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The rapid advancement of language models has significantly reshaped the field of machine

learning, enabling sophisticated applications across diverse domains. However, the effectiveness

of these models is often contingent upon access to large-scale, high-quality datasets, which

may not always be available. This thesis explores strategies for training language models in

data-constrained scenarios, leveraging both model-generated data and rule-generated data to

enhance model performance and generalization.

First, we investigate ELECTRA, a pretraining framework that improves the data efficiency

of language model training by utilizing an “adversarial” model to corrupt the training data.

Through theoretical and empirical analysis, we identify a critical optimization control problem
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in the original ELECTRA design, and propose a simple fix to boost its data efficiency further.

Next, we study knowledge distillation, which improves model training by utilizing

a “supportive” teacher model to refine the training data. Through theoretical analysis, we

demonstrate the effectiveness of knowledge distillation even when the teacher model is trained

with the exact same training set as the student model. Motivated by our understanding, we

develop a student-oriented teacher training framework that specifically optimizes the teacher

model to maximize student performance, rather than its own accuracy.

Finally, we investigate rule-generated data. We focus on weakly-supervised learning,

which leverages heuristics to automatically and scalably annotate datasets without human anno-

tation. Through empirical analyses, we identify a key problem of model training on such data

labeled by rules - the model is easily biased by the simple heuristics used to annotate the data.

We design a simple method to avoid such bias in model training and improve the effectiveness of

weakly supervised learning greatly.

Together, these contributions advance our understanding of efficient language model

training and provide practical solutions for scenarios with limited high-quality training data. Our

theoretical analyses and empirical results demonstrate the importance of carefully controlling

how models learn from generated and rule-based training signals.
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Introduction

The emergence of large language models has fundamentally transformed our approach

to artificial intelligence and machine learning. These models have demonstrated remarkable

capabilities across diverse applications, from natural language understanding to code generation,

revolutionizing how we interact with and leverage computational systems. At the heart of this

transformation lies a critical resource: data. Recent research has established a clear relationship

between model performance and training data scale, as demonstrated by Hoffmann et al. (2022)

in their comprehensive study of scaling laws. They found that the loss L(N,D) of a language

model with N parameters trained on D tokens can be approximated by:

L(N,D) = E +
A

Nα
+

B
Dβ

, (1)

where E represents the irreducible loss, and A, B, α , β are constants determined empirically.

For contemporary transformer-based architectures, the computational cost in FLOPs scales

approximately linearly with both model size and data: FLOPs(N,D)≈ 6ND. This relationship

suggests that optimal model performance requires a careful balance between model size, compute

resources, and training data volume.

However, this data-centric paradigm faces a significant challenge: the scarcity of high-

quality language data. Recent analysis by Villalobos et al. (2022) presents a concerning pro-

jection: at current scaling rates, we may exhaust available human-generated language data by

2026. This limitation becomes even more pronounced when we consider the distribution of

high-quality data across different domains. Academic papers, which represent some of our most
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rigorously vetted content, contribute approximately 1 trillion tokens to the available training

data. Literature, in the form of books, provides about 1.6 trillion tokens. Even in the domain of

software development, where GitHub hosts vast amounts of code, the effective training data is

significantly reduced after necessary preprocessing. As noted by Lozhkov et al. (2024), while

GitHub contains roughly 20 trillion tokens of code, after deduplication to remove forks and

filtering to eliminate non-code content such as Base64 data, only about 900 billion tokens

remain suitable for training. In comparison, Meta’s Llama 3 (Dubey et al., 2024) was already

trained on 15 trillion tokens, a volume that significantly exceeds the total available high-quality

human-generated content.

This scarcity of high-quality training data presents a fundamental challenge to the

continued advancement of language models. As we approach the limits of available human-

generated content, the question becomes not just how to acquire more data, but how to make better

use of the data we have. This thesis addresses this challenge by exploring two complementary

approaches to improving language model training without relying on scaling human-generated

data: (1) leveraging model-generated and (2) leveraging rule-generated data.

We first explore an innovative pretraining framework, ELECTRA, which improves

language model pretraining by leveraging model-generated corrupted data. Traditional masked

language models, such as BERT, rely on randomly masking tokens and predicting them, which

limits efficiency in data usage. In contrast, ELECTRA introduces a Replaced Token Detection

(RTD) objective, where a generator replaces some tokens with plausible alternatives, and a

discriminator learns to distinguish real from replaced tokens. This approach significantly

enhances sample efficiency, as the model learns from every token rather than just the masked

ones. Through theoretical analysis, we identify a critical limitation in ELECTRA’s original

design: inadequate control over the generator’s optimization process. This lack of control

can lead to suboptimal training dynamics and reduced performance. We propose a simple yet

effective solution - decoupling the optimization of the generator and discriminator - which

significantly improves ELECTRA’s data efficiency and stability.
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Our second work examines knowledge distillation, where an auxiliary ”teacher” model

generates enhanced training signals to guide a ”student” model’s learning. While knowledge

distillation typically assumes access to additional data or a pre-trained teacher model, we

demonstrate theoretically that distillation can be effective even when the teacher and student

share the same training data. This means that one can always train an auxiliary teacher model

to improve the the training data quality. Our analysis also reveals that the key to successful

distillation lies not in the teacher’s absolute performance, but in its ability to provide calibrated

probability distributions that reflect underlying data patterns. Based on this understanding, we

develop a novel student-oriented teacher training framework that specifically optimizes the

teacher to maximize student performance rather than its own accuracy.

Our third work addresses the challenges of weakly-supervised learning, where rule-based

heuristics are used to automatically generate training labels. While this approach offers a scalable

way to create large labeled datasets without human annotation, we identify a fundamental issue:

models trained on such data tend to inherit biases from the simple labeling rules, limiting

their ability to learn more complex patterns. We propose a debiasing technique that effectively

mitigates this problem by preventing models from overly relying on the specific patterns used in

the labeling rules. Our method significantly improves the effectiveness of weakly-supervised

learning while maintaining its scalability advantages.

Together, these works advance our understanding of how to effectively train language

models in data-constrained scenarios. Our theoretical analyses provide insights into the funda-

mental mechanisms of learning from both model-generated and rule-generated data, while our

practical solutions demonstrate substantial improvements in model performance. The methods

developed in this thesis offer promising directions for continuing to advance language model

capabilities even as we approach the limits of available human-generated training data.

The remainder of this thesis is organized as follows: Chapter 2 and 3 examine approaches

for leveraging model-generated data, with Chapter 2 focusing on adversarial generation through

ELECTRA and Chapter 3 exploring supportive generation through knowledge distillation. Chap-
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ter 4 discusses our approach to learning from rule-generated data through debiased weakly-

supervised learning. Finally, Chapter 5 concludes with a discussion of broader implications and

future directions for efficient language model training.
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Chapter 1

Model-Generated Data from “Adversarial”
Models

Recent advances in language model training have demonstrated that model-generated

data can serve as a powerful complement to human-generated data. While there are various ways

to leverage model-generated data, one particularly promising direction is to use an adversarial

model to generate training signals. This approach creates a dynamic learning environment where

one model attempts to generate challenging examples while another model learns to discriminate

them, potentially leading to more robust and efficient learning compared to traditional approaches.

In this chapter, we focus on ELECTRA-style pretraining, a framework that employs this

adversarial learning principle. In ELECTRA, a generator model creates plausible but potentially

incorrect token replacements in a text sequence, while a discriminator model learns to identify

these artificial substitutions. This setup differs fundamentally from traditional masked language

modeling approaches - instead of directly predicting the correct tokens, the main model learns

through a detection task that can be applied to every token in the sequence, potentially improving

data efficiency.

However, the success of this adversarial approach heavily depends on maintaining the

right balance between the generator and discriminator. If the generator becomes too strong, it

may create replacements that are too difficult to detect, hindering the discriminator’s learning.

Conversely, if the generator is too weak, the task may become trivial and fail to drive meaningful
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Figure 1.1. Downstream task performance (MNLI accuracy, Avg m/mm) for models trained with
different generator sizes under the “Original” design and our “DecoupledOptim” technique. Each
point is annotated by the best hyperparameter setting we found for this experiment, namely (loss
weight, learning rate) and (generator learning rate, discriminator learning rate) for “Original” and
“DecoupledOptim” respectively (learning rate is scaled by 104 for simplicity). More experiment
details can be found in Section 1.6.1.

learning. Through our analysis, we identify critical limitations in how this balance is maintained

in the original ELECTRA design and propose improvements that lead to more stable and effective

training.

1.1 Introduction to Understand and Modularize
Generator Optimization in ELECTRA-style Pretraining

ELECTRA-style pre-training, as introduced in Clark et al. (2020), has demonstrated

significant potential in enhancing the effectiveness and efficiency of training LLMs. In specific,

it trains the discriminator model (the main model that is used in downstream tasks) to detect

which tokens in an input sequence were replaced by the generator model (the auxiliary model

that is not used in downstream tasks). This approach has become increasingly popular among

various pre-training settings and downstream applications (Clark et al., 2020; Chi et al., 2021;

Kanakarajan et al., 2021; Meng et al., 2021, 2022; Bajaj et al., 2022).

Despite its effectiveness, the performance of ELECTRA is sensitive to the choice of

generator size (Clark et al., 2020). As depicted in Figure 1.1, variations in generator size can lead
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to a significant decline in the performance upon fine-tuning the discriminator on downstream

tasks 1. Such sensitivity inevitably demands careful selection of the generator size in real-world

practices, which can be time-consuming and resource-intensive. In this research, we investigate

the issue of performance degradation in a systematic manner.

First, by carefully evaluating the discriminator’s capability of detecting replaced tokens,

we confirm that large generator capacity can indeed hurt the effectiveness of pre-training. We

also clarify that the performance degradation occurs during the pre-training stage, instead of

during the fine-tuning stage. Upon further examination of the optimization in the original

ELECTRA design, we recognize that it may fail to control the generator capacity effectively in

the course of pre-training. The original ELECTRA relies on a weight ratio that combines the

training objectives of the generator and the discriminator, in the expectation of balancing their

optimization. However, this method is observed to be largely ineffective since a constant scaling

of the loss will not affect adaptive optimizers like Adam (Kingma & Ba, 2015), the de facto for

LLM pre-training (Liu et al., 2020b). Such a deficiency results in the sensitivity of the original

ELECTRA to the generator size.

To regain control over the generator training, we modularize the generator optimization

by disentangling the generator optimizer from the discriminator optimizer. This simple technique,

dubbed as DecoupledOptim, effectively mitigate the sensitivity of ELECTRA-style pre-training

to the generator size and regain the performance loss caused by a large generator. Furthermore,

our algorithm can foster the flexibility of accelerating discriminator optimization without being

impeded by the instability of generator training, thus bringing significant performance gain over

strong baselines. We conduct experiments with the standard BERTbase and BERTlarge (Devlin

et al., 2019a) pre-training setting on the GLUE (Wang et al., 2018) benchmark, and our simple

technique consistently outperforms the original ELECTRA design and alternative pre-training

specifications that are more recently proposed.

1Following previous works (He et al., 2021; Bajaj et al., 2022), we use the evaluation results on MNLI (Williams
et al., 2017) to indicate the performance on downstream tasks
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Motivated by the empirical evidence, we turn to explore the underlying mechanism of

how the generator and discriminator optimizations impact the ELECTRA-style pre-training. Our

theoretical analyses reveal that a well-performed generator will indeed impair discriminator

learning, which highlights the importance of controlling generator learning. Our analyses

also corroborate the necessity of accelerating discriminator optimization in order to excel in

pre-training performance.

To summarize, our main contributions are as follows.

• Our analysis identifies a deficiency in the original ELECTRA optimization that leads to

performance degradation during the pre-training stage (Section 1.3).

• Guided by our analyses, we introduce a simple yet effective method (Section 1.4) that greatly

improves training robustness and downstream performance (Section 1.6).

• We conduct theoretical analyses to further gain insights into how generator and discriminator

optimizations impact the ELECTRA performance (Section 1.5).

1.2 Background and Related Work

Masked Language Modeling (MLM). MLM methods such as BERT pretrain the language

model to predict randomly masked tokens in a sequence. Specifically, given an input sequence

xxx = [w1,w2, · · · ,wn], MLM generates a masked sequence x̃xx = [w1, · · · ,[mask], · · · ,wn] by ran-

domly selecting a few tokens at positions M = [i1, i2, · · · , im] and replace them with [mask]

token. The model is then trained to predict the original tokens given the masked sequence x̃xx. The

training objective can be formulated as

L(θ) = Exxx ∑
i∈M

− log pθ (wi|x̃xx)i,

where θ denotes the model parameters and pθ (wi|x̃xx)i is the predictive probability of the model

at the i-th position on token wi given the masked sequence x̃.

ELECTRA-style pretraining. Unlike MLM, ELECTRA constructs a pretraining task called
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Replaced Token Detection (RTD) 2, which involves the joint training of two deep neural models,

a generator G (auxiliary model) and a discriminator D (main model). Here the generator is

pretrained with MLM as usual, while the discriminator is pretrained to detect tokens in a sequence

that are replaced by a generator.

Specifically, given a masked sequence x̃xx constructed for MLM, a corrupted sequence x̂xx is

generated by replacing each [mask] token in x̃xx by a token that is sampled from the generator’s

predictive distribution at that [mask] token, namely x̂xx = [w1, · · · , ŵi, · · · ,wn] and ŵi ∼ pG(·|x̃xx)i.

We refer to those sampled tokens as replaced tokens since they will be different from the original

tokens at corresponding positions, as long as the generator does not predict the masked tokens

correctly with a one-hot probability distribution. The discriminator is then trained to predict

whether the replaced tokens in x̂xx match the original tokens. The training objective can thus be

defined as
LG(θD) = Exxx ∑

i∈M

Eŵi∼pGℓ(D(x̂xx)i,1ŵi=wi)

+Exxx ∑
i∈[n]\M

ℓ(D(x̂xx)i,1),

where D(x̂xx) j is a scalar score output by the discriminator quantifying the probability of the j-th

token being replaced, ℓ is a loss function, typically binary cross-entropy (BCE), and 1ŵ=w is the

indicator function, namely

1ŵ=w =


1, if ŵ = w,

0, if ŵ ̸= w.

Note that in ELECTRA, the training objective of the discriminator is defined over all input tokens

rather than the randomly masked subset such as that in MLM.

Analyses of ELECTRA-style pretraining. Extensive analytical efforts have been attracted

to understanding the effectiveness of ELECTRA-style pretraining. It was originally believed

that the RTD pretraining task gains mostly because of the improved sample efficiency by posing

2We will use ELECTRA-style pretraining and RTD pretraining interchangeably in this paper.
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the objective on all tokens, as well as an alleviated pretraining fine-tuning gap (Clark et al.,

2020). Recent works also empirically demonstrate that ELECTRA-style pretraining may be

advantageous because of the low task complexity of RTD compared to MLM (Xu et al., 2020b)

or implicit learning curriculum introduced by the generator (Meng et al., 2022),

Variations of ELECTRA-style pretraining. There exist various pretraining methods built

on top of ELECTRA. Xu et al. (2020b) proposes a pretraining variation alike a multi-choice

cloze test, where the main model predicts the original token from a small candidate set. Meng

et al. (2021) introduces two additional training objectives including recovery of the original

token and alignment between corrupted sequences from the same source. Hao et al. (2021)

estimates the discriminator loss on replaced tokens and learns to sample difficult replace tokens

from the generator. Meng et al. (2022) proceeds to automatically construct a difficult learning

signal by an adversarial mixture of multiple generators. He et al. (2021) argues that embedding

sharing may hurt in ELECTRA-style pretraining and suggests preventing the discriminator

gradients from back-propagating to the generator embeddings. Bajaj et al. (2022) conducts a

comprehensive ablation study and highlights several important improvements of ELECTRA

such as large vocabulary size and relative position embedding. Zhang et al. (2022) observes the

existence of “false negative” replaced tokens, namely those that are not exactly same but are

synonyms to the original ones, and proposes to correct them by synonym look-up and token

similarity regularization.

1.3 Impact of Generator Capacity

In ELECTRA-style pretraining, it has been widely observed that the optimal discriminator

performance can only be obtained by a generator that is neither too large nor too small. As

shown in Figure 1.1 for “Baseline”, generators with more than 4 layers consistently hurt the

discriminator performance on downstream tasks. Here, we conduct systematic analyses to

explore the mechanism of this phenomenon.
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1.3.1 Large Generator Capacities Slow Pre-training

Since the performance of the pre-trained model is evaluated in a two-stage setting (i.e.,

pre-training and fine-tuning), we first aim to understand whether the performance degradation

happens in the pre-training stage (i.e., the discriminator is not trained properly) or the fine-tuning

stage (i.e., the discriminator is not fine-tuned properly).

Our exploration suggests that performance degradation has already occurred during the

pre-training stage. Specifically, we compare the pre-training (RTD) performance of discrimina-

tors trained with generators of different depths (4, 8, and 12 layers). As shown in Figure 1.2,

discriminators trained with deeper generators achieve consistently worse RTD performance,

echoing their inferior performance on downstream tasks as shown in Figure 1.1.

Note that, we used the last checkpoint of the 12-layer generator for the evaluation in

Figure 1.2. Rather surprisingly, we observe that to achieve better RTD performance against a

deep generator, training the discriminator on a shallow generator can be more effective than

training the discriminator on that deep generator itself. As shown in Figure 1.2, the discriminator

trained with the 12-layer generator performed the worst on replaced tokens sampled from this

very same generator, compared to other discriminators trained with either the 4-layer or the 8-

layer generator. This observation implies that the discriminator trained with a deep generator are

not fully optimized in terms of their pre-training objectives and that the performance degradation

may be due to a slow convergence in the course of pre-training.

It is worth mentioning that, since the relationship between the generator capacity and the

performance degradation resembles overfitting, it may seem reasonable to speculate overfitting

plays an important role in this phenomenon. However, in our analyses, we observe the impact

of the overfitting to be marginal. We summarized our analyses on the impact of overfitting in

Appendix A.4.

11



0 2 4 6 8 10 12
Training Steps (x104)

15

20

25

30

35

F1
 (%

)
Generator Depth

4
8
12

Figure 1.2. RTD performance (F1-score) of discriminators trained with generators of different
depths (4, 8, 12 layers). We measure the RTD performance on replaced tokens generated by the
same generator, which is the last checkpoint of the 12-layer generator used to train one of the
discriminators.

1.3.2 Limitations of the Original ELECTRA in Generator Capacity
Control

We can see that controlling the generator capacity is critical to the optimization of

ELECTRA. Nevertheless, we found that the original design of ELECTRA may be deficient in

controlling the generator capacity.

In ELECTRA, a loss weight λ is originally introduced to balance the generator optimiza-

tion and discriminator optimization. In specific, the generator and the discriminator are jointly

optimized through the following combined training loss (Clark et al., 2020)

L = L(θD)+λLG(θG).

Nevertheless, varying the value of λ may not take effect as expected. First, a constant

scaling of the loss will not affect adaptive optimizers like Adam (Kingma & Ba, 2015), which

is commonly used in pretraining algorithms such as ELECTRA to ensure training stability. In

specific, Adam updates a model parameter by the ratio between the first moment and second
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moment of its gradient, namely 3

θ := θ −η · E[g(θ)]√
E[g(θ)2]

, (1.1)

where η is the learning rate, and g(θ) = ∇θ L is the gradient of the model parameter θ with

respect to L.

Consequently, for all generator parameters that are not shared with the discriminator

(denoted as θ̂G) and all discriminator parameters that are not shared with the generator (θ̂D), we

have 4

g(θG) = ∇L(θG), g(θD) = λ ·∇LG(θD).

It is important to note that the loss weight λ does not affect the update rule of these parameters

as any constant scaling of the gradients will be canceled out in Equation (1.1). Therefore, these

parameters would always be trained with the same learning rate regardless of the value of λ .

θG := θG −η · E[g(θG)]√
E[g(θG)2]

,

θD := θD −η · E[g(θD)]√
E[g(θD)2]

.

The only parameters in ELECTRA that are affected by the loss weight λ are the embed-

dings θE shared between the generator and the discriminator. The gradients would be

g(θE) = ∇L(θG)+λ ·∇LG(θD),

which means the update rule would become

θE := θE −η · E[∇L(θG)+λ ·∇LG(θD)]√
E[(∇L(θG)+λ ·∇LG(θD))2]

.

3In practice, the first and second moments here are estimated as exponential moving averages.
4We neglect the subscript in ∇ for simplicity.

13



Therefore, the updates of these embeddings will be contributed by the gradients from the

discriminator more if λ is larger.

Since the loss weight λ fails to balance the updates of the majority of model parameters,

it cannot control the generator learning effectively. As shown in Figure 1.3, increasing the loss

weight λ has little effect on the generator performance in the original ELECTRA design.

Alternative Ways to Control Generator in the original ELECTRA design. Here we discuss

methods other than the loss weight λ to control the generator capacity. One way is to change the

learning rate η . However, this would also alter the learning rate for discriminator learning and

ultimately results in worse pretraining performance.

Another way is to reduce the model size of the generator, as also shown in Figure 1.3. This

may be the only effective mechanism in the original ELECTRA design that can control generator

capacity without affecting discriminator learning. However, it brings about the dependency

of the pretraining performance on the careful selection of the generator size, which can be

time-consuming and resource-intensive in practice.
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Figure 1.3. (Left): The effect of tuning the loss weight λ on the generator performance in the
original ELECTRA design. (Right): The effect of tuning the generator learning rate ηG on the
generator performance with our DecoupledOptim technique. For the original ELECTRA design,
the learning rate is fixed as 5×10−4 and for our DecoupledOptim technique, the discriminator
learning rate is fixed as 1×10−3.
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1.4 DecoupledOptim

Decouple the generator optimizer and the discriminator optimizer. To properly control the

generator capacity, we simply decouple the generator optimizer and the discriminator optimizer.

Specifically, the generator and discriminator parameters are now updated with separate rules,

namely

θG := θG −ηG · E[g(θG)]√
E[g(θG)2]

,

θD := θD −ηD · E[g(θD)]√
E[g(θD)2]

.

To control the generator capacity, we can now directly adjust the optimizer dedicated for

the generator (e.g., adjusting ηG, the generator learning rate). Figure 1.3 shows that, for a large

generator, we can simply reduce ηG to effectively control its capacity during the pre-training.

This implies that DecoupledOptim is capable to handle large generators and reduce the

sensitivity of ELECTRA-style pretraining on the choice of the generator size. As elaborated in

Section 1.6, our proposed method is simple yet effective, consistently outperforming the original

ELECTRA design and its recently proposed variants.

Note that for the simplicity of the implementation, we will not share the embeddings

between the generator and the discriminator anymore. Despite the belief that embedding sharing

is crucial in ELECTRA-style pretraining since RTD pretraining may not be as effective as

MLM in learning token representations (He et al., 2021), we found that with our decoupled

optimization, a discriminator learned from randomly initialized embeddings can in fact achieve

equivalently good or even better performance.

Improve ELECTRA with Sufficient Discriminator Optimization. With our decoupled-

optimizer design, we can in fact not only control generator capacity more easily but also achieve

significantly better pretraining performance by optimizing the discriminator more sufficiently.

In the original ELECTRA design, the same learning rate is assigned to the generator

and discriminator as mentioned in Section 1.3.2. Therefore, attempts to speed up discriminator
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optimization by increasing the learning rate inevitably lead to larger generator capacity, thus

yielding worse pretraining performance. Moreover, The increased learning rate may even cause

training failure since the generator training in an MLM style can undergo strong instability

with a large learning rate. In our experiments, we found that the original ELECTRA design

diverges within 25K training steps, despite a proper selection of the loss weight (e.g., 50) and the

generator size (e.g., 4 layers).
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Figure 1.4. Discriminator performance on downstream tasks (MNLI) with different generator
sizes and discriminator learning rates. Here the generator learning rate is fixed as 2×10−4.

However, with the optimizers decoupled in DecoupledOptim, we can now accelerate

discriminator optimization without being impeded by generator learning. Empirical experiments

in Figure 1.4 show that, as we increase the discriminator learning rate such that its optimization

becomes more sufficient, the pretraining performance is increasingly good. One may notice

that the discriminator learning rate can often be as large as 1.5×10−3, which is 3-7 times the

learning rate suitable for generator training. Furthermore, we observe that with increasingly

sufficient discriminator optimization, the best generator shifts to one with a larger capacity, even

as large as the discriminator itself (12 layers).

1.5 Optimization of ELECTRA-style Methods

Here, we conduct theoretical analyses to gain insight into how generator and discriminator

optimizations impact the performance of the ELECTRA-style pretraining.
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Problem setup. We consider a simplified RTD task where only one token in an input sequence

is replaced. We refer to the rest of those unchanged tokens in this sequence as context. Let w

be a word in the sentence, and let c be the remaining context words in the same sentence. The

generator is trained to predict the original token given the context, namely

L(θG) = Ec,w − log pG(w|c). (1.2)

For discriminator training, we focus on the detection of this single replaced token

exclusively. The optimization objective of the discriminator D can be thus described as

L̄G(θD) = Ec,wEŵ∼pGℓ(D(c, ŵ),1ŵ=w). (1.3)

Ideal discriminator optimization objective. An ideal discriminator optimization objective

should align with the discriminator performance on downstream tasks. However, discriminator

performance evaluated against a given replaced token distribution may not always be indicative

of the downstream performance (see more in Section A.4). Ideally, a discriminator should be able

to detect any possible tokens replaced in a sequence, regardless of the specific distribution from

which such replaced tokens are sampled. To this end, we define the ideal optimization objective

of the discriminator as the highest possible discriminator loss achieved by any replaced token

distribution, namely the probability distributions from which the replaced tokens are sampled.

Definition 1 (Ideal optimization objective of the discriminator). Let P be a family of replaced

token distributions. The ideal optimization objective of the discriminator D can be defined as

L∗(θD) = Ec,w sup
p∈P

Eŵ∼pℓ(D(c, ŵ),1ŵ=w). (1.4)

Practical optimization of the discriminator. In practice, such an ideal optimization objective

cannot be used as a loss function for training the discriminator since it is not feasible to enumerate
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all possible replaced token distributions. Fortunately, if we have an assumption on the “difficulty”

of the replaced token distributions, we can bound the highest discriminator loss over all possible

replaced token distributions. This upper bound can further be approached by the discriminator

loss on the generator’s predictive distribution as a replaced token distribution. Hence, the

optimization objective defined by a generator (i.e., Equation (1.3)) can be a fair surrogate of the

ideal objective.

Assumption 1 (Difficulty of the replaced token distribution). We assume a discriminator is more

likely to make detection errors if the sampled replaced tokens recover the original token more

frequently, namely

Eŵ∼pℓ(D(c, ŵ),1ŵ=w) = FD(Eŵ∼p[1ŵ=w]) (1.5)

where FD : [0,1]→ R+ is a concave and monotonically increasing function that is dependent on

the discriminator D.

We can now show that the ideal discriminator objective is bounded by the surrogate

objective defined by a generator. The intuition here is that, given Assumption 1, the predictive

distribution of the generator should approximate the most difficult replaced token distribution,

and the approximate error happens to be bounded by the performance of the generator.

Lemma 1 (The discriminator objective defined by a generator is a surrogate of the ideal objective).

Let mD = maxc,w ∥ℓ(D(c, ŵ),1ŵ=w)∥2 be the upper bound on the discriminator loss given any

context-token pairs. Then we have

L∗(θD)≤ L̄G(θD)+2−1/2mDL(θG)
1/2. (1.6)

Lemma 1 implies that training towards a surrogate objective defined by a generator

LG(θD) can indeed optimize the ideal discriminator objective. This justifies the basic ELECTRA

design which employs a generator to sample replaced tokens for discriminator training. It also
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implies that an under-performed generator may not be as effective for optimizing the ideal

objective since the distribution approximation error (the 2-nd term) would be much higher.

Large generator capacity may hurt optimization. However, well-performed generators

may be less effective for optimizing the ideal objective as well. This is because well-performed

generators will approach the most difficult replace token distribution based on Assumption 1,

thus creating significantly higher discriminator loss LG(θD) in Equation (1.6). We have the

following Lemma to demonstrate this.

Lemma 2 (Dependence of the discriminator loss on generator performance).

Let VG = Ec,w[(− log pG(w|c)−L(θG))
2] be the variance of the generator loss, we have

L̄G(θD)≤ FD

(
(1+VG/2)e−L̄(θG)+VG/2 eε

)
. (1.7)

Lemma 2 shows that the discriminator loss given a generator is inversely correlated with

the generator loss. This means strong generators may create significantly higher discriminator

loss. If such a high discriminator loss cannot be sufficiently reduced through the optimization

process, which is likely since the training budget is always limited, the ideal objective cannot be

sufficiently optimized as well.

Modeling the generator and discriminator optimization. To further illustrate the effects of

both the generator and discriminator optimizations, we introduce a simplified modeling of the

optimization process, which is based on trajectory analysis of gradient descent for deep linear

neural networks (Arora et al., 2018).

Proposition 1 (Gradient descent trajectory of deep linear neural networks (informal)). In gradient

descent, let θ(t) be the model parameters after t updates, η be the learning rate that meets

certain regularities, and N be the number of layers in the model, then we have

L (θ(t))≤ L (θ(0)) · (1−η · c
2(N−1)

N )t , (1.8)
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where c is a positive constant.

We can now derive a complete picture of the effect of the generator performance on the

optimization of the discriminator. Together with Lemmas 1 and 2, we have the following result.

Theorem 1 (Optimization of the ideal discriminator objective). Consider the discriminator

optimization after the generator is trained with several updates. Let ηG be the generator’s

learning rate and NG be the generator depth. The generator loss after tG updates is

L(θG(tG)) = L(θG(0))(1−ηG ·ξG)
tG , (1.9)

where ξG = c2(NG−1)/NG . Subsequently, let ηD be the discriminator’s learning rate and ND be

the discriminator depth. Then after tD discriminator updates, we have

L∗(θD(tD))≤F
(

e−L(θG(tG))
)
· (1−ηD ·ξD)

tD

+2−1/2mD [L(θG(tG))]
1/2 ,

(1.10)

where we have neglected some constants in Equation (1.7) for simplicity.

One can see that, in terms of generator optimization, increasing the generator learning

rate first helps and then hurts the discriminator performance for a given discriminator setting, as

also illustrated in Figure 1.5. This results in a sweet spot where the generator learning rate is the

best for the discriminator performance. Similarly, since ξ ∝ N, increasing the generator depth

would also first help and then hurt the discriminator performance.

In terms of discriminator optimization, increasing the discriminator learning rate or depth

can almost always help the discriminator performance. In an ideal case, if the discriminator

optimization is sufficient, for example, by letting ηD ·ξD ≈ 1 or tD ≈∞ in Equation (1.10), then the

discriminator performance will improve monotonically with the generator performance, as also

illustrated in Figure 1.5 where the discriminator learning rate is sufficiently large. Unfortunately,
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it is not possible to always sufficiently optimized the discriminator in practice given training

instability and/or limited training budgets.

Interestingly, Equation (1.10) shows that, with increasingly sufficient discriminator

optimization, the best generator should shift to one with a larger capacity, as also illustrated in

Figure 1.5. One may find this echoes the empirical observation in Figure 1.4.

Finally, Equation (1.10) also reflects the limitation of the original ELECTRA design

mentioned in Section 1.3.2. As also illustrated in Figure 1.5, since the generator and discriminator

are assigned almost the same learning rate, the original design can only reach a line (1-D

subspace) in the entire optimization space. Further, due to the training instability of the generator,

this line is truncated where the discriminator learning rate is still small and thus the discriminator

performance is still suboptimal. In contrast, DecoupledOptim can increase the discriminator

learning rate without being affected by the generator learning thus achieving better performance

by exploring the entire optimization space.
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Figure 1.5. Illustration of the discriminator performance in terms of the ideal objective (denoted
by the color, and the darker color corresponds to better performance) with respect to the generator
learning rate (x-axis) and discriminator learning rate (y-axis). The line represents the space that
the original ELECTRA design can possibly reach by modulating its learning rate in an ideal
scenario. The dashed line represents the space that the original ELECTRA fails to reach in
practice due to the training instability of the generator.
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Table 1.1. Results on the GLUE development set. “†” indicates the model is pretrained for 1M
updates with batch size of 256. “‡” indicates the model is pretrained for 100K updates with batch
size of 8K. “-” indicates that no public reports are available.

Model MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG
(Acc.) (Acc.) (Acc.) (Acc.) (Mat. Corr.) (Acc.) (Acc.) (Spear. Corr.)

Base Setting

BERT (Devlin et al., 2019a) 84.5/ - 91.3 91.7 93.2 58.9 68.6 87.3 89.5 83.1
RoBERTa (Liu et al., 2019b) 85.8/85.5 91.3 92.0 93.7 60.1 68.2 87.3 88.5 83.3
XLNet (Yang et al., 2019) 85.8/85.4 - - 92.7 - - - - -
DeBERTa (He et al., 2020) 86.3/86.2 - - - - - - - -
TUPE (Ke et al., 2020) 86.2/86.2 91.3 92.2 93.3 63.6 73.6 89.9 89.2 84.9
ELECTRA (Clark et al., 2020) 86.9/86.7 91.9 92.6 93.6 66.2 75.1 88.2 89.7 85.5
MC-BERT (Xu et al., 2020b) 85.7/85.2 89.7 91.3 92.3 62.1 75.0 86.0 88.0 83.7
COCO-LM (Meng et al., 2021) 88.5/88.3 92.0 93.1 93.2 63.9 84.8 91.4 90.3 87.2
AMOS (Meng et al., 2022) 88.9/88.7 92.3 93.6 94.2 70.7 86.6 90.9 91.6 88.6
DeBERTaV3 (He et al., 2021) 89.3/89.0 - - - - - - - -
METRO (Bajaj et al., 2022) 89.0/88.8 92.2 93.4 95.0 70.6 86.5 91.2 91.2 88.6
METROReImp 89.0/88.9 92.0 93.4 94.4 70.1 86.3 91.4 91.2 88.5
DecoupledOptim 89.4/89.7 92.4 93.6 94.7 70.6 88.8 92.2 91.1 89.1

Large Setting

BERT† 86.6/ - - - - - - - - -
RoBERTa‡ 89.0/ - 91.9 93.9 95.3 66.3 84.5 90.2 91.6 87.8
XLNet† 88.4/ - 91.8 93.9 94.4 65.2 81.2 90.0 91.1 87.0
TUPE† 88.2/88.2 91.7 93.6 95.0 67.5 81.7 90.1 90.7 87.3
METROReImp 89.9/90.2 92.5 94.5 94.3 69.7 88.8 91.9 91.6 89.2
DecoupledOptim 90.5/90.6 92.4 94.7 96.1 72.1 88.4 91.2 92.2 89.7

1.6 Experiments

1.6.1 Experiment Setup

Pretraining Setup. We conduct experiments with two standard settings, Base and Large,

following previous works (Devlin et al., 2019a; Meng et al., 2021; Bajaj et al., 2022). Specifically,

we employ Wikipedia and BookCorpus (Zhu et al., 2015) (16 GB of texts, 256M samples) for

pretraining with sequence length as 512. We use a cased sentence piece BPE vocabulary of

128K tokens following (He et al., 2020), since larger vocabulary size improves LLMs without

significant additional training and inference cost (Bao et al., 2020).

We conduct pretraining for 125K updates with a batch size of 2048. For our Decou-

pledOptim, we use the same hyperparameter combination in both Base and Large settings,

namely the generator learning rate is set as 2×10−4 and the discriminator learning rate is set as

1.5×10−3. Detailed hyperparameter settings can be found in Appendix A.2.

22



Model Architecture. Our main model (discriminator) in the Base setting follows the BERTbase

architecture (Devlin et al., 2019a), namely a 12-layer transformer with 768 hidden dimensions

plus T5 relative position encoding (Raffel et al., 2019) with 32 bins. We employ Admin (Liu

et al., 2020b, 2021) for model initialization to stabilize the training. Our main model in the Large

setting follows BERTLarge, namely a 24-layer transformer with 1024 hidden dimensions and 128

relative position encoding bins. Our auxiliary model (generator) in Base has the same architecture

as the main model, which is larger than the recommended size in previous works (Clark et al.,

2020; Meng et al., 2021) (typically 4 layers), but yields significantly better results. Our auxiliary

model in Large has 8 layers with other settings same as the main model.

Downstream evaluation setup. We conduct the evaluation on downstream tasks following

the setup in previous works (Meng et al., 2021; Bajaj et al., 2022). Specifically, we evaluate on

GLUE (Wang et al., 2018) language understanding benchmark with a single-task, single-model

fine-tuning setting following previous works. We employ the suggested training hyperparameters

such as the AdaMax optimizer (Kingma & Ba, 2015) from Liu et al. (2019a, 2020c). We report

Spearman correlation on STS-B, Matthews correlation on CoLA, and accuracy on the rest of the

datasets. Detailed hyperparameter settings can be found in Appendix A.2.

Baselines. We compare with various pretrained models that are consistent with our basic

settings (dataset and training steps) (see Table 1.1). For the Large setting, we also compare with

pretrained models that consume similar computation costs, for example, in terms of the total

number of processed tokens. We report the results of baseline models from the corresponding

papers and their follow-up works, whichever are higher. We also reimplement METRO as our

baselines 5.
5Both the re-implemented METRO and our method are implemented within the same codebase, which is built

on top of FAIRSEQ, a popular open-sourced package (Ott et al., 2019).
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Figure 1.6. Discriminator performance on downstream tasks (MNLI Avg m/mm) versus the
generator performance for a variety of hyperparameter combinations that can affect the generator
training. For the original ELECTRA design (denoted by “▲”) specifically, we modulate the loss
weight λ in {50,70,100,200} and the learning rate in {10,5,2,1}×10−4. For our Decouple-
dOptim technique (denoted by “•”) specifically, we modulate the generator learning rate also
in {10,5,2,1}×10−4. For both, we modulate the generator depth in {4,8,12}. For diverged
training, the combination of hyperparameters is not included in the figure.

1.6.2 Results

Main Results. Table 1.1 lists the downstream evaluation results of DecoupledOptim and

competitive baselines under the Base and Large setting. DecoupledOptim outperforms previous

state-of-the-art by notable margins in terms of both the overall GLUE score and specific results

on large datasets, which are considered to be more reliable.

Robustness to Generator Setting. We experiment with a wide variety of pretraining

hyperparameters in the Base setting to validate the robustness of DecoupledOptim with respect

to the change of generator capacity, since it is the main focus of this paper. We use our

reimplemented METRO as a strong baseline. As shown in Figure 1.6, DecoupledOptim yields

more stable downstream performance when the generator capacity varies/the hyperparameter

changes. DecoupledOptim also achieves consistently better performance when employing

generators with larger sizes.

Pretraining Efficiency. In each pretraining step, DecoupledOptim introduces no additional
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model parameters or computation cost compared to the original ELECTRA design. Note that

separate generator and discriminator embeddings in DecoupledOptim require exactly the same

amount of operations as the shared embeddings in the original ELECTRA design, since the

gradients of the embeddings have to be back-propagated from the generator and discriminator

loss separately in both scenarios. DecoupledOptim does induce additional memory consumption

due to separate embeddings. To mitigate this, one can maintain the shared embedding while

employing separate optimizers, by merging the embedding gradients in a custom manner, which

we would like to leave as a future work.

1.7 Summary

In this chapter, we conduct systematic analyses on the impact of generator capacity

on the performance of the discriminator in ELECTRA-style pretraining. Our investigation

begins with the observation that using a large auxiliary generator often results in a degradation

of the downstream performance of the main discriminator model. Our analyses suggest that

such performance degeneration is due to inadequate control of the generator capacity during

pretraining, highlighting a long-overlooked issue in ELECTRA-style training. Based on our

findings, we propose a simple-yet-effective method that greatly improves the training robustness

and downstream performance, which further verified our intuition.

This chapter incorporates material from the publication “Understand and Modularize

Generator Optimization in ELECTRA-style Pretraining” by Chengyu Dong, Liyuan Liu, Hao

Cheng, Jingbo Shang, Jianfeng Gao, Xiaodong Liu, published in Proceedings of the 40th

International Conference on Machine Learning (ICML 2023). The dissertation author was the

primary investigator and lead author of this paper.
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Chapter 2

Model-Generated Data from “Supportive”
Models

The previous chapter explored how model-generated data can enhance training through

an adversarial model, where a generator model creates challenging examples to drive the main

model’s learning. While this adversarial approach proves effective, it represents just one way

of leveraging model-generated data. An alternative and complementary approach is to use

model-generated data in a supportive rather than adversarial manner, where an auxiliary model

actively guides the main model’s learning by providing enhanced training signals.

Knowledge distillation exemplifies this supportive approach to using model-generated

data. Instead of creating challenging examples, a “teacher” model generates probability dis-

tributions over possible outputs that can help guide a “student” model’s learning. These soft

probability distributions often capture nuanced relationships in the data that are not apparent

from the hard labels alone. For example, when classifying images of numbers, a teacher might

indicate that a particular “7” also shares some visual features with “1”, providing richer learning

signals than the simple label “7”.

However, similar to the optimization challenges we encountered with ELECTRA’s

adversarial generator, the effectiveness of knowledge distillation heavily depends on how we

train and utilize the supportive teacher model. While conventional wisdom suggests that a

better-performing teacher leads to better student learning, our analysis reveals a more nuanced
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relationship. The key to successful distillation may not lie in the teacher’s absolute performance,

but rather in how well it generates training signals that are specifically beneficial for student

learning. In this chapter, we conduct a thorough theoretical and empirical investigation of

knowledge distillation, focusing particularly on how to optimize the teacher model to generate

the most effective training signals for the student.

2.1 Introduction to Toward Student-Oriented Teacher
Network Training For Knowledge Distillation

Knowledge distillation aims to train a small yet effective student neural network following

the guidance of a large teacher neural network (Hinton et al., 2015). It dates back to the

pioneering idea of model compression (Buciluǎ et al., 2006) and has a wide spectrum of real-

world applications, such as recommender systems (Tang & Wang, 2018; Zhang et al., 2020),

question answering systems (Yang et al., 2020; Wang et al., 2020) and machine translation (Liu

et al., 2020a).

Despite the prosperous interests in knowledge distillation, one of its crucial components,

teacher training, is largely neglected. The existing practice of teacher training is often directly

targeted at maximizing the performance of the teacher, which does not necessarily transfer to the

performance of the student. Empirical evidence shows that a teacher trained toward convergence

will yield an inferior student (Cho & Hariharan, 2019) and regularization methods benefitting the

teacher may contradictorily degrade student performance (Müller et al., 2019). As also shown in

Figure 2.1, the teacher trained toward convergence will consistently reduce the performance of

the student after a certain point. This suggests a fundamental discrepancy between the common

practice in teacher training and the ideal learning objective of the teacher that orients toward

student performance.

In this work, we explore both the theoretical feasibility and practical methodology

of training the teacher toward student performance. Our analyses are built upon the recent
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Figure 2.1. We train teacher models on CIFAR-100, saving a checkpoint every 10 epochs,
and then use this checkpoint to train a student model through knowledge distillation. With our
method, the teacher is trained with a focus on improving student performance, leading to better
student performance even if the teacher’s own performance is not as high.

understanding of knowledge distillation from a statistical perspective. In specific, Menon et al.

(2021) show that the soft prediction provided by the teacher is essentially an approximation to

the true label distribution, and true label distribution as supervision for the student improves the

generalization bound compared to one-hot labels. Dao et al. (2021) show that the accuracy of

the student is directly bounded by the distance between teacher’s prediction and the true label

distribution through the Rademacher analysis.

Based on the above understanding, a teacher benefitting the student should be able to

learn the true label distribution of the distillation data 1. Since practically the distillation data

is often reused from the teacher’s training data, the teacher will have to learn the true label

distribution of its own training data. This might appear to be infeasible using standard empirical

risk minimization, as the teacher network often has enough capacity to fit all one-hot training

labels, in which case, distilling from teacher predictions should largely degrade to directly

training with one-hot labels. Existing works tend to evade this dilemma by distilling from teacher

predictions only on data that is not used in teacher training (Menon et al., 2021; Dao et al., 2021).

Instead, we directly prove the feasibility of training the teacher to learn the true label

1For simplicity, we refer to the training data of the student model in knowledge distillation as the distillation
data (Stanton et al., 2021)
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distribution of its training data. We show that the standard empirical risk minimizer can approach

the true label distribution of training data under a mixed-feature data distribution, as long as

the feature extractor of the learner network is Lipschitz continuous and is robust to feature

transformations.

In light of our theory, we show that explicitly imposing the Lipschitz and consistency con-

straint in teacher training can facilitate the learning of the true label distribution and thus improve

the student performance. We conduct extensive experiments on two benchmark datasets using

various knowledge distillation algorithms and different teacher-student architecture pairs. The

results confirm that our method can improve student performance consistently and significantly.

We believe our work is among the first attempts to explore the theory and practice

of training a student-oriented teacher in knowledge distillation. To summarize, our main

contributions are as follows.

• We show that it is theoretically feasible to train the teacher to learn the true label distribution of

the distillation data even with data reuse, explaining the effectiveness of the current knowledge

distillation practice.

• We show that by adding Lipschitz and consistency regularization during teacher training, it

can better learn the true label distribution and improve knowledge consistently.

2.2 Preliminaries

We study knowledge distillation in the context of multi-class classification. Specifically,

we are given a set of training samples D = {(x(i),y(i))}i∈[N], where [N] := {1,2, · · · ,N}. D is

drawn from a probability distribution pX ,Y that is defined jointly over input space X and label

space Y = [K]. For convenience, we denote 1(y) ∈ RK as the one-hot encoding of label y.

Learning Objective of Teacher in Practice. In common practice, the teacher network f is
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trained to minimize the empirical risk given a loss function ℓ, namely

min
f
E(x,y)∈D ℓ( f (x),y), (2.1)

where E(x,y)∈D is the empirical expectation.

Ideal Learning Objective of Teacher. Recent advances in understanding knowledge

distillation suggest a teacher should approximate the true label distribution of the distillation

data, which is often reused from the teacher’s training data. From this perspective, ideally the

teacher should learn the true label distribution of its training data, namely

min
f
E(x,y)∈D ∥ f (x)− p∗(x)∥. (2.2)

Here, p∗(x) := pY |X(·|x) denotes the true label distribution of an input x, namely the (unknown)

category distribution that its label is sampled from, which is not necessarily one-hot. And ∥ · ∥

can be an arbitrary p-norm.

Our Research Questions. One can find that there is a fundamental discrepancy between the

learning objective of the teacher in the common practice and the ideal learning objective of the

teacher. In particular, minimization of Eq. (2.1) would lead to f (x) = 1(y) for any input x, which

significantly deviates from p∗(x) and thus challenges the effectiveness of knowledge distillation.

Therefore, in this work, we explore the following two questions.

(i) Can a teacher network learn the true label distribution of the training data with the standard

teacher training practice?

(ii) How to train a teacher to better learn the true label distribution and improve student perfor-

mance?

We will present our findings of these two questions in Sec. 2.3 and Sec. 2.4, respectively.

30



2.3 Theoretical Feasibility to Learn True Label
Distribution of Training Data

We now explore the theoretical feasibility of training a teacher network that learns the

true label distribution of the training data under the empirical risk minimization framework.

Unless specifically stated otherwise, by “data” we refer to the data used to train the teacher, and

by “network” we refer to the teacher network. Note that throughout the discussion here, our

major focus is the existence of a proper minimizer, instead of the details of the optimization

process.

2.3.1 Notations and Problem Setup

Notation. Here, we introduce our notations in addition to the ones mentioned in Section 2.2.

We will use calligraphic typefaces to denote sets, e.g., the dataset D . We use |D | to denote the

size of the set. We use ◦ to denote function composition. We use Õ(η) to denote polynomial

terms of η .

Data Distribution. We consider a data distribution which we refer to as the mixed-feature

distribution. Our distribution can be viewed as a simplified version of the “multi-view

distribution” introduced in Allen-Zhu & Li (2020). Our distribution can also be viewed as a

variation of Latent Dirichlet Allocation (LDA) (Blei et al., 2001), a generative data distribution

widely used to model text data.

Definition 2 (Mixed-feature distribution). We first generate the input x following LDA. We define

a feature vocabulary Z that denotes the names of all possible features in the data inputs. For

example, in image classification we can have Z = {‘eye’, ‘tail’, ‘wheel’, ...}. Now for each data

example i,

1. Sample M feature names from Z , namely zm ∼ pZ , where pZ is a discrete distribution defined

over Z .
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2. For each feature name z, we sample its input representation xz ∈ Rb, namely xz ∼ pX(·|z),

where pX(·|z) is a continuous distribution with finite variance, namely Var[X |z] ≤ νz. The

finite variance here means that the representation of the same feature sampled in different

inputs should be similar.

3. For each feature name z, we transform its input representation by a function γ : Rb → Rb,

where γ is sampled from a set of possible transformation functions T , namely xz := γ(xz).

For example, in image classification γ can be rotation, mirroring, or resizing.

4. We concatenate the transformed representations of these features to obtain the input, namely

x = (xz1,xz2 , · · · ,xzM), where x ∈ Rb×M. This views each data input as a concatenation of M

patches and each patch is a b-dimensional vector, which follows the assumption in Allen-Zhu

& Li (2020).

Next, we generate the label y. We assume each feature name defines a label distribution

pY (·|z). The label distribution of an input x is the geometric average of the label distributions of

the feature names, namely y ∼ pY (·|x) := (∏m pY (·|zm))
1/M.

Note that in our data distribution, the assumption that each patch is a vector is solely for

the simplicity of illustration and can be trivially generalized, as our theory is not dependent on it.

The specific shape of each patch can be arbitrary, for example, can be a 3-rank tensor (height,

width, channel) in image classification.

One difference between our data distribution and “multi-view distribution” is that one

can define different label sets Y for the same input data under our data distribution. This is more

realistic as it models datasets that have coarse-grained/fine-grained label sets respectively but the

same input data.

Network Architecture. We consider a multi-layer neural network that produces proba-

bilistic outputs, namely f : Rb×M → [0,1]K . The network consists of a feature extractor and a

classification head, namely f := fC ◦ fE , defined as follows respectively.
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• fE : Rb×M → RM×d denotes the feature extractor, whose architecture can be arbitrary as long

as it processes each patch independently. With a little abuse of notation, we will also write

hm := fE(xm).

• fC : RM×d → RK denotes the probabilistic classification head, which consists of a 1x1

convolutional layer and a modified Softmax layer, namely fC(h) = ˜Softmax(wCh), where

wC ∈ R1×K×d . The 1x1 convolutional layer is similar to the assumption in (Allen-Zhu & Li,

2020), while the modified Softmax is slightly different from the standard Softmax in terms of

the denominator, namely ˜Softmax(ĥ) = exp(1/M ∑m ĥm)

(∏m ∑k exp(ĥm,k))1/M , where ĥ := wch.

2.3.2 A Hypothetical Case: Invariant Feature Extractor

For starters, we investigate a hypothetical case where the feature extractor is invariant,

which means that it can always produce the same feature map given the same feature patch,

regardless of which input this feature patch is located at or which transformation is applied to

this feature patch. Given such an assumption, showing the learning of true label distribution of

the training data can be greatly simplified. We will thus briefly walk through the steps towards

this goal to shed some intuitions.

Definition 3 (Invariant feature extractor). We call fE an invariant feature extractor, if for any

two inputs i and j, for any two transformations γ and γ ′, fE(γ(x
(i)
m )) = fE(γ

′(x( j)
m′ )), as long as

zm = zm′ , namely the feature names of the patches m and m′ match.

We first show that given an invariant feature extractor, the minimizer of the empirical risk

has the property that its probabilistic prediction of each feature converges to the sample mean of

the labels whose corresponding inputs contain this feature.

Lemma 3 (Convergence of the probabilistic predictions of features).

Let ȳz := 1
N ∑{i|z∈Z (i)} 1(y(i)), where Z (i) denote the set of feature names in the i-th input, and

thus {i|z ∈ Z (i)} denotes the set of inputs that contain feature z. Let f ∗ be a minimizer of
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the empirical risk (Eq. (2.1)) and assume f ∗E is an invariant feature extractor. Let p f ∗(xz) :=

Softmax(wC f ∗E(xz)) be the probabilistic prediction of feature z. We have

p f ∗(xz) = ȳz. (2.3)

The intuition here is that since the feature extractor is invariant and the number of possible

features is limited, the feature maps fed to the classification head would be a concatenation of

M vectors selected from a fixed set of |Z | candidate vectors, where each vector corresponds to

one feature in the vocabulary. Therefore, the empirical risk can be regrouped as − 1
N ∑i 1(y(i)) ·

log f ∗(x(i)) = − 1
M ∑z∈Z ȳz · log p f ∗(xz). Then by Gibbs’ inequality, the empirical risk can be

minimized only when the probabilistic prediction of each feature p f ∗(xz) is equal to ȳz.

We now proceed to show that the above sample mean of multiple labels ȳz will converge

to the average distribution of these labels, even though they are non-identically distributed. Since

each label is a categorical random variable, this directly follows the property of multinomial

distributions (Lin et al., 2022).

Lemma 4 (Convergence of the sample mean of labels). Let p̄(·|z) = 1
N ∑{i|z∈Z (i)} pY (·|x(i)), we

have with probability at least 1−δ ,

∥ȳz − p̄(·|z)∥ ≤ Õ
(√

KN−1M|Z |−1δ−1
)
. (2.4)

It is also feasible to achieve the above lemma by applying Lindeberg’s central limit

theorem, with a weak assumption that the variance of each label is finite.

Next, we show that the average label distribution p̄(·|z) approximates the true label

distribution of the corresponding feature z.

Lemma 5 (Approximation of the true label distribution of each feature).

∥p̄(·|z)− pY (·|z)∥ ≤ Õ
(
M|Z |−1) . (2.5)
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The intuition is that since the average distributions p̄(·|z) here are all contributed by

the true label distribution of the inputs that contain feature z, it will be dominated by the label

distribution of feature z, given some minor assumption on the sampling process of features when

generating each input.

Finally, combining Lemmas 3, 4, 5, one can see that the probabilistic prediction of each

feature given by the empirical risk minimizer will approximate the true label distribution of that

feature. Subsequently, we can show that the probabilistic prediction of each input approximates

the true label distribution of that input, which leads to the following main theorem.

Theorem 2 (Approximation error under a hypothetical case). Given the setup introduced in

Section 2.3.1, let f ∗ be a minimizer of the empirical risk (Eq. (2.1)) and assume f ∗E is an invariant

feature extractor. Then for any input x ∈ D , with probability at least 1−δ ,

∥ f ∗(x)− p∗(x)∥ ≤ Õ
(√

KN−1M|Z |−1δ−1
)
+ Õ

(
M|Z |−1) . (2.6)

2.3.3 Realistic Case

We now show that in a realistic case where the feature extractor is not exactly invariant,

it is still possible to approximate the true label distribution, as long as the feature extractor is

robust to the variation of features across inputs and also robust to feature transformations.

Definition 4 (Lipschitz-continuous feature extractor). We call fE a LX -Lipschitz-continuous

feature extractor, if for any two inputs i and j, ∥ fE(x
(i)
m )− fE(x

( j)
m′ )∥ ≤ LX∥x(i)m − x( j)

m′ ∥, as long

as zm = zm′ , namely the feature names of the patches m in i and patch m′ in j match.

Definition 5 (Transformation-robust feature extractor). We call fE a LΓ-transformation-robust

feature extractor, if for any patch m in any input i, and for any transformation γ , ∥ fE(γ(x
(i)
m ))−

fE(x
(i)
m )∥ ≤ LΓ.

Similar to Lemma 3, given a Lipschitz-continuous and transformation-robust feature

extractor, the probabilistic predictions of features will still converge to the sample mean of the
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labels where the corresponding inputs contain this feature, up to some constant error. This

requires the assumption that the input representation of the same feature is similar across

different inputs, which is intuitive and covered by Definition 2. All other lemmas introduced in

the hypothetical case still hold trivially as they are not dependent on the network. Therefore, we

can have the following result.

Theorem 3 (Approximation error under a realistic case). Given the setup introduced in Sec-

tion 2.3.1, let f ∗ be a minimizer of the empirical risk (Eq. (2.1)) and assume f ∗E is a LX -Lipschitz-

continuous and LΓ-transformation-robust feature extractor. Let ν = maxz νz. Then for any input

x ∈ D , with probability at least 1−δ ,

∥ f ∗(x)− p∗(x)∥ ≤ Õ
(√

KN−1M|Z |−1δ−1
)
+ Õ

(
M|Z |−1)+ Õ(LX δ̃

−0.5
ν)+ Õ(LΓ). (2.7)

2.4 SoTeacher

Based on our theoretical findings, we investigate practical techniques for training the

teacher model to more accurately approximate the true label distribution of the training data.

Lipschitz regularization. Theorem 3 suggests that it is necessary to enforce the feature ex-

tractor to be Lipschitz continuous. This may also be achieved by current teacher training practice,

as neural networks are often implicitly Lipschitz bounded (Bartlett et al., 2017). Nevertheless,

we observe that explicit Lipschitz regularization (LR) can still help in multiple experiments (See

Sect. 3.4). Therefore, we propose to incorporate a global Lipschitz constraint into teacher’s

training. For the implementation details, we follow the existing practice of Lipschitz regulariza-

tion (Yoshida & Miyato, 2017; Miyato et al., 2018) and defer them to Appendix B.3.

Consistency regularization. Theorem 3 also shows that to learn the true label distribution, it

is necessary to ensure the feature extractor is robust to feature transformations. This is aligned

with the standard practice which employs data augmentation as regularization. However, when

data is scarce, it is better to explicitly enforce the model to be robust to transformations. This is
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known as consistency regularization (CR) (Laine & Aila, 2017; Xie et al., 2020; Berthelot et al.,

2019; Sohn et al., 2020) that is widely used in semi-supervised learning.

Considering the training efficiency of consistency regularization, we utilize temporal

ensembling (Laine & Aila, 2017), which penalizes the difference between the current prediction

and the aggregation of previous predictions for each training input. In this way, the consistency

under data augmentation is implicitly regularized since the augmentation is randomly sampled in

each epoch. And it is also efficient as no extra model evaluation is required for an input.

To scale the consistency loss, a loss weight is often adjusted based on a Gaussian ramp-

up curve in previous works (Laine & Aila, 2017). However, the specific parameterization of

such a Gaussian curve varies greatly across different implementations, where more than one

additional hyperparameters have to be set up and tuned heuristically. Here to avoid tedious

hyperparameter tuning we simply linearly interpolate the weight from 0 to its maximum value,

namely λCR(t) = t
T λ max

CR , where T is the total number of epochs.

Summary. To recap, our teacher training method introduces two additional regularization

terms. The loss function can thus be defined as ℓ= ℓStand. +λLRℓLR +λCRℓCR, where ℓStand. is

the standard empirical risk defined in Eq.(2.1) and λLR is the weight for Lipschitz regulariza-

tion. Our method is simple to implement and incurs only minimal computation overhead (see

Section 2.5.2).

2.5 Experiments

In this section, we evaluate the effectiveness of our teacher training method in knowledge

distillation. We focus on compressing a large network to a smaller one where the student is

trained on the same data set as the teacher.

2.5.1 Experiment setup

We denote our method as student-oriented teacher training (DecoupledOptim), since it

aims to learn the true label distribution to improve student performance, rather than to max-
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imize teacher performance. We compare our method with the standard practice for teacher

training in knowledge distillation (Standard) (i.e., Eq. (2.1)). We conduct experiments on

benchmark datasets including CIFAR-100 (Krizhevsky, 2009), Tiny-ImageNet (Tin, 2017),

and ImageNet (Deng et al., 2009). We experiment with various backbone networks including

ResNet (He et al., 2016), Wide ResNet (Zagoruyko & Komodakis, 2016) and ShuffleNet (Zhang

et al., 2018b; Tan et al., 2019). We test the applicability of DecoupledOptimfrom different

aspects of model compression in knowledge distillation including reduction of the width or depth,

and distillation between heterogeneous neural architectures.

For knowledge distillation algorithms, we experiment with the original knowledge distil-

lation method (KD) (Hinton et al., 2015), and a wide variety of other sophisticated knowledge

distillation algorithms (see Sect. 2.5.2). We report the classification accuracies on the test set

of both teacher and the student distilled from it. All results except ImageNet are presented

with mean and standard deviation based on 3 independent runs. For Tiny-ImageNet, we also

report the top-5 accuracy. For hyperparameters, we set λ max
CR = 1 for both datasets, λLR = 10−5

for CIFAR-100 and λLR = 10−6 for Tiny-ImageNet/ImageNet. More detailed hyperparameter

settings for neural network training and knowledge distillation can be found in Appendix B.4.

Table 2.1. Test accuracy of the teacher and student with knowledge distillation conducted
on CIFAR-100. DecoupledOptimachieves better student accuracy than Standard for various
architectures, depsite a lower teacher accuracy.

WRN40-2/WRN40-1 WRN40-2/WRN16-2 ResNet32x4/ShuffleNetV2

Student Teacher Student Teacher Student Teacher

Standard 73.73±0.13 76.38±0.13 74.87±0.45 76.38±0.13 74.86±0.18 79.22±0.03
DecoupledOptim 777444...333555±0.23 74.95±0.28 777555...333999±0.23 74.95±0.28 777777...222444±0.09 78.49±0.09

no-CR 74.34±0.11 74.30±0.12 75.20±0.24 74.30±0.12 76.52±0.52 77.73±0.17
no-LR 73.81±0.15 76.71±0.16 75.21±0.13 76.71±0.16 76.23±0.18 80.01±0.18

2.5.2 Results

End-to-end Knowledge Distillation Performance. Tables 2.1 and 2.2 show the evaluation

results on CIFAR-100 and Tiny-ImageNet/ImageNet, respectively. Our teacher training method
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Table 2.2. Test accuracy of the teacher and student with knowledge distillation conducted on
Tiny-ImageNet and ImageNet. The student network is ResNet18, while the teacher network is
ResNet34 for Tiny-ImageNet and ResNet152 for ImageNet. Due to computation constraints, we
are not able to perform ablation experiments on ImageNet.

Tiny-ImageNet ImageNet

Student (Top-1) Student (Top-5) Teacher (Top-1) Teacher (Top-5) Student (Top-1) Teacher (Top-1)

Standard 66.19±0.17 85.74±0.21 64.94±0.32 84.33±0.40 71.30 77.87
DecoupledOptim 666666...888333±0.20 86.19±0.22 64.88±0.48 84.91±0.41 71.45 77.11

no-CR 66.39±0.27 86.05±0.17 64.36±0.43 84.10±0.27 - -
no-LR 66.48±0.43 888666...222000±0.40 64.26±1.54 84.48±0.84 - -

DecoupledOptim can improve the student’s test accuracy consistently across different datasets

and teacher/student architecture pairs. Note that the success of our teacher training method is

not due to the high accuracy of the teacher. In Tables 2.1 and 2.2, one may already notice that

our regularization method will hurt the accuracy of the teacher, despite that it can improve the

accuracy of the student distilled from it.

On ImageNet particularly, the gain in student’s accuracy by DecoupledOptim is minor,

potentially because the large size of the dataset can already facilitate the learning of true label

distribution as suggested by our theory. Nevertheless, one may observe that the teacher’s

accuracy is significantly lower when using DecoupledOptim, which implicitly suggests our

teacher regularization method is tailored towards the student’s accuracy.

Table 2.3. Estimation of the uncertainty quality of the teacher network trained by Standard and
DecoupledOptim. The uncertainty quality is estimated by the ECE and NLL both before and
after temperature scaling (TS).

Dataset Teacher Method ECE NLL ECE (w/ TS) NLL (w/ TS)

CIFAR-100 WRN40-2
Standard 0.113±0.003 1.047±0.007 0.028±0.004 0.905±0.008

DecoupledOptim 0.057±0.002 0.911±0.013 0.016±0.003 0.876±0.012

CIFAR-100 ResNet32x4
Standard 0.083±0.003 0.871±0.010 0.036±0.001 0.815±0.008

DecoupledOptim 0.037±0.001 0.777±0.006 0.021±0.001 0.764±0.003

Tiny-ImageNet ResNet34
Standard 0.107±0.007 1.601±0.037 0.043±0.002 1.574±0.015

DecoupledOptim 0.070±0.007 1.496±0.031 0.028±0.002 1.505±0.033

Ablation Study. We toggle off the Lipschitz regularization (LR) or consistency regularization

(CR) in DecoupledOptim(denoted as no-LR and no-CR, respectively) to explore their individual
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effects. As shown in Tables 2.1 and 2.2, LR and CR can both improve the performance

individually. But on average, DecoupledOptimachieves the best performance when combining

both LR and CR, as also demonstrated in our theoretical analyses. Note that in Table 2.2, using

Lipschitz regularization is not particularly effective because the regularization weight might not

be properly tuned (see Figure 2.2).

Quality of True Distribution Approximation. To further interpret the success of our teacher

training method, we show that our regularization can indeed improve the approximation of

the true label distribution thus benefiting the student generalization. Directly measuring the

quality of the true distribution approximation is infeasible as the true distribution is unknown

for realistic datasets. Follow previous works (Menon et al., 2021), we instead estimate the

approximation quality by reporting the Expected Calibration Error (ECE) (Guo et al., 2017a)

and NLL loss of the teacher on a holdout set with one-hot labels. Since scaling the teacher

predictions in knowledge distillation can improve the uncertainty quality (Menon et al., 2021),

we also report ECE and NLL after temperature scaling, where the optimal temperature is located

on an additional holdout set (Guo et al., 2017a). As shown in Table 2.3, our teacher training

method can consistently improve the approximation quality for different datasets and teacher

architectures.

Effect of Hyperparameters. We conduct additional experiments on Tiny-ImageNet as an

example to study the effect of two regularization terms introduced by our teacher training method.

For Lipschitz regularization, we modulate the regularization weight λLR. For consistency

regularization, we try different maximum regularization weights λ max
CR and different weight

schedulers including linear, cosine, cyclic, and piecewise curves. Detailed descriptions of these

schedulers can be found in Appendix B.4. As shown in Figure 2.2, both Lipschitz and consistency

regularizations can benefit the teacher training in terms of the student generalization consistently

for different hyperparameter settings. This demonstrates that our regularizations are not sensitive

to hyperparameter selection. Note that the hyperparameter chosen to report the results in

Tables 2.1 and 2.2 might not be optimal since we didn’t perform extensive hyperparameter search
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in fear of overfitting small datasets. It is thus possible to further boost the performance by careful

hyperparameter tuning.

In particular, Figure 2.2(a) shows that, as Lipschitz regularization becomes stronger, the

teacher accuracy constantly decreases while the student accuracy increases and converges. This

demonstrates that excessively strong Lipschitz regularization hurts the performance of neural

network training, but it can help student generalization in the knowledge distillation context.
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Figure 2.2. Effect of varying the hyperparameters in our teacher training method, including the
weight for Lipschitz regularization λLR, the weight for consistency regularization λCR, and its
scheduler. The settings of our method used to report the results (e.g. Table 2.2) are denoted as
“▲”. The standard teacher training practice is denoted as “■” for comparison.

Other Knowledge Distillation Algorithms. Besides the original knowledge distillation

algorithm, we experiment with various feature distillation algorithms including FitNets (Romero

et al., 2015), AT (Zagoruyko & Komodakis, 2017), SP (Tung & Mori, 2019), CC (Peng et al.,

2019), VID (Ahn et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018), AB (Heo

et al., 2019), FT (Kim et al., 2018), NST (Huang & Wang, 2017), CRD (Tian et al., 2020)

and SSKD (Xu et al., 2020a). For the implementation of these algorithms, we refer to existing

repositories for knowledge distillation (Tian et al., 2020; Shah et al., 2020; Matsubara, 2021) and

author-provided codes. Although these distillation algorithms match all types of features instead

of predictions between teacher and student, they will achieve the best distillation performance

when combined with the prediction distillation (i.e. original KD). Therefore, our teacher training

method should still benefit the effectiveness of these distillation algorithms. We also experiment

with a curriculum distillation algorithm RCO (Jin et al., 2019) which distills from multiple
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checkpoints in teacher’s training trajectory. Our teacher training method should also benefit

RCO as the later teacher checkpoints become more student-oriented. As shown in Table B.2, our

DecoupledOptimcan boost the distillation performance of almost all these distillation algorithms,

demonstrating its wide applicability.

Student fidelity. Recent works have underlined the importance of student fidelity in knowl-

edge distillation, namely the ability of the student to match teacher predictions (Stanton et al.,

2021). Student fidelity can be viewed as a measure of knowledge distillation effectiveness

that is orthogonal to student generalization, as the student is often unable to match the teacher

predictions although its accuracy on unseen data improves (Furlanello et al., 2018; Mobahi et al.,

2020). Here we measure the student fidelity by the average agreement between the student

and teacher’s top-1 predicted labels on the test set. As shown in Table 2.4, our teacher training

method can consistently and significantly improve the student fidelity for different datasets and

teacher-student pairs, which aligns with the improvement of student generalization shown by

Table 2.1 and 2.2. This demonstrates that the teacher can better transfer its “knowledge” to the

student with our training method.

Table 2.4. Average agreement (%) between the student and teacher’s top-1 predictions on the
test set.

CIFAR-100 Tiny-ImageNet

WRN-40-2/WRN-40-1 WRN-40-2/WRN-16-2 ResNet32x4/ShuffleNetV2 ResNet34/ResNet18

Standard 76.16±0.14 76.92±0.29 76.63±0.25 71.33±0.07
DecoupledOptim 77.92±0.27 79.41±0.11 80.36±0.13 73.36±0.25

2.6 Related Work

Understand knowledge distillation. There exist multiple perspectives in understanding the

effectiveness of knowledge distillation. Besides the statistical perspective which views the soft

prediction of the teacher as an approximation of the true label distribution (Menon et al., 2021;

Dao et al., 2021), another line of work understands knowledge distillation from a regularization
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perspective, which views the teacher’s soft predictions as instance-wise label smoothing (Yuan

et al., 2020; Zhang & Sabuncu, 2020; Tang et al., 2020). More recently, (Allen-Zhu & Li, 2020)

understands knowledge distillation from a feature learning perspective by focusing on the data

that possesses a “multi-view” structure, that multiple features co-exist in the input and can be

used to make the correct classification. Knowledge distillation is effective because the teacher

can learn different features and transfer them to the student. Our theory is built on a similar

assumption on the data structure, albeit we require the teacher to learn the true label distribution

of the feature. Our theory thus can also be viewed as a bridge between the statistical perspective

and feature learning perspective.

Alleviate “teacher overfitting”. Since in knowledge distillation, the distillation data is

often reused from the teacher’s training data, a teacher trained toward convergence is very likely

to overfit its soft predictions on the distillation data. Intuitively, it is possible to tackle this

problem by early stopping the teacher training (Cho & Hariharan, 2019). However, a meticulous

hyperparameter search may be required since the epoch number to find the best checkpoint is

often sensitive to the specific training setting such as the learning rate schedule. It is also possible

to save multiple early teacher checkpoints for the student to be distilled from sequentially (Jin

et al., 2019). Additionally, one can utilize a “cross-fitting” procedure to prevent the teacher

from memorizing the training data. Namely, the training data is first partitioned into several

folds, where the teacher predictions on each fold are generated by the teacher trained only

on out-of-fold data (Dao et al., 2021). One can also train the teacher network jointly with

student’s network blocks, which imposes a regularization toward the student performance (Park

et al., 2021). Different from these attempts, we train the teacher to directly learn the true label

distribution of its training data, leading to a simple and practical student-oriented teacher training

framework with minimum computation overhead.
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2.7 Summary

In this chapter, we rigorously studied the feasibility to learn the true label distribution

of the training data under a standard empirical risk minimization framework. We also explore

possible improvements of current teacher training that facilitate such learning. In the future,

we plan to adapt our theory to other knowledge distillation scenarios such as transfer learning

and mixture of experts, and explore more effective student-oriented teacher network training

methods.

This chapter incorporates material from the publication “Toward Student-oriented Teacher

Network Training for Knowledge Distillation” by Chengyu Dong, Liyuan Liu, and Jingbo Shang,

published in The Twelfth International Conference on Learning Representations (ICLR 2024).

The dissertation author was the primary investigator and lead author of this paper.
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Chapter 3

Rule-Generated Data

The previous chapters explored how model-generated data can enhance training through

both adversarial and supportive approaches. While these methods demonstrate significant

potential, they still require high-quality labeled data to train the auxiliary models that generate the

training signals. In many real-world scenarios, obtaining such labeled data can be prohibitively

expensive or time-consuming, especially for specialized domains or new tasks.

An alternative approach to scaling up training data without extensive human annotation is

to leverage rule-generated data. Instead of using models to generate training signals, this approach

employs human-designed rules or heuristics to automatically annotate data. For instance, in

text classification, domain experts can specify keywords or patterns that are indicative of certain

categories. These rules can then be applied to large amounts of unlabeled text to create training

data efficiently.

However, rule-generated data presents its own unique challenges. Unlike model-generated

data, where the auxiliary models can potentially learn complex patterns from the training data,

rule-based annotation typically relies on simple, explicit patterns. This simplicity, while making

the rules easy to design and apply, can lead to strong biases in the generated training data. Models

trained on such data may overly rely on these simple patterns rather than learning more robust

and generalizable features.

In this chapter, we focus on one of the most widely used approaches for generating
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rule-based training data for text classification: seed-based weak supervision. While this method

is appealingly simple - using keyword matching to automatically label texts - its effectiveness

has been historically limited by the biases introduced during the labeling process. We demon-

strate that by carefully considering and addressing these biases during model training, we can

significantly improve the utility of rule-generated training data.

3.1 Introduction to Debiasing Made State-of-the-art: Revis-
iting the Simple Seed-based Weak Supervision for Text
Classification

Recently, weakly supervised text classification, because of its light requirement of human

effort, has been extensively studied (Mekala & Shang, 2020; Wang et al., 2021; Zhao et al.,

2022; Meng et al., 2020; Zhang et al., 2021; Meng et al., 2018; Tao et al., 2015; Park & Lee,

2022). Specifically, it requires only high-level human guidance to label the text, such as a few

rules provided by human experts that match the text with the labels. These labels, which are

not necessarily correct and are thus often dubbed as pseudo-labels, are then employed to train

the text classifier following a standard fully supervised or semi-supervised training framework.

State-of-the-art methods mostly focus on designing sophisticated human guidance to obtain high-

quality labels, through contextualized weak supervision (Mekala & Shang, 2020), prompting

language models (Meng et al., 2020; Zhao et al., 2022), clustering for soft matching (Wang

et al., 2021), and complicated interactions between seeds (Zhang et al., 2021).

In this paper, we revisit the seed matching-based weak supervision (denoted as Vanilla)

(Mekala & Shang, 2020; Meng et al., 2018; Tao et al., 2015), which is arguably the simplest

way to generate pseudo-labels, and show that its power was greatly underestimated. Specifically,

this simple method matches input text with a label if the user-provided seed words of this label

are contained in the input text. For example, in sentiment analysis, a document will be labeled

as “positive” if it contains the word “happy”. A text classifier is then trained based on all these

pseudo-labels.
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Figure 3.1. Noise rate in the subset of pseudo-labels selected based on the confidence score of
a classifier trained on the pseudo-labeled data. We show the noise rates at multiple selection
ratios. (“Vanilla”): the classifier is trained on the original pseudo-labeled data given by seed
matching. (“Random Flipping Noise”): the classifier is trained on noisy pseudo-labeled data
synthesized using the ground-truth labels, where the data examples, the overall noise rate, noise
rate in each class, and the noise transition rate between any two classes are identical to the label
noise induced by seed matching. (“Seed Deletion”): The classifier is trained on pseudo-labeled
data where the seeds are deleted from the text. (Random Deletion): The classifier is trained on
pseudo-labeled data where the words in the text are randomly deleted.

One can expect a non-trivial number of errors in the seed matching-based pseudo-labels.

In an ideal case, if we can select only those correct pseudo-labels for training, the accuracy of the

text classifier can be significantly boosted. For example, on the 20 Newsgroups dataset, ideally

with only those correct pseudo-labels one can get an accuracy of 90.6%, compared to 80.1%

obtained on all pseudo-labels (see more in Section 3.4). In practice, to select those correct labels,

a common way is to use the confidence score of a classifier trained on pseudo-labels (Rizve

et al., 2021). However, those high-confidence pseudo-labels may not be correct in the weakly-

supervised setting, likely because the classifier may fail to learn reliable confidence on these

noisy pseudo-labels (Mekala et al., 2022).

In this paper, we take a deep dive into this problem and find that, surprisingly, the high

noise rate among the pseudo-labels is often not an obstacle to learning reliable confidence at all.

In fact, on a set of synthesized pseudo-labels where the noise rate is exactly the same as those

given by seed matching, but the noisy labels are generated by randomly flipping true labels into
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other classes, the confidence learned by a classifier can genuinely reflect the correct labels, as

shown in Figure 3.1.

Therefore, we argue that the poor confidence learned on realistic pseudo-labels is largely

attributed to the strong but likely erroneous correlation between the text and pseudo-label injected

by the seed-matching rule, which we refer to as label bias. Such a bias can be easily learned by

the text classifier upon training, thus yielding spuriously high confidence on any text matching

the seed word and ruining the pseudo-label selection.

To defend against such a label bias, we propose to simply delete the seed words present

in the text upon training a classifier on the pseudo-labeled data, which effectively prevents the

classifier from learning the biased correlation between seeds and the corresponding pseudo-

labels. As shown in Figure 3.1, such a simple seed deletion method can significantly improve

the confidence score of the trained classifier and thus help select pseudo-labels with fewer label

errors at every selection ratio. Empirical results verify that these less noisy pseudo-labels can

indeed improve the classification accuracy significantly, making seed matching-based weak

supervision on par with or sometimes even better than the state-of-the-art.

We further investigate the scenario where the seed words are not made known. We

propose to delete every word token in the input text randomly and independently. This simple

random deletion method can improve confidence learning even more as shown in Figure 3.1.

Our theoretical analysis also shows that this random deletion method can mitigate the label bias

with a high probability and therefore recover the seed deletion in effect. It is worth noting that

both of these methods introduce no additional hyperparameters.

In summary, our contributions are as follows.

• We revisit the seed matching-based weak supervision and find that its effectiveness is mainly

limited by the label bias injected by the seed-matching rule.

• We show that simply deleting seed words from the pseudo-labeled texts can significantly

alleviate the label bias and improve the confidence estimation for pseudo-label selection, as

well as end-to-end classification accuracy achieved by seed matching, on par with or even
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better than the state-of-the-art.

• We further propose the random deletion method to handle the case when the seed words are

unknown and demonstrate its effectiveness both empirically and theoretically.

3.2 Preliminaries and Related Work

Seed matching as simple weak supervision. Seed matching (Meng et al., 2018) is probably

one of the simplest weak supervision. Specifically, for each label class, a user provides a set

of seed words that are indicative of it. A given document is annotated as the label class whose

seed words appear in the document, or annotated as the label class whose seed words appear

most frequently if multiple such label classes exist. Sophisticated weak supervisions have also

been proposed to generate pseudo-labels with better quality, such as meta data (Mekala et al.,

2020), context (Mekala & Shang, 2020), sentence representation (Wang et al., 2021), predictions

of masked language models (Meng et al., 2020) and keyword-graph predictions (Zhang et al.,

2021).

Confidence learning matters for pseudo-label selection. Since label errors prevail in the

pseudo-labels generated by weak supervision, it is often necessary to select the pseudo-labels

before incorporating them into training (Wang et al., 2021; Mekala et al., 2022). A common

method to select those pseudo-labels is to use the model confidence, namely the probability

score associated with a deep classifier’s prediction, to determine whether a given pseudo-label is

correct or not (Guo et al., 2017b). However, such confidence often cannot genuinely reflect the

correctness of the pseudo-label generated by weak supervision, in that pseudo-labels with high

confidence are not necessarily correct (Mekala et al., 2022)

Backdoor attack and defense. A problem related to seed matching is the backdoor attack for

text classification based on trigger words (Dai et al., 2019; Kurita et al., 2020; Chen et al., 2021).

Such attacks corrupt a dataset by inserting a particular word (i.e., trigger) into several documents

and change their corresponding labels as ones specified by the attacker. A model fine-tuned
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on such a dataset will predict the label specified by the attacker whenever a document contains

the trigger word. This is largely because the model would overfit the malicious correlation

between the trigger word and the specified label, which is similar to the problem when learning

pseudo-labels generated by seed matching. Therefore, trigger-based backdoor attacks may be

defended by the methods proposed in this work as well, especially random deletion since the

attacker will not reveal the trigger word.

3.3 Method

3.3.1 Seed deletion

We describe the details of seed deletion. Specifically, we denote an input document

composed of a set of words as x = {t1, t2, · · · , tn} and its pseudo-label given by seed matching

as ỹ. We denote the set of seed words from class y as Sy. Now for each document in the

pseudo-labeled dataset, we generate a corrupted document x̂ by deleting any seed word in x that

is associated with its pseudo-label, namely x̂ = {t|t ∈ x, t /∈ Sỹ}. We then train a classifier θ̂ on

the corrupted dataset D̂ = {(x̂, ỹ)} and use its confidence score at the pseudo-label P
θ̂
(ỹ|x) as an

uncertainty measure to select the correct pseudo-labels.

Note that when generating the uncertainty measure on a (document, pseudo-label) pair,

one can either evaluate the classifier on the original document or the corrupted document.

Empirically we found that evaluating the classifier on the original document would produce a

minor gain.

3.3.2 Random deletion

In real-world applications, the seed words provided by the user may not always be acces-

sible due to privacy concerns or simply because they are lost when processing and integrating the

data. We show that it is still feasible to perform seed deletion in a probabilistic manner without

knowing seed words, while remaining effective for confidence-based pseudo-label selection.
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To achieve this, in fact, we only have to delete the words randomly and independently in

a given document. Specifically, give a deletion ratio p, for every document x = {t1, t2, · · · , tn},

we randomly sampled a few positions M = {i1, i2, · · · , i⌈pn⌉}, where ⌈·⌉ denotes the ceiling of a

number. We then generate a corrupted document by deleting words at those positions, namely

x̂ = {ti|i ∈ {1,2, · · · ,n}, i /∈ M }. Now on the corrupted dataset D = {(x̂, ỹ)}, we can train a

classifier θ̂ and utilize its confidence score P
θ̂
(ỹ|x) for pseudo-label selection, similar to seed

deletion.

Random deletion as a probabilistic seed deletion. Despite its simplicity, we show with high

probability, random deletion can mitigate the label bias induced by seed matching. The intuition

here is that since the document only contains one or a few seed words, by random deletion it is

very likely we can delete all seed words while retaining at least some other words that can still

help learning.

Specifically, we consider a particular type of corrupted document x̂ that contains no seed

word, i.e., x̂∩Sỹ = /0, but contains at least one word that is indicative of the true class, i.e.,

x̂∩Cy ̸= /0, where Cy denotes the set of words that are indicative of the class y. Since such a

document no longer contains the seed word, its pseudo-label is not spuriously correlated with

the text. At the same time, it contains class-indicative words that can help the classifier learn

meaningful features.

We then investigate the probability that a document becomes such a particular type after

random deletion. We term such probability as the seed-deletion rate rSD, which is defined as

rSD := P(1(x̂∩Sỹ = /0, x̂∩Cy ̸= /0)), (3.1)

where 1(·) is the indicator function. In an ideal case where rSD = 1, we can completely recover

the effect of seed deletion on eliminating label bias.
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Now since each word in the document is independently deleted, we have

rSD = pns · (1− pnc), (3.2)

where ns := |Sỹ| denotes the number of seed words in the document and nc := |Cỹ| denotes

the number of words in the document that are indicative of the class. One may find that when

nc ≫ ns, rSD can be quite close to 1 as long as p is large.

Estimate the best deletion ratio. We estimate the best deletion ratio for random deletion

based on some reasonable assumptions. First, it is easy to see that based on Eq. (3.2), the optimal

deletion ratio is

p∗ =
(

ns

ns +nc

) 1
nc
, (3.3)

which depends on both the number of seed words ns and the number of class-indicative words nc

in the document. For ns, we can simply set it as 1 since the pseudo-label of a document is usually

determined by one or two seed words. For nc, we assume that all words in a document are

indicative of the true class, except stop words and punctuation. These estimations are acceptable

as p∗ is almost always close to 1 and is quite robust to the change of ns and nc as long as nc is

large (See Figure 3.2). This condition is likely to be true for realistic datasets (See Table 3.1).

Note that for simplicity, we set one single deletion ratio for a specific dataset. Thus we set nc as

the median number of class-indicative words over all documents in a dataset.

3.4 Experiments

3.4.1 Experiment setup

We evaluate the performance of seed word matching equipped with seed deletion or

random deletion on text classification.

Datasets. We report the text classification performance on the following datasets, including

New York Times (NYT), 20 Newsgroups (20News), AGNews (Zhang et al., 2015), Rotten
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Figure 3.2. The optimal deletion ratio p∗ for random deletion with respect to the number of seed
words ns and the number of class-indicative words nc based on Eq. (3.3).

Table 3.1. Statistics of the dataset and the corresponding pseudo-labels given by seed matching.
For sequence length, we report the median across all pseudo-labeled documents to reduce the
impact of outliers, along with the median absolute deviation in the bracket.

Dataset # Docs # Labels # Pseudo-labeled
Docs

Pseudo-label
Noise Rate (%)

Sequence Length
(Pseudo-labeled Docs)

nc (Estimated)
(Pseudo-labeled Docs)

AGNews 120,000 4 32,359 16.26 39(6) 27(4)
20News-Coarse 17,871 5 7,671 12.50 286(136) 140(65)

NYT-Coarse 13,081 5 9,460 11.47 922(222) 462(105)
20News-Fine 17,871 17 10,455 25.67 257(120) 129(58)

NYT-Fine 13,081 26 8,229 31.80 940(214) 467(100)
Rotten-Tomatoes 10,662 2 990 28.38 26(8) 13(4)

Table 3.2. Classification performance achieved by vanilla seed matching and seed matching
equipped with various pseudo-label selection methods. † indicates methods that are not fair
comparison and are listed only for reference. We conduct each experiment for 5 times, report
the average, and denote the standard deviation in the bracket. We report both Macro-F1 and
Micro-F1 for classification accuracy.

AGNews 20News-Coarse NYT-Coarse 20News-Fine NYT-Fine Rotten-Tomatoes

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Oracle† 86.3(0.3) 86.2(0.3) 90.6(0.4) 90.6(0.4) 97.0(0.2) 93.9(0.4) 81.1(0.2) 81.1(0.3) 96.5(0.1) 92.0(0.4) 79.6(1.0) 79.6(1.0)

Vanilla 83.9(0.6) 83.9(0.6) 80.5(0.6) 80.1(0.6) 87.8(0.2) 78.4(0.4) 68.2(0.6) 69.0(0.7) 73.0(0.7) 68.7(0.8) 71.4(1.2) 71.3(1.2)
Standard Confidence 82.2(2.1) 82.0(2.1) 78.9(1.8) 80.0(1.5) 88.3(4.1) 79.1(2.8) 64.4(2.2) 66.6(1.8) 45.8(0.5) 58.6(0.3) 72.2(2.4) 72.0(2.4)

O2U-Net 79.8(0.5) 79.8(0.5) 80.9(0.3) 78.5(0.2) 92.9(0.4) 85.9(0.7) 71.1(0.4) 71.2(0.8) 14.7(10.2) 8.70(7.3) 74.1(1.4) 74.0(1.4)
LOPS 79.5(0.9) 79.5(0.6) 81.7(1.0) 80.7(0.4) 94.6(0.4) 88.4(0.5) 73.8(0.6) 72.7(1.0) 84.3(0.5) 81.6(0.3) 70.4(0.4) 70.4(0.4)

Seed-Deletion 84.3(0.7) 84.2(0.7) 86.4(0.9) 86.1(0.8) 92.4(1.3) 85.0(2.0) 73.7(0.7) 75.0(0.5) 81.7(1.5) 79.4(1.1) 70.4(1.3) 70.3(1.3)
Random-Deletion 86.2(0.5) 86.1(0.5) 84.4(0.9) 84.8(0.8) 91.7(1.3) 83.3(1.8) 76.3(0.8) 76.8(0.7) 84.6(1.4) 79.6(1.1) 73.6(4.3) 73.4(4.5)

Paraphrase† 85.4(0.3) 85.4(0.3) 86.9(1.2) 86.7(1.2) 94.0(0.8) 88.5(0.7) 75.6(0.6) 76.8(0.5) 76.1(4.0) 74.8(2.4) 75.4(0.1) 75.3(0.1)
MLM-Replace† 85.8(0.1) 85.8(0.1) 87.4(0.1) 87.5(0.2) 94.5(0.1) 88.9(0.2) 73.6(1.0) 74.8(0.8) 84.1(0.6) 80.0(0.4) 76.7(1.5) 76.7(1.5)
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tomatoes (Pang & Lee, 2005), as well as NYT and 20News datasets with their fine-grained labels

respectively. We select these datasets as they cover diverse data properties in text classification,

such as topic classification and sentiment analysis, long and short input documents, coarse-

grained and fine-grained labels, and balanced and imbalanced label distributions.

For seed word matching, we consider the seed words used in (Mekala & Shang, 2020;

Wang et al., 2021). Table 3.1 shows the statistics of these datasets and the corresponding

pseudo-labels given by seed matching.

Training setting. We adhere to the following experiment settings for all methods unless

otherwise specified. We utilize BERT (bert-base-uncased) (Devlin et al., 2019b) as the text

classifier since we found that BERT can produce reliable confidence estimates with our methods

in our experiments.

For pseudo-label selection, we select 50% of the high-quality pseudo-labels for all

methods and datasets. For random deletion specifically, we set the deletion ratio following the

estimation in Section 3.3.2. The estimated best deletion ratio of each dataset can be found in

Figure 3.3.

Finally, we employ the standard self-training protocol to utilize both the documents

labeled by weak supervision and additional documents that are not labeled. Note that if we

selected a subset of pseudo-labels before self-training, those pseudo-labeled documents that

were not selected will be merged into unlabeled documents. For the self-training process

specifically, we train a text classifier on the labeled documents and generate predictions on

unlabeled documents. The top τ fraction of predictions with the highest confidence are then

treated as new pseudo-labels and will be merged with the existing pseudo-labels for another

training. In our experiments, we conduct this self-training process for 5 iterations.

Note that one can use BERT to select high-quality pseudo-labels alone following our

methods while employing advanced text classifiers for subsequent self-training, which may

further improve the performance.

Comparative methods. We compare our proposed method with the following baselines.
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• Vanilla: Self-training on all the pseudo-labeled provided by seed matching, without pseudo-

label selection.

• Standard confidence: Train a classifier on all the pseudo-labeled documents and use its

confidence score to select a subset of high-quality pseudo-labels.

• O2U-Net (Huang et al., 2019): Train a classifier on all the pseudo-labeled documents and use

the normalized loss of each document throughout the training as a metric to select pseudo-

labels.

• LOPS (Mekala et al., 2022): Train a classifier on all the pseudo-labeled documents and use

the learning order cached during training to select pseudo-labels. We follow the setting

recommended in their paper and set τ = 50%.

• Oracle∗: Based on the true labels, we select only those correct pseudo-labels for self-training.

Note that this is not a realistic method and is used only for comparison.

Whenever it is necessary to train a classifier to obtain the confidence, we train for 4 epochs, in

line with the setting in LOPS.

3.4.2 Main results

Seed-based weak supervision. We present the classification performance achieved by

different methods in Table 3.2. One may find that seed deletion and random deletion can

significantly boost the performance of seed matching-based weakly-supervised classification. On

some datasets (e.g., AGNews), random deletion can approach the oracle selection with almost

no gap. This demonstrates the performance of the simple seed matching-based weak supervision

is greatly underestimated.

Seed deletion and random deletion are also on par with or significantly better than other

pseudo-label selection methods including those using sophisticated confidence measures such

as the normalized loss in O2U-Net and the learning order in LOPS. In fact, seed deletion and

random deletion are still using the standard confidence score of a classifier to select pseudo-labels,

albeit they first corrupt the pseudo-labeled documents for training the classifier. Nevertheless,
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the performance improvement compared to the standard confidence score is huge. For example,

the improvement on NYT-Fine is as large as ∼ 20% in terms of Macro-F1 and ∼ 40% in

terms of Micro-F1. This demonstrates that confidence-based pseudo-label selection is greatly

underestimated.

Table 3.3. Classification performance of text classification using a variety of weak supervisions.
Results on sophisticated weak supervisions are cited from the corresponding paper. † indicates
that result is reported as accuracy instead of F1-score in the original paper, while we still include
it here since the dataset is class-balanced. We neglect Rotten-Tomatoes here since it is not
reported in most of the listed papers.

AGNews 20News-Coarse NYT-Coarse 20News-Fine NYT-Fine

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

ConWea 73.4 73.4 74.3 74.6 93.1 87.2 68.7 68.7 87.4 77.4
X-Class 82.4 82.3 58.2 61.1 96.3 93.3 70.4 70.4 86.6 74.7

LOTClass 84.9 84.7 47.0 35.0 70.1 30.3 12.3 10.6 5.3 4.1
ClassKG 88.8† - 80 75 96 83 78 77 92 80

LIME 87.2 87.2 79.7 79.6 - - - - - -

Seed Deletion 84.3 84.2 86.4 86.1 92.4 85.0 73.7 75.0 81.7 79.4
Random Deletion 86.2 86.1 84.4 84.8 91.7 83.3 76.3 76.8 84.6 79.6

Compare with sophisticated weak supervision. In Table 3.3, we compare the performance

of seed word matching equipped with seed word deletion or random deletion with those methods

using sophisticated weak supervision sources, listed as follows.

• ConWea (Mekala & Shang, 2020) uses pre-trained language models to contextualize the weak

supervision in an iterative manner.

• X-Class (Wang et al., 2021) learns class-oriented document representations based on the label

surface names. These document representations are aligned to the classes to obtain pseudo

labels.

• LOTClass (Meng et al., 2020) obtains synonyms for the class names using pretrained language

models and constructs a category vocabulary for each class, which is then used to pseudo-label

the documents via string matching.

• ClassKG (Zhang et al., 2021) constructs a keyword graph to discover the correlation between

keywords. Pseudo-labeling a document would be translated into annotating the subgraph that
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represents the document.

• LIME (Park & Lee, 2022) combines seed matching with an entailment model to better pseudo-

label documents and refine the final model via self-training.

For each method, we report the results obtained directly from the corresponding paper. If the

results on some datasets are not reported in the original paper, we cite the results in follow-up

papers if there are any. We found that with seed deletion or random deletion, seed word matching

can be almost as good as or even better than those sophisticated weak supervisions. We thus

believe seed word matching can be a competitive baseline and should be considered when

developing more complicated weak supervisions.

Alternative seed-agnostic debiasing methods. We explore alternative methods to delete

the seed words and mitigate the label bias in seed matching-based weak supervision, without

knowing the seed words. We consider the following alternatives.

• MLM-replace: We randomly mask a subset of words in the document and use BERT to predict

the masked words. The document is then corrupted by replacing the masked words with the

predictions. This follows the idea of random deletion to delete the seed words probabilistically.

Such a method is widely used in other applications (Gao et al., 2021; Clark et al., 2020).

• Paraphrase: We generate the paraphrase of a document using the T5 model (Raffel et al., 2019)

fine-tuned on a paraphrase dataset APWS (Zhang et al., 2019). We use the publicly available

implementation at (Duerr, 2021). This is a straightforward method to delete the seed words.

Since these alternative methods only serve as a reference for our main methods, we search

their best hyperparameter, namely the mask ratio for MLM-replace and the token-generation

temperature for paraphrase respectively. As shown in Table 3.2, these alternative methods can

work as well as or better than random deletion. However, in practice, we would prefer using

random deletion since it requires no extra model or knowledge source.
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Figure 3.3. (Top) The seed-deletion rate rSD given different deletion ratios (Eq. (3.2)), where ns
and nc are estimated for each dataset as mentioned in Section 3.3.2. (Bottom) The classification
performance of random deletion given different deletion ratios. “(p∗)” denotes the one using the
best deletion ratio estimated for each dataset. We also denote the performance of seed deletion
and standard confidence for comparison.

3.4.3 Study on random deletion

Deletion ratio in random deletion. We verify whether our estimation of the best deletion

ratio is reasonable. In Figure 3.3, we modulate the deletion ratio and check the classification

performance of random deletion for different datasets. One can find that as the deletion ratio

increases, the performance first increases and then decreases, which is aligned with the trend of

the seed-deletion rate rSD analyzed in Section 3.3.2. The performance peaks when the deletion

ratio is large (≳ 0.9), which matches our estimation of the best deletion ratio. Furthermore, one

may find that the best deletion ratio is relatively smaller for datasets with a shorter sequence

length (e.g., AGNews and Rotten-Tomatoes), compared to that for datasets with a long sequence

length (e.g., 20News and NYT), which is also predicted by our estimation.

How does random deletion work?. One may notice that in Table 3.2, random deletion can

outperform seed deletion on a few datasets. This indicates that random deletion has an additional

regularization effect on top of deleting seeds, potentially due to more intense data augmentation.

However, we note that random deletion works not entirely because of this additional

regularization effect. To show this, we conduct ablation experiments with two additional methods.

The first is random deletion but with the seed words always retained in the document. The second
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Figure 3.4. Classification performance achieved by variations of random deletion with seed
words always retained in the document (“Retain seeds”) and with seed words always deleted
completely (“Delete all seeds”).

is random deletion but with seed words first deleted completely. For a fair comparison, we search

the best deletion ratio for these different methods including the standard random deletion. We

experiment on two representative datasets including 20News-Coarse and 20News-Fine due to

computational constraints.

Figure 3.4 shows that when seed words are always retained, random deletion achieves

significantly worse performance than the standard random deletion, although the former is merely

deleting one or two words fewer. On the other hand, when seed words are already deleted, further

random deletion only slightly improves the performance compared to the standard random

deletion. These pieces of evidence demonstrate that the benefit of random deletion may be partly

attributed to a regularization effect, but the deletion of seeds and thus the mitigation of label bias

is still one important factor.

Compare with additional regularization methods. Since random deletion may introduce

an additional regularization effect, we compare it with other regularization methods that can

potentially reduce the label bias. We will mainly compare different types of dropout (see below)

that are widely used in classification tasks, since it is mostly similar to random deletion. We defer

other commonly seen regularization methods to the appendix. We consider applying dropout to

different positions in the transformer model. For a fair comparison, we search the best dropout

ratio for these dropout methods, as well as the best deletion ratio for our random deletion. We
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Table 3.4. Original document versus corrupted document after random deletion, along with the
corresponding pseudo-label and true label. Here the example documents are randomly picked
from the pseudo-labeled data in the 20News-Coarse dataset.

Original Document Corrupted Document
(Random Deletion)

Pseudo-label Computer re increasing the number of serial ports distribution world nntp
posting host mac4. jpl. nasa. gov in article ( steven langlois )
wrote does anyone know if there are any devices available for the
mac which will increase the number of serial ports available for
use simultaneously? i would like to connect up to 8 serial
devices to my mac for an application i am working on. ...

distribution posting4 the available
application working must
independently. such any to the
serial? ink bug only system the.
them then of the. to using

Seed Word mac

True-label Computer

Pseudo-label Computer re dumb options list in article ( charles parr ) writes the idea here
is to list pointless options. you know, stuff you get on a car that
has no earthly use? 1 ) power windows i like my power
windows. i think they’re worth it. however, cruise control is a
pretty dumb option. what’s the point? if you’re on a long trip,
you floor the gas and keep your eyes on the rear view mirror for
cops, right? power seats are pretty dumb too, unless you’re
unlucky enough to have to share your car. ...

the options you that ).? keep are
enough have like ” do paper. breath.
’

Seed Word windows

True-label Sports

Pseudo-label Science re pro abortion feminist leader endorses trashing of free speech
rights in article ( gordon fitch ) writes ( doug holtsinger ) writes
51 arrested for defying judge’s order at abortion protest rally the
miami herald, april 11, 1993 circuit judge robert mcgregor’s
order prohibits anti abortion pickets within 36 feet of the
property line of aware woman center for choice. even across the
street, they may not display pictures of dead fetuses or sing or
chant loud enough to be heard by patients inside the clinic. ...

leader trashying judge 11 judge
abortion the display pictures loud as
similar an appeal group from have a
rock and then see the he homes did
speech of the hear there from to
expression on particular
information, to others if be
considered the’ists arson to else the

Seed Word circuit

True-label Politics

83 84 85 86 87 88
Macro-F1
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Drop (all)

Drop (wd-embed)

Drop2D (wd-embed)

Drop2D (embed)
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70 72 74 76 78
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Figure 3.5. Classification performance using dropout as a regularization method for pseudo-label
selection. We try two types of dropout including Dropout (“Drop”) and Dropout-2D (“Drop2D”).
We try dropout at various positions in the transformer architecture, including all dropouts layers
in the original transformer (“all”), the embedding layer only (“embed”), and the word embedding
layer only (“wd embed”).
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experiment on two representative datasets due to computational constraints.

• Dropout (Hinton et al., 2012) is a classic regularization method to prevent overfitting. We

simply utilize the dropout layers built in the original transformer architecture, including those

after the embedding layers, self-attention layers, and feed-forward layers, following previous

work (Gao et al., 2021).

• Dropout-2D (Tompson et al., 2014) is different from vanilla Dropout in that it drops the entire

channel as a whole. We only apply this to the embedding layer in the transformer to drop the

entire embedding of a word or a position.

As shown in Figure 3.5, random deletion consistently outperforms other regularization methods.

The only regularization method that can compete with random deletion is Dropout-2D applied

on the word embedding layer specifically. However, one may note that this dropout variation

is in fact almost equivalent to random deletion since the entire embedding of a word will be

randomly dropped. These again demonstrate that random deletion works not simply because of a

regularization effect.

Case study. We manually inspect the pseudo-labeled documents after random deletion to see

if the label bias can be mitigated. In Table 3.4, we randomly pick some example documents after

random deletion and find that the seed words are indeed deleted and some class-indicative words

are still present to allow effective classification.

3.5 Conclusion and Future Work

In this chapter, we revisit the simple seed matching-based weakly supervised text clas-

sification method and show that if its pseudo-labels are properly debiased, it can achieve

state-of-the-art accuracy on many popular datasets, outperforming more sophisticated types of

weak supervision. Specifically, our controlled experiments show that confidence-base selection

of seed matching-based pseudo-labels is ineffective largely because of the label bias injected by

the simple, yet erroneous seed-match rule. We propose two effective debiasing methods, seed
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deletion, and random deletion, which can mitigate the label bias and significantly improve seed

matching-based weakly supervised text classification.

In future work, we plan to extend this debiasing methodology to broader problems

and methods. For example, for weakly supervised text classification, we wish to explore a

generalization of the debiasing strategy to more sophisticated types of weak supervision. It

will also be interesting to develop a backdoor defense framework around the proposed methods,

especially random deletion.

This chapter incorporates material from the publication “Debiasing Made State-of-the-art:

Revisiting the Simple Seed-based Weak Supervision for Text Classification” by Chengyu Dong,

Zihan Wang, and Jingbo Shang, published in The 2023 Conference on Empirical Methods

in Natural Language Processing (EMNLP 2023). The dissertation author was the primary

investigator and lead author of this paper.
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Chapter 4

Conclusion and Future works

4.1 Summary of Contributions

This thesis has investigated fundamental approaches to improve language model training

in data-constrained scenarios. Our work spans two complementary strategies: leveraging model-

generated data through adversarial and supportive models, and utilizing rule-generated data

through weakly-supervised learning. The key contributions can be summarized as follows:

First, we identified and addressed a critical optimization control problem in ELECTRA-

style pretraining. Our analysis revealed that the original design’s coupling of generator and

discriminator optimization hindered effective training. By introducing decoupled optimization,

we significantly improved both training stability and model performance, demonstrating the

importance of careful optimization control in adversarial learning scenarios.

Second, we provided theoretical insights into knowledge distillation, showing that it

can be effective even without additional training data. Our student-oriented teacher training

framework represents a paradigm shift in how we approach knowledge distillation, focusing on

optimizing the teacher specifically for student performance rather than for its own accuracy. This

work challenges the conventional wisdom about the relationship between teacher and student

performance.

Third, we developed an effective debiasing approach for weakly-supervised learning, ad-

dressing a fundamental limitation in learning from rule-generated data. Our method significantly

63



improves model generalization by preventing over-reliance on simple labeling rules, making

weakly-supervised learning more practical for real-world applications.

4.2 Broader Implications

Our findings have several important implications for the future of language model

training:

Rethinking Data Efficiency. The success of our approaches suggests that we may be able to

push the boundaries of model performance without necessarily requiring ever-larger datasets.

This is particularly significant given the projected scarcity of high-quality human-generated data.

Our work demonstrates that by carefully designing training mechanisms, we can make better use

of existing data resources.

The Role of Auxiliary Models. Our work with both ELECTRA and knowledge distillation

highlights the potential of auxiliary models in improving training efficiency. Rather than viewing

these models solely as components to be optimized for their own performance, we show they

can be specifically designed and trained to enhance the learning process of other models.

Scalable Training Data Generation. The improvements we achieved in weakly-supervised

learning suggest a promising direction for scalable training data generation. As we approach the

limits of available human-generated data, the ability to effectively leverage rule-generated data

becomes increasingly important.

4.3 Future Directions

Our work opens several promising directions for future research:

Unified Training Frameworks. An exciting direction would be to develop unified frameworks

that combine multiple types of generated data. For example, integrating rule-generated data

with model-generated data might allow us to leverage the strengths of both approaches while

mitigating their individual weaknesses.
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Adaptive Generation Strategies. Future work could explore adaptive strategies for generating

training data, where the generation process (whether model-based or rule-based) dynamically

adjusts based on the learning progress of the target model. This could lead to more efficient and

effective training procedures.

Theoretical Understanding. While we have provided theoretical analyses for specific

approaches, there is still much to understand about the fundamental principles governing learning

from generated data. Developing a more comprehensive theoretical framework could guide the

development of even more effective training methods.

Application to Other Domains. While our work has focused on language models, the

principles we’ve developed could potentially be applied to other domains facing similar data

scarcity challenges, such as computer vision or speech recognition.

4.4 Concluding Remarks

The challenge of training effective language models with limited data resources will likely

remain central to machine learning research in the coming years. This thesis has demonstrated

that by carefully considering how we generate and utilize training data, we can make significant

progress even within these constraints. Our work provides both theoretical insights and practical

methods that we hope will contribute to the continued advancement of language models and

machine learning more broadly.

As we look to the future, the approaches developed in this thesis suggest that the path

forward may not lie solely in accumulating more data, but in developing smarter ways to learn

from the data we have. By continuing to improve our understanding of how models learn from

generated data, we can work toward more efficient and effective training methods that make the

most of our available resources.
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Appendix A

Model-Generated Data from “Adversarial”
Models

A.1 Proof

Bound the ideal discriminator objective. Given Assumption 1, it is easy to see that the ideal

discriminator objective can be bounded as L∗(θD)≤ L̃∗(θD), where

L̃∗(θD) := Ec,wEŵ∼δw|c(ŵ)ℓ(D(c, ŵ),1ŵ=w), (A.1)

where δw|c(ŵ) is a Dirac measure defined by the original token, namely the discriminator loss is

maximized if the original token is always sampled.

We can now proceed to prove the two Lemmas in Section 1.5.

Lemma 1.

Proof. We mainly utilize the Cauchy-Schwartz inequality, the equivalence between p-norms and

Pinsker’s inequality in this proof.

First, we note that,

L∗(θD)≤ L̃∗(θD) = L̄G(θD)+(L̃∗(θD)− L̄G(θD)),
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where the second term, the difference between two objectives, can be further bounded as

L̃∗(θD)− L̄G(θD)

=Ec,wEŵ∼δw|cℓ(D(c, ŵ),1ŵ=w)−Ec,wEw∼pGℓ(D(c, ŵ),1ŵ=w)

=Ec,w ∑
ŵ
ℓ(D(c, ŵ),1ŵ=w)(δw|c(ŵ)− pG(ŵ|c))

≤Ec,wMD(c,w)
∥∥δw|c(ŵ)− pG(ŵ|c)

∥∥
2

≤Ec,wMD(c,w)
∥∥δw|c(ŵ)− pG(ŵ|c)

∥∥
1

≤2−1/2Ec,wMD(c,w)
[
DKL(δw|c(ŵ)∥pG(ŵ|c))

]1/2

=2−1/2Ec,wMD(c,w)
[
H(δw|c(ŵ), pG(ŵ|c))

]1/2

≤2−1/2mD
[
Ec,wH(δw|c(ŵ), pG(ŵ|c))

]1/2

=2−1/2mD [Ec,wH(δŵ(w|c), pG(ŵ|c))]1/2

=2−1/2mD [EcH(q(ŵ|c), pG(ŵ|c))]1/2

=2−1/2mDL(θG)
1/2

(A.2)

where MD(c,w) = ∥ℓ(D(c, ŵ),1ŵ=w)∥2 and mD = maxc,w MD(c,w).

Lemma 2.

Proof. We mainly utilize a corollary of Jensen’s inequality on concave functions, as well as a
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simple trick that expands E[logx] around logE[x].

L̄G(θD)

= Ec,wEŵ∼pGℓ(D(c, ŵ),1ŵ=w)

≤ Ec,w FD(Eŵ∼pG1ŵ=w)

≤ Ec,w FD(pG(w|c))

= Ec,w FD(elogPG(w|c))

≤ FD(Ec,welogPG(w|c))

= FD

(
Ec,w

[
eE log pG(w|c)+ eE log pG(w|c)(log pG(w|c)−E log pG(w|c))+

1
2

eE log pG(w|c)+ε(log pG(w|c)−E log pG(w|c))2
])

= FD

(
eE log pG(w|c)+

VG

2
eE log pG(w|c)+ε

)
= FD

((
1+

VG

2

)
e−L(θG)+

VG

2
eε

)
,

where VG = E(log pG(w|c)−E log pG(w|c))2.

Theorem 1.

Proof. This is a direct consequence of Lemma 1 and Lemma 2. We can write

L∗(θD)≤ L̃∗(θD) = L̄G(θD)+(L̃∗(θD)− L̄G(θD))

≤ FD

(
(1+VG/2)e−L̄(θG)+VG/2 eε

)
+2−1/2mDL(θG)

1/2.

(A.3)

Note that the discriminator optimization only applies on the first term. Using the existing result

Proposition 1 on both the generator and discriminator optimization yields the theorem.
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A.2 Hyperparameter settings

Our hyperparameter settings follow the standard practice in previous works. For MLM

pretraining of the generator, we fix the mask ratio as 15%. When sampling sequences for

pretraining, we respect document boundaries and avoid concatenating texts from different

documents. We did not mask special tokens following the standard BERT practice. We conduct

pretraining on NVIDIA Tesla V100 with 32GB memory and fine-tuning on NVIDIA Tesla P100

with 16GB memory. Table A.1 lists the detailed hyperparameters used in pretraining. Table A.2

lists the detailed hyperparameters used for fine-tuning.

Table A.1. Hyperparameter settings used in pretraining.

Hyperparameters Base Large

Max Steps 125K 125K
Optimizer Adam Adam
Peak Learning Rate (Generator) 2×10−4 2×10−4

Peak Learning Rate (Discriminator) 1.5×10−3 1.5×10−3

Batch Size 2048 2048
Warm-Up Steps 10K 10K
Sequence Length 512 512
Relative Position Encoding Buckets 32 128
Relative Position Encoding Max Distance 128 256
Adam ε 1e−6 1e−6
Adam (β1,β2) (0.9,0.98) (0.9,0.98)
Clip Norm 2.0 2.0
Dropout 0.1 0.1
Weight Decay 0.01 0.01

A.3 A Roadmap to Hyperparameter Tuning

The separate generator and discriminator optimizers introduced by DecoupledOptim are

in line with our understanding of the distinct roles of generator optimization and discriminator

optimization in ELECTRA-style training. Therefore, DecoupledOptim is much more friendly to

hyperparameter tuning, which often requires excessive efforts especially for LLM pre-training.
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Table A.2. Hyperparameter search space in fine-tuning.

Hyperparameters Base Large

Sequence Length 256 256
Optimizer AdaMax AdaMax
Peak Learning Rate {5e-5,1e-4, 3e-4} {5e-5,1e-4, 3e-4}
Max Epochs {2,3,5,10, 20} {2,3,5,10, 20}
Batch size {16, 32, 64, 128} {8, 16, 32, 64}
Learning rate decay Linear Linear
Weight Decay {0, 0.01} {0, 0.01}
Warm-up Proportion {6 %, 10 %, 30%} {6 %, 10 %, 30%}
Adam ε 1e-6 1e-6
Adam (β1,β2) (0.9,0.98) (0.9,0.98)
Gradient Clipping 1.0 1.0
Dropout 0.1 0.1

Here we provide a guideline on the hyperparameter selection in DecoupledOptim to achieve the

best pretraining performance.

First, since DecoupledOptim is no longer sensitive to the generator size, one can choose

a generator as large as possible given hardware constraints. Next, one can find a discriminator

learning rate as large as possible with the generator learning rate fixed as any value, provided

that the training is stable. This is based on our understanding that a larger discriminator learning

rate can almost always benefit the pretraining. Finally, one can locate the best generator learning

rate through an efficient binary search, since increasing the generator learning rate first helps and

then hurts the training. In Figure A.1, we show our practice of finding the best hyperparameter

combination for the Base setting.

A.4 Understand Generator “Overfitting” in ELECTRA

In ELECTRA-style pretraining, it has been widely observed that a large generator

consistently hurts the discriminator performance, as also shown in Figure 1.1 for “Baseline”.

It has been speculated that a large generator may prevent the discriminator from learning

effectively (Clark et al., 2020), yet the exact reason remains largely unclear.
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Figure A.1. Practice of finding the best hyperparameter combination for the Base setting. (Left):
We search the largest possible discriminator learning rate as long as the training is stable. (Right):
Upon locate the largest discriminator learning rate, we binary search the best generator learning
rate since the its correlation with the performance is an unimodal curve.

Does a large generator hurt cross-domain generalization? A natural explanation to the

“overfitting” phenomenon in ELECTRA-style pretraining is that a large generator may impair

the cross-domain generalization, namely, it hurts the transferability of the discriminator to

downstream tasks since the gap between pretraining performance and downstream performance

is commonly seen, especially when the pretraining task and the downstream task are significantly

different (Zoph et al., 2020; Wei et al., 2021).

However, we show that the generator “overfitting” phenomenon is not, or at least not

completely, due to a larger transferring gap between RTD-based pretraining and downstream

tasks such as MNLI. A large generator may already hurt the pretraining performance, in that the

discriminator becomes less effective on detecting replaced tokens.
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Figure A.2. The binary classification performance of the discriminators on detecting replaced
tokens generated by their individual jointly-trained generators versus that by a standalone
generator. (Left): Accuracy (Right): F1-score. Here the standalone generator has 4 layers and is
trained for 125k steps.

Fair evaluation of RTD performance. To demonstrate this, we need to first measure the
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RTD performance of discriminators jointly trained with different generator sizes in a fair manner.

The standard binary classification performance reported in RTD-based pertraining is clearly not

a measure that is comparable across different discriminators, as they are evaluated with different

jointly-trained generators.

Alternatively, we propose to use a standalone generator to measure the RTD performance

fairly. A standalone generator is pretrained and shared across evaluations which means we can

maintain the difficulty of the generated replaced tokens for different discriminators. As shown in

Figure A.2, the binary classification performance of discriminators against such a standalone

generator ranks consistently with different metrics, while the jointly-trained generators report

mixed rankings. This suggests the standalone generator is more reliable to measure the RTD

performance.
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Figure A.3. (Left): Averaged matched/mismatched accuracy on the MNLI dataset by fine-
tuning discriminators trained along with different generator sizes. (Right): Fair measure of the
RTD performance of discriminators jointly trained with generators of different sizes. Here the
standalone generator has 4 layers and is trained for 125k steps.

Large generators cause inferior RTD performance. With a fair measure of the RTD

pretraining performance, we can now observe that a larger generator in fact hurts the pretraining.

As shown in Figure A.3, when trained with a larger generator, the discriminator is not able to

detect the replaced tokens as effectively. Subsequently, the performance on downstream tasks

degrades as well. Therefore, to understand and potentially and rectify generator “overfitting”, it

is necessary to first dig into the pretraining stage of ELECTRA.
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A.4.1 Does a large generator hurt in-domain generalization?

We conjecture that a large generator hurts RTD-based pretraining because the replaced

tokens generated by it may lack diversity and be overfitted easily, thus hurting RTD performance.
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Figure A.4. RTD performance (F1-score) of discriminators jointly trained with generators of
different sizes (2, 4, 8, 12 layers), measured against standalone generators of different sizes (2, 4,
8, 12 layers)

Overfitting the jointly-trained generator? One possibility is that a large generator may

predict the token at some masked positions with a low-entropy distribution, which means the

replaced token at this particular position may almost always be the same. This prevents the

discriminator from learning to detect other diverse replaced tokens. However, we find that this

might not be the case. For example, a BERT-Base discriminator gets an RTD performance of

31.4% in terms of F1-score against its jointly-trained generator with 12 layers. In comparison,

when evaluated against a standalone generator sharing the exact same architecture as the jointly-

trained generator, but initialized with a different random seed, it gets an F1-score of 30.9%,

which shows no significant discrepancy. Therefore, it is not likely that the discriminator is

overfitting a jointly-trained large generator itself.

Overfitting the size? It is also possible that large generators may generate replaced tokens

with similar properties. For example, the replaced tokens generated by different generators, albeit

randomly initialized, are the same or follow similar distributions. In this case, the discriminator

may overfit generators of this particular size. However, Figure A.4 shows that this may not be
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the case. A large generator also hurts the RTD performance against a standalone generator of

exactly the same size. Furthermore, one may find that a larger generator in fact hurts the RTD

performance against standalone generators of multiple different sizes, which suggests that a large

generator may hurt RTD-based pretraining “universally”.

A.4.2 How to reliably measure the performance of RTD pretraining?

In the above sections we mentioned that to reliably measure the performance of RTD

pretraining, it is better to evaluate the discriminator against a standalone generator. However, we

note that not all standalone generators can reliably measure the RTD performance such that it

can reflect the downstream performance. As shown in Figure A.4, a standalone generator with 2

layers will erroneously report the discriminator trained with a 2-layer generator is better than the

one trained with a 4-layer generator, while on downstream tasks the latter is better. Therefore,

we speculate that this is because the replaced token distributions generated by a 2-layer generator

is too simple in the verge of random, thus is not able to reflect the discriminator’s capacity of

language understanding. Based on this observation, we believe to reliably measure the RTD

performance we should sample replaced tokens from a distribution that is sufficiently difficult,

for example, a generator with a reasonably large size.
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Appendix B

Model-Generated Data from “Supportive”
Models

B.1 Proof

B.1.1 Modified Softmax

We provide more details for the modified Softmax we defined. Recall that

Definition 6 (Modified Softmax).

˜Softmax(ĥ) =
exp( 1

M ∑m ĥm)

(∏m ∑k exp(ĥm,k))1/M
. (B.1)

Our modified Softmax layer maps ĥ ∈ RM×K to the probabilistic output f (x) ∈ RK . It

can be viewed as a combination of an average pooling layer and a Softmax layer, where the

denominator of the softmax layer is a geometric average of the sum-exp of the probabilistic

output of each batch ĥm.
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B.1.2 Lemma 3

Proof. Given the labeled dataset D = {(x(i),y(i))}, the empirical risk of the network function f

under cross-entropy loss can be written as

− 1
N ∑

i
1(y(i)) · log f (x(i))

=− 1
N ∑

i
1(y(i)) · log ˜Softmax(wC fE(x(i)))

:=− 1
N ∑

i
1(y(i)) · log ˜Softmax

(
ĥ(i)
)

=− 1
N ∑

i
1(y(i)) · log

exp( 1
M ∑m ĥ(i)m )

(∏m ∑k exp(ĥ(i)m,k))
1/M

=− 1
N ∑

i
1(y(i)) · log

 ∏m exp ĥ(i)m )

∏m ∑k exp(ĥ(i)m,k)

1/M

=− 1
MN ∑

i
1(y(i)) · log

∏m exp(ĥ(i)m )

∏m ∑k exp(ĥ(i)m,k)

=− 1
MN ∑

i
1(y(i)) ·∑

m
log

exp(ĥ(i)m )

∑k exp(ĥ(i)m,k)

=− 1
MN ∑

i
1(y(i)) ·∑

m
logSoftmax(ĥ(i)m )

:=− 1
MN ∑

i
1(y(i)) ·∑

m
log p(i)m ,

(B.2)

where we have defined p(i)m = Softmax(ĥ(i)m )≡ Softmax(wc fE(x
(i)
m )). Here x(i)m indicates the m-th

patch of the input x.

Now recall our assumption that fE is an invariant feature extractor, which means that for

any i and j, any m and m′, and any γ and γ ′, fE(γ(x
(i)
m )) = fE(γ

′(x( j)
m )) as long as zm = zm′ . Since,

p(i)m = Softmax(ĥ(i)m ) = Softmax(wC fE(γ(x
(i)
m ))), this means that p(i)m = p( j)

m′ as long as zm = zm′ .

76



Therefore, the empirical risk can be regrouped as

− 1
MN ∑

i
1(y(i)) ·∑

m
log p(i)m

=− 1
MN ∑

i
1(y(i)) · ∑

z∈Z i

log pz

=− 1
M ∑

z∈Z

 1
N ∑

{i|z∈Z (i)}
1(y(i))

 · log pz,

where we have let pz := p(i)m where zm = z.

Now we use the KKT condition to approach the empirical risk minimization problem

since the only variable is pz. The first-order stationarity condition gives

∇pz·=− 1
MN ∑

i
1(y(i))⊙ 1

pz
+λ111 = 0, (B.3)

where ⊙ indicates the Hadamard product. Now Hadamard product both sides by pz we have

− 1
MN ∑

i
1(y(i))+λ pz = 0,

and thus

pz =
1

MNλ
∑

i
1(y(i)).

Now consider the condition 111 · pz = 1, we have

1
MNλ

∑
i

1(y(i)) ·111 = 1.

Since ∑i 1(y(i)) ·111 = |{i|z ∈ Z (i)}|,

λ =
|{i|z ∈ Z (i)}|

MN
.
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This leads to

pz =
1
Nz

∑
{i|z∈Z (i)}

1(y(i)),

where Nz := |{i|z ∈ Z (i)}|.

B.1.3 Lemma 4

Proof. The sum of independently but non-identically distributed multinomial random variables

is known as the Possion multinomial distribution (PMD). We utilize a known result of PMD to

prove this lemma.

Proposition 2 (Lin et al. (2022)). Let IIIi = (Ii1,··· ,Iim), i = 1, · · · ,n be n independent random

indicators where Ii j ∈ {0,1} and ∑
m
j=1 Ii j = 1 for each i. Let pppi = (pi1, · · · , pim) be the probability

vector that IIIi is sampled from, where ∑
m
j=1 pi j = 1. Let XXX be the sum of these n random indicators,

namely XXX = (X1, · · · ,Xm) = ∑
n
i=1 IIIi. Then we have

E[XXX ] = (p·1, · · · , p·m), (B.4)

where p· j = ∑
n
i=1 pi j.

And

Σ jk =


∑

n
i=1 pi j(1− pi j), if j = k,

−∑
n
i=1 pi j pik, if j ̸= k,

(B.5)

where ΣΣΣ is the covariance matrix of XXX.

Following this result, since 1(y(i)) is a random indicator and y(i) ∼ pY (·|x(i)), we have

E[ȳz] = p̄(·|z) :=
1
N ∑

{i|z∈Z (i)}
pY (·|x(i)). (B.6)
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And let the covariance matrix of ȳz to be Σȳz . Let Nz := |{i|z ∈ Z (i)}| be the number of inputs

that contain feature z, we have

tr[Σȳz] =
1

N2 ∑
{i|z∈Z (i)}

K

∑
k=1

pY (k|x(i))(1− pY (k|x(i)))

=
1

N2 ∑
{i|z∈Z (i)}

K

∑
k=1

(
1− p2

Y (k|x(i))
)

≤ (K −1)Nz

N2 ,

(B.7)

where we utilized the fact that ∑k p2
Y (k|x(i))≥ 1

K by the Cauchy-Schwarz inequality.

Then by a multivariate Chebyshev inequality (see, e.g., Chen (2007)), we have with

probability 1−δ ,

∥ȳz − p̄(·|z)∥2
2 ≤

tr(Σȳz)

δ
≤ (K −1)Nz

N2 · 1
δ
. (B.8)

Now finally, we derive an estimation of Nz. Recall that each input contains M feature

names sampled from the feature vocabulary |Z | subject to the distribution pZ . Therefore,

E
[

Nz

N

]
= P(z ∈ Z (i)) = 1− (1− pZ(z))M ≈ MpZ(z). (B.9)

For simplicity, we assume pZ is a uniform distribution, which means pZ(z) ≈ 1/|Z |, for any

z. Note that this is not a necessary assumption since Nz can also be trivially bounded by N.

Therefore we have

∥ȳz − p̄(·|z)∥2
2 ≤

(K −1)M
N|Z |

· 1
δ
. (B.10)

Recall that M is the number of features (patches) in each input, and |Z | is the total number of

features in the vocabulary. This result thus indicates a larger feature vocabulary can improve the

approximation while a more complicated input can hurt the approximation.
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B.1.4 Lemma 5

Proof. To prove this lemma we need an additional weak assumption on the true label distribution

of features that are “similar”.

Assumption 2. Let I(z,z′) define the pointwise mutual information (PMI) between features z

and z′. Let ψ be a concave and monotonically decreasing function. We assume

DKL
(

pY (·|z)
∥∥pY (·|z′)

)
= ψ

(
I(z,z′)

)
. (B.11)

Eq. (B.11) indicates that when sampling the features in an input, if two features are more

likely to be sampled together, their true label distribution should be more similar.

Given Eq. (B.11) and recall that

pY (·|x(i)) =
(

∏
m

pY (·|zm)

)1/M

=

(
∏

z∈Z (i)

pY (·|z)

)1/M

,

it can be shown that the difference between the true label distribution of the input that contains

feature z and the true label distribution of feature z can be bounded. In specific, for i ∈ {i′|z ∈

80



Z (i′)}, we have

DKL

(
pY (·|z)

∥∥∥pY (·|x(i))
)
=−∑

k
pY (k|z) log

(
pY (k|x(i))
pY (k|z)

)

=− 1
M ∑

k
pY (k|z) log

(
∏

z′∈Z (i)

pY (k|z′)
pY (k|z)

)

=− 1
M ∑

k
pY (k|z) ∑

z′∈Z (i)

log
(

pY (k|z′)
pY (k|z)

)
=− 1

M ∑
z′∈Z (i)

∑
k

pY (k|z) log
(

pY (k|z′)
pY (k|z)

)
=

1
M ∑

z′∈Z (i)

DKL
(

pY (·|z)
∥∥pY (·|z′)

)
=

1
M ∑

z′∈Z (i)

ψ
(
I(z,z′)

)
,

≤ ψ(Ī(i,z)).

(B.12)

where Ī(i,z) = 1
M ∑z′∈Z (i) I(z,z′) is the average PMI between feature z and other features z′ in an

input that contains z. Here we utilize Jensen’s inequality on concave functions.

Now we can show that the average true label distribution of inputs that contain feature z

approximates the true label distribution of feature z. Recall the definition of average true label
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distribution of inputs that contain feature z is p̄(·|z) := 1
N ∑{i|z∈Z (i)} pY (·|x(i)). And we have

∥ p̄(·|z)− pY (·|z)∥1 =

∥∥∥∥∥∥
 1

N ∑
{i|z∈Z (i)}

pY (·|x(i))

− pY (·|z)

∥∥∥∥∥∥
1

≤ 1
N

∥∥∥∥∥∥ ∑
{i|z∈Z (i)}

(
pY (·|x(i))− pY (·|z)

)∥∥∥∥∥∥
1

≤ 1
N ∑

{i|z∈Z (i)}

∥∥∥pY (·|x(i))− pY (·|z)
∥∥∥

1

≤ 21/2

N ∑
{i|z∈Z (i)}

D1/2
KL

(
pY (·|z)∥ pY (·|x(i))

)
≤ 21/2

N ∑
{i|z∈Z (i)}

ψ
1/2(Ī(i,z))

≤ 21/2Nz

N
ψ

1/2 (Ī(z))

≈ 21/2M
|Z |

ψ
1/2 (Ī(z)) ,

(B.13)

where Ī(z) = 1
Nz

min{i|z∈Z (i)} Ī(i,z) is the average PMI over all inputs that contain feature z.

B.1.5 Theorem 2

Proof. Recall the probabilistic output of the minimizer of the empirical risk is

f ∗(x(i)) =
(

∏
m

p(i)m

)1/M

=

(
∏

z∈Z (i)

pz

)1/M

, (B.14)

where pz defined in Section B.1.2 is the network’s probabilistic output of each feature z.
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Note that for all k, f (x(i))(k)≤ 1 and pY (k|x(i))≤ 1. Therefore,

∥∥∥ f ∗(x(i))− pY (·|x(i))
∥∥∥

2
≤ exp

(∥∥∥log( f ∗(x(i)))− log(pY (·|x(i)))
∥∥∥

2

)
= exp

(
1
M

∥∥∥∥∥ ∑
z∈Z (i)

(log pz − log pY (·|z))

∥∥∥∥∥
2

)

≤ exp

(
1
M ∑

z∈Z (i)

∥ log pz − log pY (·|z)∥2

)

≤ exp

(
1
M ∑

z∈Z (i)

β log∥pz − pY (·|z)∥2

)

≤
(

max
z∈Z (i)

∥pz − pY (·|z)∥2

)β

=

(
max

z∈Z (i)
∥ȳz − pY (·|z)∥2

)β

=

(
max

z∈Z (i)
(∥ȳz − p̄(·|z)∥2 +∥ p̄(·|z)− pY (·|z)∥2)

)β

≤
(

max
z∈Z (i)

(∥ȳz − p̄(·|z)∥2 +∥ p̄(·|z)− pY (·|z)∥1)

)β

=

(√
(K −1)M

N|Z |
1
δ
+

21/2M
|Z |

ψ
1/2(Īmin)

)β

,

(B.15)

where β := min(mink f (x(i))(k),mink pY (k|x(i))) and Īmin = minz∈Z (i) Ī(z).

B.1.6 Theorem 3

Proof. We first present a Lemma similar to Lemma 3, which shows that the probabilistic predic-

tions of features will still converge to the sample mean of the labels where the corresponding

inputs contain this feature, up to some constant error.

Lemma 6 (Convergence of the probabilistic predictions of features with Lipschitz-continuous and

transformation-robust feature extractor). Let ȳz := 1
N ∑{i|z∈Z (i)} 1(y(i)), where Z (i) denote the

set of feature names in the i-th input, and thus {i|z ∈ Z (i)} denotes the set of inputs that contain
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feature z. Let f ∗ be a minimizer of the empirical risk (Eq. (2.1)) and assume f ∗E is a LX -Lipschitz-

continuous and LΓ-transformation-robust feature extractor. Let p f ∗(xz) := Softmax(wC f ∗E(xz)).

We have with probability 1−δ ,

∥p f ∗(xz)− ȳz∥ ≤ Lz, (B.16)

where Lz := 2LΓ +LX Õ(νz
δ
).

Proof. Since f ∗E is a LX -Lipschitz-continuous and LΓ-transformation-robust feature extractor, for

any i, j, for any m,m′ and any γ,γ ′, as long as zm = zm′ ≡ z, we will have ,

∥ fE(x
(i)
m )− fE(x

( j)
m′ )∥

=∥ fE(γ(x
(i)
z ))− fE(γ

′(x( j)
z ))∥

≤∥ fE(γ(x
(i)
z ))− fE(x

(i)
z )∥+∥ fE(γ

′(x( j)
z ))− fE(x

( j)
z )∥+∥ fE(x

(i)
z )− fE(x

( j)
z )∥

≤2LΓ +LX∥x(i)z − x( j)
z ∥

(B.17)

Now since the feature representation in the input space is always concentrated, by

Chebyshev’s inequality we will have with probability 1−δ

∥x(i)z − x( j)
z ∥ ≤ Õ

(
νz

δ

)
.

Therefore, we have with probability 1−δ ,

∥ fE(x
(i)
m )− fE(x

( j)
m′ )∥ ≤ Lz,

where Lz := 2LΓ +LX Õ
(

νz
δ

)
.

The empirical loss minimization now becomes

min
f
− 1

MN ∑
i

1(y(i)) ·∑
m

log p(i)m

s.t. ∥p(i)m − p( j)
m′ ∥ ≤ Lz, if zm = zm′.

(B.18)
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Let Sz := {i|z ∈ Z (i)} for simplicity, we can have

− 1
MN ∑

i
1(y(i)) ·∑

m
log p(i)m =− 1

MN ∑
i

1(y(i)) · ∑
z∈Z (i)

log p(i)z

=− 1
MN ∑

z∈Z
∑

{i|z∈Z (i)}
1(y(i)) · log p(i)z ,

=− 1
MN ∑

z∈Z
∑

i∈Sz

1(y(i)) · log p(i)z ,

(B.19)

Note that this basically means that we assign the label of an example y(i) to each feature z

contained in this example’s input.

Therefore, (B.18) will be equivalent to the following problem.

min
{p(i)z }

− 1
MN ∑

z∈Z
∑

i∈Sz

1(y(i)) · log p(i)z

s.t. ∥p(i)z − p( j)
z ∥ ≤ Lz,111 · p(i)z = 1, ∀ z, ∀ i, j ∈ Sz, i ̸= j.

Note that the constraint ∥ · ∥ ≤ Lz is only imposed in each subset Sz.

Using the KKT condition, the above problem can be further formulated as follows.

min
{p(i)z }

− 1
MN ∑

z∈Z
∑

i∈Sz

1(y(i)) · log p(i)z

+∑
z

∑
j,k∈Sz, j ̸=k

µz; jk

(
∥p( j)

z − p(k)z ∥−Lz

)
+∑

z
∑

l∈Sz

λz;l(111 · p(l)z −1),

s.t. µz; jk(∥p( j)
z − p(k)z ∥−Lz) = 0, µz; jk ≥ 0, ∀ z, ∀ j,k ∈ Sz, j ̸= k,

∥p( j)
z − p(k)z ∥ ≤ Lz, 111 · p(l)z = 1, ∀ z, ∀ j,k, l ∈ Sz, j ̸= k.

(B.20)

Using the first-order stationarity condition we have, ∀ z, ∀ i ∈ Sz,

∇
p(i)z

·=− 1
MN

1(y(i))⊙ 1

p(i)z

+2 ∑
k ̸=i

µik(p(i)z − p(k)z )+λi111 = 0, (B.21)
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where for simplicity we neglected the subscript z since the condition is the same for all z.

Sum (B.21) over i we have

− 1
MN ∑

i
1(y(i))⊙ 1

p(i)z

+2∑
i

∑
k ̸=i

µik(p(i)z − p(k)z )+∑
i

λi111 = 0. (B.22)

Note that ∑i ∑k ̸=i µik(p(i)z − p(k)z ) = 0 since each pair of i,k appears twice in the sum, where µik

is the same but the sign of p(i)z − p(k)z is different. Therefore

− 1
MN ∑

i
1(y(i))⊙ 1

p(i)z

+∑
i

λi111 = 0. (B.23)

Notice that to minimize the loss, if y(i) = y( j), it is necessary that p(i)z = p( j)
z .

Now we dot product both sides of (B.23) with 1(k), we have

− 1
MN

|{i|y(i) = k}|
p(i)z [k]

+∑
i

λi = 0, ∀ i ∈ {i|y(i) = k},

which means that

p(i)z [k] =
|{i|y(i) = k}|

MN ∑i λi
, if y(i) = k.

Now recall the constraint that when i ̸= j,

∥p(i)z − p( j)
z ∥ ≤ Lz.

This at least indicates that

∥p(i)z − p( j)
z ∥∞ ≤ Lz.

Therefore,

p(i)z [k′]− |{i|y(i) = k′}|
MN ∑i λi

≤ Lz, if k′ ̸= y(i).
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This implies that ∥∥∥∥∥p(i)z − 1
MN ∑i λi

∑
i

1(y(i))

∥∥∥∥∥≤ Lz

Now consider the condition 111 · p(i)z = 1, we will have

∑
i

λi =
Nz

MN
.

Thus ∥∥∥p(i)z − ȳz

∥∥∥≤ Lz,

where we recall ȳz =
1

Nz
∑i 1(y(i)).

Now to prove Theorem 3, we only need to combine Lemma 6 and Lemmas 4, 5, where

the reasoning is exactly same as the proof of Theorem 2.

B.2 Limitations

In this paper we focus on the theoretical feasibility of learning the true label distribution

of training examples with empirical risk minimization. Therefore we only analyze the existence

of such a desired minimizer, but neglect the optimization process to achieve it. By explore the

optimization towards true label distribution, potentially more dynamics can be found to inspire

new regularization techniques.

Also, our proposed method for training a student-oriented teacher may not be able to

advance the state-of-the-art significantly, as the regularization techniques based inspired by our

analyses (e.g., Lipschitz regularization and consistency regularization) may more or less be

leveraged by existing training practice of deep neural networks, either implicitly or explicitly.
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B.3 Implementation details

Lipschitz regularization. Following previous practice using Lipschitz regularization for

generalization on unseen data (Yoshida & Miyato, 2017) or stabilizing generative model (Miyato

et al., 2018), we regularize the Lipschitz constant of a network by constraining the Lipschitz

constant of each trainable component. The regularization term is thus defined as ℓLR =∑ f Lip( f ),

where f denotes a trainable component in the network fff . The Lipschitz constant of a network

component Lip( f ) induced by a norm ∥ ·∥ is the smallest value L such that for any input features

h,h′, ∥ f (h)− f (h′)∥ ≤ L∥h− h′∥. Here we adopt the Lipschitz constant induced by 1-norm,

since its calculation is accurate, simple and efficient. For calculating the Lipschitz constants of

common trainable components in deep neural networks, we refer to (Gouk et al., 2021) for a

comprehensive study.

Consistency regularization. We design our consistency regularization term as ℓCR =

1
N ∑i

∥∥∥ fff (xi)− fff (xi)
∥∥∥2

2
, where we follow previous work (Laine & Aila, 2017) and employ MSE to

penalize the difference. Here fff (x) is the aggregated prediction of an input x, which we calculate

as the simple average of previous predictions fff (x)t =
1
t ∑

t−1
t ′=0 fff (x)t ′ , where we omit the data

augmentation operator for simplicity. At epoch 0 we simply skip the consistency regularization.

Note that such a prediction average can be implemented in an online manner thus there is no

need to store every previous prediction of an input.

B.4 Details of experiment setting

B.4.1 Hyperparameter setting for teacher network training

For all the experiments on CIFAR-100, we employ SGD as the optimizer and train for

240 epochs with a batch size of 64. The learning rate is initialized at 0.05 and decayed by a

factor of 10 at the epochs 150, 180 and 210, with an exception for ShuffleNet where the learning

rate is initialized at 0.01 following existing practice (Tian et al., 2020; Park et al., 2021). The

weight decay and momentum are fixed as 0.0005 and 0.9 respectively. The training images are
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augmented with random cropping and random horizontal flipping with a probability of 0.5.

For Tiny-ImageNet experiments, we employ SGD as the optimizer and conduct the

teacher training for 90 epochs with a batch size of 128. The learning rate starts at 0.1 and is

decayed by a factor of 10 at epochs 30 and 60. The weight decay and momentum are fixed as

0.0005 and 0.9 respectively. The training images are augmented with random rotation with a

maximum degree of 20, random cropping and random horizontal flipping with a probability of

0.5. For student training the only difference is that we train for additional 10 epochs, with one

more learning rate decay at epoch 90, aligned with previous settings (Tian et al., 2020).

For consistency regularization in our teacher training method, we experiment with various

weight schedules besides the linear schedule mentioned in the main paper. We list the formulas

for these schedules in the following. Here t denotes the epoch number, T denotes the total

number of epochs, and λ max
CR denotes the maximum weight.

• Cosine schedule:

λCR(t) = cos
[(

1− t
T

)
π

2

]
λ

max
CR

• Cyclic schedule:

λCR(t) =

√
1−
(

1− t
T

)2
λ

max
CR

• Piecewise schedule:

λCR(t) =


0, 0 < t ≤ T/3,

λ max
CR /2, T/3 < t ≤ 2T/3,

λ max
CR , 2T/3 < t ≤ T.
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B.4.2 Hyperparameter setting for knowledge distillation algorithms

For knowledge distillation algorithms we refer to the setting in RepDistiller 1. Specifically,

for original KD, the loss function used for student training is defined as

ℓ= αℓCross-Entropy +(1−α)ℓKD.

We grid search the best hyper-parameters that achieve the optimal performance, namely the

loss scaling ratio α is set as 0.5 and the temperature is set as 4 for both CIFAR-100 and Tiny-

ImageNet. For all feature distillation methods combined with KD the loss function can be

summarized as (Tian et al., 2020)

ℓ= γℓCross-Entropy +αℓKD +βℓDistill,

where we grid search the optimal γ and α to be 1.0 and 1.0 respectively. When using our teacher

training method, all these hyperparameters are kept same except that for all feature distillation

algorithms the scaling weights corresponding to the feature distillation losses β are cut by half, as

we wish to rely more on the original KD that is well supported by our theoretical understanding.

Table B.1 list β used in our experiments for all feature distillation algorithms. For SSKD (Xu

et al., 2020a) the hyperparameters are set as λ1 = 1.0, λ2 = 1.0, λ3 = 2.7, λ4 = 10.0 for standard

training and λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λ4 = 10.0 for our methods. For the curriculum

distillation algorithm RCO we experiment based on one-stage EEI (equal epoch interval). We

select 24 anchor points (or equivalently every 10 epochs) from the teacher’s saved checkpoints.

B.5 Additional experiment results

Training overhead. Compared to standard teacher training, the computation overhead of

DecoupledOptimis mainly due to the calculation of the Lipschitz constant, which is efficient as it

1https://github.com/HobbitLong/RepDistiller
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Table B.1. β for different feature distillation algorithms

β β β

Standard SoTeacher Standard SoTeacher Standard SoTeacher

FitNets 100 50 AT 1000 500 SP 3000 1500
CC 0.02 0.01 VID 1.0 0.5 RKD 1.0 0.5
PKT 30000 15000 AB 1.0 0.5 FT 200 100
NST 50 25 CRD 0.8 0.5

Table B.2. DecoupledOptimconsistently outperforms Standard on CIFAR-100 with various KD
algorithms.

WRN40-2/WRN40-1 WRN40-2/WRN16-2 ResNet32x4/ShuffleV2

Standard DecoupledOptim Standard DecoupledOptim Standard DecoupledOptim

FitNet 74.06±0.20 777444...888888±0.15 75.42±0.38 777555...666444±0.20 76.56±0.15 777777...999111±0.21
AT 73.78±0.40 777555...111222±0.17 75.45±0.28 777555...888888±0.09 76.20±0.16 777777...999333±0.15
SP 73.54±0.20 777444...777111±0.19 74.67±0.37 777555...999444±0.20 75.94±0.16 777888...000666±0.34
CC 73.46±0.12 777444...777666±0.16 75.08±0.07 777555...666777±0.39 75.43±0.19 777777...666888±0.28
VID 73.88±0.30 777444...888999±0.19 75.11±0.07 777555...777111±0.19 75.95±0.11 777777...555777±0.16
RKD 73.41±0.47 777444...666666±0.08 75.16±0.21 777555...555999±0.18 75.28±0.11 777777...444666±0.10
PKT 74.14±0.43 777444...888999±0.16 75.45±0.09 777555...555333±0.09 75.72±0.18 777777...888444±0.03
AB 73.93±0.35 777444...888666±0.10 70.09±0.66 777000...333888±0.87 76.27±0.26 777888...000555±0.21
FT 73.80±0.15 777444...777555±0.13 75.19±0.15 777555...666888±0.28 76.42±0.17 777777...555666±0.15
NST 73.95±0.41 777444...777444±0.14 74.95±0.23 777555...666888±0.16 76.07±0.08 777777...777111±0.10
CRD 74.44±0.11 777555...000666±0.37 75.52±0.12 777555...999555±0.02 76.28±0.13 777888...000999±0.13
SSKD 75.82±0.22 777555...999444±0.18 76.31±0.07 777666...333222±0.09 78.49±0.10 777999...333777±0.11
RCO 74.50±0.32 777444...888111±0.04 75.24±0.34 777555...555000±0.12 76.75±0.13 777777...555999±0.31

only requires simple arithmetic calculations of the trainable weights of a neural network (see

Section 2.4). Empirically we observe that training with DecoupledOptimis only slightly longer

than the standard training for about 5%. The memory overhead of DecoupledOptimis incurred

by buffering an average prediction for each input. However, since such prediction requires no

gradient calculation we can simply store it in a memory-mapped file.

B.6 Experiments with uncertainty regularization methods
on unseen data

Uncertainty learning on unseen data. Since the objective of our student-oriented teacher

training is to learn label distributions of the training data, it is related to those methods aiming to

learn quality uncertainty on the unseen data. We consider those methods that are feasible for
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Table B.3. Performance of the knowledge distillation when training the teacher using existing
regularization methods for learning quality uncertainty on unseen data.

WRN40-2/WRN40-1

Student Teacher

Standard 73.73±0.13 76.38±0.13
DecoupledOptim 777444...333555±0.23 74.95±0.28

ℓ2 (5×10−4) 73.73±0.13 76.38±0.13
ℓ1 (10−5) 73.60±0.15 73.52±0.05
Mixup (α = 0.2) 73.19±0.21 77.30±0.20
Cutmix (α = 0.2) 73.61±0.26 78.42±0.07
Augmix (α = 1, k = 3) 73.83±0.09 77.80±0.30
CRL (λ = 1) 74.13±0.29 76.69±0.16

large teacher network training, including (1) classic approaches to overcome overfitting such

as ℓ1 and ℓ2 regularization, (2) modern regularizations such as label smoothing (Szegedy et al.,

2016) and data augmentations such as mixup (Zhang et al., 2018a) and Augmix (Hendrycks

et al., 2020), (3) Post-training methods such as temperature scaling (Guo et al., 2017a), as well as

(4) methods that incorporate uncertainty as a learning ojective such as confidence-aware learning

(CRL) (Moon et al., 2020).

We have conducted experiments on CIFAR-100 using all these methods and the results

can be found in Appendix B.6. Unfortunately, the performance of these regularization methods

is unsatisfactory in knowledge distillation — only CRL can slightly outperform the standard

training. We believe the reasons might be two-folds. First, most existing criteria for uncertainty

quality on the unseen data such as calibration error (Naeini et al., 2015) or ranking error (Geifman

et al., 2019), only require the model to output an uncertainty estimate that is correlated with the

probability of prediction errors. Such criteria may not be translated into the approximation error

to the true label distribution. Second, even if a model learns true label distribution on unseen

data, it does not necessarily have to learn true label distribution on the training data, as deep

neural networks tend to memorize the training data.

Experiment setup. We conduct experiments on CIFAR-100 with teacher-student pair WRN40-

2/WRN40-1. We employ the original KD as the distillation algorithm. The hyperparameter

92



settings are the same as those mentioned in the main results (see Appendix B.4). For each

regularization method we grid search the hyperparameter that yields the best student performance.

The results are summarized in Table B.3.

Classic regularization. We observe that with stronger ℓ2 or ℓ1 regularization the student

performance will not deteriorate significantly as teacher converges. However, it also greatly

reduces the performance of the teacher. Subsequently the performance of the student is not

improved as shown in Table B.3.

Label smoothing. Label smoothing is shown to not only improve the performance but also the

uncertainty estimates of deep neural networks (Müller et al., 2019). However, existing works have

already shown that label smoothing can hurt the effectiveness of knowledge distillation (Müller

et al., 2019), thus we neglect the results here. An intuitive explanation is that label smoothing

encourages the representations of samples to lie in equally separated clusters, thus “erasing” the

information encoding possible secondary classes in a sample (Müller et al., 2019).

Data augmentation. Previous works have demonstrated that mixup-like data augmentation

techniques can greatly improve the uncertainty estimation on unseen data (Thulasidasan et al.,

2019; Hendrycks et al., 2020). For example, Mixup augmented the training samples as x :=

αx+(1−α)x′, and y := αy+(1−α)y′, where (x′,y′) is a randomly drawn pair not necessarily

belonging to the same class as x.

As shown in Table B.3, stronger mixup can improve the performance of the teacher,

whereas it can barely improve or even hurt the performance of the student. Based on our

theoretical understanding of knowledge distillation, we conjecture the reason might be that

mixup distorts the true label distribution of an input stochastically throughout the training, thus

hampering the learning of true label distribution.

Temperature scaling. Previous works have suggested using the uncertainty on a validation

set to tune the temperature for knowledge distillation either in standard learning (Menon et al.,

2021) or robust learning (Dong et al., 2021). However, the optimal temperature may not be well

aligned with that selected based on uncertainty (Menon et al., 2021). We neglect the experiment
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results here as the distillation temperature in our experiments is already fine-tuned.

Uncertainty learning. CRL designs the loss function as ℓ= ℓCE +λℓCRL, where ℓCE is the

cross-entropy loss and ℓCRL is an additional regularization term bearing the form of

ℓCRL = max
(
0,−g(c(xi),c(x j))(p(xi)− p(x j))+ |c(xi)− c(x j)|

)
, (B.24)

where p(x) = maxk f(x)k is the maximum probability of model’s prediction on a training sample

x and

c(x) =
1

t −1

t−1

∑
t ′=1

1(argmax
k

f(x)k
t ′ = y)

is the frequency of correct predictions through the training up to the current epoch. Here

g(ci,c j) = 1 if ci > c j and g(ci,c j) =−1 otherwise. Although originally proposed to improve

the uncertainty quality of deep neural networks in terms of ranking, we found that CRL with a

proper hyperparameter can improve the distillation performance, as shown in Table B.3.

We note that the effectiveness of CRL on distillation can be interpreted by our theoretical

understanding, as its regularization term (B.24) is essentially a special form of consistency

regularization. To see this we first notice (B.24) is a margin loss penalizing the difference

between p(x) and c(x) in terms of ranking. We then rewrite c(x) as

c(x) = 1y ·
1

t −1

t−1

∑
t ′=1

Onehot[f(x)t ′], (B.25)

which is similar to our consistency regularization target, except the prediction is first converted

into one-hot encoding. Such variation may not be the best for knowledge distillation as we wish

those secondary class probabilities in the prediction be aligned as well.
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Appendix C

Rule-Generated Data

C.1 Appendix

Effect of selection ratio. As mentioned before, our methods do not introduce additional

hyperparameters. Nevertheless, for pseudo-label selection in general, the selection fraction could

be an important hyperparameter as the noise rate in the selected subset of pseudo-labels can vary

significantly if we select different fractions, as also shown in Figure 3.1. Therefore, we check the

performance of the standard confidence-based pseudo-label selection and the confidence-based

selection equipped with seed deletion and random deletion, as the selection fraction varies.

Figure C.1 shows that our proposed methods are consistently better than standard confidence and

achieve relatively robust performance as the selection fraction varies. The performance peaks

when the selection fraction is moderate (∼ 50%) for different datasets.
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Figure C.1. The classification performance when selecting the pseudo-labels at different
fractions.

Experiments on additional confidence regularization methods. We experiment on additional
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methods for regularizing the confidence learning of the text classifier, including the following.

• MC-Dropout (Gal & Ghahramani, 2015) randomizes the network inference process by

dropping intermediate activations. The average output over multiple inferences is utilized

as a more reliable confidence score.

• Early stopping is often utilized as a regularization to help mitigate overfitting. Empirically,

it is observed that an early-stopped model is less prone to learning noisy data (Arpit et al.,

2017).

Here, we treat each method as a baseline and compare it with the corresponding method combined

with random deletion. For each method, we modulate its most important hyperparameter, namely

number of passes for MC-Dropout and number of training epochs for early stopping respectively.

As shown in Figures C.2 and C.3, random deletion consistently outperforms the baseline for

different confidence regularization methods. Random deletion also achieves more robust per-

formance across different hyperparameter settings, which is important for weakly-supervised

classification since we often lack a large clean dataset to select the best hyperparameter.
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Figure C.2. Classification performance using MC-dropout to obtain better confidence for pseudo-
label selection. We test different numbers of passes for MC-dropout.
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Figure C.3. Classification performance using early stopping as a regularization method to obtain
better confidence for pseudo-label selection. We check the performance when early stopping at
different epochs.
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