
UC Irvine
ICS Technical Reports

Title
Semantics and synthesis of signals in behavioral VHDL

Permalink
https://escholarship.org/uc/item/6wz5c0xd

Authors
Ramachandran, Loganath
Vahid, Frank
Narayan, Sanjiv
et al.

Publication Date
1992-03-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wz5c0xd
https://escholarship.org/uc/item/6wz5c0xd#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Semantics and Synthesis of
-Signals in Behavioral VHDL ---

Loganath _]amachandran~
Frank Vahid

Sanjiv Narayan

Daniel D. Gajski

Technical Report #92-28

March 23, 1992

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

(714) 856-8059

ramachan@ics.uci.edu

vahid@ics.uci.edu

narayan@ics.uci.edu

Abstract

Signals are a fundamental part of VHDL behavioral descriptions. There are many kinds of VHDL

signals, each possesing complex and hence often misunderstood semantics. The result is that synthesis

tools often inadequately address synthesis of signals. In this report, we first make clear the semantics

of the various signal kinds shared by multiple processes through the use of conceptual hardware, rather

than just text. Second, with the semantics firmly understood, we discuss techniques and issues in

synthesizing actual hardware for shared signals. This information can be used to take a step towards

synthesizing correct hardware from VHDL descriptions while greatly reducing current restrictions im­

posed by synthesis tools on allowable VHDL behavior.

• '':«. ;:

. ;

I·

.:1

'' .. :
! ;'!

,,
' (.

Contents

1 Introduction

2 Resolution Function

2.1 Semantics
2.2 Synthesis . . .

3 Signals in VHDL
3.1 Semantics ...

4

5

6

7

3.1.1 Simple (No-Kind) Signals
3.1.2 Bus-Kind Signals

3.1.3 Register-Kind Signals ..
3.1.4 Alternative resolution for composite signals

3.2 Synthesis

3.2.1 Synthesizing Hardware for Signals

3.2.2

3.2.3

Memory Signals and Arbitration

Variables

Ports

4.1 Semantics

4.2 Synthesis

Conclusions

Acknowledgements

References

List of Figures

1 A simple VHDL example showing the use of ports and signals

2 Conceptual hardware for a resolution function

3 Conceptual hardware for the three signal kinds

4 Characteristics of various signal kinds

5 Resolving a composite's subelements

6 Hardware implementation of various signal kinds

7 Synthesizing an integer signal of kind register.

8 Simplifications made possible by restricted resolution function
9 Synthesizing hardware for latchable signals.

10 Memory accesses in a CDFG

11 Various models of arbitration

12 Generating VHDL description for a Fixed Priority Memory Arbiter

13 An example of synthesis with arbitration

14 Conceptual hardware for three port modes

15 Synthesis Optimization for Inout Ports

1

3

3

4

4

5

5

7
7

8

9

9

12

17

19

19
21

21

22

22

2

3

6

8

9

10

11

12

13

14

15

16
18

20
21

1 Introduction

Since the standardization of VHDL [1], several efforts have been made to develop behavioral synthesis

tools which synthesize structure from VHDL behavioral descriptions. A key aspect of an HDL behav­

ioral description is the signal (and port), which is an extension of a variable in that a signal possesses

a value at a specific time, and hence can be used when concurrency is modeled. Figure 1 shows the

use of signals and ports in a simple VHDL description.

There are many kinds of VHDL signals, and their semantics are complex. As a result of this fact,

many previous synthesis approaches [2, 3, 4, 5] do one or more of the following:

• Discuss synthesis of signals incompletely or at a general level. For example, previous efforts have

researched signals in the context of a single process only, ignoring the effects of several processes

driving the same signal.

• Synthesize hardware for signals which is not functionally correct. For example, most approaches

do not distinguish between the three VHDL signal kinds (simple, bus, and register), even though

their functionalities are different. Some approaches always map signals to wires, which is incorrect

in situations when storage of the signal's value is necessary.

• Restrict the allowable use of signals in the VHDL description to a synthesizable subset of func­

tionality. For example, a common restriction permits no more than one VHDL process to write

to a given signal, which greatly simplifies synthesis but also severely undermines a signal's use-
,

fulness. Another common restriction forbids the use of signals that are two-dimensional (e.g. an

array of bit-vectors).

Many synthesis tools would be unable to correctly handle even the simple description in Figure 1.

The information in this report enables synthesis tools to eliminate many restrictions on signals and

to create hardware that correctly implements intended functionality, thus providing for a large step

toward the goal of synthesizing correct hardware for general VHDL behaviors. The formal semantics

of VHDL signal attributes is presented in [6]. Our approach is to first clearly define the semantics of

the various kinds of VHDL signals, as well as the related constructs of ports and resolution functions.

This is achieved by describing much of their semantics using a conceptual hardware, rather than just a

textual description as is normally used. The conceptual hardware uses well-understood components,

such as a latch with a load line, to concisely indicate functionality. An analogous use of conceptual

hardware would be defining the semantics of a multiplexor through the use of AND and OR gates.

Anyone familiar with such gates will then understand the functionality of a multiplexor. However,

1

package body vhdl_peckage Is

!unction res_fn (Input: biLarray) return bit Is

begin

for I In lnpurRange loop
If (lnpul(I) • '1') then

return ('1i ;
end If;

end loop;
end res_fn;

entity E Is
port (IP : In bit ;

CU< : In bit;
OP: out Integer);

architecture Ar of E Is
signal A : res_fn bit bus;

begin
P: process (CU<)
begin

If(P· 'Oi then
A<=NULL;

else
A<><notA;

end If;

end process;

a: process (CLK)
varlabie lnL var : Integer;

begin

If (P = '1') then
A<= NULL;

else
A<= '1';
lnLvar := lnt_var + 1;

end If;
OP<= lnLvar:

end process;

Resolution Function:

This function f66olves the value of the
signal to be Iha or-ad value of all

the drlv91S.

Ports
This VHDL description contains th/'96
ports IP, CLK and OP.

Globs/ Signal

Signal :A' Is a g/obs/ signal of type bit

Communicating Proc86Ses:

Proc66S P:
This proc96S reads and writes the globs/

signal :A'. It dlsconf19Cts Iha driver If Iha
valu9 on IP Is a 'O'.

Proc96S Q:

This proc96S wrl196 the g/obs/ signal A
It USB6 an lnt91'1119dlats varlab/9 whos6

value Is written ID OP. This procsss.
dlsconn9CIS the drlv91' If the value on IP
Is a '1 '.

Figure 1: A simple VHDL exampl~ showing the use of ports and signals

the conceptual hardware bears no relation to any particular implementation of the multiplexor, i.e. an

implementation may use NOR gates. Likewise, our conceptual hardware uses wires, latches, and

buffers to make clear many commonly misunderstood issues related to signals, although synthesized

hardware need not match this conceptual hardware.

Once the semantics are clearly defined, we discuss synthesis of actual hardware for signals, ports,

and resolution functions. We show that our conceptual hardware can serve as real hardware for signals

of certain data types, while in a few cases different hardware is necessary for other data types. We

show that ports are synthesized almost identically to signals. We also discuss restrictions on allowable

VHDL behavior which, although far less constraining than those in previous approaches, are still

necessary to assure that synthesis can generate feasible hardware. We would like to emphasize at

this point that this paper focusses only on signal semantics and synthesis external to the processes

in the VHDL description. Synthesis issues such as scheduling which are internal to a process are not

discussed.

2

2 Resolution Function

2.1 Semantics

In order to understand the semantics of the various signal-kinds in VHDL it is necessary to briefly

examine resolution functions. In general, a VHDL description consists of a set of processes communi­

cating using global signals. Thus a global signal represents a virtual wire that connects two or more

independent processes(e.g. P and Q in Figure 1). Due to the independent nature of the processes it

is possible that a global signal is written by more than one process at a given instant.

With multiple drivers co-existing on a single wire it becomes necessary to determine a single value

for the signal. In VHDL, resolution functions are used for this purpose. Resolution functions determine

a single value for a signal from the set of all values contributed by the different drivers of the signal.

In Figure 1 we show a typical use of a resolution function. The conceptual hardware for the resolution

function is shown as a bold dot in Figure 2.

There are certain semantic requirements that must be followed when using resolution functions in

a VHDL model. Since the input to a resolution function is a set of values of the signal's type, each

process must provide a value of that type. Hence, if a signal is composite, each process must assign

a value to all of the composite signal's subelements. For example, if a signal A's type is an array of

1000 integers, a process must assign all 1000 integers of A, and these 1000 integers make up a value

that is passed to the resolution function.

The VHDL language does not specify how to use the resolution function's capability. The modeler

could decide to make the resolution function very complex. However, it should be remembered that in

hardware, the value of a wire with multiple drivers is determined by the technology (e.g. ECL, TTL, or

process P

readsof A --
writes to A

- '
signal A· res fn bit·

res_fn(val1, val2)

va/1
A

val2
~

+
I
I

The resolution ;unction resolves
a single value for signal A

process Q

... readsof A -
writes to A

Figure 2: Conceptual hardware for a resolution function

3

CMOS). Since a VHDL model is meant for hardware, resolution functions must be used to model only

these technology-specific charocteristics and should not contain any other functionality. For example,

in some technologies, multiple drivers on the same wire result in a wired-or value. This can be modeled

by using a resolution function.

2.2 Synthesis

When synthesising hardware from a given behavioral description, it is necessary to consider the type

of constraints that a particular resolution function imposes on the synthesis process. Since resolution

functions are to be used only to represent the target technology's wire characteristic, the synthesis

tool ignores the resolution function during synthesis. However, the implementation technology for the

synthesized circuit should be constrained to the technology where the specified resolution function

holds.

3 Signals in VHDL

Having discussed resolution functions, we shall now describe signal semantics using conceptual hard­

ware. We would again like to emphasize that conceptual hardware is used only to understand signal

semantics, and for now should not be confused with synthesized hardware.

Signals are generally used to model communication between processes. Each process which writes

to a signal is called a driver for that signal. The most basic view of a signal is that it is a value which

can be read and written by each process to which it is visible. A signal can model a wire, bus, or

register. Signals can be of any data type, such as an integer, bit, pointer, array, or an arbitrarily

complex user-defined type.

The syntax for a VHDL signal declaration is:

signal identifier : (resolution-function-name] type (signal-kind] (:=expression];

signal-kind ::= register I bus

We have simplified the actual VHDL signal syntax to focus on the relevant issues. Boldface items

are keywords. Bracketed items are optional. The identifier is the name by which the signal is refered

to in a process. (1, 7] provide english descriptions of the signal syntax. Signals can be of three

kinds: simple (or no-kind), bus, or register. Their semantics are examined separately. The conceptual

4

hardware for the three signal kinds is shown in Figure 3. The semantics for the three signal kinds is

summarized in Figure 4.

3.1 Semantics

3.1.1 Simple (No-Kind) Signals

First, consider the simple signal declaration:

signal S : [resolution-function-name) type [:= expression);

A simple signal can be written to by multiple drivers. Resolution functions are not needed for

the signal if there is exactly one driver. The drivers of a simple signal cannot be turned off (i.e., a

null assignment "S <= null;" is not permitted). Consequently, a simple signal has all of its drivers

active at all times, and the value of the signal in the presence of multiple drivers is determined by the

resolution function associated with the signal.

The declaration of a signal instantiates a virtual wire in conceptual hardware. The wire has a

value of the type specified in the declaration. Possible types include scalars (e.g. integers, bits, reals,

strings) and composites (e.g. arrays, records) which are composed of scalars. In conceptual hardware,

the virtual wire for any signal is assumed to be one bit wide even though the signal may be several

bits wide in reality. All reads of the signal by ariy process are of this virtual wire's value.

Figure 3(a) shows the conceptual hardware of a simple signal. The virtual storage is implemented

by a virtual latch. The bitwidth of the latch is shown to be one in conceptual hardware. The value

of the signal S is actually the value on the virtual wire emerging from the dark oval representing the

resolution function associated with the signal.

Writing a value to a signal in a process instantiates virtual storage in that process. The storage is

of the type specified in the declaration. The storage output feeds the virtual wire of the signal. This

storage is ref ered to as the process driver of the signal.

To see why virtual storage is needed within each process that writes to the signal in our conceptual

hardware model, consider the following VHDL code segment:

signal S integer;

P: process

5

process P

signal S : [resfun] sometype;

(/) s (/)

a £ £ a
31 "' -~

§ lo § .2!
'\ -~
' .. I

I I

I I

process P I I processQ I I
I

I ' Writes by ~cess P ID S A resolution function resolves
are acllJS /y writes to this latch multiple values Into single va/uB for S

(a) Simple signal (no kind)

signal S : resfun sometype bus;

process P

S<=null will
shut-off the driver

s
Res. flll. only
resotves drivers
which are on.
When none are
on, It must still
provide a value.

(b) Bus-kind signal

process Q

signal S : resfun sometype register;

Resolution function

Level Sensitive
Latch

s

(c) Register-kind signal

process Q

Figure 3: Conceptual hardware for the three signal kinds

6

variable v

begin

v := 1;

S <= v;

integer;

wait for 50 ns;

v := 2;

end process;

According to VHDL signal semantics, process P should continue to drive S with the value 1 even

after 50 ns, at which time v is set to 2. Since the source of the value written to S may change, virtual

storage of the value is implied. Situations in which this virtual storage is not required are discussed

later.

3.1.2 Bus-Kind Signals

We now consider bus signals, the syntax of which is:

signal S : [resolution-function-name] type bus [:= expression];

The key difference between a bus signal and the simple signal described above is that a process can

shut-off its signal driver to a bus signal. We indicate this in our conceptual hardware model by the

addition of a virtual buffer, as in Figure 3(b).

A process shuts-off its driver for signal A by assigning a null value to it as in "A <= null;". In

the case of a signal of kind bus, a resolution function is required not only for resolving multiple values

into one, but also for indicating a value when when all drivers are shut-off.

One should not confuse the conceptual hardware's buffer with a tristate buffer. The former either

contributes a value to the virtual wire or it does not and is independent of the signal type. A tristate

buffer, on the other hand, outputs either a '1', 'O', or high-impedance value 'Z'. Tristate logic is

represented in VHDL as a type with the appropriate resolution function. Our conceptual hardware is

independent of the signal type.

3.1.3 Register-Kind Signals

We now consider register signals, the syntax of which is:

signal S : [resolution-function-name] type register [:= expression];

7

The characteristics of the register-kind signal is given in Figure 4. Register-kind signals are identical

to bus-kind signals with one exception. When all drivers are shut-off, a register-kind signal retains its

last (resolved) value. The resolution function is not called in this case as it was with bus signals. This

implies storage in our conceptual hardware, as shown in Figure 3(c). The virtual wire's resolved value

is latched when at least one driver is on. All reads are from the output of this latch; hence when all

drivers are shut-off, reads will be of the last latched value.

Number of
Drivers
Allowed

Resolution
Function
Needed?

Drivers can be
turned off?

Value when
Multiple Drivers

Active

Value when Zero
Drivers Active

No Kind

Multiple

Only when Multiple
drivers exist

No

Value determined
by Resolution function

Impossible

Signal Kind

Bus

Multiple

Always

Yes

Value determined
by Resolution function

Value determined
by Resolution function

Figure 4: Characteristics of various signal kinds

3.1.4 Alternative resolution for composite signals

Register

Multiple

Always

Yes

Value determined
by Resolution function

Last resolved value
of the signal

Until now, no mention was made of composite types, i.e. types composed of other types, such as arrays

or records. The virtual latch in our conceptual hardware holds any type, such as a bit, an array of

bits, or even an array of integers. In the latter case, the entire array of integers is sent over the virtual

wire to be resolved with other values. However, VHDL offers an alternative resolution method for

composite types, where each element is resolved individually. The declaration of such a signal and its

conceptual hardware representation are shown in Figure 5.

8

A(1)fl_ _1'. >of'.

A(2) - " _1"£

A(3) - ~
A(4) -CJ--1{.

....

3.2 Synthesis

subtype resolved_subtype is resfun sometype;
type sometype is array (1 to 4) of resolved_subtype;
signal A : sometype register;

~~a
H

L loal

~ :I: I
...L..

Figure 5: Resolving a composite's subelements

3.2.1 Synthesizing Hardware for Signals

,--
~ _t- A(1)

:H::::: t- A(2)

_N ~ A(3)

~A(4)

iii..

In the previous section, we introduced the various signals kinds and explained their semantics by

introducing each signal kind through the use of conceptual hardware, rather than -through english.

We now consider the issue of implementing signals using real hardware. Figure 6 summarizes the

hardware implementations of the three signal kinds. However, synthesis of signals may still be difficult

or unfeasible in other cases which are discussed below.

One problem is the use of virtual wires which can carry values of any data type. Real wires carry

bits (i.e. voltages). Hence the first task of synthesis is bit-encoding: the conversion of all data types to

bits or sets of bits. Scalar signal-types such as booleans, integers, characters, strings, and enumerations

are encoded into a one or more bits. For example, a signal of type "integer range 0 to 20" is encoded

into five bits. A composite signal-type such as an array must have its elements encoded. For example,

an array of integers becomes an array of bit-vectors. A composite signal-type such as a record can

have each of its elements treated as unique signal. Other types such as access types (pointers) and file

types are simply too deta~hed from hardware to be allowable. Algorithms for bit-encoding are beyond

the scope of this paper.

Once all signals have been bit-encoded, we determine if the number of wires and the .sizes of the

latches in the conceptual hardware are feasible for implementation. For example, an array of 1000

16-bit bit-vectors would require a latch of 16000 bits within each process (or 1000 16-bit latches

9

lmplementatlon

Local Latches
In each Driver

required?

Tristate Buffers
required In nch

Driver?

No Kind

Wire

Yes

No

Signal Kind

Bus

Wire

Yes

Only If driver Is
ever turned off
(eg. S <- null;)

Register

Level Sensistive
Latch + Wire

Yes

Only If driver Is
ever turned off
(eg. S <•null;)

Figure 6: Hardware implementation of various signal kinds

if resolution is that of Figure 5), which is clearly infeasible. Such a signal is better implemented

using a memory, as will be discussed later. Certain heuristics are required to select signals which

are implementable using the latch/wire conceptual hardware. Such heuristics may range from simply

selecting all scalars (i.e. non arrays) to selecting signals such that area and routing constraints of the

entire entity are satisfied. We shall refer to signals which are selected to be implemented as latches

by the term latchable signals.

Latchable signals are implemented with hardware that is similar to that Figure 3. Since the latch

holds bits, a tristate buffer is used for the virtual buffer. The high-level synthesis algorithm applied

to each process individually must determine the details related to the latch and the buffer within the

process, such as choosing between level-triggered or edge-triggered latches, loading the appropriate

value into the latch at the correct times, and setting the value of the buffer's tri-stating input. The

synthesis algorithm may also eliminate the latch and/ or buffer when they are not necessary. For

example, consider the VHDL code segments shown below:

P: process(B,C)

begin

A <= B + C;

end process;

Q: block

begin

A <= B + C; -- concurrent signal assignment

end block;

The wire for A can be connected directly from the output of an adder with inputs B and C, because

the sensitivity list of P indicates that A changes whenever there is a change in B or C. Likewise,

if a process assigns only constants to a signal, then only a mux having the appropriate constants as

inputs is needed. A latch is needed in a process that drives a signal if and only if a current source

of the signal S (i.e. variable or another signal which occurs on the right-hand side of the previous

10

PROCESS P

A

B

c
D

eigr\111 S : A_RESRJN lmeger range 0 lo 255 ntglater ;

PROCESS P

S<• A+B;
wall unlll RESET• '1 ';
B<• 3;
wall until RESET· 'O';
S<• C+D;
wait unlll RESET• '1' ;
S<•nul;

PROCESS Q

~<-N+2;
wall untN REQ • '1' ;
S<• M-1;
wall untH REO • 'O' ;
S<• null;

end loop;

(a) Two VHDL processes writing to a register signal, S

LATCH(P)

' ' ' '

8
' ' ' '

PROCESS Q

N

2

M

: ' :
•• I I

' ' _.,................ '
--------------~-- ---------- ----------~

EXT_LATCH(S) -.J

: EJ ' : -- Control ---1------------- Logic

s
(b) Hardware implementation for S

Figure 7: Synthesizing an integer signal of kind register.

assignment to S) is updated with a new value in a clock cycle, but the signal itself is not.

Figure 7 shows how we can synthesize an integer signal of kind register. In Figure 7(a), signal S

has two drivers - written by two processes P and Q. In P, B is a source for signal S in the first

assignment statement. Since S is not updated when B is assigned a new value (second assignments

statement), we will require a latch for Sin process P to store its previously assigned value. No such

latch is needed in process Q. Since both processes have a null assignment to S, both have a tristate

buffer to turn off the drivers for the signal in both processes. Both drivers for S (i.e., P, Q) may

possibly be turned off simultaneously. Thus, we need an external latch EXT J,ATCH(S) to store the

most recent resolved value, as desired by VHDL signal semantics for register kind signals. The output

of this latch is the value of S which can be used by process P when it referenced in the right-hand

side of an assignment statement.

Conceptually we represented a process' driving value of a signal and the read value as separate

buses, to illustrate the job of the resolution function. In implementation, only one bus is needed. This

simplification can be made only when the resolution function reflects a physical wire's characteristics

11

reso ution
function

process process

model reflecting semantics synthesized hardware

Figure 8: Simplifications made possible by restricted resolution function

and does not posses other functionality. Figure 8 illustrates this concept.

Figure 9 outlines the synthesis algorithm to obtain a hardware implementation for a given signal.

The synthesis algorithm determines how many processes write to the signal, whether a latch and

tristate-driver is needed for the signal within each process, and finally how the values written by the

several processes are combined.

In addition to signal assignments in processes, VHDL also has concurrent signal assignments. As

stated in [1], concurrent signal assignment statements represent an equivalent process statement.

Thus, concurrent signal assignments are handled in a manner similar to that of signal assignments in

processes.

3.2.2 Memory Signals and Arbitration

When it is not feasible to implement a signal as a latch within each process or to have one wire

for each bit that comprises the signal, the signal is implemented as a memory. We shall refer to

these as memory signals. We shall assume that all memory signals are 2-dimensional (arrays of bit­

vectors). Large 1-dimensional signals (bit-vectors) are easily converted to 2-dimensions. Signals with

3-dimensions or more must be converted to 2-dimensions or must be considered unimplementable.

The memory resides outside the processes, regardless of whether or not the signal was declared a

register kind. Each access to the memory by a process is replaced by a channel consisting of address,

data, and control. A process may have more than one such channel to allow for concurrent accesses,

as described below. Latches may be needed within the process to hold the address and data values.

Their necessity is based on the same criteria as was that for latchable signals discussed above.

During conversion to a control/datafl.ow graph (CDFG), a memory access is modeled as an operation

with an address input and a data input or output for writes and reads respectively, as demonstrated

in Figure 10. If scheduling of the CDFG is performed before allocation, then an N-port memory is

used, where N is the maximum number of accesses of the memory during any single control-step. If

12

procedure GENERATE_HARDWARE (S : signal)

begin

end

for each process P; which writes to S do

endfor

Let S; be the value of the signal S driven by process P;

if S is NOT updated whenever a current source of S is assigned a new value
then

else

endif

Implement Sas a latch within Pi, LATCH(P;)
LATCH(Pi) is enabled whenever Sis written to in Pi
The value Si is the output of LATCH(P;)

Implement Sas a wire driven by process P;, WIRE(Pi)
The value S; is the value on WIRE(P;)

if (S.kind = busiregister) and (S has a null signal assignment in P;)
then

endif

Add a tristate-buffer, TB(P;), to WIRE(Pi) or the output of LATCH(P;)
TB(P;) is disabled for the time duration between a null assignment and

the next assignment to S in Pi
The value S; is then the output of the buffer TB(P;)

Connect all the outputs S; from each process P; which write to S
Let this connection be called JOIN(S)

if (S.kind = register) and (S has a null signal assignment in each process P; which writes to it)
then

Add an external level sensitive latch, EXT _LATCH(S).
EXT _LATCH(S) gets its input from JOIN(S).
EXT _LATCH(S) is enabled whenever any process writes to S.
The output of EXT .J,ATCH(S) represents the signal S

else if (S.kind = no..kindlbus)
The value at JOIN(S) represents the signal S

endif

Figure 9: Synthesizing hardware for latchable signals.

13

P: process
begin

x <= M(a);

end process

a: process
begin

M(c) <= M(a) + M(b);
M(d) <= y;

end process;
(a) Behavior with poulble concurrent memory acceues

a a b

I

7
x

P'sCDFG c3

(b) CDFG'a for Heh proceaa

Preq <= '1';
wait unti Pack='1';

Qreq <= '1'
wait until Qack='1';

Preq <= 'O'; Oreq <= 'O';

d y

~
--- --- -·

Q'sCDFG

Marbiter : process
begin

if (Preq='1 ')then
Pack<= '1';
wait until Preq='O';
Pack<= 'O';

end if;
if (Qreq='1 ') then

Oack<= 1';
wait unti Qreq='O';
Qack <- '0"

end if; - '
wait on Preq,Qreq;
end process;

(c) Arbitrated memory acceu (combined VHDUCDFG uaed for almpllclty)

Figure 10: Memory accesses in a CDFG

allocation is performed first and an N-port memory is selected, then this constrains the schedule to

no more than N accesses of the memory in any single control-step.

Within a single process, determining the number of accesses to a memory during any one clock

cycle is trivial. However, since signals can be accessed by multiple processes, this number must be

determined over all processes. In general, this is extremely complex since it is likely that the processes

do not operate in sync, but instead can have varying cycle times. For example, in Figure lO(b) Q's

CDFG has been scheduled into three control steps. Suppose processes P and Q are activated on events

el and e2, respectively. If el, e2 are external events, it cannot be determined if P's read will occur

during cl, c2 or c3. Even if the events are internally generated, such determination is likely to still

be impossible or very difficult. The only way to ensure that memory accesses in two processes do not

occur at the same time is to explicitly arbitrate between them.

14

.............. 1
l~1 i
i:

r ~.l...J~.:
i Memory M :
! 2p0fl i
i J

(•)

r:!::·-·1 ... J
L.. ... ~~:<-~··j

: :
: Marti•rprocess :

l ~ '······························'

(b)

r1...1..1 : U 1 1 lt 1 : ~..J...l~
! ~1 : : p--2 : ! p.-- ! ! Me:';M !
............... ~.~~ ········T1·········~qd·~··········-- ························-

·~~ : .. ~-~,,
iMa-~ i :

(c)

Figure 11: Various models of arbitration

Arbitration is accomplished by adding functionality to existing processes' behaviors. Each process

must request permission to access the memory. •After receiving permission and then performing the

access, the process must relinquish its access rights. This handshake is implemented with two signals

(request, acknowledge). A new process is created which monitors the request lines of each process and

grants permissions based on some priority (e.g. fixed or rotating). Figure 10(c) shows an example.

Note that arbitration is never needed within a single process, since the number of concurrent

accesses to the memory can always be controlled by scheduling.

Arbitration limits access to a given resource. Limited access constraints can arise when a memory

is bound to a library component with fewer ports than needed or when buses are merged to satisfy pin

constraints or decongest routing. Depending on the arbitration model used, the resource may be the

memory itself or a particular port of the memory. Several alternative arbitration models are shown in

Figure 11. In Figure ll(a), each access is statically assigned to a specific port. Hence each port is a

resource and the concurrent accesses over a port are arbitrated. In Figure ll(b) and (c), accesses are

assigned to ports dynamically. Hence the two ports comprise a single resource. The arbiter must limit

accesses to two processes at any time. In Figure ll(b), each process can access the ports directly,

15

procedure GENERATE_ARBITER (M EM : 2D..array, P LIST : priorityJist)

begin

end

Let P LI ST represent a list of the processes which access ME M,
ordered in descending order of priority

/* Introduce Req/ Ack signals in the processes * /
for each process P, which accesses M EM do

endfor

Precede all accesses of M EM in P, by the following
MEM_req_i <= '1';
wait until {MEM_ack_i = '1 ') ;

Append the following after all accesses of ME M in P,
MEM_req_i <= 'O'
wait until (MEM_ack_i = 'O~ ;

/* Generate Arbiter Process * /
Pk= head(PLIST)
P LIST = tail(P LIST)
Add the following statements at the head of the arbiter process

wait until MEM_req_l or MEM_req_2 or .. or MEM_req.JV ;
if (MEM_req..k = '1') then

MEM_ack_k <= '1' ;
wait until (MEM_req..k = 'O') ;
MEM_ack_k <= '0';

while P LIST =fa <P do

endfor

Pk= head(PLIST)
P LIST = tail(P LIST)
Append the following statements to the arbiter process

elsif (MEM_req..k = '1') then
MEM_ack_k <= '1' ;
wait until (MEM_req..k = 'O') ; ·
MEM_ack_k <= '0';

Append the following statements to the arbiter process
end if;

Figure 12: Generating VHDL description for a Fixed Priority Memory Arbiter

16

so the arbiter merely informs a process which port it has permission to use. In Figure ll(c), all

communication occurs through the arbiter, so that it must physically route each process address/data

to the available port.

The first arbitration model has the simplest arbiter, but may result in poor performance since

port assignment decisions are made statically. Hence a process may spend much time waiting for a

port to become available even though a another port is unused. The second model alleviates this

static decision problem, but requires a more complex arbiter as each process is connected to multiple

ports, which may result in routing problems. The model also requires each process to be slightly

more complex in order to route its accesses to multiple buses. The third model eliminates this process

complexity, but again results in a complex arbiter which may also have routing congestion problems.

Figure 12 shows how a memory arbiter which implements a fixed priority scheme is generated for

a memory signal, M EM. The arbiter process will grant access rights to M EM based on a priority

ordering of the processes specified by the user. An alternative way of computing priorities is by

calculating the average number of accesses to M EM made by each process. The process with the

highest number of accesses will be assigned the highest priority. The arbiter generation algorithm

requires that the priorities of processes be specified as a list, P LI ST. Each access to ME M in the

processes is modified to incorporate a handshake communication mechanism between the process and

the arbiter. At any given time, all processes which need to access M EM will request the arbiter for

permission. The arbiter process generated by the algorithm in Figure 12 simply scans access requests

from the processes in order of their priority, and grants access to the highest priority request.

Figure 13 shows the results of synthesis on a multi-process VHDL description with multiple accesses

to a global memory. As shown in Figure 13(a), three simultaneous accesses are possible on the global

memory. The results of synthesis using a 3-port memory is shown in Figure 13(b). In this case, data

access could be done independently on a separate port. However if a single-port memory were to

be used, then an arbitration module is required to control the accesses to the memory. The results

of such a synthesis is shown in Figure 13(c). In Figure 13(c) we do not arbitrate between the two

memory accesses M(K) and M(J) because scheduling process Q'will ensure that they are scheduled

in different control steps.

3.2.3 Variables

We have so far focussed our discussion on signals, which are external to VHDL processes. We now

briefly discuss the synthesis of variables, which are local to a process. Variables are used as temporary

value holders that can be used to store intermediate results of a computation. By removing the concept

17

port(clata_rdy: In Bit; devic_rdy : In Bit; lnput_data : in Integer; Output_data : out Integer) ;

type Memory is array (0 to 256) of Integer;

Process P (clata_rdy)
variable I : Bit;

begin

M(I) <= lnput_clata;
I:= I + 1;

end;

signal M : Memory;

Process Q (device_rdy)
variable K,J : Bit;
begin

J :=I;
K:=K+1;
Output_data <= M(K) + M(J);

end;

(a) Multi-proce .. VHDL description with array accesses

lnput_Data i-----------.

data_rdy

data_rdy

t n
r i
o I

I

Output_Data

(b) Synthesized Design 1'!'ith a 3-port Memory

mem ad< 1 mem ad< 2
.. - -,,;;:_~1 - - - - - - - { Aibitration I - - - - - - - - - - .:: ---1

: ,- - - - - - - - - - - -+ ___ u_n1t __ r ------;:_: ~~~:
I I

0
n U
I n
r i
o I

I

addr_buti

Output_Data

(c) Synthesized Design with Arbitration for 1-port Memory

Figure 13: An example of synthesis with arbitration

18

device_rdy

device_rdy

of 'time', variables ensure sequentiality of variable assignment statements and lend themselves to simple

descriptions.

To illustrate the use of variables, let us use the following descriptions which contains two processes

P and Q. Both these processes are identical in functionality. However they differ in the use of a

temporary variable temp. P uses a temporary variable, temp while computing A, but process Q does

not.

P: process(B,C)

variable temp : integer

variable A : integer ;

begin

temp := B + C ;

A := temp + D

end process ;

Q: process(B, C)

variable A : integer

begin

A := B + C + D

end process

It is very difficult to predict how the variables would be synthesised without taking into account

the available resources to implement the functionality. For example in the above descriptions if the

user had given process P and a single adder was allocated, then the synthesis program would store

the value for temp in a register. Hence temp would get synthesised into a register. However if two

adders were available then both the additions could be performed in the same state. Thus temp does

not require a register.

Similar arguments can be given for the description Q. In general, the variables may turn into a

wire or a register depending on the available resources.

4 Ports

4.1 Semantics

An entity may have ports for interfacing with an external environment. In VHDL, a port is a signal

declared in the interface list of an entity or component declaration. The semantics of ports are identical

to that of signals except that in addition, ports have an associated mode which constrains the direction

of the data fl.ow allowed through the port. Let us consider the modes in, out, and inout.

In Figure 14(a) and Figure 14(b) we show straightforward conceptual hardware representations of

19

j

entity E
~A ~ Ill"'(

~ ~()
A can't be written
by either process

process P process Q

(a) Mode IN port

~

~
A

r---i

~ A can't be read ~
by either process I.....-.

(b) Mode OUT port

~

~
....----
~

~A
....

--$.t::.
0 - ~

port's in value is
another source of___.
the signal

(c) ModeJNOUT port

Figure 14: Conceptual hardware for three port modes

in and out ports. An in port cannot be written by any of the processes in the VHDL description.

However, the value can be simultaneously read by all the processes. On the other hand an out port

can only be written to by the processes. The value of the port is the resolved value from the resolution

function. None of the processes can read a value from an out port.

In Figure 14(c), we show the conceptual hardware for an inout port. As shown, all process can

read and write a value onto the port, thereby requiring the use of a resolution function, In addition,

the external environment also contributes another value to the resolution function for the signal. This

resolved value is what is read by any processes and is also the output value of the port. Note that

the inout port is separated into an input and an output virtual wire. This is because the input to the

port from the external environment may be different from the resolved value.

20

VHDL allows an out or inout port to be declared as bus-kind. The semantics discussed for bus­

kind signals is also applicable to ports. Hence, the extension to the conceptual hardware for bus kind

ports is identical to that shown for signals in Figure 3(b). However, a port may not be declared as

register-kind.

4.2 Synthesis

Since ports resemble signals in many aspects the synthesis also proceeds very similar to synthesis of

hardware for signals. The conceptual hardware for ports shown in Figure 14 would be the actual

hardware. However simplifications are possible in the case of inout port. In Figure 15 the in and out

values for an inout port are implemented as a single bus although they were conceptually shown as

separate buses. Again, this simplification is possible only when the resolution function reflects the

ports physical characteristics and does not include any other functionality.

entity

• = resolution function

entity

process

entity

process

resolution functions must
have reflected characteristics
of this wire

model reflecting semantics synthesized hardware

INOUT ports only require one bus

Figure 15: Synthesis Optimization for Inout Ports

5 Conclusions

The research presented in this paper eases the restrictions placed by existing synthesis systems on

the VHDL that can be used to specify designs. In order to obtain functionally equivalent hardware

from VHDL descriptions, it is essential to understand the semantics of VHDL constructs, especially

in the context of signals driven by several processes. We have introduced a conceptual hardware

representation to explain the semantics of signals, ports, and resolution functions. We have also

shown how hardware can be synthesized for such constructs. While almost all restrictions have been

eliminated for latchable signals, composite signals which are mapped to memories still possess some

21

use restrictions, and may require arbitration which then adds new functionality. We see no alternative

to these restrictions, unless there is a change in VHDL which adds a global memory construct that

more closely matches synthesizable hardware. The synthesis guidelines presented in this paper are

being incorporated into the VHDL synthesis environment which we are currently developing.

6 Acknowledgements

This work was supported by the Semiconductor Research Corporation (grant #91-DJ-146). We are

grateful for their support.

7 References

[1] IEEE Standard VHDL Language Reference Manual, 1988.

[2] L. Saunders, "The IBM VHDL Design System," in Proceedings of the 24th Design Automation

Conference, 1987.

[3] R. Camposano, L.F. Saunders, and R. M. Tabet, "VHDL as Input for High Level Synthesis," IEEE

Design and Test of Computers, March 1991.

[4] J. Lis and D. Gajski, "Synthesis from VHDL," in Proc. of the ICCD, 1988.

[5] J. Roy and R. Vemuri, "DSS: A Distributed Synthesis System for VHDL Specifications," in VHDL

Users' Group Spring 1991 Conference, 1991.

[6] A. Salem and D. Borrione, "Formal semantics of VHDL timing constructs," in Proceedings of

Euro-VHDL, 1991.

[7] R. Lipsett, C.F. Schaefer, and C. Ussery, VHDL : Hardware Description and Design. Kluwer

Academic Publishers, 1989.

22

