates estimated by the pairwise-explosion method have variances
roughly 1.5 times greater than those of the maximum-likelihood estimates.® The
efficiency for the estimates obtained by the pairwise-explosion method will improve
with the increase in the sample size (n), however. It is probably not necessary to

double the sample size for the pairwise-explosion method for one to obtain esti-

8The average of standard deviations is 0.0321 for Table 1 and 0.0279 for Table 3. Since the
geometric mean of inter-object distances for the Osawa’s configuration is 1.431, one should compare
0.0224 (=0.0321/1.431) against 0.0279. Thus the maximum-likelihood estimates of object coordi-
nates have standard deviations approximately 20% less (0.0224/0.0279 = 0.803) than those for the
pairwise-explosion method.
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mates of object coordinates roughly comparable in precision with those obtained
by the maximum-likelihood estimates. We believe that the precision achieved by
the pairwise-explosion method is acceptable in many practical applications.

We also tried to estimate object coordinates and parameters for wrong models
in the hope of discovering the robustness of the proposed method. We estimated
the X;;’s and 8 for LOGIT1 from the data for LOGIT2, PROBIT1, and PROBIT?2,
those for LOGIT2 from the data for LOGIT1, PROBIT1, and PROBIT2, etc. In
this manner we hoped to find how well we were able to recover the original configu-
ration by the pairwise-explosion method, even if we happened to use a wrong model.
We were particularly interested in the comparisons between LOGIT and PROBIT
models for we suspected that a double-exponential distribution and a normal dis-
tribution were to some extent interchangeable as a perceptual-error distribution.
To facilitate comparisons, we used one set of random numbers to generate data for
both LOGIT models and another set for both PROBIT models. Put differently,
the simulated data for LOGIT models were independent from those for PROBIT
models. Under this procedure the differences between the LOGIT1 and LOGIT2
models were mainly due to the difference in the specification of f(d;;) in (1), that

is, whether one used the logarithmic or identity transformation. The same may be

said of the differences between PROBIT1 and PROBIT2 models.
(Insert Table 7 about here.)

Table 7 summarizes the analyses for various combinations of models and data.
Only the components of mean squared errors (biases squared and variances) for esti-
mated object coordinates and the estimates of # and o are reported. The following

are major observations from the table.

1. The main diagonal entries of the table give the cases where the model and
the data match. (The MSE values for those entries were already reported in

Table 3 — 6.) Those cases are characterized by small biases.
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2. When the models use the same transformation of distances (i.e., the logarith-
mic transformation for LOGIT1 and PROBIT1 and the identity transforma-
tion for LOGIT2 and PROBIT2), they tend to yield similar results despite of

the difference in the assumption about the distribution of ¢;;.

3. PROBIT models have consistently smaller variances, and consequently smaller
mean squared errors, than LOGIT models. The PROBIT2 model in particular

gives the smallest sum of variances for every data.

The above observations confirmed our suspicion that the normal and the double-
exponential distributions may be used interchangeably in the specification of the
error distribution in (1). Our simulation study used one set of random numbers
for LOGIT models and another set for PROBIT models, so the similarities of the
performance between LOGIT and PROBIT models could not be attributed to this
source. Why then were models based on two different distributions indistinguish-
able? A reflection reminded us that we simulated the pivot-ordering procedure in
which a sample of five random numbers from the perceptual-error distribution was
drawn for each pivot object and converted to one ranking of dissimilarity. This size
of the perceptual-error sample, and not the sample size for respondents, was the
critical factor. It seems obvious to us now that one cannot expect to distinguish
between two similarly shaped distributions with a sample size as small as this (five).
This situation will not be improved much if the number of objects to be compared
per pivot object is increased to 10 or even to 25, or if the number of respondents is
increased. Since one cannot indefinitely increase the number of objects to be com-
pared per pivot element, we might as well accept our inability to distinguish between
LOGIT and PROBIT models with the pivot-ordering procedure. It remains to be
seen if other data-collection procedures do better in distinguishing between the two
types of models, but we doubt that even the straight ranking or paired-comparison

procedure (see below) is capable of doing so.
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That the PROBIT models had consistently smaller mean squared errors than
the LOGIT models is due to the properties of the probit and logit transformations.
It is known that the logit transformation results in a larger variance than the probit
(=inverse normal) transformation, if n;; or (n — n;;) is near zero. Moreover, note
that the biases are mainly caused by the misspecification in the transformation for
distances (f(d;;) in (1)) and not by the misspecification in the error distribution.
Our simulation results suggest that we are perhaps better off with PROBIT models
with the pairwise-explosion method when we are uncertain of the correct form of

underlying perceptual-error distribution.

6 Illustration

The simulation studies show a good ability to recover known configurations from
data simulated with error, but we also need to demonstrate that the methods can
be meaningfully applied to real data. The LOGIT1 model will be illustrated using

an example from a study of the Japanese beer market.

6.1 Background

Asahi Beer which was a weak third among four major breweries in Japan in 1987,
came up with a new product called dry beer, which used a new type of yeast and,
by letting fermentation go on longer than before, had a drier (that is, less sweet)
taste. This new product sold so well that in 1988 Asahi achieved an 8 percentage-
point market-share gain (12% to 20%) in a single year. Other breweries began
producing dry beer, but Asahi, being the first to enter the sub-market, has an
overwhelming advantage. Asahi Super Dry (which is Asahi’s brand for dry beer)
currently dominates the dry-beer portion (approximately one third) of the beer
market. Against Asahi’s competitive advantage with dry beer, Kirin (the top beer
producer with a current share of about 50 percent) is emphasizing the traditional

qualities of its lager beer, and Suntory (No. 4 in this market with an approximate
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share of 10 percent) is pushing its new product, “malts 100% beer.” The beer
industry is in a state of complete turmoil and has been the object of the frequent

comments by mass media.

6.2 Study Design

A team of students at Kwansei Gakuin University decided to study the beer industry
and tried the pairwise explosion technique to get perceptual maps. They selected
the following five brands of beer for the study: Asahi Super Dry (AD), Kirin Dry
(KD), Suntory Dry (SD), Kirin Lager (KL), Suntory Malts 100% (SM). The students
selected a convenience sample of 80 male beer drinkers of various age groups, and
split them randomly into two groups. The first group of respondents ( = the “NOT
SHOWN?” group) was handed tin-foil covered cans of five brands of beer and, after
tasting the contents, was asked to perform the pivot-ordering dissimilarity-judgment
task. Each brand was taken in turn and became the pivot. The respondents were
asked to rank-order four other brands according to their dissimilarity from the pivot
brand. The second group ( = the “SHOWN?” group ), after tasting from unwrapped
beer cans, was asked to perform the same dissimilarity-judgment task. The result-
ing rank data were analyzed by the pairwise-explosion technique to obtain (group)
perceptual maps of five beer brands. In addition, straight preference rankings of
five brands supplied by the respondents were pairwise exploded and (group) pref-
erence scales for brands were computed from the resulting explosion matrices by

Thurstone’s [1927] Law of Comparative Judgment.

6.3 Solutions

The logit model (LOGMAP or LOGIT1) was used to analyze this set of data.
One solution was obtained for each split-run group. Additionally, the Thurstone
preference-scale scores were regressed on the brand coordinates and the regression

coefficients are taken as the preference (directional) vectors in the perceptual space.
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(Insert Tables 8 a and b, and Figures 2 and 3 about here.)

Two coordinates are given in Table 8 (a) and 8 (b), and plotted in Figures 2
and 3. Both solutions were rotated in such a way that the plane containing Asahi
Super Dry (AD) , Kirin Lager (KL) and Kirin Dry (KD) is aligned parallel to the
first and second axis. Only the two Suntory brands are set away from this plane.
The general shape of brand locations, especially those of KL, AD and KD, are not

much different between two solutions, but there are subtle differences.

1. The discrimination parameter, # (note that the standard deviation of the
perceptual-error distribution is equal to 7/60), are quite different between
two solutions. The value of § is smaller for the NOT SHOWN group than
for the SHOWN group (1.30 against 2.33 ), as expected. If we consider the
difference in the f-values, the map for the SHOWN group should be drawn
nearly twice as large as that for the NOT SHOWN group. Obviously the

SHOWN group has a greater degree of discrimination among brands.

2. The positions of SD and SM are different between two solutions relative to
the KL-AD-KD triangle. Compared with the SHOWN group, SD and SM
shift toward northeast on the KL-AD-KD plane for the NOT SHOWN group.
This indicates that the NOT SHOWN group perceives SM as more different
from KL, AD and KD than the SHOWN group does.

3. When the preference vector is plotted on the same map, we find a marked
difference. The preference vector for the SHOWN group clearly points to AD,
the current favorite, but the one for the NOT SHOWN group points to SM.
This is a striking contrast to the relative stability of perceptual maps between
two experimental conditions (SHOWN vs. NOT SHOWN). The weights for
the first two axes are not different between two maps, but the weight for the

third (Suntory) axis is negative for the SHOWN group, but positive for the
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NOT SHOWN group. While SD may not have much chance, the fact that
SM is clearly distinct from and preferred to other brands in a blind-tasting
condition indicates that it may gain acceptance in the market with adequate

marketing support.

6.4 Discussion of the Illustration

Despite (or perhaps because of) its tremendous current popularity, Asahi Super
Dry has drawn some critical comments from beer connoisseurs (e.g., “Dry beer is
not real beer.” or “Its raw taste is acceptable only to those who are not real beer
drinkers.” etc.). This experiment to some extent showed that the popularity of AD
is based on factors other than taste. Perhaps it is the newness of AD compared with
traditional lager beer that created such popularity. Suntory with the new “Malts

100%” beer has an opportunity to enlarge its share by emphasizing its newness.

6.5 Simulation of Error Distributions

To obtain approximate standard deviations for the scale values we took the coordi-
nates and parameters from the beer illustration and generated pivot-ordering data
for 42 simulated subjects. This was done 100 times and the standard deviations
from the sample means were computed after Procrustes rotation. For the group
NOT SHOWN the beer labels the standard deviations of scale values ranged from
a maximum of .1114 to a minimum of .0597 with an average over the 15 coordi-
nated of .0842. For the group SHOWN the beer labels the standard deviations were
smaller, as expected, with a maximum of .0569, a minimum of .0334, and an average
of .0452.

For the discrimination parameters the means (and standard deviations) were also
computed. For the group NOT SHOWN the beer labels the mean was 1.3570 (.3357).
For the group SHOWN the beer labels the mean was 2.4486 (.3996) — exhibiting

the higher discriminability we expect from this group.
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The standard errors corresponding to these standard deviations would be re-
duced by a factor of 10, underscoring that these solutions seem to have quite ac-

ceptable stability.

6.6 Probit Solutions

The PROBIT1 model was applied to the original ranking and the resulting scale
values were nearly identitcal. The logit and probit solutions for the group NOT
SHOWN the beer labels differed by only .0002 on an average (root mean-square
difference), while the scale values for the group SHOWN the labels differed by
.0013 on the average.

The discrimination parameters for the probit model were .8721 and .4919 for
the NOT SHOWN and SHOWN groups, respectively. Again reflecting the increase
in discriminability expected to be associated with being given the brand name as

additional information.

7 Extensions of the Pairwise-Explosion Method

We have so far investigated the properties of the proposed estimation method based
on the pivot-ordering procedure. This method is, however, adaptable to other
data-collection procedures as well. For example, we may use the straight ranking
procedure in which the respondent is presented with all m(m — 1)/2 object pairs
and is asked to rank them in the order of dissimilarity. The pairwise-explosion
method may be applied to this ranking to yield an aggregate matrix similar to
Table 2(b). With a slight change in computation of squared distances, the dZ s,
the object coordinates and additional parameters are recoverable by the proposed
procedure. Of course one may also use the straight paired-comparison procedure in
which every object pair is compared against all other pairs in terms of dissimilarity,
but, as the number of objects increases, such a data-collection scheme soon becomes

too demanding of the respondent’s time and effort.
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With a large sample size (n > 400, say) it may not be necessary for each respon-
dent to rank all objects. After all, the pairwise-explosion method needs only the
proportions of respondents who judged one pair of objects as more dissimilar than
another pair. While it is desirable that the proportions are estimated as accurately
as possible, there are many alternative ways to estimate the proportions. Even the
popular pick-any scheme (cf. Levine 1979; Holbrook, Moore and Winer 1982) yields
data from which the required proportions can be computed. Katahira [1986, 1989]
suggested that each respondent ranked only those object pairs which he or she could
remember (i.e., the evoked set) in the pivot-ordering procedure. He also suggested
a selected pivot-ordering procedure in which one may ask each respondent to rank
objects for a limited number (< m) of pivot elements, the selection of which is
randomized for each respondent, or strategically selected as in various missing-data
designs for data collection. Another data-collection procedure may be a variation of
a full paired-comparison task in which each respondent is asked to compare a small
number of randomly chosen object pairs. Any of the procedures discussed here will
produce usable data for computing logits or probits. Once the logits or probits are
computed, the remaining estimation process will be the same. The investigation of
various simplified data-collection procedures as to their efficiency in terms of cost

and precision is an important research topic in the future.

8 Summary and Conclusion

In this paper we proposed a quick method for estimating object coordinates in the
perceptual space and parameters of discriminatory capacity from a set of ordinal dis-
similarities. We applied the choice-theoretic MDS models to data sets obtained from
a group of individuals. Our simulation study showed that, when used in conjunc-
tion with the pivot-ordering procedure of data collection, the proposed estimation
method — pairwise explosion — recovers the original configuration reasonably well.

In the case of LOGIT1 (LOGMAP) model, the proposed method yielded estimates
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which were comparable to those obtained by the maximum-likelihood method, ex-
cept that the variances of estimates by the proposed method were somewhat greater
than those of maximum-likelihood estimates. We could not compare our PROBIT
model results with maximum-likelihood estimates, due to the difficulty associated
with the maximume-likelihood estimation, but PROBIT models performed slightly
better than LOGIT models in terms of variances and mean squared errors of esti-
mates.

We also found that the method was robust in a sense that the recovered configu-
rations were little affected by the model we assumed, so long as the variances of the
assumed perceptual-error distributions are equal. The main reason to this robust-
ness is that the double-exponential and normal distributions have a very similar
distributional form, and, with the error-sampling scheme achieved by the pivot-
ordering procedure, it is impossible to distinguish between LOGIT and PROBIT
models. This suggests that in practical applications those two models may be used
interchangeably, but, since the probit transformation is less likely to create large
variances, PROBIT models should be used when the correct error distribution is
not known.

The ability to interpret and understand the marketing implications of maps
based on as few as five brands, leads us to believe that there will other product

domains in which this style of analysis will be useful.
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Table 1: Osawa’s Simulation Results - LOGMAP

(Number of Simulated Subjects = 50; Number of Trials = 50)

Object True Estimated Standard  Deviation Rate
Coordinates Values Means  Deviations (Bias/Std. Dev.)
X1 1.000 0.999 0.032 -0.030

Y1 0.000 — — —

X2 0.500 0.502 0.032 0.046
Y2 0.866 0.862 0.033 -0.135
X3 -0.500 -0.503 0.039 -0.076
Y3 0.866 0.862 0.028 0.092
X4 -1.000 -1.004 0.031 -0.125
Y4 0.000 -0.002 0.033 -0.053
X5 -0.500 -0.494 0.035 0.178
Y5 -0.866 -0.864 0.026 0.080
X6 0.500 0.500 0.031 0.002
Y6 -0.866 -0.864 0.033 0.050
B 5.000 4.620 0.228 1.669

The log-likelihood -965.911 23.232

CPU Seconds on IBM3090-200  123.955 35.201
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Table 2: Numerical Example of Pair-Wise Explosion
(a) Individual Data

Objects

Objects Ranking 1 2 3 4 5

1 1 -1 111

2 3 0 - 0 11

3 2 0 1 - 1 1

4 5} 0 00 - 0O

5 4 0 0 0 1 -

(b) Group Data (n respondents)
Objects

Objects 1 2 3 4 5
1 = M1z N1z MNi4 N5
2 N1 — M2z MNgg MNgs
3 N3y MNgz — MNzg Nzs
4 Mgy N4 N4z —  TNigs
5 51 MNps2 N5z Nsg —
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Table 3: Simulation Results - LOGIT1

(Number of Simulated Subjects = 50; Number of Trials = 50)

Object True Estimated Standard
Coordinates Values Means Deviations MSE
X1 0.0000 -0.0036 0.0134 0.000193
Y1 0.1312 0.1305 0.0190 0.000361 .
X2 0.6820 0.6830 0.0322 0.001038
Y2 0.5250 0.5254 0.0263 0.000692
X3 0.6820 - 0.6756 0.0342 0.001211
Y3 -0.2625 -0.2584 0.0287 0.000841
X4 0.0000 0.0046 0.0302 0.000933
Y4 -0.6562 -0.6617 0.0331 0.001126
X5 ~0.6820 -0.6830 0.0355 0.001261
Y5 -0.2625 -0.2642 0.0256 0.000658
X6 -0.6820 -0.6765 0.0279 0.000809
Y6 0.5250 0.5284 0.0288 0.000841
B 5.0000 5.1740 0.2796 0.108452

The sum of MSE’s for coordinates over all objects = 0.009959
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Table 4: Simulation Results - LOGIT2
(Number of Simulated Subjects = 50; Number of Trials = 50)

Object True Estimated Standard
Coordinates Values Means Deviations MSE

X1 0.0000 -0.0037 0.0170 0.000303
Y1 0.1312 0.1327 0.0184 0.000341
X2 0.6820 0.6805 0.0237 0.000564
Y2 0.5250 0.5240 0.0206 0.000425
X3 0.6820 0.6767 0.0256 0.000683
Y3 -0.2625 -0.2573 0.0259 0.000698
X4 0.0000 0.0046 0.0244 0.000617
Y4 -0.6562 -0.6683 0.0274 0.000897
X5 -0.6820 -0.6799 0.0276 0.000766
Y5 -0.2625 -0.2588 0.0204 0.000430
X6 -0.6820 -0.6782 0.0207 0.000443
Y6 0.5250 0.5276 0.0226 0.000518

B 5.0000 5.1514 0.2565 0.088714

The sum of MSE’s for coordinates over all objects = 0.006682
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Table 5: Simulation Results - PROBIT1

(Number of Simulated Subjects = 50; Number of Trials = 50)

Object True Estimated Standard
Coordinates Values Means Deviations MSE

X1 0.0000 0.0020 0.0142 0.000206
Y1 0.1312 0.1356 0.0233 0.000562
X2 0.6820 0.6877 0.0350 0.001257
Y2 0.5250 0.5243 0.0303 0.000919
X3 0.6820 0.6819 0.0339 0.001149
Y3 -0.2625 -0.2609 0.0318 0.001014
X4 0.0000 -0.0027 0.0278 0.000780
Y4 —0.6562 -0.6563 0.0326 0.001063
X5 —0.6820 -0.6841 0.0348 0.001215
Y5 -0.2625 -0.2574 0.0312 0.000999
X6 -0.6820 -0.6848 0.0336 0.001137
Y6 0.5250 0.5147 0.0303 0.001024

o 0.2565 0.2526 0.0118 0.000154

The sum of MSE’s for coordinates over all objects = 0.011332
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Table 6: Simulation Results — PROBIT2
(Number of Simulated Subjects = 50; Number of Trials = 50)

Object True Estimated Standard
Coordinates Values Means Deviations MSE

X1 0.0000 0.0014 0.0173 0.000301
Y1 0.1312 0.1357 0.0240 0.000596
X2 0.6820 0.6836 0.0235 0.000555
Y2 0.5250 0.5233 0.0244 0.000598
X3 0.6820 0.6811 0.0223 0.000498
Y3 -0.26256 -0.2576 0.0220 0.000508
X4 0.0000 —-0.0007 0.0224 0.000502
Y4 -0.6562 -0.6669 0.0217 0.000585
X5 -0.6820 -0.6807 0.0233 0.000545
Y5 -0.2625 -0.2514 0.0245° 0.000723
X6 -0.6820 —0.6847 0.0224 0.000509
Y6 0.5250 0.5170 0.0245 0.000664

o 0.2565 0.2536 0.0085 0.000081

The sum of MSE’s for coordinates over all objects = 0.006596
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Table 7: Simulation Results — Overall

(Number of Simulated Subjects = 50; Number of Trials = 50)

Simulation Data

Models:
Statistics LOGIT1 LOGIT2 PROBIT1 PROBIT2
LOGIT1 Model:
S Bias? 0.000170 0.003059  0.000358  0.004104
Y"Var 0.009789 0.008550  0.014346  0.010951
S"MSE 0.009959 0.011609  0.014703  0.015056
o} 5.1740 5.5421 5.1126 5.5616
LOGIT2 Model:
S Bias? 0.002875 0.000279  0.002330  0.000241
> Var 0.007750 0.006403  0.010078  0.007792
S"MSE 0.010625 0.006682  0.012407  0.008034
Jé) 4.7676 5.1514 4.7358 5.1854
PROBIT1 Model:
S"Bias? 0.000314 0.002322  0.000209  0.002440
S"Var 0.007748 0.006799  0.011123  0.008427
> MSE 0.008062 0.009121 0.011332  0.010867
o 0.2498 0.2357 0.2526 0.2351
PROBIT2 Model:
S Bias?® 0.003430 0.000448  0.002926  0.000364
S Var 0.006222 0.005202  0.008058  0.006232
>"MSE 0.009652 0.005650  0.010984  0.006596
o 0.2716 0.2545 0.2737 0.2536
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Table 8: Perceptual Maps for Japanese Beers
NOT SHOWN Group

Coordinates Preference
Brand Axis1 Axis2 Axis 3 Scores
Suntory Dry SD -0.2228 -0.3419 0.4714 -0.5276
Kirin Dry KD -0.2629 0.5645 -0.2633 -0.6341
Suntory Malts 100% SM  0.4215 0.4075 0.3183  1.4874
Asahi Super Dry AD 0.5078 -0.3151 -0.2633 0.3759
Kirin Lager KL -0.4437 -0.3151 -0.2633 -0.7019
Preference Vector 1.7591 0.5008  0.6420
Discrimimation Parameter (§) 1.3001
SHOWN Group
Coordinates Preference
Brand Axis1 Axis2 Axis3 Scores
Suntory Dry SD -0.3934 -0.4130 0.3563 -1.6287
Kirin Dry KD -0.2279 0.7223 -0.2826 0.4002
Suntory Malts 100% SM  0.2547 0.1599  0.4916 0.0614
Asahi Super Dry AD 0.6137 -0.2346 -0.2826 2.0355
Kirin Lager KL -0.2471 -0.2346 -0.2826 -0.8685
Preference Vector 2.8229 0.8020 -1.1966

Discrimimation Parameter () 2.3332
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Figure 1. Object Configuration for Simulation
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Figure 2. Map for Group NOT SHOWN the Beer Labels.
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Figure 3. Map for Group SHOWN the Beer Labels.
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