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ABSTRACT OF THE DISSERTATION

Post-Inflationary Higgs Relaxation and the Origin of Matter

by

Louis Yang

Doctor of Philosophy in Physics

University of California, Los Angeles, 2017

Professor Alexander Kusenko, Chair

The recent measurement of the Higgs boson mass implies a relatively slow rise of the Standard

Model Higgs potential at large scales, and a possible second minimum at even larger scales.

Consequently, the Higgs field may develop a large vacuum expectation value during inflation.

The relaxation of the Higgs field from its large postinflationary value to the minimum of the

effective potential represents an important stage in the evolution of the Universe. During

this epoch, the time-dependent Higgs condensate can create an effective chemical potential

for the lepton number, leading to a generation of the lepton asymmetry in the presence of

some large right-handed Majorana neutrino masses. The electroweak sphalerons redistribute

this asymmetry between leptons and baryons. This Higgs relaxation leptogenesis can explain

the observed matter-antimatter asymmetry of the Universe even if the Standard Model is

valid up to the scale of inflation, and any new physics is suppressed by that high scale.

The baryonic isocurvature perturbations generated by the relaxation leptogenesis can also

explain the excess found in the cosmic infrared background (CIB) anisotropy.

We begin this dissertation by reviewing the development of the large vacuum expectation

value (VEV) of the Higgs and other scalar fields during inflation. We then discuss the postin-

flationary relaxation of the Higgs field in full detail, and present the relaxation leptogenesis

framework using the Standard Model Higgs field as an example.
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Next, we extend the relaxation leptogenesis to the elementary Goldstone Higgs (EGH)

framework and the pseudoscalar scenario. In the EGH paradigm, the electroweak (EW) scale

is not fundamental but radiatively generated. This allows one to disentangle the EW scale

from the vacuum expectation of the elementary Higgs field, and construct a very flat scalar

potential directions along which the relaxation leptogenesis mechanism can be implemented

with larger parameter space.

In December 2015, the ATLAS and CMS Collaborations have reported evidence of a

diphoton excess which may be interpreted as a pseudoscalar boson S with a mass around

750 GeV. To explain the diphoton excess, such a boson is coupled to the Standard Model

gauge fields via SFF̃ operators, which provide the chemical potential to the lepton asym-

metry. Although the diphoton excess turns out to be a statistical fluctuation in 2016, a

similar pseudoscalar with greater mass remains a viable model for relaxation leptogenesis

mechanism.

Finally, we discuss the imprint of relaxation leptogenesis on the CIB anisotropy. Obser-

vations of CIB exhibit significant fluctuations on small angular scales, whose origin remains

a question. We consider the possibility that small-scale fluctuations in matter-antimatter

asymmetry could lead to variations in star formation rates which are responsible for the CIB

fluctuations. We show that the Higgs relaxation leptogenesis mechanism can produce such

small-scale baryonic isocurvature perturbations which can explain the observed excess in the

CIB fluctuations.
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CHAPTER 1

Post-Inflationary Higgs Relaxation

The recent discovery of a Higgs boson with mass 125 GeV [7, 8] implies that the Higgs po-

tential is very shallow and may even develop a second minimum, assuming that the standard

model is valid at high energy scales [9]. During cosmological inflation, the Higgs field may

be trapped in a quasistable second minimum or, alternatively, may develop a stochastic dis-

tribution of vacuum expectation values due to the flatness of the potential [10–12]. In both

scenarios, the Higgs field relaxes to its vacuum state after inflation via a coherent motion.

In this chapter, we explore this epoch of Higgs relaxation.

In Sec. 1.1, we review how a scalar field such as the Higgs field can obtain a large

vacuum expectation value during inflation through quantum fluctuation. (See also [13] for a

complete review.) Next, in Sec. 1.2, we briefly review the cosmology of the reheating stage

of the universe including the evolution of the scale factor and the temperature. Finally, in

Sec. 1.3, we discuss the detail evolution of the Higgs field after the inflation including the

perturbative and non-perturbative decays of the Higgs field.

1.1 Quantum Fluctuation in the Inflationary Universe

We begin with describing the universe by the isotropic Friedmann–Lemaitre–Robertson–Walker

(FLRW) metric

ds2 = dt2 − a2 (t) d~x2, (1.1)

where t is the cosmic time and a (t) is the scale factor. During inflation, the universe can be

well approximated as a de Sitter spacetime, where the scale factor increases exponentially in

1



time a (t) = a0e
Ht, and the Hubble parameter

H2 =
ȧ

a
=

ρ

3M2
pl

(1.2)

is almost a constant. (Mpl ≡ 1/
√

8πG = 2.435 × 1018 GeV is the reduced Planck mass.)

One usually quantifies the length of inflation by the number of e-folds, which is given by

N = Ht. The constant expansion rate of the spacetime provides an event horizon located

at the distance r = H−1.

We are interested in the behavior of scalar fields during inflation. The equation of motion

of a scalar field φ in a FLRW metric is given by

φ̈+ 3Hφ̇− 1

a2
∇2φ+

dV (φ)

dφ
= 0, (1.3)

where an overhead dot represents the derivative with respect to the cosmic time t, and

∇ = (∂1, ∂2, ∂3) is the usual spatial gradient. Notice that the expansion of the background

spacetime generates an additional 3Hφ̇ term in Eq. (1.3), which provides a Hubble friction

to the motion of φ. If one approximates the potential of φ as a harmonic oscillator, V (φ) '
1
2
m2

effφ
2, with the effective mass m2

eff = V ′′ (φ), the classical relaxation time (oscillation

period) of φ in the absence of the Hubble friction term is

τ ∼ m−1
eff ∼

√
V ′′ (φ)

−1
. (1.4)

During inflation, the relevant time scale is the Hubble time scale H−1. Thus, if a scalar

field φ has a mass m2
eff � H2, there is insufficient time for the scalar field to oscillate or

change. Any non-zero field values of φ remains “frozen” until the end of inflation period.

More precisely, for m2
eff � H2, the oscillator is in the overdamped regime, and the Hubble

friction term dominates over the first term of Eq. (1.3)

φ̈� 3Hφ̇. (1.5)

In this case, the terminal speed of φ is given by the slow-roll approximation as

φ̇ ' −1

3H

dV

dφ
(1.6)

2



so φ can only change slowly via classical motion. However, scalar fields can still obtain non-

zero field from quantum effect. In the following sections, we will explain how scalar fields

in the slow-roll regime (m2 � H2) can develop large field values from quantum fluctuation

during inflation. But before we start the analysis, let us note that if the scalar field is very

massive, m2 � H2, non-zero field value of φ can always relax via classical motion within a

few Hubble time H−1 so quantum fluctuations are suppressed for very massive scalar fields.

1.1.1 Quantization of Scalar Fields in de Sitter Space

To understand the growth of the vacuum expectation of a scalar field φ in a changing

spacetime, we first consider the case where the scalar field φ is massless and non-interacting,

namely V ′ (φ) = 0. We expand φ (~x, t) in the momentum Fourier modes1 as

φ (~x, t) =

∫
d3k

(2π)3/2

[
a†kψk (t) ei

~k·~x + akψ
∗
k (t) e−i

~k·~x
]
, (1.7)

where a±k are the creation and annihilation operators after quantization [10, 11, 14, 15]. The

time dependence of the k mode, ψk (t), satisfies the equation of motion

ψ̈k (t) + 3Hψ̇k (t) + ~k2e−2Htψk (t) = 0, (1.8)

which has a solution

ψk (t) =
iH

k
√

2k

(
1 +

k

iH
e−Ht

)
exp

(
ik

H
e−Ht

)
. (1.9)

We can see that the solution (1.9) is the physical one because (1) in the limit that k � H

while kt ∼ const., the short-wavelength solution

ψk →
i√
2k
e−ikteik/H (1.10)

recovers the plane wave solution in Minkowski space; (2) for long-wavelength mode satisfying

ke−Ht < H, the solution

ψk →
iH

k
√

2k
(1.11)

1In our notation, k =
∣∣∣~k∣∣∣ is the comoving momentum or comoving wave number, which is time indepen-

dent. The physical momentum or wave number is p = k/a (t), which decreases as the space expands.

3



ceases to oscillate corresponding to mode that is outside the event horizon.

The quantum fluctuation of φ can be characterized by the variance of the field, 〈φ2〉. The

solution of φ in the de Sitter space yields an vacuum expectation value

〈
0
∣∣φ2 (t)

∣∣ 0〉 =

∫
d3k

(2π)3 |ψk (t)|2 =

∫
d3k

(2π)3

(
e−2Ht

k
+
H2

2k3

)
. (1.12)

Note this is expressed in terms of the comoving momentum k but not the physical momentum

(p = k/a = ke−Ht). If we rewrite this in terms of the physical momentum p, we find

〈
φ2
〉

=

∫
d3p

(2π)3 p

(
1

2
+
H2

2p2

)
. (1.13)

The first term in the parentheses describes the usual contribution from the vacuum fluctu-

ation in Minkowski space. This term has UV divergence but it can be fixed by the usual

renormalization procedure. The second term in the parentheses is due to the expansion of

space and it appears only when the Hubble parameter H is large and nonzero. This term

is especially interesting because it implies that particles can be created from the vacuum of

an expanding universe. By comparing it with the usual 〈φ2〉 in Minkoswki space, we find

Eq. (1.13) represents a state with nonzero occupation number

np =
H2

2p2
. (1.14)

Note that the contribution to 〈φ2〉 from low p diverges in Eq. (1.13). This happens

only in the pure de Sitter universes where the inflation stage exists forever. In a realistic

inflationary universe, the exponential expansion phase only lasts for a finite period of time

t. If the inflationary period starts at t = 0, the longest quantum fluctuation, which exists

the horizon at t = 0, only has a physical momentum p ' He−Ht at time t. On the other

hand, fluctuations with wavelengths much shorter than the size of horizon H−1 do no feel

the expansion of the space, and their spectra are indistinguishable from that in Minkowski

space. (This is illustrated in Fig. 1.1) Therefore, in a realistic inflation theory, the quantum

fluctuation for a massless scalar field is finite and is given by

〈
φ2
〉
≈ H2

2 (2π)3

∫ H

He−Ht

d3p

p3
=
H3

4π2
t. (1.15)
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p t = 0 
H 

p t = t 
H He-Ht 

Outside  
the horizon 

No difference from 
Minkowski space 

Inflationary 
region 

Figure 1.1: The spectrum of the quantum fluctuation generated in a realistic inflation theory.

For mode p � H, the spectrum is the same as that in Minkowski space. For mode p = H

leaving the horizon at t = 0, it grows to p = He−Ht at t = t. Inflation which lasts for a finite

time t generates the quantum fluctuation in He−Ht . p . H.

Similarly, one can show for scalar fields with nonzero mass m and m < H, the quantum

fluctuation is 〈
φ2
〉

=
3H4

8π2m2

[
1− exp

(
−2m2

H
t

)]
. (1.16)

Note for m2t < H, the massive result (1.16) reduces to the massless one (1.15), which is a

very useful approximation when a scalar field only experiences a short period of inflation.

To better understand the physical interpretation of these results, we observe that the 〈φ2〉

we computed are dominated by the large occupation number np from the exponentially long

wavelength mode (p ∼ He−Ht). Those fluctuations are also characterized by long correlation

length. A calculation in de Sitter space on the correlation functions of scalar fields shows

[16]

〈φ (~x, t)φ (~y, t)〉 ≈
〈
φ2 (~x, t)

〉(
1− 1

Ht
lnHl

)
. (1.17)

For large separations H−1 . l . H−1eHt, the magnitudes of the scalar fields are highly

correlated. Thus, we can treat the long-wavelength quantum fluctuations of a scalar field

created during inflation as a weakly inhomogeneous (semi)classical field. In order to simplify

the analysis of the postinflationary evolution of the quantum field, we identify the classical

5



field value by the vacuum expectation value (VEV) of φ as

φ0 ≡
√
〈φ2〉. (1.18)

1.1.2 Stochastic Approach

Another approach to analyze the quantum fluctuation during inflation is to consider the dif-

fusion process [17, 18]. One can interpret the generation of the nonzero vacuum expectation

value of scalar fields as the scalar field φ going through several quantum jumps or quantum

tunnelings away from its equilibrium minimum in the potential V (φ). The entire process

is similar to a particle undergoing Brownian motion, and can be described by the diffusion

equation [19]
∂P (φ, t)

∂t
= D

∂2P (φ, t)

∂φ2
. (1.19)

Here D is the diffusion coefficient to be determined. P (φ, t) is the probability distribution to

find the field value φ in a patch of the space at time t. To determine the diffusion coefficient

D, we can consider the case of a massless scalar field (1.15), where expectation value of φ2

is given by 〈
φ2 (t)

〉
≡
∫ ∞
−∞

φ2P (φ, t) dφ =
H3

4π2
t. (1.20)

Taking the time derivative, the diffusion coefficient can be found by

H3

4π2
=

∫
φ2∂P

∂t
dφ = D

∫
φ2∂

2P

∂φ2
dφ = 2D, (1.21)

where in the last equality we assume that P (φ, t) is normalized as
∫∞
−∞ P (φ, t) dφ = 1.

We can also compute the probability distribution by solving Eq. (1.19). With the initial

condition P (φ, 0) = δ (φ), we find

P (φ, t) =

√
2π

H3t
exp

(
−2π2φ2

H3t

)
, (1.22)

which can consistently reproduces the massless result of (1.15).

For massive or interacting scalar fields [V ′ (φ) 6= 0], the generated φ field can move toward

its minimum in the potential following its equation of motion. Thus, for V ′ (φ) 6= 0, we need

6



to add an additional drift term − ∂
∂φ

[Pµ (φ, t)] to the diffusion equation, whereµ is the drift

coefficient. The slow-roll condition (1.6) of scalar fields during inflation provides the drift

coefficient being

µ =
∂φ

∂t
=
−1

3H

dV

dφ
, (1.23)

so the diffusion equation for the massive or interacting case [V ′ (φ) 6= 0] is [20]

∂P (φ, t)

∂t
=
H3

8π2

∂2P (φ, t)

∂φ2
+

1

3H

∂

∂φ

[
P (φ, t)

dV

dφ

]
. (1.24)

This diffusion equation is also known as the Fokker-Planck equation. Again, we can

reproduce the result we obtained from the quantization approach (1.16) for the massive

scalar with a potential V (φ) = 1
2
m2φ2. Considering the case where the distribution of φ is

in equilibrium ∂P
∂t

= 0, the Fokker-Planck equation (1.24) can reduce to

∂P (φ)

∂φ
= − 8π2

3H4
m2φP (φ) , (1.25)

which has a solution

P (φ) = N exp

(
−4π2m2

3H4
φ2

)
, (1.26)

with some normalization factor N . Integrading this distribution with φ2, we obtain the

vacuum expectation value of φ2 as

〈
φ2
〉

=
3H4

8π2m2
, (1.27)

which agrees with the result of Eq. (1.16) when t→∞.

For a scalar field φ with a general form of the potential V (φ), we have the equilibrium

Fokker-Planck equation (∂P
∂t

= 0) as

∂P (φ)

∂φ
= − 8π2

3H4
P (φ)

dV (φ)

dφ
. (1.28)

The general solution to the equilibrium Fokker-Planck equation can be easily obtained as

P (φ) = N exp

[
− 8π2

3H4
V (φ)

]
. (1.29)
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From this probability distribution (1.29), we see the scalar field φ can have non-vanishing

transition probability for V (φ) . H4. For the potential of the form V (φ) = βnφ
2n, n ∈ N,

the expectation value is 〈
φ2
〉

=

(
3H4

8π2βn

)1/n Γ
(

3
2n

)
Γ
(

1
2n

) , (1.30)

which can also be estimated by

V
(√
〈φ2〉

)
∼ βn

(
H4/n/β1/n

n

)n ∼ H4. (1.31)

(See Appendix A for the derivation.) The physical interpretation of Eq. (1.31) is that the

expanding background in the de Sitter space provides quantum fluctuations with energy

density in the order of H4. Therefore, any scalar fields with m2 � H2 during inflation

can receive a VEV φ such that V (φ) ∼ H4. Note that if the scalar field is very massive

m2 � H2, the quantum fluctuation is suppressed via the classical relaxation.

1.1.3 Quantum Fluctuation of the Inflaton

In the above analysis, we have assumed the Hubble parameter H is independent from the

VEV of the scalar field φ. In general, the VEV of φ can affect the expansion rate of the

universe via its energy density so more generally one should write the diffusion equation

(1.24) as
∂P (φ, t)

∂t
= −∂j (φ, t)

∂φ
, (1.32)

where j (φ, t) is the probability current in (φ, t)-space given by

−j (φ, t) =
∂

∂φ

[
H3P (φ, t)

8π2

]
+
P (φ, t)

3H

dV

dφ
. (1.33)

If a scalar field φ, like the inflaton I, dominates the energy density ρ of the universe via

its potential energy V (φ), the Hubble parameter is determined by the VEV of φ via

H2 (φ) =
ρ

3M2
pl

' 1

3M2
pl

V (φ) , (1.34)

which gives the probability current

−j (φ, t) =
H3

8π2

∂P

∂φ
+

P

8π2

∂H3

∂φ
+

P

3H

dV

dφ
. (1.35)
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Using the relation that
∂H3

∂φ
=

3

2
H3 1

V

dV

dφ
, (1.36)

we find the probability current j (φ, t) for the universe with the potential energy of φ domi-

nates the energy density is

−j (φ, t) =
1

3H

[
3H4

8π2

∂P

∂φ
+

(
9H4

16π2

1

V
+ 1

)
P
dV

dφ

]
(1.37)

=
1

3H

[
8V 2

3m4
pl

∂P

∂φ
+

(
1 +

4V

m4
pl

)
P
dV

dφ

]
, (1.38)

where mpl =
√

8πMpl = 1.22 × 1019 GeV is the Planck mass. Next, we want to find the

equilibrium distribution, ∂P/∂t = 0, in this case. The solution to Eq. (1.32) with j (φ, t) 6= 0

corresponds to a constant probability current flowing from φ = −∞ to φ =∞, which is not

accessible by any physical initial condition [18]. Thus, we should restrict to the cases where

j (φ, t) = 0. Furthermore, the stochastic approach is valid only when the potential energy of

φ is less than the Planck scale [V (φ)� m4
pl] so we approximate Eq. (1.38) as

∂ lnP (φ)

∂φ
= −

3m4
pl

8V 2

dV

dφ
=

3m4
pl

8

d

dφ

[
V −1 (φ)

]
. (1.39)

The solution to Eq. (1.39) is

P (φ) = N exp

[
3m4

pl

8V (φ)

]
, (1.40)

where the normalization N is determined by
∫
P (φ) dφ = 1. Since this distribution P (φ)

has a clear-cut maximum at φ = 0 [assuming φ = 0 is the minimum of V (φ)], one find the

equilibrium probability distribution in this case is

P (φ) = exp

[
−

3m4
pl

8

(
1

V (0)
− 1

V (φ)

)]
(1.41)

upto an unimportant sub-exponential factor. Note that one can also obtain the result (1.41)

via the instanton approach as first done by Hawking and Moss [21, 22]. Tunneling problem

in quantum field theory is described by the instanton solution connecting the two states. In

a de Sitter space, the transition rate per unit volume of both the field φ and the background
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metric gµν experience quantum tunneling from the minimum φ = 0 to φ = φ1 is proportional

to
Γ

V
∝ exp [SE (0)− SE (φ1)] , (1.42)

where the Euclidean action SE in de Sitter space is given by

SE (φ) = −
3m4

pl

8V (φ)
. (1.43)

Since in equilibrium, the probability of the field being at a value φ is proportional to the

transition rate Γ of the field to that value φ, Eq. (1.42) recovers the result of stochastic

approach (1.41).

1.1.4 Quantum Fluctuation of the Higgs Field

The extension of these results to multiple scalar fields is straightforward. In the case of the

standard model Higgs, the system has both the inflaton I and the Higgs field Φ in the early

universe. While the energy density of the universe is primarily controlled by the inflaton

potential V (I), the Higgs field as a spectator field still experience the exponential expansion

of the space and can develop a large vacuum expectation value by the end of inflation. In

this case, the quantum fluctuation of the Higgs field can be well described by the analysis in

Sec. 1.1.2.

The standard model Higgs field has a tree-level potential

V (Φ) = m2Φ†Φ + λ
(
Φ†Φ

)2
, (1.44)

where Φ is an SU(2) doublet. Using a gauge transformation, one can write the classical

field as Φ =
{

0, eiθφ
}
/
√

2, where φ(x) is real. For energy scale above the electroweak scale

(µ� vEW ), this potential can be fairly approximated by the quartic potential

V (φ) =
1

4
λφ4, (1.45)

with a running quartic coupling λ (φ) . 0.1 for φ � vEW whose evolution can be obtained

by solving the RGEs. From Eq. (1.29), we see the equilibrium distribution for a potential
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Reheating 

V(ϕ) 

ϕ 

Second Min. 

Trapped 

Figure 1.2: Illustration for the initial condition 1 (IC-1)—A metastable vacuum at large

VEV which is later destabilized during reheating.

with n = 4 is given by

P (φ) = N exp

(
−2π2λφ4

3H4

)
. (1.46)

which gives the equilibrium Higgs VEV as [23] (see also Appendix A)

φI =
√
〈φ2〉 =

√
Γ (3/4)

Γ (1/4)

(
3

2π2λ

)1/4

H ∼= 0.36
H

λ1/4
. (1.47)

During inflation, the Hubble parameter can be as large as H ∼ 1012 GeV [24, 25], which

gives a Higgs VEV in the order of φI ∼ 1012 GeV as well. With this large VEV, the Higgs

field is sensitive to higher scale physics. One can consider two possible modifications to the

standard model Higgs potential at high energy scales: (1) the Higgs potential might have a

metastable vacuum at the large VEV due to higher-dimensional operators; (2) there could

also be interaction between the Higgs field and the inflaton.

1.1.4.1 Initial Condition 1 (IC-1): Metastable Vacuum at Large VEVs

The Higgs quartic coupling λ, although constant at tree-level, are modified by both loop and

finite temperature corrections. Due to the contribution from the top quark Yukawa coupling,

λ turns negative at the scale around φ ∼ 1012 GeV, which generates a second minimum at

Planckian scale. The result is that the electroweak vacuum at φ = vEW = 246.22 GeV is
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Last N e-folds 
of inflation V(ϕ) 
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Figure 1.3: Illustration for the initial condition 2 (IC-2)—Delayed quantum fluctuation of

the Higgs field due to the Higgs-inflaton couplings.

only metastable at zero temperature [9].

At the large VEVs, the Higgs potential may be sensitive to the effects of higher-dimensional

operators

Oφ,n =
φn

Λn−4
φ,n

n ≥ 6, (1.48)

which can raise the second minimum and consequently stabilize the electroweak vacuum. If

such operators lift the second minimum but don’t eliminate it, one can have a metastable

vacuum at large Higgs VEVs. The Higgs VEV may take an initial large value during inflation,

similar to the initial VEV of the inflaton field itself in chaotic inflation models (see Fig. 1.2 for

the illustration). During inflation, such a VEV evolves towards the false vacuum from above,

and then remains trapped in this false vacuum until destabilized by thermal corrections in

reheating. Subsequently, the field rolls to the global minimum at φ = 0, until electroweak

symmetry is broken at a significantly later time.
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1.1.4.2 Initial Condition 2 (IC-2): Delayed Quantum Fluctuation due to the

Higgs-Inflaton Couplings

At large VEV, the Higgs field can also be sensitive to the Higgs-inflaton coupling of the form

LφI = −c(Φ†Φ)m/2In

Mm+n−4
pl

, (1.49)

where I is the inflaton field and Φ is the Higgs field. Such couplings can contribute signifi-

cantly to the effective mass of the Higgs field as

∆m2
eff,φ (φ, I) =

∂2V (φ, I)

∂φ2
= cm (m− 1)

φm−2In

Mm+n−4
pl

. (1.50)

During the early stages of the inflation, the inflaton VEV 〈I〉 is large (superplanckian) and

provides a large effective mass to the Higgs field. As explained in Sec. 1.1, when meff,φ & H

the expansion of the universe is not sufficiently rapid to maintain the field at large VEVs,

hence, suppressing the quantum fluctuation of the Higgs. At the later time of inflation, 〈I〉

decreases; consequently this term becomes negligible and the Higgs VEV starts to develop

(see Fig. 1.3). The evolution of the distribution of the Higgs field is then determined by

the Fokker-Planck equation (1.33). If the Higgs VEV grows during the last Nlast e-folds of

inflation, one can approximate the resulting average VEV as

φ0 ' min

(√
Nlast

H

2π
, φI

)
. (1.51)

In both cases, the spectra of the Higgs field fluctuation are modified, which we will discuss

in detail in Chapters 2 and 5. In the following sections, we will study the relaxation of the

Higgs VEV in these possible scenarios during reheating.

1.2 Reheating

Now that we have established that the Higgs field can develop a large VEV during inflation,

we are interested in its subsequent evolution to its equilibrium value. Relaxation begins

when the Hubble parameter is comparable to the effective mass of the Higgs field, H (I) ≈

13



meff (φ), which is within the reheating epoch. Therefore, this relaxation is sensitive to finite

temperature effects due to the plasma, and so we now proceed to discuss reheating.

In this dissertation, we consider the case that the energy density is never dominated

by the Higgs field so the expansion history of the universe is unaffected by the present of

Higgs VEV. Inflaton oscillations dominate until the transition to the radiation dominated

era, which occurs when the inflaton decay width is comparable to the Hubble parameter,

ΓI ∼ HRH , which typically occurs after the Higgs field has lost a significant portion of its

energy. Consequently, the reheat temperature TRH ∼
√

ΓIMpl, is generally only weakly

constrained [26].

For simplicity, we assume coherent oscillations begin instantly at the end of the inflation-

ary epoch, and as a simple model, we assume that the inflaton decays entirely to radiation

at a constant rate,

ρ̇r + 4H(t)ρr = ΓIρI , (1.52)

where

ρI =
Λ4
I

a(t)3
e−ΓI t (1.53)

is the energy density of the inflaton field and ΛI is the energy scale of inflation. The evolution

of the Hubble parameter is given by

H(t) ≡ ȧ

a
=

1

Mpl

√
ρr + ρI

3
. (1.54)

This is a complete system of equations for a (t), ρr (t) that may be solved independently

of the evolution of the Higgs condensate. Note in this simplified inflation model, ΛI and

ΓI completely determine the expansion history of the universe after inflation. Throughout

this and next chapters, we take t = 0 to be the beginning of the coherent oscillation of the

inflaton field; during the coherent oscillation epoch, the universe evolves as if it were matter

dominated, until the radiation from reheating dominates at tRH ≡ 1/ΓI .

Before the reheating is complete (0 < t < tRH), one can approximate the scale factor as

a = (1 + t/t′)2/3, and the inflaton energy as

ρI =
4M2

pl

3 (t+ t′)2 =
Λ4
I

a (t)3 , (1.55)
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where

t′ ≡
√

4

3

Mpl

Λ2
I

(1.56)

is a characteristic time scale for the relaxation of inflaton. By solving the system of equa-

tions (1.52), (1.53), and (1.54) with these approximations, one can find the evolution of the

radiation density

ρr (t) =
2

5

√
3MplΓIΛ

2
Ia
−3/2

(
1− a−5/2

)
(1.57)

=
4

5
M2

plΓI
1

t+ t′

[
1−

(
t′

t+ t′

)5/3
]
. (1.58)

For 0 < t < t′, the radiation energy increases linearly as ρr ≈ ΓIΛ
4
It while the decay of

inflaton energy is negligible ρI ≈ Λ4
I . For t′ < t < tRH , the energy densities of both radiation

and inflaton decrease:

ρr ≈
4

5
M2

pl

ΓI
t

=
2

5

√
3mplΓIΛ

2
Ia
−3/2, (1.59)

ρI ≈
4

3
M2

pl

1

t2
. (1.60)

The radiation energy density reaches maximum

ρr,max =

(
3

8

)8/5
√

4

3
MplΓIΛ

2
I
∼= 0.24MplΓIΛ

2
I (1.61)

at tmax =
[
(8/3)3/5 − 1

]
t′ ∼= 0.80 t′.

During reheating, the effective temperature of the plasma is defined using the radiation

density as

ρr =
g∗π

2

30
T 4, (1.62)

where the effectively massless degrees of freedom for T & 300 GeV is g∗ = 106.75 in the

standard model. The maximum temperature of the plasma during reheating is

Tmax =

[
30

π2g∗

(
3

8

)8/5
√

4

3
MplΓIΛ

2
I

]1/4

∼= 0.92 g−1/4
∗

(
MplΓIΛ

2
I

)1/4
. (1.63)

For t� t′, the temperature evolves as

T = TRH

(
tRH
t

)1/4

= TRH

(
a

aRH

)3/8

, (1.64)
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until it reaches the reheat temperature

TRH =

(
24

π2g∗

)1/4√
MplΓI ∼= 1.25 g−1/4

∗
√
MplΓI (1.65)

at tRH . Subsequently, radiation dominates the energy density and the temperature evolves

as

T =

(
45

2π2g∗

)1/4
√
Mpl

t
. (1.66)

1.3 Evolution of the Higgs VEV

We now turn our attention to the relaxation of the Higgs VEV, which evolves as [27]

φ̈+ 3H (t) φ̇+
∂Vφ [φ, T (t)]

∂φ
+ ΓH φ̇ = 0, (1.67)

where Vφ(φ, T ) is the Higgs effective potential, including modifications from the decays of

the condensate [23]. ΓH describes the effect of the perturbative decay of the condensate. In

the first subsection below, we discuss the one-loop corrected potential, including two-loop

corrections to the renormalization group equations (RGE). Subsequently, we consider the

non-perturbative decay of the Higgs condensate, followed by perturbative decay. Finally, we

present a numerical analysis of the evolution of the Higgs condensate.

1.3.1 Effective Potential

The Standard Model Higgs potential computed to a fixed order in perturbation theory is

generally gauge-dependent, although the value of the potential at the extrema are not (see, for

example, [28, 29]). One can ensure gauge-invariant results by removing the gauge-dependence

of the potential using Nielsen identities [30–32]. Here we use the Landau gauge, which

has good numerical agreement with the corrected potential [28, 33]. In our analysis, we

have used the one-loop corrected potential [34], with running couplings [including two-loop

corrections to the renormalization group (RG) equations2, as given in [9]]. The one-loop

2Note the L-loop effective potential improved by (L+ 1)-loop RGE resums all Lth-to-leading logarithm
contributions [34–36].
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Figure 1.4: The Higgs effective potential at zero temperature including 1-loop contribution

and 2-loop corrections to the RGEs. The blue, yellow, and green lines indicate the potential

with the Higgs mass Mh = 126, 125, and 124 GeV, respectively. The top quark pole mass is

taken to be Mt = 173.07 GeV.

zero-temperature effective potential is

V 1−loop
φ =

1

2
m2
φφ

2 +
λ

4
φ4 +

1

(4π)2

{
mH(φ)4

4

[
ln

(
mH(φ)2

µ2

)
− 3

2

]
+

3mG(φ)4

4

[
ln

(
mG(φ)2

µ2

)
− 3

2

]
+

3mW (φ)4

2

[
ln

(
mW (φ)2

µ2

)
− 5

6

]
+

3mZ(φ)4

4

[
ln

(
mZ(φ)2

µ2

)
− 5

6

]
− 3mt(φ)4

[
ln

(
mt(φ)2

µ2

)
− 3

2

]}
, (1.68)

where µ is the renormalization scale and the tree-level masses for the W bosons, Z boson,

top quark, Higgs boson, and Goldstone mode are

m2
W =

g2φ2

4
, m2

Z =
(g2 + g′ 2)φ2

4
, mt =

ytφ√
2
,

m2
H = m2

φ + 3λφ2, m2
G = m2

φ + λ. (1.69)

Figure 1.4 illustrates this Higgs effective potential at various Higgs mass Mh. Depending

on the precise value of Mh, the Planckian vacuum appears at around φ & 1012 GeV. Quantum

fluctuation during inflation can bring the Higgs field into this Planckian vacuum and end

the universe by a big crunch. To preserve the history of our universe, one can introduce

higher dimensional operator to completely stabilize the electroweak vacuum as discussed
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in Sec. 1.1.4.1 as IC-1. One can also consider the Higgs-inflaton couplings which limit the

growth of the Higgs VEV to below this instability scale (IC-2 in Sec. 1.1.4.2). Finally, one

can also constrain the inflation scale ΛI to reduce the resulting quantum fluctuation of the

Higgs VEV without any modification to the standard model Higgs potential.

To consider the relaxation of the Higgs field during reheating, one needs to include the

thermal corrections to the potential. The one-loop finite temperature contribution to the

Higgs potential is [37, 38],

∆VT (φ, T ) = − T 2

2π2

[
6m2

WJB

(mW

T

)
+ 3m2

ZJB

(mZ

T

)
+ 12m2

tJF

(mt

T

)]
, (1.70)

where

JB(y) =
∞∑
n=1

1

n2
K2(ny), (1.71)

JF (y) =
∞∑
n=1

(−1)n+1

n2
K2(ny), (1.72)

Kα(x) is the modified Bessel function of the second kind, and we have ignored the con-

tributions from Higgs bosons and Goldstone mode, which only dominate when φ . vEW .

We emphasize that we do not use the high temperature expansion, as during reheating the

condition T (t) � φ(t) is not satisfied at all times. The renormalization scale µ is taken to

be
√
φ2 + T 2.

We note that two-loop corrections to the effective potential may be significant at the

boundary of the metastability region [9]; however, a self-consistent analysis at two-loop

order would include finite temperature effects in the RG equations, which is beyond the

scope of this dissertation.

After the Higgs VEV passes through zero, it generally oscillates around its minimum at

φ = 0, which remains a minimum for T � vEW . The amplitude of the oscillation decreases

due to Hubble friction term. During this oscillation, the Higgs condensate can then decay

perturbatively and non-perturbatively into Standard Model particles. The non-perturbative

decay happens much faster than the perturbative decay and is the dominant channel, as

pointed out by [23].
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1.3.2 Non-Perturbative Decay

The non-perturbative decay of the Higgs field is due to the backreaction of the produced

particles. The oscillation of the Higgs field provides a time-dependent mass term for all

the coupled particles, which can cause resonant production of the particles. The produced

particles then induce an effective mass term to the Higgs condensate as a backreaction; this

attenuates the oscillation of the Higgs field until the resonant production is off [23, 39].

The non-perturbative decay channel of Higgs is dominated by h → WW, ZZ. The

Lagrangian containing the Standard Model weak gauge fields and the Higgs sector is

L =
1

2
gµν∂µφ∂νφ− Vφ(φ, T ) + gµν

[
1

4
g2W+

µ W
−
ν +

1

8

(
g2 + g′2

)
ZµZν

]
φ2 + LA, kin, (1.73)

where the kinetic terms of the gauge fields can be expanded as

LA, kin = −1

2

(
∇µW

+
ν −∇νW

+
µ

) (
∇µW ν− −∇νW ν−)

− 1

4
(∇µZν −∇νZµ)2 +O(g)(non-Abelian terms). (1.74)

Since the non-Abelian contributions are small at the beginning of the resonant production

of W and Z bosons, we ignore those terms [23, 39]. We also work specifically in flat FLRW

spacetime, gµν = a2 (τ) ηµν , with conformal time τ =
∫
a−1dt. The resonant production of

the weak gauge fields, Aµ = W±
µ or Zµ, in momentum space is then described by

A0

(
~k, τ
)

=
−ikA′L

(
~k, τ
)

k2 + a2m2
A (φ)

, (1.75)

A′′T,i + ω2
k (φ)AT,i = 0, (1.76)

and

A′′L + ω2
k (φ)AL +

2k2

ω2
k (φ)

∂τ ln (amA)A′L = 0, (1.77)

where ωk =
√
k2 + a2m2

A (φ) and prime denotes differentiation with respect to conformal

time dτ . ~AT

(
~k, t
)

and AL

(
~k, t
)

are the transverse and longitudinal components of the

spatial component ~A
(
~k, t
)

, respectively. The mass term m2
A (φ) is given in Eq. (1.69) and
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can include the thermal correction by replacing φ2 → φ2 + CAT
2 where we use CW = 2/3,

and CZ < 1 is determined by diagonalizing the mass matrix [40]. Due to extra friction term

in Eq. (1.77) for the longitudinal component AL, we expect the resonance production of this

mode to be suppressed. A0, which depends only on AL through Eq. (1.75), should also be

suppressed [39]. Hence, we focus on the transverse mode AT only.

Resonant production of particles can be understood as the amplification of vacuum fluc-

tuations. The number of particles in each mode produced from the vacuum is

nk =
1

2ωk

[∣∣∣A′µ(~k, τ)
∣∣∣2 + ω2

k

∣∣∣Aµ(~k, τ)
∣∣∣2]− 1

2
. (1.78)

The initial conditions are taken to be the WKB approximation of the vacuum solution,

AT (k, 0) =
1√
2ωk

; A′T (k, 0) = −i
√
ωk
2
, (1.79)

which satisfy nk(0) = 0 and the Wronskian condition AA′∗ − A∗A′ = i.

Fig. 1.5 shows the amplification of the W field, which increases each time the Higgs

VEV passes through zero. The number density nk is shown in Fig. 1.6. It has a sequence

of flat steps, which are separated by peaks. Those peaks occur when φ = 0; due to the

rapidly changing mass, the number of particles is not well defined at these points. Particle

number is well defined only when φ reaches a local maxima or minima. We approximate the

particle number of Aµ quanta within each oscillation of φ by its value when φ̇ = 0, which is

supported by the flatness of the steps in Fig. 1.6. The resonant production begins once the

Higgs VEV starts to oscillate at τ ∼ 800/φ0. The decrease of nk at τ ∼ 2500/φ0 indicates

the system has a stochastic resonance, which is a distinctive feature of parametric resonance

in an expanding universe [41]. The resonant production then ceases at τ ∼ 3300/φ0 because

the amplitude of φ has decreased to the order of T .

If we approximate the oscillation of the Higgs VEV by φ(τ) = φm cos(ωφτ), we can write

Eq. (1.76) as a Mathieu equation of the form

d2AT
dz2

+
(
m2 + b2 cos2 z

)
AT = 0 (1.80)
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Figure 1.5: Real and imaginary parts (blue and yellow lines) of WT (τ) for k = 0 for IC-1,

with the parameters ΛI = 1015 GeV, ΓI = 109 GeV, φ0 = 1015 GeV. The Higgs mass is set

at Mh = 126 GeV, and the top quark mass is Mt = 173.07 GeV. The metastable vacuum

is produced by the higher dimensional operator Oφ,10 with Λφ,10 = 6.52 × 1015 GeV. The

vertical lines designate the first time the Higgs VEV crosses zero, and the time of maximum

reheating, from left to right.
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Figure 1.6: log [nk(τ)] for k = 0, with the same parameters as Fig. 1.5. Note nk (τ) stops

increasing at τ ∼ 3300/φ0 because the amplitude of φ has decreased to the order of T . The

effective mass of W was then dominated by T instead of φ.
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where z = ωφτ , m2 ≈ [k2 + a2m2
A (φ = 0, T )] /ω2

φ and b2 ≈ a2m2
A (φm, T = 0) /ω2

φ. The Math-

ieu equation has an instability only when b & m2. Thus, resonant production is suppressed

for

k > kmax ≈
√
aωφmA (φm, 0)− a2m2

A (0, T ). (1.81)

The produced W and Z fields induce an effective mass for the Higgs field as a backreac-

tion,

m2
φ,W = −1

2
g2
〈
W+
µ W

µ−〉 (1.82)

m2
φ,Z = −1

4

(
g2 + g′2

)
〈ZµZµ〉 (1.83)

where the expectation value of A = W, Z can be approximated as [23, 41]

gµν 〈AµAν〉 ∼=
−2

a2

〈
A2
T

〉
≈ −1

π2a2

∫ ∞
0

k2dk

ωk
nk. (1.84)

In general, the integral in Eq. (1.84) will need to be regularized. However, in our case there

is no significant contribution from nk values with k & kmax, and so the integral is finite.

The upper limit can be approximated by kmax. One can then include the non-perturbative

decay of the Higgs by adding the induced mass terms Eqs. (1.82) and (1.83) into the Higgs

potential in Eq. (1.67).

Fig. 1.7 shows an example of the Higgs evolution with the non-perturbative decay for the

IC-1 scenario (see Sec. 1.1.4.1). The increasing effective masses from W and Z affect the

oscillation of Higgs when m2
φ,A & T ; these decrease the amplitude of the Higgs oscillation.

When the Higgs VEV decreases to φ . T , the resonant production of W and Z end, because

the non-perturbative decay channel is blocked by the large W and Z thermal masses. In

this case, one has only to consider perturbative decay channels, discussed in Sec. 1.3.3.

Note the generated W and Z bosons can decay perturbatively into fermions. This decay

could in principle obstruct the resonant production of W and Z in the usual Standard Model

case [42, 43]. However, in the parameter space that we are interested in, the average decay

times of W and Z bosons 〈ΓW,Z〉−1 are longer than the semiperiod of the Higgs oscillation.

Thus, we have ignored the decay of W and Z in our analysis.
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Figure 1.7: Non-perturbative decay of the Higgs condensate for IC-1, with the same pa-

rameters as Fig. 1.5. The blue solid (yellow dashed) line corresponds to evolution of the

Higgs VEV with (without) non-perturbative decay. The green dash-dotted line corresponds

to the temperature of the plasma. The vertical dashed line indicates the time of maximum

reheating.

The analysis in this section can be further improved by using a lattice gauge theory [43,

44]. However, as Fig. 1.7 demonstrates, the non-perturbative decay of the Higgs condensate

is relevant only after several oscillations, whereas in our later analysis, we will be primarily

interested in the cosmological consequence of the first few oscillation of the Higgs VEV.

1.3.3 Perturbative Decay—Thermalization

The perturbative decay of the Higgs condensate is described by the friction term ΓH φ̇ in the

equation of motion (1.67). The decay width can be computed through the imaginary part

of the self-energy operator

ΓH =
ImΠ

meff

, (1.85)

where meff = Re
√
∂2Vφ (φ, T ) /∂φ2 is the effective mass of the Higgs boson. In a finite-

temperature thermal background, ΓH corresponds to the thermalization rate of the Higgs

condensate.

Here we consider the fermionic decay channels, motivated by the large top Yukawa cou-

pling. (The dominant bosonic channels, WW and ZZ, are included in the non-perturbative
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calculation, which dominates their perturbative contribution.) In the thermal bath of

fermions, there are additional excitations which are the removals of antiparticles from the

Fermi sea (holes). The dispersion relations for particles and holes are [40, 45, 46]

ω̂p − k̂ −
g2
T

k̂
− g2

T

2k̂

(
1− ω̂p

k̂

)
ln

∣∣∣∣∣ ω̂p + k̂

ω̂p − k̂

∣∣∣∣∣ = 0, (1.86)

ω̂h + k̂ +
g2
T

k̂
− g2

T

2k̂

(
1 +

ω̂h

k̂

)
ln

∣∣∣∣∣ ω̂h + k̂

ω̂h − k̂

∣∣∣∣∣ = 0, (1.87)

where ω̂ (k) = ω/T , k̂ = k/T , and the subscripts p and h refer to particles and holes

respectively. Eq. (1.87) can also be expressed as

ω̂h = k̂ coth

(
k̂2

g2
T

+
k̂

ω̂h + k̂

)
, (1.88)

which is a convenient form for numerical purposes. We will specify the necessary coefficient

gT below. In these equations, we have made the approximation that the left- and right-

handed fermions have the same thermal mass m (T ) = gTT ; generically, this is not true

because they are in different representations of the Standard Model gauge group. However,

this difference, which is much smaller than the difference between the particle and hole

contributions, is negligible [40].

The dominant fermionic contribution to the thermalization of the Higgs condensate is

from the top quark, due to the large top-Higgs Yukawa coupling. The thermal mass of the

left-handed top quark is [40]

gT,t =

√
1

6
g2
s +

3M2
W + 1

9
(M2

Z −M2
W ) +M2

t +M2
b

8v2
EW

, (1.89)

where Mi are the physical masses at T = 0, and the strong coupling gs ∼= 1.220.

The presence of particles and holes in the fermionic plasma provides two thermalization

processes for the Higgs condensate. A Higgs boson can decay into a pair of particles or a

pair of holes respectively if

meff = 2ωi (ki) ; i = p, h (1.90)
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Figure 1.8: Higgs thermalization rate (ΓH) through the top quark compared with the Hubble

parameter for IC-1, with the same parameters as Fig. 1.5. The vertical dashed lines designate

the first time the Higgs VEV crosses zero, and the time of maximum reheating, from left to

right.

is satisfied. The contribution of each process to the decay width is

ImΠdec

T 2
=

y2
t

4πg4
T

∑
i=p,h

k̂2
i

(
ω̂2
i − k̂2

i

)2

(1− 2ni) , (1.91)

where yt is the top Yukawa coupling, and

nh,p =
1

exp (ω̂h,p) + 1
(1.92)

are the fermion distribution functions. Although this decay channel is blocked when mφ <

2 min [ωh (k)], a Higgs boson can also be absorbed by a hole to produce a particle. The

contribution of this absorption channel to the width is

ImΠabs

T 2
=

y2
t

2πg4
T

∑
i

k̂2
i

(
ω̂2
p − k̂2

i

)(
ω̂2
h − k̂2

i

)
(nh − np) (1.93)

where the index i sums over the solutions of

meff + ωh (ki) = ωp (ki) . (1.94)

The total thermalization rate is then the sum of two channels ImΠ = ImΠabs + ImΠdec.

For IC-1, Fig. 1.8 shows the thermalization rate of the Higgs condensate through the top

quark compared with the Hubble parameter. We see the thermalization rate is comparable
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Figure 1.9: Perturvative decay of the Higgs condensate for IC-1 through top quark, with the

same parameters as Fig. 1.5. The blue solid (yellow dashed) line corresponds to evolution of

the Higgs VEV with (without) the thermalization. The green dash-dotted line corresponds

to the temperature of the plasma. The vertical dashed line indicates the time of maximum

reheating.

to the Hubble parameter only after the maximum reheating has been reached. Therefore,

the evolution of the Higgs VEV is affected only at the later time of reheating as shown in

Fig. 1.9.

We have repeated the above analysis with the bottom quark in place of the top quark

and verified numerically that its contribution is negligible; we also note that plasma effects

can delay thermalization [47]. We also remark that particularly for IC-2, the thermalization

rate is frequently much smaller than the Hubble parameter.

1.3.4 Numerical Results

Figures 1.10 and 1.11 illustrate the typical evolution of the Higgs VEV (and temperature)

as functions of time for IC-1 and IC-2, respectively. For IC-1, we have used the operator

Oφ,10 =
φ10

Λ6
φ,10

(1.95)

with Λφ,10 = 6.52 × 1015 GeV to lift the second minimum generating a metastable vacuum

at φ = 1015 GeV (as discussed in Sec. 1.1.4.1). The inflationary parameters are chosen to be
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Figure 1.10: The evolution of the Higgs VEV for IC-1 (blue line) and temperature (purple

line) as a function of time, with the parameters ΛI = 1015 GeV and ΓI = 109 GeV. This

plot includes both the effect of non-perturbative decay and thermalization. The vertical line

designate the time of maximum reheating.
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Figure 1.11: The evolution of the Higgs VEV for IC-2 (blue solid line) and temperature (green

dash-dotted line) as a function of time, with the parameters ΛI = 1016 GeV, ΓI = 109 GeV,

and Nlast = 48. The resulting initial Higgs VEV is φ0 = 2.6 × 1013 GeV, and the first time

Higgs VEV crosses zero is at trlx = 3.4 × 10−14 GeV−1. The maximum reheat temperature

is Tmax = 2 × 1014 Gev. This plot includes both the effect of non-perturbative decay and

thermalization, although the effect of condensate decay is not appreciable in this case.
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ΛI = 1015 GeV and ΓI = 109 GeV in this IC-1 plot. For IC-2, the relevant parameters are

ΛI = 1016 GeV and ΓI = 109 GeV, and we have assumed Nlast = 48 to determine φ0, which

does not probe the Planckian vacuum. For both plots, we use 126 GeV and 173.07 GeV for

the masses of the Higgs boson and top quark, respectively.

In IC-1 scenario, the initial VEV φ0 = 1015 GeV is determined by the metastable vacuum

generated by the operator (1.95). In IC-2 scenario, though the Higgs VEV is constrained to

grow only in the last Nlast e-folds of inflation, it may still reach a large value if HI is large;

for these inflationary parameters, HI = 2.4 × 1013 GeV. The initial velocities of the Higgs

VEV are set to zero in our analysis.

In scenario IC-1, the Higgs VEV remains approximately constant at short times, until

reheating is sufficient to destabilize the second minimum, whereas in IC-2 the field relaxes

as soon as the Hubble parameter becomes sufficiently small. Subsequent oscillations have a

larger amplitude in the IC-1 scenario; this is due to the difference in ΛI values, which result

in less Hubble friction, and that the additional term (1.95) contributes to the velocity of the

VEV.

A notable feature in Fig. 1.10 is that shortly after maximum reheating, the Higgs con-

densate begins to oscillate more rapidly. This is due to the non-perturbative decay of the

Higgs condensate, as illustrated in Fig. 1.7 above. (In the IC-2 scenario, such features are

not relevant due to the rapid decay of the amplitude of oscillation.)

We see that both the thermal decay of the condensate and the non-perturbative decay of

the condensate have little effect on first approach of the VEV to zero. In the next section, we

will introduce a leptogenesis model which generates lepton asymmetry using the relaxation

of the Higgs VEV. In this scenario, the lepton asymmetry is produced primarily during the

first swing, and therefore, these decay processes have little effect on the total asymmetry

generated.
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CHAPTER 2

Leptogenesis via the Higgs Condensate Relaxation

As we discussed in the previous chapter, during the inflationary era, the Higgs field may

develop a stochastic distribution of vacuum expectation values (VEVs) due to the flatness

of its potential [10–12, 14, 15, 21, 23, 48], or it may be trapped in a quasi-stable minimum.

In both cases, the Higgs field relaxes to its vacuum state via a coherent motion, during

which time the Sakharov conditions [49], necessary for baryogenesis, are satisfied by the

time-dependent Higgs condensate and the lepton-number-violating Majorana masses in the

neutrino sector. At large VEVs, the Higgs field may be sensitive to physics beyond the

Standard Model, which can generate an effective chemical potential which increases the

energy of leptons in comparison to antileptons. Through the scattering of neutrinos and

Higgs bosons in the plasma produced by the decays of the inflaton, the system can produce

a net lepton asymmetry during reheating. The electroweak sphalerons then redistribute this

into baryons asymmetry matching the cosmological observations.

In this chapter, we will discuss this Higgs relaxation leptogenesis model in detail. The

structure of this chapter is as follows. In the next section, we reexamine the two mechanisms

by which the Higgs field can acquire a large vacuum expectation value during inflation.

Next, we introduce a higher-dimensional operator, involving only Standard Model fields,

which represents new physics at some high energy scale. In Sec. 2.2, we demonstrate that,

while the Higgs VEV is in motion, this operator induces an effective chemical potential

which distinguishes leptons from antileptons. We derive the resulting Boltzmann equation

for lepton number in Sec. 2.4. In Sec. 2.5, we derive the analytical estimation for the resulting

asymmetry. Then, we present a numerical analysis covering a variety of initial conditions

and scales for new physics, and we identify the allowed parameter space for a successful
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leptogenesis.

2.1 Initial Conditions for the Higgs VEV

We begin by motivating our project with the observation that the Higgs field can acquire a

large vacuum expectation value (VEV) for a variety of reasons during inflation; therefore,

an epoch of post-inflationary Higgs relaxation is a general feature of many cosmological

scenarios. In this work we are interested in generating an excess of leptons over antileptons

during this epoch.

When we generate the lepton asymmetry during this epoch of Higgs relaxation, we

will find that the resulting asymmetry depends on the initial value of the VEV, denoted√
〈φ2〉 = φ0. During inflation, quantum fluctuations of the Higgs field were ongoing, and

therefore different patches of the Universe had slightly different VEVs at the end of inflation.

Regions that begin with slightly different φ0 values consequently develop different baryon

asymmetries. This produces unacceptably large baryonic isocurvature perturbations [50–54],

which are constrained by CMB observations [24]. Therefore, in order to suppress isocurva-

ture perturbations in the late universe, it is necessary to have a small variation in these

values.

In this section, we examine the conditions for suppressing the variation between different

spacetime regions in the two initial conditions we introduced in Sec. 1.1.4: by trapping the

Higgs field in a false vacuum (IC-1), and through quantum fluctuations (IC-2), which are

suppressed by a Higgs-inflaton coupling until the later stage of inflation.

The Standard Model Higgs boson has a tree-level potential

V (Φ) = m2Φ†Φ + λ(Φ†Φ)2, (2.1)

where Φ is an SU(2) doublet. The classical field may be written as

Φ =
1√
2

 0

eiθφ

 , (2.2)
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where φ(x) is a real scalar field. The parameters m and λ, although constant at tree-

level, are modified by both loop and finite temperature corrections as discussed in Sec. 1.3.

For the experimentally preferred top quark mass and Higgs boson mass, loop corrections

result in a negative running coupling λ at sufficiently large VEVs, with the result that the

φ = vEW = 246.22 GeV minimum is metastable at zero temperature [9]. We note, however,

that a stable vacuum is possible within current experimental uncertainties [9].

The running of the quartic coupling produces a shallow potential, which has the con-

sequence that that a large VEV develops during inflation due to quantum fluctuations, at

least in the regime in which the Standard Model vacuum is stable [23]. We consider this

sort of scenario in subsection IC-2 below. Alternatively, the metastability of the electroweak

vacuum is frequently possible within the inflationary paradigm [55–57], and the Higgs po-

tential may be sensitive to higher-dimensional operators which lift the second minimum. We

consider this scenario in the subsequent subsection.

2.1.1 IC-1: Metastable Vacuum at Large VEVs

As we mentioned in Sec. 1.1.4.1, at the large VEVs, the Higgs potential may be sensitive to

the effects of higher-dimensional operators, which can lift the second minimum and conse-

quently stabilize the electroweak vacuum. The Higgs VEV may take an initial large value

during inflation, similar to the initial VEV of the inflaton field itself in chaotic inflation mod-

els. During inflation, such a VEV evolves towards the false vacuum from above, and then

remains trapped in this false vacuum until destabilized by thermal corrections in reheating.

Subsequently, the field rolls to the global minimum at φ = 0, until electroweak symmetry is

broken at a significantly later time.

In order to lift the second minimum, we consider terms of the form

Llift = − φ
10

Λ6
lift

. (2.3)

This non-renormalizable operator may be viewed as an effective operator arising from inte-

grating out heavy states in loops.

31



During inflation, thermal corrections in the supercooled universe are insufficient to desta-

bilize the metastable vacuum. We also ensure that the quantum fluctuations (discussed in

detail in the next subsection) do not destabilize the vacuum by requiring that the potential

barrier height ∆V � H4
I , where HI is the Hubble parameter near the end of inflation. In

order to suppress the above-mentioned isocurvature perturbations, we will ensure that fluc-

tuations about the false minimum are able to relax back to the minimum, for which it is

sufficient to ensure meff ∼
√
d2V/dφ2 > HI in the region probed by quantum fluctuations.

As a specific example, we consider the Higgs potential with one loop corrections [9]

with the experimentally preferred values Mh = 126 GeV and Mt = 173.07 GeV. Taking

Λlift = 6.52 × 1015 GeV gives a metastable minimum near φ = 1015 GeV, with a potential

barrier height of ∆V ≈ 1053 GeV4. We will consider HI ∼ 1011 GeV; in addition to

being insufficient to probe the region beyond the barrier, this is less than the effective mass

meff ∼ 1013 GeV in the region probed by quantum fluctuations. Provided that the maximum

reheat temperature is greater than ∼ 5×1013 GeV, thermal corrections during reheating are

sufficient to destabilize this vacuum.

2.1.2 IC-2: Quantum Fluctuations

The running coupling constant λ results in a shallow potential, and during inflation, scalar

fields with slowly rising potentials generically develop large VEVs. Qualitatively, the scalar

field in a de Sitter space can develop a large VEV via quantum effects, such as Hawking-Moss

instantons [10, 21] or stochastic growth [11, 14, 15] as we discussed in Chapter 1. The field

then relaxes to its equilibrium value via a classical motion, which requires a time

τφ ∼ m−1
eff ∼

(√
d2V/dφ2

)−1

. (2.4)

If the universe expands sufficiently quickly during inflation, then relaxation is too slow

and quantum jumps occur frequently enough to maintain a large VEV. Specifically, large

VEVs occur if the Hubble parameter HI =
√

8π/3Λ2
I/Mpl � τ−1

φ . For field values φ that

satisfy this relation, Hubble friction is sufficient to prevent the system from relaxing to its
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equilibrium value φ = 0. Averaged over superhorizon scales, the mean Higgs VEV is such

that V (φI) ∼ H4
I [10, 21, 23], provided that this VEV does not probe the second vacuum in

the case that the electroweak vacuum is quasistable.

Although the average vacuum expectation value is φI , there is variation between the

VEVs of different horizon-sized patches. Consequently, different patches of the observable

universe began with different φ0 values, and as discussed above, this generically results

in unacceptably large isocurvature perturbations. However, also as mentioned, the Higgs

potential is sensitive to the effects of higher-dimensional operators at large VEVs; here

we use such operators to limit the growth of the Higgs VEV to the last several e-folds of

inflation. This has the result that the isocurvature perturbations are limited to smaller

angular resolution scales than have been experimentally probed. Specifically, in Sec. 1.1.4.2,

we introduce one or more couplings between the Higgs and inflaton field of the form

LφI = −c(Φ†Φ)m/2In

Mm+n−4
pl

, (2.5)

which increases the effective mass of the Higgs field during the early stages of inflation,

when 〈I〉 is large (superplanckian, in the case of chaotic inflation). As explained above,

when τ−1
φ ∼ meff(φI) ∼ HI the expansion of the universe is not sufficiently rapid to trap the

field at large VEVs. At the end of slow-roll inflation, 〈I〉 decreases; consequently this term

becomes negligible and the Higgs acquires a large vacuum expectation value.

If the Higgs VEV grows during the last Nlast e-folds of inflation, it reaches the average

value

φ0 = min
(
φI ,
√
NlastHI/2π

)
. (2.6)

Provided Nlast . 48, the baryonic isocurvature perturbations develop only on the smallest

angular scales which are not yet constrained. (We will examine this condition in detail in

Chapter 5.)

We emphasize that operators of the form (2.5) may be viewed as effective operators

arising from integrating out heavy states in loops. We note that the change in 〈I〉 during

the slow-roll phase of inflation is model-dependent, and consequently the allowed range of
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parameters c, m, and n differs from model to model. This range may be quite narrow, and

so this scenario may require some fine-tuning.

As a concrete example, we consider only the term,

Vmix =
1

2

I2n

M2n−2
φ2, (2.7)

which induces an effective mass meff(〈I〉) = 〈I〉n /Mn−1 for the Higgs field. We define I1

as the VEV of the inflaton field value at the end of slow roll inflation, and I2 as the VEV

of the inflaton field 48 e-folds before the end of slow roll inflation. To ensure that the

Higgs VEV grows only during the last Nlast e-folds, we must choose parameters such that

meff(I2) ≈ HI . We illustrate this approach with quartic inflation (although this is disfavored

observationally; see Ref. [24]). With the inflaton potential VI = λII
4, slow roll inflation ends

when the inflaton as a vacuum expectation value of I1 = mpl/
√

2π. The number of e-folds

during the time in which the inflaton evolves from 〈I〉 to I1 is

N (〈I〉 → I1) = π

(
〈I〉
mpl

)2

− 1

2
, (2.8)

which gives

I2 =

√
Nlast + 1

2

π
mpl. (2.9)

(Although this field value is superplanckian, this is a feature of quartic inflation which does

not necessarily apply to other inflationary models.) The Hubble parameter at this field value

is given by

H2
I (I2) =

8π

3m2
pl

λII
4
2 =

8π

3

(
Nlast + 1

2

π

)2

λIm
2
pl. (2.10)

The quartic coupling λI must be . 10−13 in order to avoid large CMB temperature anisotropies,

which gives M ∼ 106mpl for n = 2 and M ∼ 100mpl for n = 4. In this way, a coupling

between the Higgs field and the inflaton field can prevent the Higgs VEV from growing until

the last several e-folds of inflation, suppressing the scale of isocurvature perturbations. As

this example illustrates, the constraints on the Higgs-inflaton coupling depends on the shape

of the inflaton potential. Although we have demonstrated an explicit calculation using a

quartic inflationary potential, a similar calculation can be done with other potentials.
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Our analysis of the final asymmetry will depend only on the VEV of the Higgs field at

the end of inflation, which as noted above is φ0 = min
(
φI ,
√
NlastHI/2π

)
provided that the

parameters in whatever inflationary model is used are chosen such that the Higgs VEV does

not begin to grow until the last Nlast e-folds of inflation. Therefore, we do not specify a

specific inflationary model in our analysis, and we take the inflationary scale Λn and the

inflaton decay rate ΓI to be free parameters.

2.2 Effective Chemical Potential

In Sec. 1.1.4, we observed that the Higgs potential may be sensitive to the effects of higher

dimensional operators, which are normally suppressed by powers of a high scale. In Sec. 2.1,

we have seen how such operators can be used to make a quasistable minimum in the Higgs

potential or to suppress the growth of the Higgs VEV until the end stages of inflation. Now,

we consider an operator, involving only Standard Model fields, which generates an effective

external chemical potential for leptons (and also baryons). This operator is

O6 = − 1

Λ2
n

φ2∂µj
µ
B+L, (2.11)

where jµB+L is the fermion current of all fermions which carry SU(2)L × U(1)Y charge. We

observe that the zeroth component of (2.11) is the B + L charge density.

We now consider how an operator of this form can be generated. Within the Standard

Model itself, one can use quark loops and the CP-violating phase of the CKM matrix [58, 59]

to generate an effective operator of the form

O6 = − 1

Λ2
n

φ2
(
g2WW̃ − g′2AÃ

)
, (2.12)

where W and A are the SU(2)L and U(1)Y gauge fields respectively. This term is small due

to the small Yukawa couplings and small CP-violating phase.

However, a term of the same form can be generated by replacing some or all of the

quarks with heavier fermions, which may have larger Yukawa couplings and/or CP-violating

phases. The scale in the denominator may be T , due to thermal loops, or the mass scale of
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these fermions, Mn [58–61]. In the latter case, it is important that the fermions not acquire

masses through the Higgs mechanism; otherwise, the Higgs VEV dependence in this term

cancels out. Such fermions may acquire soft masses similarly to higgsinos and gauginos in

supersymmetric models.

This operator could be generated in a UV-complete model. As a concrete example, we

mention the fully renormalizable Lagrangian

Lhd = gψ̄1iγ
µψ1iWµ + g′ψ̄1iγ

µψ1iAµ + yie
iδiφψ̄1iψ2

+Mijψ̄1iψ1j +mψ̄2ψ2 + h.c., (2.13)

where ψ1i are a set of SU(2) doublets, while ψ2 is a singlet under both SU(2) and U(1).

Despite the explicit mass terms, this Lagrangian is invariant under SU(2) rotations provided

that both right and left components of the ψ1i doublets couple vectorially to gauge bosons.

The phases of the ψ1i doublets may be fixed by eliminating the phases in the mass matrix.

Provided that i ≥ 3, there are more phases δi than can be eliminated by rotating the Higgs

field φ and the singlet ψ2. Fermionic loops such as those in [58, 59], which involve sums

of the Yukawa couplings yie
iδi due to insertions of the Higgs VEV 〈φ〉 generate an effective

operator of the form (2.12). In this case, the scale in the O6 operator is Λn ∼M ∼ m.

Once an effective operator of the form (2.12) is generated, it may be transformed into

(2.11) through the electroweak anomaly equation [62]. However, this is only justified if the

electroweak sphalerons are in thermal equilibrium [63, 64]. Otherwise, the operator (2.12)

involves the Chern-Simons number density, which is not changed by Higgs relaxation unless

the phase of the Higgs VEV evolves. At least for slowly evolving Higgs VEVs, the sphaleron

transition rate per unit volume at finite temperature is

Γsp = kα5
WT

4 exp(−v/2T ), (2.14)

where the exponential factor accounts for the suppression due to being in the broken phase.

As both the Higgs VEV and the temperature are quickly evolving in the scenario considered

here, it may be difficult to arrange for the electroweak sphalerons to be in thermal equi-

librium. However, additional gauge groups which couple to fermions can contribute to the
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anomaly and generate the requisite term, as discussed in Appendix A in [3]. For our pur-

poses, we simply consider a scenario with operator (2.11) without specifying the mechanism

by which it is generated.

Returning to equation (2.11), we observe that integrating by parts and dropping an

unimportant boundary term gives

O6 = −∂µ
(
φ2

Λ2
n

)
jµB+L. (2.15)

In the case where Λn = Mn a constant [for example, the mass scale of a fermionic loop, as

outlined around Eq. (2.13)], this becomes

O6,Mn = − 1

M2
n

(∂µφ
2)jµB+L. (2.16)

If thermal loops generate this term instead, then this becomes

O6,T = −∂µ
(
φ2

T 2

)
jµB+L ≈ −

1

T 2
(∂µφ

2)jµB+L, (2.17)

provided that the temperature is slowly varying on the time scales of the Higgs oscillation.

In the IC-1 scenario specifically, the Higgs VEV remains trapped until there is sufficient

reheating, which generally ensures that the temperature will be slowly varying during the

evolution of the Higgs condensate. Since the Higgs VEV varies only in time, these equations

become

O6,Λn = − 1

Λ2
n

(∂0φ
2)j0

B+L. (2.18)

For each fermionic species, its contribution to this term can be combined with its kinetic

energy term, ψ̄(i/∂)ψ, which is equivalent to the replacement

i∂0 → i∂0 − (∂0φ
2)/Λ2

n. (2.19)

This effective raises the energy of antiparticles, E → E + (∂0φ
2)/Λ2

n, while lowering it for

particles, E → E − (∂0φ
2)/Λ2

n. This can be interpreted as an external chemical potential;

further remarks along these lines are discussed in Appendix B.1. In the presence of a lepton-

number-violating interaction, the system will relax to its equilibrium state, in which the
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Figure 2.1: Some diagrams that contribute to lepton number violation via exchange of a

heavy Majorana neutrino.

number of particles exceeds the number of antiparticles. For future reference, we define the

effective external chemical potential,

E0 =
∂0φ

2

Λ2
n

. (2.20)

As an effective chemical potential, this operator spontaneously breaks not only CP , but

in fact, CPT [65]. This operator has been used previously in spontaneous baryogenesis

models utilizing gauge [44, 62, 66–68] or gravitational [69] interactions.

2.3 Lepton Number Violating Processes

The universe can relax to its equilibrium state with nonzero lepton and baryon number only

if there exists some lepton-number or baryon-number violating process. In order to induce

such processes, we consider a minimal extension of the Standard Model with the usual seesaw

mass matrix in the neutrino sector [70–73]. In theories with a nonzero Majorana mass, the

effective lepton number L is the sum of the lepton numbers of the charged leptons and the

helicities of the light neutrinos. This is conserved in the limits MR →∞ and MR → 0, but

it is not conserved for a finite MR. Insertions of the Majorana mass induce lepton-number-

violating processes such as those shown in Fig. 2.1.

We further require that the Majorana mass MR be significantly greater than both the

maximum reheat temperature and the initial mass of the Higgs bosons within the condensate
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[meff (φ0)], which suppresses the production of right-handed neutrinos both from thermal

production and the decay of the Higgs condensate. Consequently, the contribution from the

typical leptogenesis scenario [74] is strongly suppressed.

The lepton-number-violating diagrams shown in Fig. 2.1 necessarily involve the exchange

of the heavy right-handed neutrino in order to violate lepton number, and therefore are

comparatively suppressed, leading to a naturally small value for the asymmetry.

In order to calculate the thermally averaged cross section 〈σv〉 for these processes in the

early universe, we need to know the number densities of neutrinos and Higgs bosons. These

can be produced directly through the decay of the inflaton, or in the thermal plasma through

weak interactions, involving weak bosons with masses mW ∝ φ(t). Generically these weak

interactions may be in or out of equilibrium the plasma created by inflaton decay; however,

when φ(t) ∼ 0, these interactions will be in equilibrium and equilibrate the distributions of

charged and neutral leptons. To be concrete, we will use a thermal number density of each

of these species. The calculation of the cross section and reaction rate are given in Appendix

B.2.

We note that y2/MR is set by the mass scale of the left-handed neutrinos, such that

y2v2
EW

2MR

≈ 0.1 eV. (2.21)

The cross section found in Appendix B.2 is to a good approximation a function of y2/MR

only. There is a resonance in the s-channel contribution to the cross section; however, we

found numerically that this resonance does not change the result appreciably. This is not

unexpected as the energy scale, which is set by the temperature, remains below the right-

handed Majorana mass scale at all times.

As we will discuss below, sphaleron processes later convert this lepton charge asymmetry

into a baryon asymmetry, as in the typical leptogenesis scenario [74].
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2.4 Boltzmann Transport Equation

The reactions discussed in Sec. 2.3 are generally not sufficient to establish equilibrium, due

to the suppression from the large Majorana mass. (Recall that we have assumed φ0 � MR

and Tmax � MR in order to suppress the typical leptogenesis mechanism.) The relaxation

of the system towards equilibrium can be described by a system of Boltzmann equations,

based on detailed balance. The rate of change in the neutrino number density is [75]

ṅνL + 3HnνL =−
∑

`=e,µ,τ

[
nνLnh0

neqνLn
eq
h0
γeq(νLh

0 → ν̄`h
0)− nν̄`nh0

neqν̄`n
eq
h0
γeq(ν̄`h

0 → νLh
0)

+
nνLnν`
neqνLn

eq
ν`

γeq(νLν` → h0h0)−
n2
h0

neq 2
h0

γeq(h0h0 → νLν`)

+
nνLnν̄`
neqνLn

eq
ν̄`

γeq(νLν̄` → h0h0)−
n2
h0

neq 2
h0

γeq(h0h0 → νLν̄`)

]
, (2.22)

where γeq(A→ B) is the equilibrium spacetime rate for the process A→ B. We will assume

that interactions are sufficiently fast that the Higgs bosons have their equilibrium density,

and in equilibrium, the rate for the process A→ B is equal to the rate of B → A. Therefore

this simplifies to

ṅνL + 3HnνL = −
∑

`=e,µ,τ

[(
nνL
neqνL
− nν̄`
neqν̄`

)
γeq(νLh

0 ↔ ν̄`h
0) +

(
nνLnν`
neqνLn

eq
ν`

− 1

)
γeq(νLν` ↔ h0h0)

+

(
nνLnν̄`
neqνLn

eq
ν̄`

− 1

)
γeq(h0h0 ↔ νLν̄`)

]
, (2.23)

while for antineutrinos we find the similar equation

ṅν̄L + 3Hnν̄L = −
∑

`=e,µ,τ

[(
nν̄L
neqν̄L
− nν`
neqν`

)
γeq(ν̄Lh

0 ↔ ν`h
0) +

(
nν̄Lnν̄`
neqν̄Ln

eq
ν̄`

− 1

)
γeq(ν̄Lν̄` ↔ h0h0)

+

(
nν̄Lnν`
neqν̄Ln

eq
ν`

− 1

)
γeq(h0h0 ↔ ν̄Lν`)

]
. (2.24)

Since we are interested in the order of magnitude of the final asymmetry, we simplify to the

case in which there is only a single neutrino species. Subtracting Eq. (2.23) from Eq. (2.24)
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gives a Boltzmann-type equation for the difference nL = nνL − nν̄L ,

ṅL + 3HnL = −2

(
nνL
neqνL
− nν̄L
neqν̄L

)
γeq(νLh

0 ↔ ν̄Lh
0)−

(
n2
νL

neq 2
νL

− 1

)
γeq(νLνL ↔ h0h0)

+

(
n2
ν̄L

neq 2
ν̄L

− 1

)
γeq(ν̄Lν̄L ↔ h0h0). (2.25)

The rates γeq(A ↔ B) refer to the process A ↔ B in equilibrium, but in the presence of

the O6 operator, which alters the energy of particles and antiparticles. Consequently, these

reaction rates are not generally equal to the rates one would find in the absence of the O6

operator; however, the difference appears at a higher order in E0/T [63] and so we will neglect

it. This has the consequence that the rates for h0h0 ↔ νLνL and h0h0 ↔ ν̄Lν̄L are equal.

We will use the subscript 0 to denote reaction rates calculated without the O6 operator.

We next substitute neqνL = eE0/Tneq0 and neqν̄L = e−E0/Tneq0 , where neq0 = T 3/π2 is the

equilibrium number of left-handed neutrinos (or antineutrinos), when E0 = 0. Expanding

the resulting equation to lowest order in E0/T gives

ṅL + 3HnL ≈ −
2

neq0

(
nL −

E0

T
ntot
L

)
γeq0 (ν̄Lh

0 ↔ νLh
0)

− 1

neq 2
0

(
ntot
L nL −

E0

T
ntot 2
L

)
γeq0 (νLνL ↔ h0h0), (2.26)

where we have introduced the notation ntot
L = nνL+nν̄L , and we have dropped terms quadratic

in the asymmetry (e.g., n2
L). Approximating ntot

L ≈ 2neq0 , the equation becomes

ṅL + 3HnL ≈ −
2

neq0

(
nL −

2E0

T
neq0

)[
γeq0 (ν̄Lh

0 ↔ νLh
0) + γeq0 (νLνL ↔ h0h0)

]
, (2.27)

= − 2

π2
T 3 〈σv (T )〉0

(
nL −

2

π2
T 2E0

)
, (2.28)

where 〈σv (T )〉0 is the net thermally averaged cross section and its relation to reaction

rates are calculated in Appendix B.2. From this equation, we observe that the equilibrium

asymmetry is

nL,eq =
2E0

T
neq0 =

2

π2
T 2∂0φ

2

Λ2
n

. (2.29)

However, the relevant reactions are generally not fast enough to equilibrate to this value

before the Higgs VEV approaches zero at trlx. In this work, we solve the differential equation
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Figure 2.2: The comoving density of equilibrium lepton asymmetry NL,eq = nL,eqa
3 for IC-1,

with the parameters ΛI = 1015 GeV and ΓI = 109 GeV. Yellow (Blue) line corresponds

to the result with (without) the thermalization through the top quark. The left diagram

corresponds to times before maximum reheating, whereas the right diagram corresponds to

times after maximum reheating.

(2.28) numerically to obtain the final lepton asymmetry. An analytical approximation to the

late-time lepton asymmetry will be discussed in the next section.

During subsequent oscillations of the Higgs VEV, the chemical potential changes sign.

However, due to the large suppression in the cross section, significant washout can be avoided

if the Higgs oscillation amplitude decreases rapidly. This is in contrast to Ref. [67], in

which washout was avoided by using coherent oscillations of the inflaton field to modify the

sphaleron transition rate.

We note that this is modified by the decay of the Higgs condensate; however, as discussed

above, the Higgs condensate does not typically thermalize until after reheating. Fig. 2.2

demonstrates the effect of thermalization on the equilibrium density. However, since the

lepton asymmetry will be generated primarily during the first oscillation of the Higgs VEV,

the effect of the thermalization of the Higgs condensate is negligible.
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2.5 Resulting Asymmetry

In this section, we consider the lepton asymmetry produced by these Higgs-neutrino interac-

tions during the relaxation of the Higgs VEV, as outlined above. We first derive the analytic

approximation for the late-time lepton asymmetry, which agrees with the numerical result

within one order of magnitude. Next, we analyze the time-evolution of the lepton asym-

metry numerically. We present four characteristic examples, covering both IC-1 and IC-2,

along with the scale of the O6 operator Λn set to the temperature T (motivated by thermal

loops) and a constant Mn (motivated by loops of heavy fermions). In all scenarios, we use

the Boltzmann equation (2.28), with the cross sections calculated in Appendix B.2, and the

calculation of the Higgs condensate equation of motion presented in Sec. 1.3. We show the

time-evolution of the lepton asymmetry in all four scenarios; subsequently, we present an

analysis of the parameter space in which a sufficiently large late-time lepton asymmetry can

be generated.

2.5.1 Analytical Approximation for the Late-Time Lepton Asymmetry

The Boltzmann equation (2.28) can be analyzed in two regimes: during the relaxation of the

Higgs field (E0 6= 0) and during the subsequent cooling of the Universe (E0 ≈ 0). During

the relaxation of the Higgs field, when µ0 ∝ ∂0φ
2 6= 0, the Universe produces most of the

lepton asymmetry. As we mentioned, this time is generally insufficient for the system to

reach equilibrium, and so the asymmetry produced is about nrlx ' nL,eq (trlx)× 2
π2σRT

3
rlxtrlx,

where trlx is the time period during which the Higgs field relaxes (or the time that the

Higgs VEV first crosses zero), and Trlx = T (trlx). The equilibrium lepton asymmetry can be

approximated by its value at trlx as

nL,eq (trlx) ' 2

π2
E0T

2
rlx =

2

π2
T 2

rlx

∂0φ
2

Λ2
n

' 2

π2

T 2
rlx

trlx

(
φ0

Λn

)2

, (2.30)
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where φ0 is the initial VEV of Higgs, and Λn is the new scale in the O6 operator. From this,

we find the approximate lepton number density at trlx to be

nL, rlx '
2

π2

T 2
rlx

trlx

(
φ0

Λn

)2

min

(
1,

2

π2
σRT

3
rlxtrlx

)
' 4

π4
σRT

5
rlx

(
φ0

Λn

)2

, (2.31)

where the thermally averaged cross section σR = 〈σv〉0 can be estimated by its value at

T = Trlx, and is about 10−31 GeV−2.

As we discussed in Sec. 1.2, the temperature before and after the reheating completes

(tRH ≡ 1/ΓI) is given by

T (t) ≈


TRH

(
tRH

t

)1/4
t < tRH(

45

16π3g∗

)1/4√
mpl

t
t > tRH .

(2.32)

Depending on the scenario and the reheating process, the relaxation time of the Higgs

can be either trlx ≈ 6.9/
√
λeffφ0 if the λφ4 term dominates the effective potential, or

trlx ≈ tRH (7.6/TRHtRH)4/3 if the thermal mass term dominates in IC-2 (see discussion in

Appendix D.1). For IC-1, the relxation time is typically determined by the time when

thermal correction destabilizes the metastable vacuum.

After the Higgs relaxation is completed at trlx, the generated lepton asymmetry can be

partially washed out by heavy neutrino exchanges, until these go out of equilibrium. During

washout, Eq. (2.28) can be rewritten as

dNL(t)

dt
' − 2

π2
T 3σRNL(t), (2.33)

where NL ≡ nLa
3 is the lepton number per comoving volume. By solving Eq. (2.33) in terms

of temperature given in (2.32), one find the following scaling for the lepton number before

and after reheating ends (at T = TRH and t = tRH = 1/ΓI),

NL (T )

NL (T0)
=


exp

[
− 8
π2

σRT
4
RH

ΓI
(T−1 − T−1

0 )
]

T and T0 ≥ TRH

exp
[
−
√

15
π2

σRT
2
RH

ΓI
(T0 − T )

]
T and T0 ≤ TRH .

(2.34)

The resulting asymptotic value of NL at low temperature is
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NL (T → 0) = NL (Trlx) exp

{
−σRT

3
RH

π2ΓI

[
8

(
1− TRH

Trlx

)
+
√

15

]}
(2.35)

≈ NL (Trlx) exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
(2.36)

for trlx < tRH , and

NL (T → 0) = NL (Trlx) exp

(
−
√

15

π2

σRT
2
RHTrlx

ΓI

)
(2.37)

for trlx > tRH , where NL (Trlx) can be found using (2.31). We note that depending on the

strength of the lepton-number-violating potential, it may be advantageous to arrange for

a comparatively rapid decay of the φ condensate, so that the oscillation amplitude of the

scalar VEV is significantly damped.

The asymmetry is also further diluted by (arlx/aRH)3 ≈ (trlx/tRH)2 for the case that

trlx < tRH due to the entropy production from the decay of inflaton. Thus, at the end of

reheating (assuming the oscillation of the scalar field has ended), the Universe obtains the

the ratio of the lepton asymmetry to entropy

YL ≡
nL
s

=
45

2π2g∗S

nL
T 3

(2.38)

' 45

2π2g∗

nL, rlx
T 3
RH

NL (T → 0)

NL (Trlx)

(
arlx

aRH

)3

(2.39)

' 90

π6g∗S

(
φ0

Λn

)2
σRT

5
rlx

T 3
RH

(
trlx
tRH

)2

exp

(
−8 +

√
15

π2
σRT

3
RHtRH

)
(2.40)

for trlx < tRH , and

YL '
45

2π2g∗

nL, rlx
T 3

rlx

NL (T → 0)

NL (Trlx)
(2.41)

' 90

π6g∗

(
φ0

Λn

)2

σRT
2
rlx exp

(
−
√

15

π2
σRT

2
RHTrlxtRH

)
(2.42)

for trlx > tRH . This estimation formula agrees within one order of magnitude with the

numerical result.
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Figure 2.3: Plot of the resulting asymmetry for IC-1, for Λn = T (blue, solid) and

Λn = Mn = 1014 GeV (yellow, dashed). Both scenarios have ΛI = 1015 GeV, and ΓI = 109

GeV. The vertical lines designate the first time the Higgs VEV crosses zero, time of maxi-

mum reheating, and the beginning of the radiation dominated era, from left to right. t = 0

corresponds to the beginning of inflaton oscillations.

2.5.2 Four Numerical Examples

The precise time-evolution of the lepton asymmetry can be obtained by solving the Boltz-

mann equation (2.28) numerically. In this subsection, we present the numerical result for

the four scenarios mentioned above. First, we consider two scenarios for IC-1 in Fig. 2.3, one

with Λn = T (blue, solid) and one with Λn = Mn = 1014 (yellow, dashed) for the relevant

scales in the O6 operator. Both scenarios have a maximum temperature of 6 × 1013 GeV,

since they share the inflationary parameters ΛI = 1015 GeV and ΓI = 109 GeV. As in

Fig. 1.10, the initial Higgs VEV is 1015 GeV in both cases, which is set by the location of

the second minimum in the Higgs potential. Although the asymmetry Y oscillates during

the first few oscillations of the Higgs VEV, it relatively quickly settles into a steady state,

and approaches a constant value around the beginning of the radiation dominated era. Note

that the Higgs field begins to oscillate before the time of maximum reheating.

As mentioned above, the cross section depends primarily on y2/MR which is fixed by

the light neutrino masses. As mentioned above, we require T � MR in order to suppress
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Figure 2.4: Plot of the resulting asymmetry for IC-2, for Λn = T (blue, solid) and

Λn = Mn = 5 × 1012 GeV (yellow, dashed). Both scenarios have ΛI = 1.5 × 1016 GeV

and ΓI = 5 × 108 GeV. From left to right, the vertical dashed lines correspond to the time

of maximum reheating, the first time the Higgs VEV crosses zero, and the beginning of the

radiation dominated era.

the thermal production of right-handed neutrinos; we found that it was sufficient to set

MR = 6×1014 GeV, which results in y ∼ 1.5 using equation (2.21). (This gives y2/4π ∼ 0.16,

within the perturbative regime.)

The late time asymptotic asymmetry is Y ' 10−8 for Λn = T and Y ' 10−9 for Λn =

Mn = 1014 GeV; this is expected as the temperature is lower than Mn. We discuss the

variation of the final asymmetry over parameter space below.

Next, we present similar results for the IC-2 scenario, again for the two cases Λn = T

(blue, solid) and Λn = Mn = 5×1012 GeV (yellow, dashed). Both plots have the inflationary

parameters ΛI = 1.5 × 1016 GeV and ΓI = 5 × 108 GeV, which results in a maximum

temperature of 2 × 1014 GeV during reheating. We again take Nlast = 48 to determine the

Higgs VEV at the end of inflation; this results in φ0 = 6× 1013 GeV for the Higgs VEV as

the start of Higgs relaxation. (We emphasize that this choice, with Mn < φ0 and Mn < T ,

raises questions regarding the use of effective field theory, which we address below.)

In order to suppress the thermal production of right-handed neutrinos, we have taken

MR = 5Tmax = 1015 GeV; in order to produce left-handed neutrino masses on the scale of
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Figure 2.5: The resulting asymmetry (log |Y |) at the end of reheating for IC-1, for Λn = Mn,

with ΛI = 1015 GeV.

0.1 eV, the neutrino Yukawa coupling must be ∼ 1.9. (This gives y2/4π ≈ 0.3.)

The final asymmetries here are of order 10−12 (for Λn = T ) and 10−10 (for Λn = Mn =

5×1012 GeV). As Mn is generally smaller than the temperature, it is not surprising that this

results in a larger asymmetry. The value for the Λn = T case is insufficient to account for the

observed matter-antimatter asymmetry; this motivates a search of the available parameter

space.

2.5.3 Parameter Space

In three of the four scenarios above, the resulting lepton asymmetry is O(10−10) or larger,

which is sufficient to explain the observed baryon asymmetry. However, it is interesting

to explore the resulting asymmetry as a function of parameter space; results are shown in

Figures 2.5, 2.6, 2.7, and 2.8.

As above, we handle the initial conditions with the operator and scale given in 2.1.1 for the

IC-1 plots, and as discussed in 2.1.2 with Nlast = 48 for the IC-2 plots. We emphasize again
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Figure 2.6: The resulting asymmetry (log |Y |) at the end of reheating for IC-2, for Λn = Mn

with ΛI = 5× 1016 GeV, which gives φ0 = 6.5× 1014 GeV.

that the resulting asymmetry is sensitive to y2/MR, which is set by the left-handed neutrino

mass scale, and not on the specific value of MR. However, to suppress thermal production of

right-handed neutrinos, we have chosen MR = 10Tmax (for IC-1) and MR = 5Tmax (for IC-2).

We have then set the neutrino Yukawa coupling y by the scale of the left-handed neutrino

masses [Eq. (2.21)]. We have noted in gray the regions in which the perturbativity condition

y2/4π < 1 fails.

For the IC-1 plots, the post-inflationary Higgs VEV φ0 is determined entirely by the

operator which lifts the second minimum to generate the quasistable vacuum; for the operator

and scale in 2.1.1, the Higgs VEV relaxes from φ0 = 1015 GeV. For IC-2, φ0 is determined

by the Hubble parameter during inflation, which is in turn fixed by the energy density in

the inflation field [see Eq. (2.6)].

First, we remark on some general features. The asymmetries generated in the IC-2

scenario are smaller than those generated in the IC-1 scenario. This is because in IC-1, the

Higgs VEV does not evolve until the temperature is sufficiently large to destabilize the false
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vacuum; consequently, the initial evolution of the VEV to zero occurs at higher temperatures.

(Compare the vertical lines significantly the first Higgs VEV crossing and maximum reheating

in Figures 2.3 and 2.4.) As a result of the higher temperature, the system is driven towards

equilibrium at a faster rate [through the Boltzmann equation (2.28)]; furthermore, in the

Λn = T scenario, the larger temperature also means that the equilibrium charge density is

larger.

Figs. 2.5 and 2.6 show the lepton asymmetry Y as a function of parameter space, in the

case in which the scale of the O6 operator is a constant Λn = Mn. To reach comparable

asymmetries in the IC-2 scenario, we must decrease the scale Mn significantly, such that

throughout this plot, Mn < φ0 and Mn < Tmax. In the IC-1 plot, these conditions fail below

the red dashed line and blue solid line respectively. In these regions, the use of effective field

theory in generating the operator (2.11) is questionable. An ultraviolet completion of the

model is necessary to obtain a reliable description of the dynamics in the regime where the

temperature exceeds the scale Mn. We leave such a completion, which would also elucidate

the nature of the new physics leading to the appearance of the O6 operator, for a future

work.

We focus on the region of Fig. 2.5 for which the asymmetry Y is larger than 10−10 and

Mn > 0.1Tmax. We see that this favors smaller values of ΓI . However, for a given ΛI , there is

a minimum ΓI , for which the maximum temperature is insufficient to destabilize the second

vacuum. For the parameters considered here (ΛI = 1015 GeV and the lift operator given in

2.1.1), this occurs for ΓI = 6.3× 108 (the left boundary of the Fig. 2.5).

Next, we consider the case in which the scale of the O6 operator is set by the temperature,

Λn = T , in Figs. 2.7 and 2.8. This parameter space has one fewer parameters, and so we allow

ΛI to also vary, which changes the Hubble parameter during inflation. For IC-2, increasing

HI results in a larger value of φ0, as described by Eq. (2.6), which increases the resulting

asymmetry. This also increases the temperature scale, resulting in a larger asymmetry, as

is evident in both figures. (We also note that for IC-1, we must take care that quantum

fluctuations during inflation do not destabilize the second vacuum; this is shown in orange
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in Fig. 2.7.)

As mentioned above, if the reheat temperature is sufficiently small, thermal corrections

are unable to destabilize the second vacuum, and therefore this is no relaxation of the Higgs

VEV. This region is denoted in white in Fig. 2.7. Furthermore, in the region in which

MR < φ0, right-handed neutrinos can be copiously produced by the decay of the Higgs

condensate, which is not desirable (as concerns the lepton asymmetry production scenario

presented here); this region is denoted in yellow in Fig. 2.7 and green in Fig. 2.8. Furthermore,

if ΛI is too small such that ΓI > 3HI , the inflation period of the universe doesn’t start; this

region is shown in light blue on both figures.

In IC-2, there is a further concern that the Higgs VEV can probe the second, deeper

minimum at large VEVs. This may not be a phenomenological problem [76], but would

require a refinement of the analysis presented here. (Alternatively, Nlast could be decreased,

such that φ0 remains below the instability scale.) This region is shown in dark blue in

Fig. 2.8. Also, in the gray region of Fig. 2.8, washout is sufficiently large to cause the lepton

asymmetry to oscillate around zero at the end of our numerical analysis; the final value will

be quite small.

We see that for IC-1, it is possible to find parameter space in which a sufficiently large

asymmetry is generated, but this is not possible for IC-2. For IC-1, smaller ΓI values are

favored (and consequently, slower reheating), as for constant Λn.

2.5.4 Converting the Lepton Asymmetry into a Baryon Asymmetry

Thus far, we have analyzed the production of the lepton asymmetry; here we discuss how this

is converted into a baryon asymmetry. This process has produced a net density of (B − L)

charge, which is unchanged once these processes are negligible. However, the (B + L) U(1)

symmetry is anomalous, and electroweak sphalerons will redistribute the excess between
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leptons and baryons1 as in standard leptogenesis [74], at a rate per unit volume

Γsp ∼ (αWT )4 exp [−gWφ(t)/T ] . (2.43)

At small vacuum expectation values, the B and L densities approach their equilibrium

values, nB = (28/79)nB−L. This produces a baryon asymmetry of about the same order of

magnitude as the lepton asymmetry found above. Consequently, the regions of parameter

space that generate Y & 10−10 in the analysis above give a final baryon asymmetry matching

the observed value of O(10−10).

2.6 Conclusions for Chapter 2

In this chapter, we introduced a novel leptogenesis possibility in which the lepton asymme-

try is as a consequence of an effective chemical potential induced by the post-inflationary

relaxation of the Higgs field. Although right-handed neutrinos participate in the lepton-

number-violating interactions as a mediator, this is different from the typical leptogenesis

scenario in which the asymmetry is produced via the decay of right-handed neutrinos. Even

though the heavy right-handed neutrino suppresses the cross section which produces the

asymmetry, we have shown parameters for which a sufficiently large the asymmetry is gen-

erated.

We have derived the relevant Boltzmann equation which governs lepton number, and we

have computed the tree-level scattering cross section between Higgs bosons and neutrinos

which violates the lepton number in the thermal plasma. Furthermore, we have considered

the evolution of the lepton asymmetry for four combinations of producing the large Higgs

VEV during inflation (IC-1 and IC-2) and the scale of the O6 operator (a fermion mass scale

Mn and the temperature T ); we then presented an analysis of the asymmetry as a function

of parameter space. We demonstrated regions which produces a baryonic asymmetry that

meets or exceeds observational limits.

1Since the electroweak sphalerons violates B +L while conserving B −L, to produce positive B through
sphaleron processes, the initial lepton asymmetry actually needs to be negative.
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We note that in this work we consider an asymmetry produced via the scattering of

neutrinos and Higgs bosons in the plasma produced by the decays of the inflaton, and

therefore this scenario requires a relatively fast reheating. This is in contrast to Ref. [3],

which similarly considered the same O6 operator but produced the matter asymmetry via

the decay of the Higgs condensate.

While we present the relaxation leptogenesis via the standard model Higgs field, one

can also extend this framework to other scalar fields. It has been observed that the axion

field can undergo a similar post-inflationary relaxation, and provide a possible scenario for

relaxation leptogenesis [77, 78]. In the following sections of this thesis, we will discus two

leptogenesis models based on this similar idea.

54



CHAPTER 3

Baryogenesis via Elementary Goldstone Higgs

Relaxation

In this chapter, we extend the relaxation mechanism to the Elementary Goldstone Higgs

framework. Besides studying the allowed parameter space of the theory we add the minimal

ingredients needed for the framework to be phenomenologically viable. The very nature of

the extended Higgs sector allows to consider very flat scalar potential directions along which

the relaxation mechanism can be implemented. This fact translates into wider regions of

applicability of the relaxation mechanism when compared to the Standard Model Higgs case.

Our results show that, if the electroweak scale is not fundamental but radiatively gener-

ated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation

mechanism. This chapter is based on Ref. [4], joint work done with Helene Gertov, Lauren

Pearce, and Francesco Sannino.

3.1 Introduction

The discovery of the Higgs boson crowns the Standard Model (SM) of particle interactions

as one of the most successful description of physical phenomena below or at around the

electroweak (EW) scale. However, several puzzles remain unexplained such as the nature

of dark matter, neutrino masses and mixing as well as the cosmological matter-antimatter

asymmetry of the universe. Solutions to any of these puzzles generically requires introduction

of new physics beyond the SM.

Here we focus our attention on the important cosmological mystery of how the observable
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universe came to be dominated by an excess of matter over antimatter. The necessary

conditions for baryogenesis are well-known [49] and several models of baryogenesis exist (for

a review, see e.g. [79]). Among these, an appealing scenario involves the relaxation of a

scalar or pseudo scalar field in the post-inflationary universe. Such fields can acquire large

vacuum expectation values due to flat potentials [10–12] or by being trapped in a quasi-

stable minimum. After inflation, such fields relax to their equilibrium values via a coherent

motion, and higher dimensional operators can couple the time-dependent condensate to

baryon and/or lepton number [62, 65]. This can be done with the Higgs field [1–3] or an

axion field [78, 80]. Similar models have been constructed using quintessence fields [81, 82]

and MSSM flat directions [77, 83, 84]. A novel feature of the Higgs scenario is that the

chemical potential depends on the time-derivative of the VEV-squared, which as we discuss,

resolves some difficulties with producing an asymmetry of the correct sign throughout the

observable universe. An additional advantage of this scenario is that it makes use of fields

whose existence is either known or well-motivated.

However, the SM Higgs sector is far from established and could hide new exciting physics.

In fact, several alternative paradigms have been put forward that are not only as successful

as the SM in reproducing the experimental results, but also can simultaneously address some

of the remaining experimental puzzles.

The Elementary Goldstone Higgs (EGH) paradigm established in [85, 86] allows one to

disentangle the vacuum expectation of the elementary Higgs sector from the EW scale [85].

Here the Higgs sector symmetry is larger than the minimally required symmetry needed to

spontaneously break the EW gauge symmetry. Furthermore, the physical Higgs emerges as

a pseudo Nambu Goldstone Boson (pNGB). A welcome feature is that once the SM gauge

and fermion sectors are embedded in the larger symmetry, one discovers that calculable

radiative corrections automatically induce the proper breaking of the EW symmetry by

naturally aligning the vacuum in the pNGB Higgs direction. In this way the EW scale

is not fundamental but radiatively induced1. The template Higgs sector leading to the

1The EGH setup is profoundly different from the composite (Goldstone) Higgs scenario [87–89]. The
main differences being: i) the elementary case is amenable to perturbation theory; ii) it is straightforward
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SU(4)→ Sp(4) pattern of chiral symmetry breaking was first introduced in [91–93].

In this work, we successfully marry the EGH paradigm and the relaxation leptogene-

sis scenario [1, 2]. There are at least two motivations for this marriage: first, we observe

that in a model such as the EGH scenario, which has an extended scalar sector, there are

naturally new scalar-field directions along which one can implement the relaxation mecha-

nism; secondly, the relative freedom in the overall potential flatness translates into a wider

region of applicability of the approximations and effective theory used to derive successful

baryogenesis (as compared to the SM Higgs case).

The structure of this chapter is as follows: we begin by reviewing the EGH model, as

introduced in [85, 86], with particular emphasis on the scalar sector and the Yukawa sector.

We then review the Higgs relaxation scenario, focusing on the modifications necessary due to

the extended Higgs sector. Finally, we present an analysis of the available parameter space

in which Higgs relaxation leptogenesis occurs when marrying it to the EGH paradigm.

Although we use a specific template to perform our analysis, the general results and

features are expected to hold for generic realizations of successful baryogenesis via EGH

driven leptogensis scenarios.

3.2 Elementary Goldstone Higgs: A Brief Review

The EGH scenario [85, 86] necessarily extends the SM Higgs sector symmetry. A working

template uses a linear realization with SU(4) symmetry breaking spontaneously to Sp(4).

The SM Higgs doublet is now part of the SU(4)/Sp(4) coset, while the EW symmetry,

SU(2)L×U(1)Y , is embedded in SU(4).

The relaxation leptogenesis mechanism [1–3] uses the scalar sector of the theory at very

high energies. We therefore start by reviewing the scalar sector of the theory.

The SM Higgs boson is identified with one of the Goldstone bosons which acquires mass

to endow the SM fermions with mass terms; iii) it is possible to immediately consider Grand Unified Theory
extensions [90].
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via a slight vacuum misalignment mechanism induced by quantum corrections. The mis-

alignment is due mostly to top-induced quantum corrections [85, 86] and therefore we will

neglect here the EW gauge sector corrections.

The most general vacuum structure of the theory can be parametrised by an angle 0 ≤

θ ≤ π/2 [85] and

Eθ = cos θ EB + sin θ EH = −ET
θ , (3.1)

where the two independent vacuum directions EB and EH are

EB =

iσ2 0

0 −iσ2

 , EH =

 0 1

−1 0

 . (3.2)

The alignment angle θ is determined by radiative corrections after having constrained the

model to reproduce the experimental results. It was found in [86] that the model naturally

prefers small values of θ, privileging a pNGB nature of the Higgs.

We note that because SU(4) is broken radiatively through corrections from top and gauge

interactions, the strength of SU(4) breaking increases at higher scales. Therefore, there is

no high scale in which it is appropriate to neglect SU(4) breaking.

3.2.1 Scalar and Fermionic Sector

In the minimal scenario described above, the scalar sector is codified by

M =

[
1

2
(σ + iΘ) +

√
2 (Πi + i Π̃i)X

i
θ

]
Eθ , (3.3)

where X i
θ (i = 1, . . . , 5) are the broken generators associated to the breaking of SU(4) to

Sp(4), reported in Appendix A of [86], and the five Πi are the five Goldtone bosons of the

theory, where after symmetry breaking, the first three become the longitudinal components

of the gauge bosons, the fourth is the observed Higgs, and the last is a dark matter candidate.

The full SU(4) invariant (tree-level) scalar potential can be found in [86].

Having introduced the scalar sector of the model, we turn our attention to the fermionic

sector. Our focus here is two-fold: first, we have explained above how the top-sector is
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responsible for setting θ, and therefore indirectly affects the vacuum and the scalar sector

more generally, and secondly, the leptogenesis scenario produces the asymmetry through the

excess production of neutrinos, which involves electroweak interactions between fermions.

We construct the Yukawa sector of the theory by introducing EW gauge invariant op-

erators that explicitly break the SU(4) global symmetry and correctly reproduce the SM

fermion masses and mixing. First, we formally accommodate each one of the SM fermion

families in the fundamental representation of SU(4), namely

Lα =
(
L, ν̃, ˜̀

)T
αL
∼ 4, Qi =

(
Q, q̃u, q̃d

)T
iL
∼ 4, (3.4)

where α = e, µ, τ and i = 1, 2, 3 are generation indices and the tilde indicates the charge

conjugate fields of the Right Handed (RH) fermions, that is, for instance, ν̃αL ≡ (ναR)c,

˜̀
αL ≡ (`αR)c, LαL ≡ (ναL, `αL)T and similarly for the quark fields. Notice that a RH

neutrino ναR for each family must be introduced in order to define Lα which transforms

according to the fundamental irrepresentation of SU(4).

Given the embedding of quarks and leptons in SU(4), we now construct a Yukawa mass

term for the SM fermions. For this we make use of SU(4) spurion fields [94] Pa and P a,

where a = 1, 2 is an SU(2)L index. They transform as
(

P
)

a → (u†)T
(

P
)

a u
†, with u ∈ SU(4).

We have

P1 =
1√
2

 02 τ3

−τ3 02

 , P2 =
1√
2

 02 τ−

−τ+ 02

 , (3.5)

P 1 =
1√
2

 02 τ+

−τ− 02

 , P 2 =
1√
2

 02 τ 3

−τ 3 02

 , (3.6)

with

τ± =
σ1 ± i σ2

2
, τ3 =

12 + σ3

2
, and τ 3 =

12 − σ3

2
. (3.7)

Then, using P1,2 and P 1,2, we may write Yukawa couplings for the SM fermions which
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preserve the SU(2)L gauge symmetry:

−LYukawa =
Y u
ij√
2

(
QT
i Pa Qj

)†
Tr [PaM ] +

Y d
ij√
2

(
QT
i P a Qj

)†
Tr
[
P aM

]
+

Y ν
αβ√
2

(
LT
α Pa Lβ

)†
Tr [PaM ] +

Y `
αβ√
2

(
LT
α P a Lβ

)†
Tr
[
P aM

]
+ h.c. (3.8)

with the Yukawa matrices of quarks and leptons chosen in agreement with experimental

measurements. This Lagrangian explicitly breaks the SU(4) global symmetry mentioned

above, and therefore, it also contributes fixing the parameter θ which interpolates between

the otherwise equivalent vacuum structures. In fact, in terms of the SM quark and lepton

fields, Eq. (3.8) can be written as

−LYukawa = Y u
ij

(
QiL q̃

u
jL

)†
a

Tr [PaM ] + Y d
ij

(
QiL q̃

d
jL

)†
a

Tr
[
P aM

]
+ Y ν

αβ (LαL ν̃βL)†a Tr [PaM ] + Y `
αβ

(
LαL ˜̀

βL

)†
a

Tr
[
P aM

]
+ h.c. (3.9)

where

Tr [P1M ] =
−1√

2

(
σ sin θ + Π4 cos θ + iΘ sin θ − iΠ̃4 cos θ + iΠ3 + Π̃3

)
, (3.10)

Tr [P2M ] =
1√
2

(
iΠ1 + Π2 + Π̃1 − iΠ̃2

)
. (3.11)

Therefore, after EW symmetry breaking, the SM fermions acquire the masses

mF = yF
f sin θ√

2
, (3.12)

with f = 〈σ〉 at low energies and yF being the SM Yukawa coupling of quarks and leptons

in the fermion mass basis. Comparing this expression with the corresponding SM prediction

mF,SM = yF√
2
vEW we see that f and θ must satisfy the phenomenological constraint

f sin θ = vEW ' 246 GeV . (3.13)

Notice that a Dirac mass for neutrinos is generated as well. Ref. [86] also investigated the

parameter space at low energy and found that (when keeping the masses of the scalars

below five TeV) the most frequent value for f is f = 13.9+2.9
−2.1 TeV corresponding to

θ = 0.018+0.004
−0.003. Although these are the most common values that give the appropriate
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electroweak phenomenology, the points of parameter space which satisfy the electroweak

constraints vary significantly in values for f and sin(θ). This is because there are quite a few

couplings in the SU(4) potential. To generate an acceptable electroweak phenomenology at

values of f and sin(θ) significantly different than these, it is likely necessary to fine-tune at

least some of the parameters in the SU(4) potential.

This model does not naturally generate a Majorana mass term for the RH neutrino

fields; however, one can be explicitly added. This provides an explicit breaking of the SU(4)

symmetry, but preserves the EW gauge group and gives the standard seesaw mechanism.

Although this is not strictly speaking necessary for the EGH boson model, we include it in our

analysis here. This is because a successful leptogenesis model must involve lepton-number

violating terms, and following [1–3], we will make use of the neutrino-sector Majorana mass

term.

In this case, the most general mass Lagrangian for the leptons is

−Llep = Y `
αβ

f sin θ√
2

`αL`βR + Y ν
αj

f sin θ√
2

ναLνjR +
1

2
(MR)jk νjR (νkR)c + h.c. (3.14)

where MR is the Majorana mass term of the three RH neutrinos. The couplings in Eq. (3.14)

allow to generate at tree-level a Majorana mass term for the LH neutrinos, in a manner

similar to the standard type I seesaw extension of the SM [70, 72, 73, 95]. This yields

Lνmass = −1

2
(mν)αβ ναL (νβL)c + h.c. (3.15)

with

mν = −mDM
−1
R mT

D and mD = Y ν f sin θ√
2

= Y ν vEW√
2
. (3.16)

One can hope that this Majorana mass term would be generated by embedding the EGH

model into a larger model, perhaps a Grand Unified Theory.
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3.2.2 Radiative Corrections

Next we return our attention to the scalar sector. The one-loop correction δV (Φ) to the

scalar potential takes the general expression

δV (Φ) =
1

64π2
Str

[
M4(Φ)

(
log
M2(Φ)

µ2
− C

)]
(3.17)

where in this case Φ ≡ (σ, Π4) denotes the background scalar fields that we expect to lead to

the correct vacuum alignment of the theory and M(Φ) is the corresponding tree-level mass

matrix. The supertrace, Str, is defined as

Str =
∑

scalars

−2
∑

fermions

+3
∑

vectors

. (3.18)

We have C = 3/2 for scalars and fermions and C = 5/6 for the gauge bosons, and µ0 is

a reference renormalization scale. As explained above, the Yukawa sector terms explicitly

break the global SU(4) symmetry and gauge interactions will also provide explicit symmetry

breaking. This explicit breaking will generate a nonzero mass term for the Goldstone bosons

at the quantum level and a mass mixing term between the Π4 and the σ fields.

At very high energy scales the background-dependent masses of all the scalars are the

same, namely, m ≈
√
λσ, where λ is a linear combination of several quartic couplings. The

renormalization scale is fixed as a constant at the energy scale of inflation. Taking only the

top and scalar corrections into account, the one-loop corrections to the potential take the

simple form

δV =
σ4

64π2

[
7λ2

(
log

λσ2

µ2
− 2

3

)
− 3y4

t sin4 θ

(
log

y2
t sin2 θσ2

2µ2
− 3

2

)]
. (3.19)

in the direction of σ. Thus the effective potential to one-loop order can be written as

V (σ) =
λeff (σ)

4
σ4 (3.20)

where the effective quartic coupling is

λeff (σ) = λ+
4

64π2

[
7λ2

(
log

(
λσ2

µ2

)
− 3

2

)
− 3y4

t sin4 θ

(
log

(
y2
t sin2 θσ2

2µ2

)
− 3

2

)]
. (3.21)
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Here yt is the top quark Yukawa and λ is not yet experimentally constrained. At lower energy,

the one-loop potential is more involved and a detailed analysis of the one-loop potential at

low energy can be found in [86]. In that paper the authors found that for θ around 0.018 and

λ around 0.007 there is a region of parameter space with the most “EW-favorable points”,

but that it is by no means required for good EW behavior for theta and lambda to take

these values. In this work we will be primarily interested in the high energy regime since

the scalar field will acquire a comparatively large vacuum expectation value. Below, we will

find that in order to produce a baryon asymmetry of the appropriate size, it is desirable to

have a small coupling λeff . In order to ensure the stability of the potential at large σ, it may

be necessary to tune both λ and θ to be small, by choosing the parameters in the SU(4)

potential appropriately. This is not a problem since, unlike in the SM, λeff is not set by the

observed Higgs mass because of the enlarged scalar sector.

3.2.3 The Physical Higgs

For maximum clarity, we here pause to identify the physical Higgs boson states. At low

energy there is a mass mixing between the σ and the Π4 fields as mentioned earlier. The

mass eigenstates of this mixing are the two Higgs particles, h and H, given by σ

Π4

 =

cosα − sinα

sinα cosα

h

H

 , (3.22)

where α is the scalar mixing angle, chosen in the interval [0, π/2]. The observed Higgs boson

will be the lightest eigenstate with a mass

mh = 125.7± 0.4 GeV (3.23)

which in [86] was found that α is preferred to be very close to π/2; that is, the observed

Higgs is mostly a pNGB.

As noted, though, at high energies these states are nearly degenerate in mass.
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3.3 Relaxation-Leptogenesis Framework

Having introduced the EGH model, with particular attention to the scalar and fermionic

sectors, we now introduce the Higgs relaxation leptogenesis framework, which has been

explored in the SM context in [1–3].

We outline the important steps of relaxation leptogenesis as follows: First, we need a

scalar (or pseudo-scalar) field with a large vacuum expectation value (VEV). This can occur

through quantum fluctuations during inflation, or the field may be trapped in a quasi-stable

minimum. Afterwards, the field relaxes to its equilibrium value.

During this relaxation, a chemical potential for lepton number may be induced via higher

dimensional operators. This lowers the energy of leptons and raises the energy of antileptons.

Lepton-number-violating processes, such as those mediated by the neutrino Majorana masses

introduced above, produce an excess of leptons over antileptons. These interactions can occur

within the particle plasma produced during reheating [1, 2], or during the decay of the Higgs

condensate itself [3]. Here we focus on the first scenario as an illustrative example.

While we specifically consider the scalar sector here (which is of the most interest due to

the extended scalar sector in the EGH model), we acknowledge that similar considerations

apply to axion-like degrees of freedom, which have been explored in [78, 80].

In our previous realisations of Higgs-relaxation leptogenesis, the relaxing field was iden-

tified with the SM Higgs, although we allowed for a modified potential at high scales. The

recent observation of the Higgs boson at the LHC sets the quartic coupling, although it is sig-

nificantly modified at large scales (as described by the renormalization group equations) [9].

However, the EGH model has additional freedom as can be seen in Eq. (3.21). We will show

below that in order to generate the observed baryonic asymmetry, while remaining in the

regime in which certain approximations are valid, the quartic coupling must be significantly

smaller than the value preferred in the SM. This is not phenomenologically problematic in

the EGH scenario because the extended Higgs sector allows for additional flat directions.
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3.3.1 Large Initial Vacuum Expectation Value (VEV) of σ

As we mentioned above, during inflation, scalar fields may acquire large vacuum expectation

values (VEVs) through quantum fluctuations: because relaxation via a coherent motion is

a classical process, its time-scale may be significantly longer than those typical of quantum

fluctuations (see [10–12]). Concretely, quantum fluctuations occur on a scale such that

V (σI) ∼ H4
I where σI =

√
〈σ2〉 is the scalar field vacuum expectation value and HI ≡√

8π/3Λ2
I/mpl is the Hubble parameter during inflation. The VEV rolls down classically to

its minimum with the characteristic time scale

τroll ∼ 1/mσ,eff ∼
[
d2V (σ)

dσ2

]−1/2

. (3.24)

However, if τroll � H−1
I , there is insufficient time between quantum fluctuations for the

generated field VEV to roll down. In this case, the scalar field would develop a large VEV

∼ σI during inflation.

An alternative scenario for starting with a large scalar vacuum expectation value is that

the scalar field may be trapped in a quasi-stable minimum in the early universe; this is

particularly well-motivated in scenarios in which the initial scalar VEVs are distributed

stochastically (provided the scalar potential does, indeed, have a high-scale quasi-stable

minimum).

The SM potential provides motivation for both scenarios: recent measurements of the

Higgs mass suggest a rather flat potential, before turning over (and potentially becoming

negative) [9]. The flat potential makes it easier for quantum fluctuations to generate a

large VEV in the early universe; on the other hand, if the potential does turn over, higher-

dimensional operators can stabilize the potential in such a way as to produce a quasi-stable

minimum.

Here, though, we are interested in the EGH model, which has a different potential shape.

As noted, the physical Higgs boson h and H are mixtures of the σ and Π4 degrees of freedom,

although there is an approximate rotational symmetry at high energies. We will consider the

case in which the field σ acquires a large VEV during inflation within the effective potential
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given in Eq. (3.20). In fact at high energies σ can be seen as simply the modulus of the scalar

field and therefore it would not matter which direction one selects. Furthermore, as already

explained, the effective quartic potential in this case is not fixed at low energies, because the

mass of the pNGB Higgs emerges radiatively via top corrections and there are no sufficient

experimental constraints yet to fix this overall coupling.

Next, we address an issue which affects all relaxation leptogenesis models, which is dis-

cussed in more detail in [1, 2]. Namely, in both ways of generating large scalar VEVs, different

patches of the Universe generically have different values of σI at the end of inflation. If the

lepton asymmetry is linked to the initial VEV of σ, each patch of the Universe could have

a different final asymmetry. This would result in unacceptably large baryonic isocurvature

perturbations [50–54], which are constrained by the cosmic microwave background (CMB)

observations [24, 25].

One solution to this problem, which was proposed in [1], is to couple the Higgs sector to

the inflaton in such a way as to suppress the growth of the VEV until the end of slow-roll

inflation. The resulting isocurvature perturbations are then on scales smaller than those

which have been experimentally probed. In the EGH model, we adapt this solution by

coupling the σ field to the inflaton I via operators of the form

LσI = c
In

mm+n−4
pl

Tr
[
M+M

]m/2
. (3.25)

Such a non-renormalizable operator can be generated by integrating out heavy states in

loops; we can envision that these states arise by heavy SU(4)-preserving multiplets which

arise when the EGH model is embedded into larger (perhaps grand unified) models. In the

early stages of inflation, the VEV of the inflaton 〈I〉 can be large (superplanckian) and gives

a large effective mass mσ,eff (〈I〉) to σ; this suppresses the quantum fluctuations of the σ

field. In the later stages of inflation, 〈I〉 decreases to a value such that mσ,eff (〈I〉) � HI ,

allowing a large VEV for σ to develop. If the development of the VEV occurs during the

last Nlast e-folds of inflation, the VEV reaches the average value

σ0 = min

(
σI ,

HI

2π

√
Nlast

)
. (3.26)
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The resulting isocurvature perturbations appear only at the smallest angular scales, and are

not yet constrained for Nlast . 8.

While other solutions to this isocurvature problem were noted in [1], we consider this one

as an illustrative example which also allows the most freedom in parameter space.

3.3.2 Relaxation of the σ Field

When the inflation is over, the inflaton begins oscillating coherently as it decays; conse-

quently, the universe behaves as if it is matter dominates. During this epoch, the σ field also

relaxes from its starting value of σ0 and oscillates around σ = 0 (the minimum of Eq. (3.20))

with diminishing amplitude. The equation of motion for σ (t) (where by an abuse of notation

we use σ(t) for the VEV of the σ field) is

σ̈ + 3H (t) σ̇ +
dV (σ)

dσ
= 0. (3.27)

The Hubble parameter H (t) is determined by the system of differential equations

H (t) ≡ ȧ

a
=

√
8π

3m2
pl

(ρr + ρI), (3.28)

ρ̇r + 4H (t) ρr = ΓIρI , (3.29)

where ΓI is the decay rate of inflaton, and ρI = Λ4
Ie
−ΓI t/a (t)3 and ρr = (g∗π

2/30)T 4 are

the energy densities of the inflaton field and the produced radiation respectively. We ensure

that the energy density of the σ condensate never dominates the universe, so as to preserve

that standard cosmological picture. Note that the maximum temperature during reheating

and the reheat temperature can be estimated as [96] Tmax ≈ 0.618 (Λ2
I ΓI mpl/g∗)

1/4
and [27]

TRH ' (3/π3g∗)
1/4√

ΓImpl, respectively.

3.3.3 Effective Chemical Potential

We consider the following couplings between the lepton current and the σ field

L6 = − 1

M2
n

Tr
[
M+M

]
∂µj

µ
B = − 1

M2
n

σ2∂µj
µ
B, (3.30)
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where Mn is a potentially new scale. This coupling does not break SU(4) symmetry, and is

therefore consistent with the EGH picture. As this is a higher-dimensional operator, it may

be generated by integrating out heavy states; one obvious method is to expand the minimal

EGH model introduced above with heavy RH states that couple to a gauge boson anomaly,

as discussed in some detail in [2]. Other possibilities for generating this operator, unique to

EGH models, may exist. We note that, to generate this effective operator, CP-violation is

necessary [58, 59].

While this operator preserves SU(4), when the scalar VEV is evolving it breaks CPT; in

fact, it is similar in form to the one considered in spontaneous baryogenesis scenarios [62, 65].

An integration by parts gives

L6 =
1

M2
n

(
∂µσ

2
)
jµL. (3.31)

For a patch of the Universe where the σ field is approximately spatially homogeneous, the

operator becomes

L6 =
1

M2
n

(
∂0σ

2
)
j0
L. (3.32)

When σ is decreasing, this operator effectively raises the energy of antiparticles, while low-

ering it for particles. Within the equation of motion for the fermions, this term plays a role

similar to that of an effective external chemical potential

µ0 = −∂0σ
2

M2
n

. (3.33)

In the presence of lepton-number-violating processes, the system will favor the production

of particles over antiparticles.

We emphasize that because the operator (3.30) depends on the VEV squared, a positive

lepton number is produced everywhere as the Higgs field relaxes. This is in contrast to

many spontaneous baryogenesis models in which the effective chemical potential depends on

∂0S (where S is the scalar VEV), and in which the sign of the asymmetry depends on the

initial sign of the VEV. Consequently, in this model it is not necessary for the observable

universe to be enclosed within a single patch of constant σ; instead we need only satisfy the

isocurvature constraints mentioned above. (We also note that the spatial variation in the

field does not contribute to the charge asymmetry.)
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Figure 3.1: Some diagrams that contribute to lepton number violation via exchange of a

heavy Majorana neutrino, where φi can be Π4, Θ, Π̃4, Π3, Π̃3, or σ, depending on which

fields are in thermal equilibrium.

3.3.4 Lepton Number Violating Processes

This chemical potential alone will not yield any lepton asymmetry; successful leptogenesis

additionally requires some lepton-number-violating process. This was addressed above when

we introduced Majorana masses in the neutrino sector. Therefore, we consider the standard

seesaw mass matrix in Eq. (3.14) for neutrinos (which requires a small breaking of SU(4),

as discussed in [86]). The L violating processes are (i) a left-handed neutrino converting

into an anti-left-handed neutrino through exchange of a heavy Majorana neutrino; (ii) pair

production or annihilation of neutrinos or antineutrinos. These processes are shown in the

diagram in Fig. 3.1.

With the introduction of the neutrino Majorana mass, several leptogenesis mechanisms

become possible within the EGH model, beyond the Higgs relaxation leptogenesis considered

here. These include thermal leptogenesis [74, 75], resonant leptogenesis [97, 98], and ARS-

type leptogenesis [99]. We consider a regime of parameter space in which these leptogenesis

mechanisms are insufficient to generate the observed baryon asymmetry, but the asymmetry

produced through the Higgs relaxation mechanism can account for the observed asymmetry.

In particular, we consider large Majorana mass MR; in the Higgs relaxation mechanism, the

smallness of the Majorana mass can be counteracted by a large ∂tσ
2. We also do not arrange

the neutrino sector parameters so as to have resonant production of neutrinos.

69



The thermally averaged cross section of these processes 〈σv〉0 can be found in [2]. This

calculation can be easily extended to the EGH case, which will be discussed in Appendix

C. Due to the additional scalar fields that participate in these processes, the cross section is

enhanced by a factor of 16 if all scalar fields are in thermal equilibrium,

〈σv〉0 = 16 [〈σ (νLφ↔ ν̄Lφ) v〉0 + 〈σ (νLνL ↔ φφ) v〉0] , (3.34)

where φ stands for a scalar field that couples to νL with the Yukawa coupling Y ν . We

emphasize that all processes which violate lepton number contribute to producing the asym-

metry in the presence of the nonzero chemical potential. If heavier, weakly-interacting fields

such as the σ and the Θ are not in thermal equilibrium, then the cross section is scaled by[
1− sin2 (θ) /2

]2 ≈ 1.

For the νLφ↔ ν̄Lφ process, the s-channel process has a resonance at E ∼ MR, which is

generally ineffective because, in order to suppress standard leptogenesis, we ensure that MR

is well above the energy scales probed by the VEV (and also above the reheat temperature).

The center-of-mass cross section is

σCM (νLφ↔ ν̄Lφ) =
1

16π

|Y ν |4

4

(
M2

R +
ΓR
4

)∫ 0

−s
dt (s+ t)

×
[

1

A2 + C2
+

1

B2 + C2
+

2(AB + C2)

(AB + C2)2 + C2(A−B)2

]
(3.35)

where

A = s−M2
R + Γ2

R/4,

B = t−M2
R + Γ2

R/4,

C = ΓRMR, (3.36)

and the decay rate of the RH neutrino is approximated by ΓR ≈ |Y ν |2MR/16π. The thermally

averaged cross section for massless particles to the CM cross section can be obtained as [100]

〈σv〉0 =
1

32T 5

∫ ∞
0

ds s3/2K1(
√
s/T )σCM(s). (3.37)
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For the νLνL ↔ φφ process, the thermally averaged cross section can be approximated

as

〈σ (νLνL ↔ φφ) v〉0 ≈
|Y ν |4

16πM2
R

, (3.38)

in the limit T �MR. To account for the ∼ 0.1 eV left-handed neutrino mass, the sum from

two channels gives about 〈σv〉0 ∼ 5× 10−30 GeV−2 for the EGH scenario.

3.3.5 Boltzmann Transport Equation

The lepton number violating processes described above are usually not fast enough to reach

chemical equilibrium, due to the suppression from the large Majorana mass. Nevertheless,

the relaxation of the system toward its equilibrium can be described by the Boltzmann

transport equation. To the first order in µ0/T , we have

ṅL + 3HnL = −2neq0 〈σv〉0
(
nL −

2µ0

T
neq0

)
(3.39)

where nL = nν − nν is the total asymmetry of neutrinos, and neq0 = T 3/π2. If the inter-

action were fast enough, the system would yield the lepton asymmetry nL, eq = 2
π2µ0T

2 in

equilibrium. The derivation of this equation is discussed in Ref. [2].

3.3.6 Resulting Lepton Asymmetry

As in [1], the evolution of the lepton asymmetry can be analyzed in two regimes: during the

relaxation of the σ field (µ0 6= 0) and during the subsequent cooling of the Universe (µ0 ≈ 0).

During the relaxation of the σ field, when µ0 ∝ ∂0σ
2 6= 0, the Universe produces most of the

lepton asymmetry; as mentioned this time is generally insufficient for the system to reach

equilibrium, and so the asymmetry produced is of the order nL,eq × σRT 3
rlxtrlx, where trlx is

the time period during which the Higgs field relaxes, and Trlx = T (trlx). The equilibrium

lepton asymmetry can be approximated by its value at trlx as

nL,eq '
2

π2
µ0T

2
rlx =

2

π2

∂0σ
2

M2
n

T 2
rlx '

2

π2

σ2
0

M2
ntrlx

T 2
rlx, (3.40)
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where σ0 is the initial VEV of σ given by Eq. (3.26), and Mn is the new scale. From this,

we find the approximate number density

nL, rlx '
2σ2

0T
2
rlx

π2M2
ntrlx

min

{
1,

2

π2
σRT

3
rlxtrlx

}
, (3.41)

where σR is the thermally averaged cross section given by Eq. (3.34).

Note the temperature before and after the reheating completes (tRH ≡ 1/ΓI) is given by

T (t) ≈


TRH (tRH/t)

1/4 t < tRH(
45

16π3g∗

)1/4√
mpl

t
t > tRH .

(3.42)

We note that because we consider a pure φ4 potential, the relaxation time is trlx ≈ 7/
√
λeffσ0.

(This holds within a factor of two even for quartic couplings of the order λ ∼ 10−20.)

After the initial relaxation, the produced asymmetry can be partially washed out. This

is due either to subsequent oscillations, during which the sign of the chemical potential

oscillates, or due to ongoing lepton-number-violating interactions in the plasma after the

chemical reaction has become small. As computed in [1, 5], the effect of washout can be

approximated by

NL, f = NL, rlx exp

{
−σRT

3
RH

π2ΓI

[
8

(
1− TRH

Trlx

)
+
√

15

]}
(3.43)

≈ NL, rlx exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
(3.44)

for trlx < tRH , and

NL, f = NL, rlx exp

(
−
√

15

π2

σRT
2
RHTrlx

ΓI

)
(3.45)

for trlx > tRH . We note that depending on the strength of the lepton-number-violating

potential, it may be advantageous to arrange for a comparatively rapid decay of the σ

condensate, so that the oscillation amplitude of the scalar VEV is significantly damped.

The asymmetry is also further diluted by (arlx/aR)3 ≈ t2rlxΓ2
I for the case that trlx < tRH .

Thus at the end of reheating (assuming the oscillation of the scalar field has ended), the

72



-16 -14 -12 -10 -8 -6 -4

-25

-20

-15

-10

log(t [GeV-1 ])

lo
g
Y ΛI = 1.5×10

16 GeV

σ0 = 2.4×1013 GeV

ΓI = 6.×10
6 GeV

Tmax = 6.9×1013 GeV

Mn = 6.9×1013 GeV

MR = 6.9×1014 GeV

Figure 3.2: Evolution of the lepton asymmetry Y = nL/ (2π2g∗ST
3/45) for λeff = 10−13,

with the parameters ΛI = 1.5 × 1016 GeV, ΓI = 6 × 106 GeV, Mn = 6.9 × 1013 GeV, and

MR = 6.9× 1014 GeV. The initial VEV of the σ field is σ0 = 2.4× 1013 GeV. The maximum

temperature during reheating is Tmax = 6.9 × 1013 GeV. The vertical dashed lines denote

the time of maximum reheating, the beginning of the radiation-dominated era, and the first

time the σ VEV crosses zero, form left to right.

Universe obtains the the ratio of the lepton asymmetry to entropy

Y ≡ nL
s

=
45

2π2g∗S

nL
T 3

' 45

2π2g∗S

2σ2
0

π2M2
n

T 2
rlxtrlxΓ2

I

T 3
RH

min

{
1,

2

π2
σRT

3
rlxtrlx

}
exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
(3.46)

for trlx < tRH , and

Y ' 45

2π2g∗S

2σ2
0

π2M2
n

1

Trlxtrlx
min

{
1,

2

π2
σRT

3
rlxtrlx

}
exp

(
−
√

15

π2

σRT
2
RHTrlx

ΓI

)
(3.47)

for trlx > tRH . This estimation formula agrees within one order of magnitude with the

numerical result.

One can obtain the evolution of the lepton asymmetry more precisely by solving Eq. (3.39)

numerically. In Fig. 3.2, we present a numerical example for λeff = 10−13 with the inflationary

parameters ΛI = 1.5× 1016 GeV, and ΓI = 6× 106 GeV. The RH neutrino mass scale is set

at MR = 10Tmax to suppress the thermal production of RH neutrinos during reheating, and

we verify that the resulting neutrino Yukawa coupling is within the perturbative regime
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Figure 3.3: The approximate late time asymptotic asymmetry (log |Y |) using Eqs. (3.46)

and (3.47) with ΓI = 3× 106 GeV, MR = 10Tmax, and Mn = 0.1Tmax. The red line indicates

where trlx = tRH . The dashed line denotes the required asymmetry to explain the observed

baryonic matter-antimatter asymmetry.

(|Y ν |2 /4π = 0.18 < 1). This example gives a late time asymptotic asymmetry about

Y ∼ 10−10.

We explored the parameter space of the model using the approximate formula [Eqs. (3.46)

and (3.47)]. In Fig. 3.3, we show the approximate late time asymmetry (log |Y |) as a function

of λeff and ΛI with mass scales MR = 10Tmax and Mn = 0.1Tmax. We have checked that this

value of MR is sufficient to ensure that standard leptogenesis does not produce a sufficiently

large asymmetry. The decay rate of the inflaton is set to ΓI = 3.7× 106 GeV so that it gives

the maximum asymmetry for each λeff and ΛI . The requirement of the neutrino coupling

being perturbative (|Y ν |2 /4π < 1) imposes an upper bound on the inflationary energy scale

ΛI . 7 × 1017 GeV, which is weaker than the bound ΛI . 1 − 2 × 1016 GeV from CMB

observations [24, 25].

In Fig. 3.3 we see that the generated asymmetry increases as λeff decreases in the region
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where trlx < tRH . This can be understood as follows: the initial VEV is set by inflationary

parameters, since by construction, the VEV is permitted only to grow during the last N ≈ 8

e-folds of inflation. The relaxation time though scales as 1/
√
λeff ; therefore, as λeff decreases

the system has more time to approach the equilibrium asymmetry.

The dashed line in the figure indicates Y = 10−10, which matches the observed value.

The region of most interest is the lower left side, in which a sufficiently large asymmetry

is generated with ΛI . 1016 GeV, which is required by observations of the tensor-to-scalar

ratio in the CMB [24, 25].

From this figure, we see the effective quartic coupling is restricted to λeff . 10−8, which

corresponds to a relatively flat effective potential for the σ field. Such flat directions can

develop in models with multi-field scalar sectors, such as the EGH model considered here.

We note that in all of this parameter space, Mn < Tmax, and in much of it, Mn < σ0.

Because Mn is not the largest scale in the analysis, the use of effective field theory to derive

Eq. (3.30) is questionable. Consequently, the exact asymmetry would depend on the details

of the UV-complete theory considered; however, Eq. (3.30) is likely to give a reasonable

approximation.

In order to compare with our earlier work using the SM Higgs boson, it is convenient to

consider the asymmetry as a function of the new scale Mn and the decay rate of the inflaton,

ΓI . This is shown in Fig. 3.4, where we have fixed the inflationary scale ΛI and coupling

λeff . As above, we also take MR = 10Tmax. Therefore, the inflaton decay rate ΓI , which fixes

Tmax, also effectively fixes MR and therefore, when combined with observational limits on the

left-handed neutrino masses, the neutrino coupling Y ν . Demanding that the coupling Y ν be

in the perturbative regime eliminates the parameter space shown in grey on the right-hand

side of the plots.

In these plots, we additionally illustrate the regime in which Max(σ0, Tmax) > Mn using

cross-hatching. As noted above, in this regime the exact asymmetry would depend on the

details of the UV-complete theory considered; however, Eq. (3.30) is a reasonable estimate.

We see that if one fine-tunes λeff to extremely small values [O(10−13) or smaller], an asymme-
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Figure 3.4: An exploration of parameter space as a function of Mn and ΓI , for

ΛI = 1.5 × 1016 GeV and λeff = 10−13 (left) and ΛI = 1017 GeV and λeff = 10−15 (right).

The grey area on the right indicates where the theory is not under perturbative control, and

the cross hatched region denotes the regime in which the effective field theory used to derive

Eq. (3.30) is unreliable. The red lines indicate where trlx = tRH . The dashed lines denote

the required asymmetry to explain the observed baryonic matter-antimatter asymmetry.

try Y ∼ 10−10 can be generated in the regime in which effective field theory is reliable. For

ΛI = 1.5× 1016 GeV, near the upper limit allowed by CMB observations, this region is near

Mn ∼ 1014 GeV and ΓI ∼ 106 GeV. If ΛI is increased to 1017 GeV (and the quartic coupling

decreased), then the parameter space is significantly larger, as illustrated by the plot on the

right. For so small values of λeff the value of θ is also small and hence the value of the VEV

f is large. In fact for λeff = 10−13 the mode of θ is θ̄ = 2.216+0.704
−0.200 × 10−13 (the plot on the

left) and for λeff = 10−15 (the plot on the right) the mode of θ is θ̄ = 8.359+2.621
−0.487 × 10−8.

The plots in Fig. 3.4 illustrate the freedom available in this model. While the quartic

coupling of the SM has a minimum value set by the recently observed Higgs boson, no

such constraint restricts the effective EGH self-coupling λeff yet. By decreasing λeff one can
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enhance the asymmetry; alternatively, one may say that lower inflationary scales ΛI and ΓI

are permitted in the EGH model. Furthermore, such small values of λeff allow us to generate

a sufficiently large asymmetry in the regime in which effective field theory is reliable; in

order to accomplish this withing the SM Higgs boson, significant modifications to the Higgs

potential (using non-renormalizable operators) at large scales were necessary [2].

As noted above, at small couplings we must be concerned about corrections to the po-

tential. We note that using the full running coupling (3.21) alters the final asymmetry

at the level of about 1%. One may also be concerned that finite temperature corrections

could significantly affect the potential. However, the finite temperature corrections to the

potential scale as λeffT
2σ2, and so are also suppressed by the small quartic coupling. For

the parameters in Fig. 3.2, this correction only affects the asymmetry by 0.1%. Couplings

to the Standard Model fermions are suppressed by the sin(θ) factor, which as indicated by

Eq. (3.21), is necessarily small when the quartic coupling is small.

As mentioned above, we can only tune the quartic coupling λeff to be this small in

models with an extended Higgs sector, as the observed Higgs boson mass suggests a quartic

coupling O(10−2) at high scales. Therefore, we have shown that in an extension of the SM

with an extended Higgs sector (included but not limited to the EGH paradigm) it is possible

for Higgs-relaxation leptogenesis to generate the observed baryonic asymmetry, although it

requires a small self-coupling if the potential in the direction of the VEV has a φ4 form (and

one wishes to remain in the regime in which effective field theory is reliable). Furthermore,

although the parameter space is not large, this can be accomplished for inflationary scales

consistent with CMB measurements.

3.4 Conclusions and Outlook for Chapter 3

In this work, we have successfully extended the baryogenesis scenario using the relaxation

mechanism to the EGH framework. Our results show that if the electroweak scale is not

fundamental but radiatively generated and consequently the Higgs particle a quasi elemen-
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tary Goldstone Boson it is possible to generate the baryon asymmetry by marrying the EGH

framework to the relaxation mechanism. In particular, we showed that in order to accom-

modate baryogenesis the only necessary extensions to the model is to include RH neutrinos

and furthermore the operator in Eq. (3.30) is generated.

Because of the nature of the EGH new Higgs sector one can consider very flat scalar

potential directions along which the relaxation mechanism can be implemented. This further

translates into achieving a wider region of applicability of the approximations, particularly

regarding the regime in which the use effective theory used to derive Eq. (3.30), as compared

to the SM Higgs case. Specifically baryogenesis can be achieved even from an unmodified φ4

potential and within a regime in which the effective field theory interpretation of Eq. (3.30)

is justified, unlike in the SM case. Observed limits on the inflationary scale ΛI restrict, but

do not eliminate, this parameter space.
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CHAPTER 4

Leptogenesis via the 750 GeV Pseudoscalar

In December 2015, the ATLAS and CMS Collaborations have reported signal of a diphoton

excess which may be interpreted as a pseudoscalar boson S with a mass around 750 GeV. To

explain the diphoton excess, such a boson is coupled to the Standard Model gauge fields via

SFF̃ operators. In this chapter, we consider the implications of this state for early universe

cosmology; in particular, the S field can acquire a large vacuum expectation value due to

quantum fluctuations during inflation. During reheating, it then relaxes to its equilibrium

value, during which time the same operators introduced to explain the diphoton excess

induce a nonzero chemical potential for baryon and lepton number. Interactions such as

those involving right-handed neutrinos allow the system to develop a nonzero lepton number

and, therefore, this state may also be responsible for the observed cosmological matter-

antimatter asymmetry. This chapter is based on the work [5] done with Alexander Kusenko

and Lauren Pearce.

4.1 Introduction

In December 2015, the ATLAS and CMS Collaborations have reported signal of a diphoton

excess at an invariant mass of mS ≈ 750 GeV [101, 102]. One possible explanation for the

excess is the resonant process pp → S → γγ, where S is a new scalar or pseudoscalar field

with mass mS [103–105]. To produce the signal, this field should couple to the SU(3)C field

strength tensor Ga
µν (for production from gluons) and to the U(1)QED field strength tensor

Fµν (to enable decays to two photons).

The discovery of beyond-the-Standard-Model physics may have implications for unre-
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solved issues such as the nature of dark matter [106–113] and the matter-antimatter asym-

metry of the Universe [114, 115]. While Ref. [114, 115] considered the impact of a 750

GeV scalar for electroweak scale baryogenesis, we here show that a 750 GeV pseudoscalar

can produce the observed cosmological matter excess during an epoch of relaxation in the

early Universe, similar to the Higgs- and axion-relaxation leptogenesis scenarios discussed

in [1–4, 63, 78, 80, 116–120].

The structure of this chapter is as follows: In the subsequent section, we introduce a

concrete model with a pseudoscalar field with a mass of 750 GeV. We then discuss how the

very operators introduced to explain the LHC diphoton excess can also produce an effective

chemical potential in the early Universe, if the pseudoscalar field acquire a time-dependent

vacuum expectation value (VEV). Then in Sec. 4.3, we discuss how a large VEV can be

produced during the inflationary epoch in the early Universe, which will subsequently relax

to its equilibrium value. In Sec. 4.4 we discuss the lepton-number-violating processes in the

early Universe which, in the presence of the chemical potential, result in a lepton asymmetry.

The model parameters are restricted by isocurvature constraints and the fact that the entire

observable Universe is a domain of baryon excess (as opposed to anti-baryonic excess). These

constraints are discussed in Sec. 4.5. Finally, we present a numerical analysis of the available

parameter space in 4.6.

4.2 The Model and Effective Chemical Potential

In order to explain the observed diphoton excess, we supplement the Standard Model (SM)

with a real singlet S which interacts via the terms [103–105]:

L ⊃ λ̃g
αs

12πvEW
SGa

µνG̃
µν
a + λ̃W

α

π sin2 θWvEW
SW a

µνW̃
µν
a + λ̃B

α

π cos2 θWvEW
SBµνB̃

µν , (4.1)

where θW is the weak mixing angle, and W and B are the SU(2)L and U(1)Y field strength

tensors, respectively. After the Higgs boson acquires a nonzero vacuum expectation value,

the Lagrangian contains the couplings

L ⊃ λ̃g
αs

12πvEW
SGa

µνG̃
µν
a + λ̃γ

α

πvEW
SFµνF̃

µν , (4.2)
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where F µν is the U(1)QED field strength tensor, and λ̃γ = λ̃W+λ̃B. Ref. [105] has explored the

parameter space in which this model reproduces the observed excess, finding λ̃γ = 0.48±0.08,

although the lower values are in some tension with dijet resonance searches. Production via

gluon interaction is controlled by λ̃g ∼ 0.1 to 1. For leptogenesis, we will make use of

the operators with the SU(2)L and U(1)Y gauge fields. These are O5 operators with an

effective scale of πvEW/αλ̃γ ∼ 105 GeV, although as discussed in Ref. [105], these operators

are generally constructed from fermions with masses on the TeV scale.

Next, we show that these operators can lead to an effective chemical potential for baryon

and lepton number when the S field has a time-dependent vacuum expectation value (VEV).

In the Standard Model, the baryon number and lepton number currents (jµB and jµL) are not

conserved; baryon and lepton number can be violated by sphaleron processes. The divergence

of these currents is given by the electroweak anomaly equation

∂µj
µ
B = ∂µj

µ
L =

Nf

32π2

(
−g2W a

µνW̃
µν
a + g′2BµνB̃

µν
)
, (4.3)

where Nf = 3 is the number of families in the Standard Model.

Using the anomaly equation, the terms in Eq. (4.1) generate a coupling between the

pseudoscalar S and the divergence of the (B + L) current,

L ⊃ −λ̃W
8

NfvEW
S∂µj

µ
B+L = λ̃W

8

NfvEW
(∂µS) jµB+L, (4.4)

where we have integrated by parts and dropped a total derivative in the second step. This

effective operator is valid when electroweak sphalerons to be in thermal equilibrium; in the

early Universe, this occurs for temperatures below T . 1012 GeV [64, 121].

For a patch of the Universe where the VEV 〈S〉 is approximately spatially homogeneous

but evolves in time, this operator becomes

LO5 = λ̃W
8

NfvEW
(∂0 〈S〉) j0

B+L. (4.5)

which acts as an effective chemical potential

µ0 = λ̃W
8

NfvEW
(∂0 〈S〉) (4.6)
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for the B + L charge j0
B+L.

We assume that the axion-like couplings in Eq. (4.1), which are nonrenormalizable oper-

ators, are effective couplings. These may be generated by integrating out a loop of fermions

which are heavy compared to 750 GeV. As noted above, we expect these effective opera-

tors to break down around the TeV scale. In the scenario outlined here, we will consider

temperatures in the early Universe above this. If this operator is generated by a fermionic

loop, these degrees of freedom will typically acquire thermal corrections to their masses,

proportional to their coupling times the temperature. For temperatures T � 105 GeV, the

thermal masses will dominate. Similar finite temperature considerations will apply to other

mechanisms of generating the O5 operators in Eq. (4.1). Therefore, we will use the effective

chemical potential

µ0 ∼
1

T
(∂0 〈S〉) . (4.7)

The interpretation of the term in Eq. (4.5) as a chemical potential [65, 122] simplifies

the analysis of the asymmetry generation. However, in some cases, such an interpretation

may fail [123, 124]. The effective chemical potential is a valid approximation when there

is a separation of scales: the plasma interactions at temperature T are very rapid on the

time scales on which the scalar field is moving. In this regime, one can introduce two

Wilsonian cutoffs, one at some high energy scale Λh and one at an energy scale Λl, such

that (∂0 〈S〉 / 〈S〉) � Λl � T . One can then integrate out all degrees of freedom outside

these two cutoffs and construct an effective theory for the scales between Λl and Λh. In this

effective theory, the field S and its time derivative are not propagating degrees of freedom,

but slowly varying external parameters. From the remaining degrees of freedom, describing

plasma at temperature T , one can construct the Hamiltonian in the usual manner. The term

in Eq. (4.5) becomes µ0nB+L, where µ0 ∝ ∂0S is the effective chemical potential.

We observe that this chemical potential, generated by the relaxation of a scalar field, is

similar to that in the models considered in Refs. [1–3, 78]; however, in this model µ0 depends

on the time-derivative of 〈S〉 rather than the time-derivative of 〈S2〉 . Consequently, the sign

of 〈S〉 is important to determining whether an excess of particle or antiparticles is produced;
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this will lead to constraints discussed in Sec. 4.5 below.

4.3 Vacuum Expectation Value during Inflation

In the previous section, we demonstrated how the terms between the 750 GeV pseudoscalar

field and SM field strengths introduced to explain the observed LHC excess can themselves

lead to an effective chemical potential for baryon and lepton number in the early Universe,

provided that the pseudoscalar field acquired a time-dependent vacuum expectation value.

In this section, we explain how this can naturally occur during inflation.

In addition to the LO5 operator discussed above, the scalar S must have the canonical

kinetic term, quadratic coupling, and quartic self-coupling

LS =
1

2
∂µS ∂

µS − 1

2
m2
SS

2 − 1

4
λSS

4 (4.8)

for the theory to be renormalizable. The LHC data suggested that mS ≈ 750 GeV. During

inflation, the scalar field S can acquire a nonzero vacuum expectation value (VEV), of

magnitude S0 ≡
√
〈S2〉 due to quantum fluctuations. The average initial VEV can be

computed through the Hawking-Moss instanton or via a stochastic approach [10, 11, 14, 15,

21]. In the massive noninteracting limit (λS = 0), the average initial VEV has magnitude

[12]

S0 =

√
3

2

H2
I

2πmS

≈ 0.19
H2
I

mS

, (4.9)

where HI ≡
√

8π/3Λ2
I/mpl is the Hubble parameter during inflation. For the massless

interacting limit (mS = 0), the VEV is [12]

S0 =

√
Γ
(

3
4

)
Γ
(

1
4

) ( 3

2π2λS

)1/4

HI ≈ 0.36
HI

λ
1/4
S

. (4.10)

At the end of inflation, the field rolls down classically to the minimum of its potential.

The relaxation of the VEV after inflation provides the time-dependence in the chemical

potential (4.6). The evolution of the VEV is governed by the equation of motion,

S̈ + 3HṠ + ΓSṠ + V ′(S) = 0, (4.11)
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where V (S) is the potential from Eq. (4.8), and ΓS is the decay width of the S boson.

The total decay width has been explored in the parameter space for the diphoton excess in

Ref. [105]; it is constrained from below by

Γ(S → gg) = 47 MeV × λ̃2
g

( mS

750 GeV

)3

,

Γ(S → γγ) = 3.4 MeV × λ̃2
γ

( mS

750 GeV

)3

, (4.12)

although additional couplings between the S boson and other fields can enhance the decay

width. Ref. [105] found that in the preferred region of parameters, a decay width between

O(0.1) and O(0.01) GeV is preferred. As in the case of the Higgs relaxation, the evolution of

the condensate can be treated as classical coherent motion as long as the condensate decay

width is not too large [48, 125].

We note that this potential is invariant under S → −S, and therefore when a nonzero

vacuum expectation value develops, domains with either sign generally occur, separated by

domain walls. In regions where 〈S〉 has different signs, the chemical potential given by (4.6)

also has different signs, which means that whether production particles or antiparticles are

biased depends on the sign of the initial vacuum expectation value 〈S〉.

We note that the potential implied by (4.8) will also generally acquire finite temperature

corrections, generally of the form λSS
2T 2. We will focus below on the case in which λS is

small, and therefore these corrections are not significant.

4.4 Lepton-Number-Violating Process—

The Standard Seesaw Mass Matrix

The results of the previous two sections establish that in the early Universe, the pseudoscalar

field S naturally acquires a vacuum expectation value and subsequently relaxes to its equi-

librium value; furthermore, the very terms introduced to account for the LHC diphoton

excess lead to a nonzero chemical potential which can bias the production of particles or

antiparticles. However, this can only occur if the model also includes a lepton-number-
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Figure 4.1: Lepton-number-violating processes mediated by right-handed neutrinos which

generate a lepton asymmetry in the early Universe.

violating process. While there are myriad possibilities for this, we here consider processes

mediated by neutrino Majorana mass. This is motivated by the well-known neutrino seesaw

mechanism [70, 72, 73, 126].

Interactions mediated by a massive right-handed Majorana fermion can violate lepton

number, including those shown in Fig. 4.1. These processes are suppressed by the right-

handed Majorana mass, which is required to be large in the standard seesaw mechanism.

In the scenario considered here, this is advantageous: if the right-handed Majorana mass is

significantly larger than the reheat temperature, then the production of a lepton asymmetry

via the production and decay of right-handed neutrinos (as in [74, 127]) is suppressed. We

also note that we ensure that max(mS = 750 GeV,
√
λSS0) is smaller than MR, so that

decays of the condensate into right-handed neutrinos is also suppressed.

The thermally averaged cross section for these processes is [2]

σR ∼ m2
ν/16πv4

EW ∼ 10−31 GeV−2, (4.13)

provided that the effective Higgs mass is less than the temperature. Like the pseudoscalar

S field, the Higgs field can acquire a vacuum expectation value during inflation such that

mH,eff ∼ HI , and it will subsequently also relax to its equilibrium position. This relaxation

may occur before or after the relaxation of the pseudoscalar field; however, we will show

in Sec. 4.6 that the asymmetry is generated when the temperature T � HI and so this
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expression for the cross section is valid.

The heavy Majorana mass does suppress lepton-number-violating processes in this model

as well; however, this is counterbalanced by the chemical potential (4.6), which can be large

if the pseudoscalar field relaxes to equilibrium rapidly. We observe that the scattering

processes can even be out of thermal equilibrium (〈σv〉n < H). The small probability for

a single particle to undergo a lepton-number-violating interaction is counterbalanced by the

fact that we only need to generate a final asymmetry O(10−10) (and the number density

remains significant).

In this analysis, we consider these lepton-number-violating processes occurring in the

plasma of particles produced during reheating. (We note that because the VEV is trapped

at large values until the end of inflation, the relaxation of the pseudoscalar field will generally

occur during reheating, without any fine-tuning necessary.) This is similar to the processes

considered in Higgs relaxation analyses such as [1, 2, 4] and for axion relaxation in [78].

An additional asymmetry is produced by the decay of the condensate itself, as analyzed for

Higgs relaxation in [3] and axion relaxation in [80, 116].

With the inclusion of the right-handed Majorana neutrinos, we have all of the necessary

ingredients for relaxation-generated leptogenesis: an effective chemical potential for lepton

number, which is generated by a field which acquires a large VEV during inflation that

subsequently relaxes to equilibrium, and lepton-number-violating processes which can occur

during this relaxation.

4.5 Domain Size and Baryonic Isocurvature Constraint

Equations (4.9) and (4.10) give the magnitude of the average vacuum expectation value of

the S field; however, as the vacuum expectation value is produced via quantum fluctuations,

different patches of the Universe will generally have different VEVs. In relaxation leptogen-

esis scenarios, the lepton asymmetry depends on the initial VEV of the field, and therefore,

each patch of the Universe could have a different final asymmetry. As discussed above, not
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only the magnitude, but also the sign of the final lepton/baryon asymmetry of the Universe

is determined by the VEV. Consequently, in this model the Universe would be divided be-

tween domains with a matter excess and domains with an antimatter excess. Therefore, the

observable Universe must fit inside a patch with a single sign of the VEV. Similar concerns

apply to many models of spontaneous baryogenesis [65, 122].

We note that Z2 symmetry of the potential Eq. (4.8) is broken by the interactions in

Eq. (4.1). Through renormalization group equations, these interactions could produce linear

or cubic terms in the potential. Consequently, one of the two vacua could have a lower energy.

If the energy difference is larger than the inflationary Hubble parameter, this vacuum would

dominate during inflation, which would suppress the production of domain walls.

In this section, we will first calculate the constraint from avoiding domain walls in the

limit of an exact Z2 symmetry, which is the most constraining scenario. Then we will discuss

baryonic isocurvature, and show that this leads to stronger constraints than concerns about

domain walls.

The characteristic size of one domain can be estimated by the correlation length of the

field S during de Sitter expansion. The spatial physical correlation radius Rc is given by [12]

Rc = H−1
I exp

(
HItc

2

)
, (4.14)

where tc is the correlation time. For the massive noninteracting limit (λS = 0),

tc = 3 (ln 2)
HI

m2
S

. (4.15)

For the massless interacting limit (mS = 0),

tc ≈
7.62

HI

√
λS
. (4.16)

To avoid domain walls, our observable patch of the Universe has to be within one domain.

This patch has a physical radius

RRH ' Rnow
Tnow

TRH
∼ 5× 1029T−1

RH (4.17)
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at the end of reheating. During reheating, the patch grows by a factor of

RRH

R0

'
(

Λ4
I

T 4
RH

)1/3

. (4.18)

Thus, the patch of our observable Universe corresponds to a patch with radius

R0 ' RnowTnow

(
TRH
Λ4
I

)1/3

' RnowTnow

(
3

π3g∗

)1/12 m
1/6
pl Γ

1/6
I

Λ
4/3
I

= H−1
I RnowTnow

√
8π

3

(
3

π3g∗

)1/12
(

Λ4
IΓI
m5
pl

)1/6

∼ 8× 1029

(
Λ4
IΓI
m5
pl

)1/6

H−1
I

≈ 2× 1023

(
ΛI

1013 GeV

)2/3(
ΓI

104 GeV

)1/6

H−1
I (4.19)

at the end of inflation, where ΓI is the inflaton decay rate parameter. For our observable

Universe to be within one domain, the correlation radius has to be Rc & R0, which gives

HItc
2

& 53.8 +
2

3
ln

(
ΛI

1013 GeV

)
+

1

6
ln

(
ΓI

104 GeV

)
. (4.20)

This imposes constraints

HI

mS

& 7.19 + 0.05 ln

(
ΛI

1013 GeV

)
+ 0.01 ln

(
ΓI

104 GeV

)
(4.21)

for the massive noninteracting case, and

λS . 5.02× 10−3

[
1− 0.09 ln

(
ΛI

1013 GeV

)
− 0.02 ln

(
ΓI

104 GeV

)]
(4.22)

for the massless interacting case.

Furthermore, baryonic isocurvature perturbations are constrained by the observations

of cosmic microwave background [50–54]. The upper bound on the baryonic isocurvature

perturbation imposed by observations by the Planck satellite is [24, 54, 128]

|Sbγ| =
∣∣∣∣δYBYB

∣∣∣∣ . 5.0× 10−5. (4.23)

To satisfy baryonic isocurvature constraints, and to protect against matter-antimatter do-

main walls, we require that the observable Universe be contained within a single matter

domain in which the initial VEV 〈S〉 does not vary significantly.
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We will show in Sec. 4.6 below that the baryon asymmetry YB = nB/s ∝ S in this

particular model where we generate the asymmetry through operator (4.5). The isocurvature

constraint leads to a condition on the variation of the initial VEV of S,∣∣∣∣δSS0

∣∣∣∣ =

∣∣∣∣δYBYB
∣∣∣∣ . 5.0× 10−5. (4.24)

The variation of 〈S〉 about S0 is δS = HI/2π in a de Sitter space. Thus, this constraint

gives
mS

HI

. 6.1× 10−5 (4.25)

for the massive noninteracting scenario, and

λS . 1.7× 10−16 (4.26)

for the massless interacting scenario. As expected, these are stronger than the requirement

that the observable Universe be contained within a domain of the same sign.

We note that in Higgs relaxation scenarios, such as those in Ref. [1–4], it was necessary to

introduce new nonrenormalizable couplings to evade the baryonic isocurvature constraints.

That is not necessary here, because of the large amount of freedom in the quartic coupling.

4.6 Resulting Asymmetry

In the model introduced, we have shown how a chemical potential is generated, and with

the lepton-number-violating interactions, the system will approach its equilibrium state of

nonzero lepton number. In general, the system will not reach its equilibrium state during

the rapid relaxation of the S field, and so we analyze the generation of the nonzero lepton

number with the Boltzmann equation (see the derivation in Sec. 2.4),

dnL
dt

+ 3HnL = −2T 3σR
π2

(
nL −

2

π2
µ0T

2

)
, (4.27)

where σR is the thermally averaged cross section given by Eq. (4.13).

Following the analysis in Sec. 2.5.1 (setting Mn = Trlx), we derive an analytic approxima-

tion for the resulting asymmetry. During the S field relaxation, we approximate the chemical
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potential as

µ0 ∼
S0

Trlxtrlx
, (4.28)

using Eq. (4.7). This gives the approximate lepton number density at time trlx as

nL, rlx ∼
2S0Trlx

π2trlx
min

{
1,

2

π2
σRT

3
rlxtrlx

}
. (4.29)

The largest asymmetry is produced during the initial relaxation of the 〈S〉 field. If the

oscillations of the 〈S〉 field are not significantly damped, there will be substantial wash-

out (as the chemical potential changes sign during the oscillations). Furthermore, even

after the oscillations end and the chemical potential goes to zero, ongoing lepton-number-

violating processes will equilibrate the system towards zero lepton number until they go out

of equilibrium. Therefore, we see that a large Majorana mass MR is again desirable. During

this washout, the system satisfies the approximate Boltzmann equation,

dNL

dt
= −2T 3σR

π2
NL, (4.30)

which leads the following scaling for the lepton number NL ≡ nLa
3 before and after reheating

ends (at T = TRH and t = tRH ≡ 1/ΓI),

NL(T )

NL (T0)
=


exp

[
− 8
π2

σRT
4
RH

ΓI

(
T−1 − T−1

0

)]
T and T0 ≥ TRH

exp
[
−
√

15
π2

σRT
2
RH

ΓI
(T0 − T )

]
T and T0 ≤ TRH .

(4.31)

The asymptotic value of NL at late times is

NL(T → 0) ≈ NL(Trlx) exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
, (4.32)

for trlx < tRH , and

NL(T → 0) ≈ NL(Trlx) exp

(
−
√

15

π2

σRT
2
RHTrlx

ΓI

)
(4.33)

for trlx > tRH , where NL(Trlx) can be found using Eq. (4.29). From this, we find the final
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ratio of the lepton asymmetry to entropy,

Y =
nL
s

(4.34)

≈ 45

2π2g∗

nL, rlx
T 3
RH

NL (T → 0)

NL (Trlx)

(
arlx

aRH

)3

(4.35)

≈ 45

2π2g∗

(
2

π2

)2

σR
S0

Mn

T 5
rlxt

2
rlxΓ2

I

T 3
RH

exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
(4.36)

for trlx < tRH , and

Y ≈ 45

2π2g∗

nL, rlx
T 3

rlx

NL (T → 0)

NL (Trlx)

≈ 45

2π2g∗

(
2

π2

)2

σR
S0

Mn

T 2
rlx exp

(
−
√

15

π2

σRT
2
RHTrlx

ΓI

)
(4.37)

for trlx > tRH at the end of reheating when the oscillation of the scalar field has ended.

In general, the asymmetry is larger for the massive noninteracting case than the massless

interacting case, that is, when the S2 term dominates the potential instead of the S4 term.

This may require fine-tuning the quartic coupling to small values, which we discuss below.

For the massive noninteracting case, one can approximate trlx ≈ π/mS, provided that mS �

HI [12]. Trlx, the temperature when the field relaxes at time trlx, is

Trlx ≈


TRH

(
mS

πΓI

)1/4

trlx < tRH(
45

16π3g∗

)1/4√
mplmS

π
trlx > tRH .

(4.38)

The reheat temperature is TRH ≈ (3/π3)
1/4
g
−1/4
∗

√
mplΓI where mpl is the Planck mass.

Using these, the lepton asymmetry can be expressed as

Y ≈ 45√
2π9g∗

σRH
2
I

T 3
RH

mplm2
S

exp

(
−8 +

√
15

π7/2

√
3

g∗
σRmplTRH

)
(4.39)

≈ 8× 10−8
( σR

10−31 GeV−2

)( HI

5× 1010 GeV

)2(
TRH

5× 109 GeV

)3(
750 GeV

mS

)2

× exp

[
−7× 10−4

( σR

10−31 GeV−2

)( TRH
5× 109 GeV

)]
(4.40)
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Figure 4.2: The final lepton asymmetry as a function of parameter space for the massive

noninteracting scenario. The dashed lines indicate contours of constant right-handed neu-

trino mass MR and the dashed lines indicate contours of constant ΓI (the decay rate of the

inflaton). In the shaded region on the right, the pseudoscalar condensate comes to dominate

the energy density of the Universe.

for trlx < tRH , and

Y ≈
(

45

π3g∗

)5/4
√

3

8π9
σRH

2
I

√
mpl

mS

exp

[
−
(

45

π3g∗

)3/4
σR

2π5/2

√
m3
plmS

]
(4.41)

≈ 2× 10−8
( σR

10−31 GeV−2

)( HI

1010 GeV

)2(
750 GeV

mS

)1/2

× exp

[
−1.3× 10−4

( σR

10−31 GeV−2

)( mS

750 GeV

)1/2
]

(4.42)

for trlx > tRH . These estimation formulas agree within 1 order of magnitude with the

numerical results.

While these are useful analytic approximations, we can also solve the full Boltzmann

equation numerically (using the exact cross section σR given in Ref. [2]). We have done this

to explore the available parameter space as a function of S0 and Tmax, which is shown in

Fig. 4.2. We note that the initial VEV of the pseudoscalar field fixes the inflationary scale
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by Eq. (4.9) and the relation

HI =

√
8π

3

Λ2
I

mpl

. (4.43)

The inflaton decay parameter ΓI is the fixed by the maximum temperature reached during

reheating via [96]

Tmax =

[
30

π2

(
3

8

)8/5
2

3

√
3

8π

Λ2
IΓIMpl

g∗

]1/4

, (4.44)

where g∗ ≈ 107 is the total number of effectively massless degrees of freedom; we assume

that the 750 GeV boson and related fields do not significantly alter this from the Standard

Model value.

As noted above, the right-handed neutrinos enable the production of a lepton asymmetry

via thermal leptogenesis, with a lepton-to-photon ratio

ηth =
nL,th
nγ
≈ ε

(
MRTmax

2π

)3/2
e−MR/Tmax

T 3
max

, (4.45)

where we have taken ε ≈ 3MRMν/16πv2
EW for the CP asymmetry parameter in the lepton

sector [129]. (This estimate is found by multiplying the asymmetry parameter by the ratio

of nonrelativistic right-handed neutrinos to photons at the temperature Tmax.) We note that

this is an optimistic estimate for the asymmetry from the thermal decay of right-handed

neutrinos, as washout effects and small CP-violating phases can further suppress this. This

will be suppressed by a factor∼ 30 due to the entropy production resulting with the Standard

Model particles go out of thermal equilibrium. For the results shown in Fig. 4.2, we have

fixed MR by setting ηth = 10−10, so that the mechanism discussed here dominates the

lepton asymmetry. (We have verified that for these values, the neutrino coupling constant

y = MRMν/v
2
EW is in the perturbative regime, taking Mν ≈ 0.1 eV.) We have shown some

contours of MR on Fig. 4.2.

Over the parameter space of interest, the inflationary scale ΛI ranges from 1013 GeV (at

S0 = 1014 GeV) to 1014 GeV (at S0 = 1018 GeV). Using Eq. (4.43), we see that Tmax � HI ,

which validates the use of the cross section (4.13). Contours for ΓI , which is significantly

smaller, are shown on the plot.
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The blue region on the right of Fig. 4.2 is excluded because the energy density of the

pseudoscalar condensate comes to dominate the energy density of the Universe. This can

be understood as follows: Before the pseudoscalar field S relaxes, its energy density is

approximately constant and equal to VS = m2
SS

2
0/2. However, the energy density in the

inflaton field and in radiation is decreasing. The relaxation time, trlx = π/mS, is less than

1/ΓI , and therefore the energy density of the inflaton field still dominates the potential, with

ρI ≈ m2
pl/6πt

2. Imposing VS < ρI(trlx) constrains S0 < mpl/
√

3π3 ≈ 1018 GeV.

We note that constraint (4.25) imposes S0 & 4× 1010 GeV, which does not eliminate any

of the parameter space in which a sufficiently large asymmetry is generated.

In Fig. 4.2, we have set the decay width of the S boson to 0.1 GeV, near the upper

bound of the range suggested by LHC data [105]. ΓI is less than 0.1 GeV only beneath the

dashed line in the lower right, which means that for much of the parameter space ΓS < ΓI ,

and the S condensate is relatively long lived. While the condensate is oscillating its energy

density is diluted like matter, while after reheating has ended, the plasma loses energy as a−4.

Consequently, it is possible for the condensate to come to dominate the energy-momentum

density during oscillations, and its decay would significantly re-reheat the Universe. We have

excluded this region in gray in the plot (under the approximation that coherent oscillations

of the S condensate begin instantly at trlx).

We note that finite temperature corrections may affect ΓS. Decay widths to light Stan-

dard Model fermions will be suppressed as T−3 due to temperature corrections to the

fermionic masses. However, decay widths to dark sector particles may or may not be simi-

larly affected, depending on the strength of their coupling to electrically charged Standard

Model fields. If the decay width ΓS is further suppressed in the early Universe, the pseu-

doscalar field undergoes coherent oscillations for longer and the bound represented by the

gray region becomes more severe.

In Fig. 4.2, we have restricted our maximum temperature to 1012 GeV. As noted above,

at this temperature electroweak sphalerons go out of thermal equilibrium, and therefore,

the replacement of the couplings in Eq. (4.1) with the baryon and lepton current in (4.4) is
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Figure 4.3: The evolution of the lepton asymmetry as a function of time for the parameters

indicated. The dashed vertical lines indicate the time of maximum temperature, the begin-

ning of the radiation dominated era, and the first time the S VEV crosses zero, from left to

right.

invalid. However, as shown in Fig. 4.3, most of the lepton asymmetry is produced after the

temperature has reached its maximum value. Therefore, there should be some parameter

space available at larger temperatures. However, a complete analysis of the situation in which

the electroweak sphalerons are in thermal equilibrium during only part of the evolution of

the pseudoscalar condensate is beyond the scope of this thesis.

As we mentioned above, this analysis is for the massive noninteracting scenario, in which

the potential is dominated by the quadratic term. This is valid for quartic terms λS < 2m2
S/

S2
0 . For this hold to S0 = 1018 GeV requires λS < 10−30, or to hold to S0 = 1015 GeV requires

λS < 10−24. It would be difficult to arrange such small couplings without some degree of

fine-tuning, unless the S boson is embedded in a larger scalar sector, such that the potential

has a flat direction. (Note that in contrast to Affleck-Dine baryogenesis [130, 131], such a

flat direction would not need to carry lepton or baryon number.)

In the massless interacting scenario, we have an additional degree of freedom correspond-

ing to λS. To explore the parameter space, we set Tmax = 1012 GeV, since in the massive

case a significant asymmetry was produced only near this limit. Fixing ηth = 10−10 sets

MR ≈ 2× 1013 GeV, and as before, we have taken ΓS = 0.1 GeV.
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Figure 4.4: The final lepton asymmetry as a function of parameter space for the quartic

potential and Tmax = 1012 GeV. In the lower left section, ΓI > HI , and so there would be no

inflationary epoch. In the upper right section, nL oscillates through zero. The black dashed

line shows the constraint (4.26), while the gray dotted lines show contours of constant ΓI .
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The results are shown in Fig. 4.4. The scale of inflation is set by

Λ2
I = mplS0

√
3Γ(1/4)

8πΓ(3/4)

(
2π2λS

3

)1/4

, (4.46)

In this plot, it ranges from O(1012 GeV) near S0 = 1010 GeV and λS = 10−13 to O(1015 GeV)

near S0 = 1018 GeV and λS = 10−30. Contours of constant ΓI are shown; we have marked

the region in which no inflation occurs because ΓI > HI in the lower left.

In the upper right, washout is strong enough that the lepton asymmetry nL oscillates

through zero. We note that the quartic potential is steeper than the quadratic potential;

consequently, the pseudoscalar VEV relaxes to its equilibrium value faster. This increases

µ0 given by Eq. (4.7), but the system has less time in which to generate the asymmetry.

Furthermore, the VEV continues to evolve quickly during its oscillation, leading to relatively

large chemical potentials during this epoch. Therefore, washout is a more severe problem

in the quartic potential. This can be alleviated if the pseudoscalar field S were to acquire a

larger decay width ΓS; this increases the effective friction which decreases the amplitude of

the oscillation (in addition to slowing the relaxation).

We see that generating a sufficiently large asymmetry generally requires a small λS,

although not quite a small as required for the quadratic term to dominate the potential. A

sufficiently large asymmetry can be generated with λS ∼ 10−20 if S0 ∼ 1015. This is more

stringent than limit (4.26), which is shown by the black dashed line.

As mentioned above, a larger asymmetry can be generated if we consider higher tem-

peratures. We note, however, that Eq. (4.45) would imply a nonperturbative coupling for

the neutrino sector for Tmax > 1.4 × 1013 GeV. However, a small CP-violating phase in the

neutrino can relax this.

4.7 Result Update in 2016

In August 2016, ATLAS and CMS have reported on the search for resonant production of high

mass diphoton signals [132, 133]. No significant excess over the background expectation is
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Figure 4.5: Parameter space for mS & 750 GeV with massive non-interacting potential.

observed in the mass range of 0.5 to 4.5 TeV in the 2016 data. Nevertheless, the leptogenesis

model we discuss here remains viable for pseudoscalar mass mS much higher than 4.5 TeV.

In Fig. 4.5, we shows the parameter space in the scalar mass mS and the reheat temper-

ature TR for the massive non-interacting scenario. Solid lines denote the required mass mS

and TR at each inflation scale ΛI in order to produce sufficient lepton asymmetry Y ∼ 10−10

matching the observed value. In the upper blue region of the plot, high reheat temperature

results in ΓI > 3HI so the inflation is not successful. In the upper right orange region, the

produced baryon asymmetry has large isocurvature perturbation and is constrained by CMB

observations. The lower left green region denotes the maximum allowed inflation scale ΛI

coming from non-detection of the tensor mode fluctuation from CMB. We see the model

with mS & 103 GeV remains viable for inflation scale ΛI & 1014. The upper bound on mS is

∼ 1010 GeV.
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4.8 Conclusions for Chapter 4

Observations of the 750 GeV diphoton excess at the LHC has motivated the consideration

of a pseudoscalar field which couples to the electromagnetic field strength [103–105]. To

generate this operator, the pseudoscalar field S should couple to the fundamental SU(2)L

and/or U(1)Y field strengths. The first of these couplings generates a chemical potential for

lepton and baryon number in the early Universe, as the pseudoscalar field relaxes from a large

vacuum expectation value naturally generated by quantum fluctuations during inflation. In

the presence of lepton-number-violating interactions, such as those mediated by heavy right-

handed neutrinos, a nonzero lepton asymmetry is produced, which is transferred to baryons

via electroweak sphalerons.

We have explored the parameter space in which a sufficiently large asymmetry is gen-

erated via this mechanism for both a quadratic and quartic potential. In particular, there

are regions of parameter space in which a sufficiently large asymmetry is generated through

this mechanism while the asymmetry generated by thermal leptogenesis is insufficient. We

have also considered constraints from the condition that the entire observable Universe have

a particle excess (in contrast to an antiparticle excess) and baryonic isocurvature observa-

tions. These do not restrict the available parameter space. This is in contrast to the Higgs

relaxation models [1, 2, 4], in which additional nonrenormalizable couplings were required

to satisfy isocurvature constraints.
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CHAPTER 5

Relaxation Leptogenesis, Isocurvature Perturbations,

and the Cosmic Infrared Background

Observations of cosmic infrared background (CIB) radiation exhibit significant fluctuations

on small angular scales. A number of explanations have been put forth, but there is currently

no consensus on the origin of these large fluctuations. We consider the possibility that small-

scale fluctuations in matter-antimatter asymmetry could lead to variations in star formation

rates which are responsible for the CIB fluctuations. We show that the recently proposed

Higgs relaxation leptogenesis mechanism can produce such small-scale baryonic isocurvature

perturbations which can explain the observed excess in the CIB fluctuations. This chapter

is based on work done with Masahiro Kawasaki, Alexander Kusenko, and Lauren Pearce [6].

5.1 Introduction

Observations of near-infrared cosmic infrared background (CIB) radiation by the AKARI

and Spitzer space telescopes both have a consistent excess at the subdegree scale [134–

138]. In particular, the integrated CIB fluctuation at 5 arcminutes, between 2 and 5 µm, is

δF2−5µm (5′) ' 0.09 nW m−2sr−1 [139, 140]. This measurement of the anisotropic CIB entails

that the power in the fluctuations is FCIB ≈ δFCIB/∆5′ ∼ 1 nW m−2 sr−1. The origin of

this excess has not been clearly identified, but one plausible source is the first (population

III) stars, which form at redshifts z & 10 [139, 140]. While the AKARI observations can

be explained by faint galaxies, the Spitzer observations are not consistent with this expla-

nation [141]. (The Spitzer space telescope is able to resolve fainter point sources and does
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not observe a sufficiently large faint galaxy population to explain the excess [141].) Zodiacal

light is unable to account for the excess [142].

The star formation rate depends on the distribution of halos, seeded by cosmological

density perturbations. It was recently pointed out that, if primordial black holes account

for dark matter, then isocurvature density perturbations arising from fluctuations in the

distribution of black holes can explain the CIB measurements [139, 140, 143, 144]. In this

scenario, the increase in the power of dark matter density perturbations on the small scales

leads to a larger fraction of collapsed halos at redshift z > 10. This results in a higher FCIB,

which can explain the CIB observations [144].

We here explore a different possibility. Depending on its origin, the baryonic asymmetry

of the universe can exhibit small-scale fluctuations. These fluctuations can have the same

effect on the CIB as the fluctuations produced by the black holes; namely, they can also

increase the number of collapsed halos. Models of inhomogeneous baryogenesis have been

considered [145, 146]. In particular, the recently proposed Higgs relaxation leptogenesis

models [1–3] are expected to produce small-scale baryonic isocurvature perturbations. A

similar scenario can be constructed with other scalar fields, such as axions, or in models

with an extended Higgs sector [4, 5, 78].

This leptogenesis model is motivated by the observation that the Higgs field will generi-

cally undergo a postinflationary relaxation epoch [23]. Higgs relaxation leptogenesis uses an

effective dimension 6 operator in the scalar sector to produce an effective chemical poten-

tial during the Higgs relaxation epoch, which distinguishes matter from antimatter. In the

presence of a lepton-number-violating or baryon-number-violating interaction, the system

relaxes toward its equilibrium state with nonzero asymmetry.

In the Higgs relaxation leptogenesis scenario, the final baryon asymmetry depends on

the magnitude of the postinflationary, prerelaxation vacuum expectation value (VEV) of

the Higgs field. This can be produced by quantum fluctuations during inflation [1, 2].

Therefore this initial VEV, and consequently the produced asymmetry, will generically vary

spatially. In this work, we illustrate how these variations give rise to matter isocurvature
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perturbations. Isocurvature perturbations are not affected by Silk or Landau damping, and

baryonic isocurvature perturbations cannot be converted into adiabatic perturbations prior

to the decoupling of baryons and photons [147]. Therefore, such perturbations can cause

massive regions to reach the nonlinear regime earlier, enhancing star-formation at z ' 10.

This provides an elegant resolution to the problem of excess CIB radiation.

This chapter is organized as follows: In Sec. 5.2, we review the relevant features of the

Higgs relaxation model and illustrate how it generates matter isocurvature perturbations.

Subsequently, in Sec. 5.3, we calculate the spectrum of these baryonic isocurvature pertur-

bations; we then consider how these modes evolve in Sec. 5.4. The main results of this work

are contained in Sec. 5.5, in which we show that these isocurvature modes cause sufficiently

many halos large enough to support star formation to collapse around z = 10 to explain

the CIB observations. Finally, we present the parameter space in which Higgs relaxation

leptogenesis can both account for the observed matter-antimatter asymmetry of the universe

and explain the CIB observations in Sec. 5.6.

5.2 The Higgs Relaxation Leptogenesis Model as a Source of Isocur-

vature Perturbations

In this section, we review the Higgs relaxation leptogenesis model, following the discussion

in [1, 2], and then explain how it generates baryonic isocurvature perturbations.

During inflation, any scalar field φ, including the Higgs field, with mass mφ < HI will

develop a vacuum expectation value (VEV)
√
〈φ2〉 through quantum fluctuations [11, 14, 15].

Due to Hubble friction, the field is unable to efficiently relax to its equilibrium value. The

average VEV can be computed via a stochastic approach, which we discuss in detail below.

At the end of inflation, the Hubble parameter decreases, and the scalar field will relax to its

equilibrium value.

For successful Higgs relaxation leptogenesis, we additionally assume that the Higgs field
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is coupled to the (B + L) fermion current, jµB+L, through an operator of the form

O6 = − 1

Λ2
n

(
∂µ |φ|2

)
jµB+L, (5.1)

which can be arranged by coupling φ2 to −g2W a
µνW̃

µν
a +g′2BµνB̃

µν and using the electroweak

anomaly equation, among other possibilities [1–3]. As the VEV of φ evolves in time, this

operator acts as an effective chemical potential,

µeff =
1

Λ2
n

∂t |φ|2 , (5.2)

for the fermion current jµB+L. In the presence of a B or L-violating interaction (such as those

mediated by heavy right-handed neutrinos), the system will acquire a nonzero B+L charge.

The available parameter space was described in Ref. [2]; here we simply emphasize that

this included regions of parameter space in which the right-handed neutrino is too heavy to

thermalize, thus suppressing thermal leptogenesis. The final lepton-number-to-entropy ratio

is in general determined by the initial VEV φ0 at the end of inflation, Y ∝ φ2
0, as explained

in Appendix D.1.

We emphasize that since the effective chemical potential ∝ ∂t|φ|2, it is independent of

the phase of 〈φ〉, and therefore, the same sign asymmetry is generated in all Hubble patches.

Consequently, it is not necessary for the observable universe to be contained within one

Hubble patch. Due to quantum fluctuations, these different regions of the universe will

generically have different initial VEVs φ0 right after the inflation. Since the asymmetry is

proportional to the initial VEV, different patches in the universe will end up with different

baryon asymmetries after the above-described leptogenesis mechanism is completed. As

time progresses, different scales will reenter the horizon; as baryons become nonrelativistic,

these baryonic density fluctuations will evolve, and some may collapse. The observable

universe today consists of many Hubble patches, and therefore we expect enhanced baryonic

fluctuations in the Higgs relaxation leptogenesis model.

Since the Higgs field φ is not the inflaton, and we ensure that it does not dominate

the energy density of the universe, the baryonic fluctuations generated in this manner are
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isocurvature (entropy) perturbations. They are independent from the adiabatic (curvature)

perturbations produced during reheating by the decay of the inflaton.

This production of baryonic isocurvature perturbations in Higgs relaxation leptogenesis

was noted in Refs. [1, 2], where it was observed that these perturbations have the potential to

exceed observational bounds from the cosmic microwave background radiation (CMB) [24].

Therefore, these isocurvature perturbations must be suppressed at scales probed by the

CMB. This led to the construction of the “IC-2” initial condition in those references, in

which the Higgs field φ is massive (mφ > HI) at the beginning of the inflation, due to a

coupling to inflaton via one or several operators of the form

LφI = c

(
φ†φ
)m/2 (

I†I
)n/2

Mm+n−4
pl

. (5.3)

While the inflaton VEV 〈I〉 is large, these operators provide a large effective mass to the

scalar field φ, suppressing the growth of its VEV due to quantum fluctuation. As inflation

proceeds and 〈I〉 decreases, the Higgs field φ becomes effectively massless (mφ < HI), and the

vacuum expectation value starts to grow. As we discuss below, the initial VEV, and therefore

the resulting asymmetry, depends on Nlast, the number of e-folds (measured from the end of

inflation) that the Higgs VEV developed during. In Refs. [1, 2, 4], we set Nlast ∼ 8 out of an

abundance of caution; next, we discuss more precisely the exact observational constraint.

5.3 Spectrum of Primordial Baryonic Isocurvature Perturbations

Having explained how the Higgs relaxation leptogenesis model produces baryonic isocurva-

ture perturbations, we now proceed in this section to determine the spectrum of these pri-

mordial baryonic isocurvature perturbations. We will also apply observational constraints

to the spectrum, and we will determine how this constrains Nlast, the number of e-folds the

Higgs VEV grows during.

We will first need to calculate the spectrum of the fluctuations in the Higgs vacuum

expectation value, since this sources the fluctuations in the baryon density. As mentioned

above, in Higgs relaxation leptogenesis models, the Higgs field is coupled to the inflaton in
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such a way that the vacuum expectation value grows during only the last Nlast e-folds of

inflation. If the effective mass turns off sufficiently fast, then the average VEV of φ at the

end of inflation in a completely flat potential is

φ0 ≡
√
〈φ2〉 ≈

√∫ HI

HIe
−Nlast

dk

k

(
HI

2π

)2

=
√
Nlast

HI

2π
. (5.4)

This ignores curvature in the potential; a more accurate determination of the VEV is found

by first solving the Fokker-Planck equation [12]

∂P (φ, t)

∂t
=

∂2

∂φ2

[
H3
IP (φ, t)

8π2

]
+

∂

∂φ

[
P (φ, t)

3HI

dV (φ)

dφ

]
, (5.5)

for P (φ, t), the probability distribution function of observing the VEV equal to φ at time t.

[V (φ) is the potential for the scalar φ; in this case, our scalar is the Higgs boson.] The time

evolution of the average VEV of φ can then be computed through

〈
φ2 (t)

〉
=

∫
dφ φ2P (φ, t) , (5.6)

with the initial condition P (φ, t = 0) = δ (φ). In our analysis, we make use of the Higgs

potential at one loop, with running couplings where the RG equations are calculated at two

loops, following [9]. We use the same potential, with thermal corrections, to evaluate the

postinflationary relaxation of this vacuum expectation value, as in [1–3]. φ0 denotes the

vacuum expectation value at the end of inflation, which is the initial VEV for the Higgs

relaxation epoch.

This vacuum expectation value is produced by quantum fluctuations, and therefore it is

not constant in space, as was mentioned above. Perturbations are produced on all physical

spatial scales inside the horizon l . H−1
I , where the Hubble parameter is evaluated when the

VEV begins to grow (that is, Nlast e-folds before the end of inflation). Therefore, perturba-

tions exists in all of the subhorizon modes which have physical momentum p = k/a > HI .

As the modes exit the horizon (p = k/a . HI), these perturbations become classical and are

frozen with the amplitude

δφk ≡ ∆φ ≈
HI

2π
(5.7)
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per unit interval in ln p/HI [13]. The isocurvature perturbations are approximately conserved

in the superhorizon regime because the Higgs field does not contribute significantly to the

energy density.

We define ks = a(Nlast)ps ∼ a(Nlast)HI , the comoving wave number corresponding to the

mode which leaves the horizon as the fluctuations in the Higgs field are first produced. The

power spectrum of φ is then approximately

Pφ (k) ≈


0 for k < ks,(
HI

2π

)2
for k ≥ ks.

(5.8)

In principle, one can further determine the details of the power spectrum from the transition

from the Higgs field from an effectively massive field to an effectively massless field, which

depends on the specific form of the operators (5.3) which couple the Higgs to the inflaton,

generating the large effective mass during the early stages of inflation.

As discussed in Sec. 5.2, these perturbations in the Higgs VEV φ generate isocurvature

perturbations in the baryon asymmetry YB. These perturbations have a spectrum

δYB
YB

∣∣∣∣
k

=
δ (φ2)k
〈φ2〉

≈ 2 ln1/2 (k/ks)

Nlast

θ (k − ks) , (5.9)

up to a large scale cutoff; see Appendix D.2. This makes use of the improved analytical

estimates in Ref. [4]; see the discussion in Appendix D.1. We note here that the CIB signal

will be dominated by k ≈ 1.4ks, as we will discuss in Sec. 5.5. As the universe cools, this

induces a baryon energy density perturbation with the same spectrum

δB (k) ≡ δρB
ρB

∣∣∣∣
k

=
δYB
YB

∣∣∣∣
k

. (5.10)

Having determined the spectrum, we now consider observational constraints. For scales

k . 0.1 Mpc−1, measurements of the cosmic microwave background radiation (CMB) from

the Planck and WMAP collaborations constrain the baryonic isocurvature perturbation [24].

The measured upper bound on the completely uncorrelated isocurvature fraction is given by

βiso =
PSS(k∗p)

PSS(k∗p) + PRR(k∗p)
(5.11)
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where PRR is the power spectrum of the adiabatic fluctuation, PSS is the power spectrum

of the isocurvature fluctuation, and k∗p is the pivot scale used by the Planck collaboration.

Planck reports bounds evaluated at three momentum scales for a variety of models (see Table

15 of Ref. [25]). To constrain our model, we use the most conservative bound from the CDI

general model, making use of TT, TE, EE, low P, and WP data:

βiso(k∗p = 0.002 Mpc−1) . 0.021,

βiso(k∗p = 0.050 Mpc−1) . 0.034,

βiso(k∗p = 0.100 Mpc−1) . 0.031. (5.12)

Since we are interested specifically in the baryonic isocurvature perturbation, we rescale the

power spectrum by a factor of (Ωb/ΩDM)2. Thus the requisite bound is:∣∣∣∣δYBYB
∣∣∣∣ . ΩDM

Ωb

(βisoPRR)1/2, (5.13)

where P1/2
RR ≈ 2.2 × 10−9 [25]. This gives constraints of |δYB/YB| . 3.4 × 10−5 at k∗p =

0.002 Mpc−1, 4.3 × 10−5 at k∗p = 0.050 Mpc−1, and 4.1 × 10−5 at k∗p = 0.100 Mpc−1.

However, these constraints may be evaded by taking ks > 0.100 Mpc−1, which corresponds

to producing isocurvature perturbations on scales smaller than those probed by Planck.

Observations of the primordial spectrum in the CMB data at these scales are limited by the

Silk (photon diffusion) damping.

At smaller scales, 0.2 Mpc−1 . k . 10 Mpc−1, the Lyman-α forest provides information

on the matter power spectrum, which strongly restricts isocurvature perturbations [148].

Again, we will evade this bound by taking ks & 10 Mpc−1. We note that despite the large

comoving momentum, these isocurvature perturbations remain cosmologically relevant as

isocurvature perturbations are not affected by Silk damping [147].

Next, we connect ks to Nlast, the number of e-folds during which the Higgs VEV grows.

The results given below are exact in the limit that the curvature of the potential is negligible.

In our parameter space plots in Sec. 5.6, we use similar reasoning with the exact calculation

of the initial Higgs VEV in a curved potential, using Eq. (5.6).
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The mode that is exiting the horizon Nlast e-folds before the end of inflation (that is,

the mode that corresponds to ks) grows to a size of lEOI ' eNlastH−1
I at the end of inflation

(EOI). Subsequently during reheating, the scale factor a grows by a factor of

aRH
aEOI

=

(
ΛI

TRH

)4/3

, (5.14)

where ΛI is the energy scale of inflation and TRH ≈ (3/π3)
1/4
g
−1/4
∗ (TRH)

√
mplΓI is the

reheat temperature. After reheating, the entropy of the universe is conserved,

S = a3s = 2π2g∗s(T )a3T 3/45, (5.15)

which allows us to relate the current scale factor to the scale factor at the end of reheating,

anow

aRH
=
g

1/3
∗S (TRH)

g
1/3
∗S (Tnow)

TRH
Tnow

, (5.16)

where Tnow = 2.73 K, the effective number of relativistic species is g∗S(TRH) = 106.75 for

T > 300 GeV, and g∗S(Tnow) = 43/11 for T = Tnow (in the standard model). Combining

these relations, the mode that exits the horizon Nlast e-folds before the end of inflation

corresponds to a perturbation mode with the comoving momentum

k ' 2πe−NlastHI

(
TRH
ΛI

)4/3
g

1/3
∗S (Tnow)

g
1/3
∗S (TRH)

Tnow

TRH
, (5.17)

where we have set the scale anow = 1, so that the comoving wave number coincides with the

physical wave number now; thus k = 2π/`now.

Therefore, the requirement that isocurvature perturbations are generated at scales ks &

k∗ = 10 Mpc−1, which corresponds to a limit on Nlast of

Nlast . 48.2− ln

(
k∗

10 Mpc−1

)
+

2

3
ln

(
ΛI

1016 GeV

)
+

1

3
ln

(
TRH

1012 GeV

)
+

1

3
ln
(g∗S,now

3.91

)
− 1

3
ln
(g∗S,RH

106.75

)
+ ln

(
Tnow

2.73 K

)
, (5.18)

which is not very stringent. The allowed parameter space for baryonic isocurvature pertur-

bations is illustrated in Fig. 5.1. The restrictions on ks from the CMB and Lyman-α forest

discussed above can be converted into limits on Nlast through the use of (5.17); these are

also shown in Fig. 5.1.
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Figure 5.1: The solid lines show ks as a function of Nlast, using Eq. (5.17), for various values

of the inflationary scale ΛI and reheat temperature TRH . The orange (red) region indicates

the constraints on ks from the CMB (Lyman-α forest) observations.

We note that the Lyman-α forest constraints apply to the total contribution from both

adiabatic and isocurvature perturbations. We recall that adiabatic perturbations have R =
√
AS ∼= 4.7× 10−5 if one assumes a flat spectrum. Nlast ≈ 40 ∼ 50 corresponds to an initial

baryonic density contrast of δB, 0 ≈ 0.02 ∼ 0.03 at k = 1.4ks, using Eqs. (5.9) and (5.10).

This entails that the baryonic isocurvature perturbations generally dominate the adiabatic

perturbations in the range where both are present. Therefore, as Fig. 5.1 shows, it is indeed

necessary to impose that ks & 10 Mpc−1.

In fact, we will see in Sec. 5.5 that we best explain the CIB with ks ≈ 65 Mpc−1. We

note here that this corresponds to the perturbations beginning to grow around 46.5 e-folds

before the end of inflation with ΛI = 1016 GeV and TRH = 1012 GeV. From Eqs. (5.9) and

(5.10), this corresponds to an initial baryonic density contrast of δB, 0 ≈ 0.025 at k = 1.4ks.

However, the second equality in Eq. (5.9), which was used with (5.10), holds in the limit

of a flat potential. Accounting for the curvature in the potential, using (5.6), decreases φ0,

and so consequently increases δYB/YB slightly. In Fig. 5.2, we have fixed ks = 65 Mpc−1

and used Eq. (5.17) to solve for the appropriate Nlast and φ0 at each point in parameter

space. We then calculated δB, 0 at k = 1.4ks at each point. (We recall that, as mentioned

above, this will be the scale most relevant to explaining the CIB excess.) As expected, δB, 0
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Figure 5.2: The variation of δB, 0(k = 1.4ks) in parameter space, with ks = 65 Mpc−1. In the

green region on the upper left, the Nlast given by Eq. (5.17) is large enough that the Higgs

VEV probes the minimum of the Higgs potential at large VEVs. (Details on the parameters

used in the calculation the potential can be found in [2].) In the red region on the lower

right, ΓI > 3HI so inflation doesn’t happen. As in Ref. [2, 4] we set the neutrino Yukawa

coupling such that right handed neutrino mass, inferred from the seesaw mechanism, is large

enough that thermal leptogenesis is insufficient to explain the observed baryon asymmetry;

in the upper right hand corner (light blue region), this would lead to a non-perturbative

coupling. We see that there is a slight variation in δB, 0 over the available parameter space.
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is slightly enhanced as compared to the flat potential case; this becomes more pronounced

as ΛI decreases.1

To summarize the results of this section, the Higgs relaxation model generates baryonic

isocurvature perturbations with a spectrum given by Eq. (5.10). The single free parameter in

the spectrum, ks, can equivalently (for fixed ΛI and ΓI) be taken to be Nlast, the number of

e-folds before the end of inflation during which the Higgs VEV grows. (However, since Nlast

affects the VEV φ0, this then influences the final asymmetry produced by Higgs relaxation

leptogenesis.) By taking ks > 10 Mpc−1, or (approximately) equivalently, Nlast . 48, the

isocurvature perturbations evade all current observational bounds.

5.4 Evolution of the Baryonic Isocurvature Perturbations

In the previous sections, we explained how the Higgs relaxation model produces isocurvature

perturbations, and we found the spectrum of these isocurvature perturbations. Next, we con-

sider the evolution of the isocurvature perturbations during the subsequent evolution of the

universe. We note that due to the tight coupling between photons and baryons, the ampli-

tude of the isocurvature baryonic perturbations δB does not evolve before photon decoupling

at z ≈ 1100. (In fact, this was implicitly used above when we imposed constraints from the

observations of the cosmic microwave background radiation and the Lyman-α forest.)

To study the late-time spectrum of the baryonic isocurvature perturbation, we calculate

the evolution of the perturbations using the linearized Einstein equations and the linearized

equation from conservation of the energy-momentum tensor. We work in the conformal

Newtonian gauge, in which the scalar metric perturbation is parametrized as

ds2 = a2 (τ)
[
(1 + 2Φ) dτ 2 − (1− 2Φ) dx2

]
. (5.19)

1As noted, in the green region at the top left, the Higgs VEV probes the global minimum at large VEV
values (see [23]). As this region is approached, the Higgs VEV explores the “hilltop” that divides the two
minima, where the potential becomes flat. Therefore, increasing ΛI leads to a larger increase in φ0, and
consequently, the denominator of δB grows at a faster rate. It grows faster than the numerator, which scales
as HI . This accounts for the decrease in δB in the top left of the figure.
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In our analysis, we consider the following components: radiation (denoted by i = r), dark

matter (i = DM), and baryons (i = B). The equations of state are parametrized by wr = 1/3

for radiation and wDM = wB = 0 for baryons and dark matter (that is, we consider cold

dark matter). We assume that dark matter does not support sound waves, u2
s,DM = 0, and

we make the tight coupling limit that baryons and photons share the same velocity potential

vB = vr ≡ vBr before decoupling. Therefore the effective speed of sound squared for the

baryon and radiation fluids is u2
s,Br = 1/3 (1 +RB) , where RB = 3ρB/4ρr. However, we do

not impose 4δB = 3δr, which is appropriate only for adiabatic modes.

Therefore, the complete system of equations describing the evolution of the perturbations

prior to recombination is [149]

k2Φ + 3HΦ′ + 3H2Φ = − a2

2M2
pl

∑
i

ρiδi, (5.20)

δ′DM − k2vDM = 3Φ′, (5.21)

δ′B − k2vBr = 3Φ′, (5.22)

δ′r −
4

3
k2vBr = 4Φ′, (5.23)

v′DM +HvDM = −Φ, (5.24)

v′Br +H RB

1 +RB

vBr +
3

4
u2
s,Brδr = −Φ, (5.25)

where H ≡ a′/a and a prime denotes the derivative with respect to the conformal time

defined via dτ = dt/a (t). The Hubble parameter in cosmic time, t, and in conformal

time, τ , are related by H(t) = H(τ)/a, and the Hubble parameter can be well described

by H = H0

√
Ωm/a3 + Ωr/a4 + ΩΛ with a = 1/(1 + z) after the universe enters radiation

domination. The density perturbation spectra δi generically have both isocurvature and

adiabatic contributions.

After recombination at z ≈ 1100, photons and baryons decouple and so vB and vr evolve
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separately. The perturbation equations for baryons and radiation are then replaced by

δ′B − k2vB = 3Φ′, (5.26)

δ′r −
4

3
k2vr = 4Φ′, (5.27)

v′B +HvB = −Φ, (5.28)

v′r +
1

4
δr = −Φ. (5.29)

For large scales k < ks, we assume the initial density perturbation spectra δi satisfy the

adiabatic conditions

δDM, 0 = δB, 0 =
3

4
δr, 0 = −3

2
Φ0 = R, (5.30)

with a scale invariant spectrum. The Planck 2015 data set gives AS = e3.08910−10 at k =

0.05 Mpc−1 [25], which corresponds to the initial amplitude R =
√
AS ∼= 4.7× 10−5.

For small scales k > ks, we include the baryonic isocurvature perturbations in addition to

the adiabatic perturbations. For the parameters of interest, the isocurvature contribution to

δB, 0 will generally dominate over the adiabatic contribution, and therefore δB, 0 (k) is given

by Eq. (5.10). For the other components, we take δDM, 0 = 3
4
δr, 0 = −3

2
Φ0 = R for k > kS,

since these have only the adiabatic contribution.

An example of the evolution of a single mode is shown in Fig. 5.3. We take ks =

65 Mpc−1, and consider the mode at k = 1.4ks = 91 Mpc−1. The baryon density contrast

given by Eq. (5.10) is then 0.025. The evolution of the baryon, dark matter, and total

matter perturbations are shown with solid lines. For completeness, we have also shown

the evolution without the isocurvature modes in dashed lines (without accounting for Silk

damping). We see that as expected the isocurvature perturbation does not evolve until

decoupling; afterwards, it grows. Prior to decoupling, it enhances perturbations in dark

matter and total matter.

In Fig. 5.4, we present the total matter power spectrum, which is given by

P (k, z) =
2π2

k3
Pm (k, z) =

2π2

k3
δ2
m (k, z) . (5.31)
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Figure 5.3: The evolution of baryon (blue), dark matter (orange), and total matter (green)

perturbations at k = 1.4ks = 91 Mpc−1 with δB, 0 determined by: (1) (dashed lines)

R = 4.7 × 10−5, appropriate for a scenario with only primordial adiabatic perturbation,

and (2) (solid lines) Including isocurvature perturbations; following Eq. (5.10), δB = 0.025

for the k = 91 Mpc−1 mode if ks = 65 Mpc−1. This scenario is appropriate to the Higgs

relaxation scenario considered in this work.

By varying δB, 0, we have found that for δB, 0 ∼ 0.025, the total matter perturbation δm =

(ΩBδB + ΩDMδDM) /Ωm reaches the nonlinear regime (δm & 1) much earlier than it would if

only the adiabatic fluctuation were present. Thus, in the Higgs leptogenesis model, structure

formation begins earlier, which allows for earlier star formation. In the next section, we will

use this modified history of structure formation to explain the cosmic infrared radiation

excess.

5.5 Isocurvature Perturbations and the Cosmic Infrared Back-

ground Observations

In the above sections, we demonstrated that the Higgs relaxation leptogenesis scenario gen-

erates baryonic isocurvature perturbations and studied their evolution in the early universe.

Now, we proceed to connect the above results to the observed CIB radiation. The isotropic

flux (or absolute intensity) of the CIB is difficult to determine precisely due to the large
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Figure 5.4: Total matter power spectra at z = 0, 10, and 20 for the cases that the primordial

perturbations are produced by (1) only inflaton (dashed line), and (2) inflaton plus relaxation

leptogenesis with ks = 65 Mpc−1 and Nlast = 46.5. Adiabatic perturbations to the right of

the first dashed line are affected by Silk damping, although isocurvature contributions are

not. The power spectrum to the left of the second dashed line are constrained by the

Lyman-α constraints. The bump on the right edge of the plot describes the contribution on

the isocurvature perturbations.
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uncertainty associated with the removal of the foreground signal, galactic components, and

zodiacal light. Therefore, recent measurements concern the anisotropies (spatial fluctuation)

of the CIB [139]. From these measurements, one can infer the isotropic flux from the power

in the fluctuations of the CIB.

In Sec. 5.1, we mentioned the currently unexplained excess in observations of anisotropies

in the near-infrared cosmic radiation spectrum, δF2−5µm (5′) ' 0.09 nW m−2sr−1 at 5 arcmin

between 2 and 5 µm [140]. This relative fluctuation entails that the amplitude of the power

in the fluctuations is FCIB ≈ δFCIB/∆5′ ∼ 1 nW m−2sr−1; one is then led to consider what

sources could produce this radiation. One possibility is faint galaxies; such an explanation

is consistent with AKARI observations but not the Spitzer observations, due to the fact

that Spitzer is able to resolve fainter point sources [141]. As discussed in Refs. [139, 140],

one possible source is early (population III) stars, at z ≈ 10. Such stars, if they exist, will

contribute significantly to the CIB and live only for a short cosmological time. In this case,

the power in the fluctuations is equivalent to the isotropic flux due to the early stars [141].

However, Refs. [140, 150, 151] show that in the typical model of structure formation,

with only adiabatic perturbations, one requires either an abnormally large stellar formation

efficiency and/or an abnormally large radiation efficiency to produce the requisite amount of

CIB radiation. We now demonstrate that the presence of isocurvature perturbations alters

this conclusion. In our model, the isocurvature perturbations produced by Higgs relaxation

leptogenesis cause a larger percentage of the mass in the early universe to be in collapsed halos

which evolve nonlinearly and can support early star formation. Therefore, the comparably

large isotropic CIB flux (that is, the power in the fluctuations) can be produced with a

reasonable values for the stellar formation efficiency and radiation efficiency.

As the above discussion outlines, we are interested in the isotropic CIB flux due to early

stars. The contribution from the first stars forming inside collapsed halos can be estimated
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by [140]

FFS '
c

4π
ερBc

2fHalof∗z
−1
eff

= 9.1× 105εfHalof∗

(
ΩBh

2

0.0227

)(
10

zeff

)
nW m−2sr−1, (5.32)

where fHalo is the mass-fraction of the universe inside halos, f∗ is the star formation efficiency,

ε is the radiation efficiency, and zeff is the effective redshift. One then finds that the halo

fraction at z = 10 is given by

fHalo = 0.16

(
0.007

ε

)(
10−3

f∗

)(
FFS
FCIB

)
. (5.33)

In order to have FFS = FCIB = 1 nW m−2 sr−1 (the value implied by the assumption that

early stars explain the observed CIB anisotropy) for reasonable values of the parameters

are ε ≈ 0.007 and f∗ . 10−3, one must have fHalo & 0.16. [The value of ε comes from the

hydrogen burning phase of early stars, which are fully convective and radiate close to the

Eddington limit (see Ref. [144]); our preferred value of f∗ comes from the same reference.]

We fix ε and f∗ at their upper bounds and show that with isocurvature perturbations one

can have fHalo ≈ 0.16, which one cannot accomplish with only adiabatic perturbations.

To compute the fraction of matter in collapsed halos, we adopt the Press-Schechter

formalism [152]. An overdense region which in the linear theory would have present size R

has in fact collapsed and formed structure by the time when the average density contrast

δR (x, t) exceeds δc ∼= 1.686, as calculated in the linearized theory defined by Eqs. (5.25)

above. The average matter density contrast is computed by smoothing the spectrum

δR (x, t) =

∫
d3y δm (x + y, t)WR (y) , (5.34)

where a window function WR (y) is used to smooth the matter density so that one attains

an average; we use the top-hat function

WR (y) =
3

4πR3
θ (R− |y|) . (5.35)

which has the Fourier transform WR (k) = 3j1 (kR) /kR. Using this window function, the

mass contained in a sphere of radius R is approximately

M (R) =
4

3
πR3ρm, 0, (5.36)
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Figure 5.5: The integrand for σ2
M as a function of k/ks for various redshifts z. The dashed

lines are for the power spectrum with only adiabatic modes. The solid lines are for the

power spectrum with isocurvature perturbation turned on at ks = 65 Mpc−1. We see that

the integrand is dominated by k/ks ∼= 1.4 for the isocurvature case, neglecting the peak

near zero which is present near for both the scenario with and without the isocurvature

contribution.

where ρm, 0 is the present average matter density of the universe. The smoothed matter

density contrast δR (x, t) computed in this way is itself a Gaussian random field, whose

variance σR (t) is given by

σ2
R (t) ≡

〈
δ2
R (x, t)

〉
=

∫ ∞
0

dk

k
Pm (k, t) |WR (k)|2 , (5.37)

Using Eq. (5.36), one can solve for radius R in terms of M , the total mass contained inside.

Substituting this into σR(t) gives the variance σM(t) = σM(R)(t) as a function of enclosed

mass M .

The integrand of Eq. (5.37) is shown in Fig. 5.5, where we have fixed the radius to

correspond to a mass of 106M�. This figure shows that for multiple redshifts, the integrand is

peaked at k ∼= 1.4ks. This justifies the claim that our signal is dominated by the contribution

in this region, which was mentioned above and which motivated our choice of k/ks = 1.4 as

a reference point for characterizing δB.

Figure 5.6 shows this σM(R) at various mass scales and redshifts. On both plots, the
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dashed lines show σM(R) including only adiabatic perturbations, while the solid and dotted

lines includes the isocurvature perturbations generated by the Higgs relaxation mechanism,

which we emphasize only exist for k ≥ ks. The plot of the left shows the results for ks =

65 Mpc−1 (solid) and ks = 100 Mpc−1 (dotted); on the right, we show the results for ks =

30 Mpc−1. As expected, we see that ks = 65 Mpc−1 leads to a larger deviation from the

adiabatic-only model than ks = 100 Mpc−1. (We have used the initial value of δB, 0 and R

given in the sections above.) On both plots, the black dash-dotted horizontal line corresponds

to the critical variance; above this, a significant portion of the halos of a particular mass

evolve nonlinearly.

Focusing on the ks = 65 Mpc−1 solid lines (left), we see that halos of mass 105M� would

collapse around z = 20 while those of mass 106M� would collapse around z = 10 in the Higgs

relaxation model; this contrasts to the standard picture, in which such halos would form

later. At any given z, there are more halos with mass M . 107M� in the Higgs relaxation

scenario than in the typical scenario which has only adiabatic perturbations. Because the

density contrast at mass scales M & 107M� is unaffected, the observed large scale structure

is unchanged.

For the ks = 100 Mpc−1 (dotted) lines, the formation of small halos is still enhanced with

respect to the adiabatic-perturbations only scenario; however, these halos form later. We

focus on 106M� because such halos are near the lower bound of halos that can efficiently

support star formation through molecular hydrogen cooling [153–157]. Production of these

106M� halos is not significantly enhanced for ks = 100 Mpc−1, which means that we require

ks . 100 Mpc−1 to explain the CIB. The plot on the right shows the situation with ks =

30 Mpc−1; we see that halos of mass 106M� form earlier, around z = 20. We see that

increasing ks would bring us into conflict with optical depth measurements. Therefore, to

explain the CIB excess, we require ks ≈ 65 Mpc−1.

We now show that we make sufficiently many collapsed halos. Using the variance σM in

the matter density contrast, we calculate the probability that a region with mass M (R) has
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Figure 5.6: The variance σM of the smoothed density contrast at various redshifts

and mass scales. Left: the dashed lines show the results with only adiabatic modes

(R =
√
AS ∼= 4.7 × 10−5), while the solid (dotted) lines also includes isocurvature per-

turbations for k ≥ 65 Mpc−1 (100 Mpc−1), with δB, 0 = 0.025 at k = 1.4ks. Right: The solid

lines correspond to ks = 30 Mpc−1. The black dash-dotted horizontal lines denotes the value

σM = δc; structure formation occurs above this line.

an average density contrast δR exceeding δc at redshift z [152], which is

fHalo (M, z) = P
(
δR(M) > δc

)
=

1

2

[
1− erf

(
δc√

2σM (z)

)]
. (5.38)

This is equivalent to the fraction of mass which is collapsed halos of mass M , as smaller

structures form earlier.

The results of this calculation are presented in Fig. 5.7 for M = 106M� (solid lines) and

M = 108M� (dashed lines), first with only adiabatic modes (red lines) and then including the

isocurvature modes (blue, yellow, and green lines). The Higgs relaxation scenario, with the

isocurvature modes, is more efficient in halo formation; however, as expected from Fig. 5.6,

the gain in efficiency is more pronounced for smaller halos. The vertical dashed line denotes

z = 10; early stars at this time contribute significantly to the CIB. Therefore, we desire that

halos large enough to support star formation (& 106M�) have formed by this redshift.

As explained above, we will have sufficient stars to produce the inferred CIB excess for

reasonable values of the radiation efficiency ε and star formation efficiency f∗ if fhalo ≈ 0.16

for halos large enough to support star formation. Therefore, we have included a horizontal
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Figure 5.7: fHalo (M, z), the mass fraction of the universe inside the collapsed halos of mass

M , evaluated for M = 106M� (solid lines) and 108M� (dashed lines), as a function of redshift

z. Red lines represent the scenario with only adiabatic perturbations, while blue, yellow, and

green lines represent the scenario which includes isocurvature perturbations for k ≥ ks = 30,

65, and 100 Mpc−1, respectively. The vertical dotted black line emphasizes z = 10; early

stars at this redshift can potential explain the CIB excess. The horizontal dot-dashed black

line indicated fHalo = 0.16; as discussed in the text, a model explains the CIB observations

for reasonable ε and f∗ values only if fHalo takes this value for star-forming halos. (R and

δB, 0 take the same values as in Fig. 5.6.)

black dot-dashed line at fhalo = 0.16. In the scenario calculated with the Higgs relaxation

isocurvature perturbations, the 106M� line indeed passes near fhalo = 0.16 at z = 10 if we

take ks = 65 Mpc−1 (yellow). As expected from the above discussion, ks = 30 Mpc−1 (blue)

results in a larger percentage of the mass in collapsed halos and ks = 100 Mpc−1 (green) a

smaller percentage. In the scenario which includes only adiabatic perturbations, the fHalo

line for 106M� is significantly suppressed; this is the source of the claim that unreasonably

large radiation efficiency or star formation efficiency is required in the standard picture. We

see that for ks ≈ 65 Mpc−1 a sufficiently large percentage of the mass is in halos ∼ 106M�

to account for the inferred contribution from early stars to the isotropic CIB flux.

Finally, we note that the isotropic CIB flux from early stars is inferred from the anisotropic

flux measured at scales of 5 arcminutes, corresponding to k ∼ 0.45 Mpc−1, which is much
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Figure 5.8: The density contrast at scales k = 0.40 Mpc−1 to k = 0.50 Mpc−1, for which

only the adiabatic perturbations contribute. The lines show the baryonic, dark matter,

and total matter perturbations. k ∼ 0.45 Mpc−1 corresponds to the 5 arcmin scale probed

observationally.

smaller than ks = 65 Mpc−1. Therefore, only adiabatic modes contribute at this scale; the

density contrast is shown in Fig. 5.8. We see that at k ∼ 0.45 Mpc−1 the density contrast

is ∼ 10%, consistent with the calculations in [140] and for similar reasons, consistent with

the observational anisotropic data. (Note that although there is a difference between two-

dimensional and three-dimensional power spectra, the difference should be order 1.) There-

fore, the isocurvature perturbations considered here explain the inferred contribution of the

early stars to the isotropic CIB excess without overproducing an anisotropic contribution.

To summarize, in our model, structure is generated by adiabatic perturbations at the

large scale and the isocurvature perturbations at smaller scales. The isocurvature perturba-

tions are responsible for causing more halos (106M�) to evolve nonlinearly, and hence, we

make a sufficient number of stars to explain the isotropic CIB radiation inferred from the

anisotropic measurements without a large stellar formation efficiency. However, these halos

are distributed in accordance with the larger-scale adiabatic perturbations, and the scale of

the CIB anisotropy is accounted for by this larger-scale structure. This provides an elegant

solution as to the source of the observed CIB radiation fluctuations.

We also remark that in general, the early creation of population III stars is constrained
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by the optical depth measurements of the CMB. We note that recent analyses of the Planck

2015 optical depth data in fact prefers early star formation, particularly if one includes self-

regulated population III stars [158]. If star formation occurred much earlier than z = 10,

as for ks . 30 Mpc−1, then this scenario would conflict with optical depth measurements.

However, as noted, for ks = 65 Mpc−1 the star formation occurs around z = 10.

5.6 Available Parameter Space

In this section, we present plots of the parameter space in which Higgs relaxation leptoge-

nesis can both explain the observed matter-antimatter asymmetry of the universe and the

observations of the cosmic infrared background radiation. We note that Higgs relaxation lep-

togenesis is only one potential source of baryonic isocurvature perturbations; other sources

include curvaton models (proposed in [159–161]; see also [162–165]) and warm inflation

(e.g., [166, 167]). In general, any model which produces baryonic isocurvature perturbations

similar to those discussed above can account for the observed CIB excess.

In these plots, we choose Nlast, ΛI , and ΓI such that ks = 65 Mpc−1; then we determine

the initial vacuum expectation value of the Higgs field using Eq. (5.6), which includes the

curvature of the Higgs potential. As discussed in Sec. 5.3, and shown explicitly in Fig. 5.2,

this leads to δB(k/ks = 1.4) ≈ 0.025 throughout parameter space, sufficient to explain the

CIB observations. (Regions where the requisite initial VEV probes the second vacuum in the

Higgs potential are denoted on the plots.) We note that we include one-loop corrections to

the Higgs potential and two-loop corrections to the running couplings; for details regarding

the potential (including the specific values for the Higgs mass and top quark mass used),

please see the Higgs relaxation leptogenesis analysis in [2].

As discussed in [1–3], there are several different mechanisms of generating the O6 op-

erator; one can use thermal loops, leading the scale Λn ∼ T , or one can introduce heavy

fermions, leading to a scale Λn ∼Mn, a constant. The parameter space for these two options

was explored extensively in Ref. [2], with the result that when the initial Higgs vacuum ex-
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Figure 5.9: The lepton-number-to-entropy ratio, Y , from Higgs relaxation leptogenesis, with

Nlast set in order to explain the CIB excess and with the effective operator (5.1) generator

by thermal loops, so that Λn ∼ T . In the upper left corner, the Nlast required to explain the

CIB excess is such that the Higgs VEV probes the second minimum in the Higgs potential.

In the lower right, ΓI > 3HI and inflation is not successful. In the gray region, washout is

sufficiently large to cause the lepton asymmetry to oscillate around zero at the end of our

numerical analysis; the final value will be quite small. As in Refs. [2, 4], the neutrino Yukawa

coupling is chosen to suppress thermal leptogenesis; in the upper right of the plot, this

condition leads into the nonperturbative regime. We see the parameter space for generating

sufficient lepton asymmetry is constrained in this case.
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pectation value was set by quantum fluctuations, the largest lepton-asymmetry-to-entropy

ratio that was possible with Λn ∼ T was Y ∼ 10−12 (Fig. 12 of Ref. [2]), while for Λn ∼Mn,

parameter space was available, but in the regime in which the use of effective field theory to

describe the O6 operator was questionable.

We mentioned above that in Refs. [1, 2, 4], we took Nlast = 8 out of an abundance of

caution to avoid baryonic isocurvature constraints, but the actual limit is much weaker.

Here, Nlast is set by (5.18), which is generally larger (Nlast ∼ 40 typically). As explained in

Appendix D.1, the final asymmetry is proportional to φ2
0, which grows as Nlast in the limit

of a flat potential. [However, in our numerical analysis, we use Eq. (5.6) which accounts

for the curvature of the potential.] Therefore, we expect the asymmetry to be enhanced as

compared to our previous analysis, although not significantly.

This is illustrated for the Λn = T case in Fig. 5.9. This figure shows contours of the lepton

asymmetry to entropy ratio Y ; regions with Y & 10−9 can account for the observed baryonic

matter-antimatter asymmetry of the universe. (We note that the original lepton asymmetry

is redistributed between leptons and baryons by sphalerons.) As compared to Fig. 12 of

Ref. [2], the asymmetry is enhanced by about a little less than an order of magnitude;

however, this is not sufficient to ensure a region of parameter space in which both a sufficiently

large asymmetry is generated and the CIB excess is explained.

Therefore, we turn our attention to Fig. 5.10, which instead has Λn = Mn, a constant.

We see that a sufficiently large asymmetry is generated for a wide range of inflaton couplings

ΓI provided that the scale Mn is small enough; the upper bound on Mn becomes stronger as

the inflation scale ΛI decreases. Decreasing ΛI decreases the asymmetry, if Mn and ΓI are

held constant.

The red and gray lines illustrate where Mn, the scale in the O6 effective operator, becomes

less than φ0 and Tmax respectively. Below these lines, the use of effective field theory for

O6 is somewhat questionable. This is not surprising as the same remark applied to the

parameter space plots presented in [2, 4]. As discussed in [2], although the effective field

theory description is questionable, we use it as an approximation as what would be found if
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Figure 5.10: The lepton-number-to-entropy ratio, Y , from Higgs relaxation leptogenesis,

with Nlast set in order to explain the CIB observations and with the effective operator (5.1)

generator by new massive particles, so that Λn ∼ Mn. For these plots, ΛI = 5 × 1016 GeV

(left) and ΛI = 1015 GeV (right). As in Refs. [2, 4], the neutrino Yukawa coupling is chosen

to suppress thermal leptogenesis; for sufficiently large ΓI , this condition leads into the non-

perturbative regime. We see that as sufficiently large asymmetry is generated, but in the

regime in which the use of effective field theory with the operator (5.1) is questionable.
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an exact calculation in some UV-complete theory were done. It was also shown in Ref. [4]

that this can be avoided in models with an extended scalar sector.

Subject to this caveat regarding the effective theory, we conclude that Higgs relaxation

leptogenesis can successfully generate the observed matter-antimatter asymmetry while also

generating isocurvature perturbations which enhance early star formation, explaining the

observed CIB excess. Thus, Higgs relaxation leptogenesis is a promising source for the

desired baryonic isocurvature perturbations.

5.7 Conclusion for Chapter 5

In this chapter, we have demonstrated that baryonic isocurvature perturbations at very

small scales can cause halos of mass 106M� to collapse earlier than they would in the typical

model of structure formation, which includes only adiabatic perturbations from inflation.

Since these halos can support the formation of population III stars, this leads to enhanced

star formation in the early universe. Therefore, the power in the fluctuations of the cosmic

infrared background radiation measured by the Spitzer and AKARI space telescopes can

be explained without invoking unreasonably large stellar formation efficiency or radiation

efficiency.

As a source for these perturbations, we have used the Higgs relaxation leptogenesis model,

in which the matter-antimatter asymmetry is produced via lepton-number-violating interac-

tions in a plasma influenced by a time-dependent chemical potential produced by the relaxing

Higgs vacuum expectation value. If the initial vacuum expectation value of the Higgs field is

set by quantum fluctuations, it will vary in different Hubble volumes, giving rise to slightly

different baryon asymmetries. These are the desired isocurvature perturbations. The scale

of these perturbations is set by number of e-folds the Higgs VEV grows through; we de-

termined that we can explain the CIB observations if isocurvature perturbations exist for

k & 65 Mpc−1. Finally, we illustrated the parameter space in which the Higgs relaxation

model gives both successful leptogenesis and explains the CIB observations.
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APPENDIX A

Vacuum Expectation Value for Scalar Fields with

Polynomial Potential during Inflation

In Sec. 1.1.2, we have discussed that during inflation a scalar field can obtain a large VEV via

quantum fluctuation. The VEV that a scalar field can obtain is such that V
(√
〈φ2〉

)
∼ H4.

In this appendix, we strengthen this point by calculating the equilibrium VEV of φ with the

potential of the general form

V (φ) = βnφ
2n , n ∈ N. (A.1)

We consider only even function as V (φ) so that the potential is bounded from below. As we

have explained in Sec. 1.1.2, the Fokker-Planck equation for a general potential in equilibrium

can reduce to
∂P (φ)

∂φ
= − 8π2

3H4
P (φ)

dV (φ)

dφ
, (A.2)

which give the equilibrium probability distribution as

P (φ) = N exp

[
− 8π2

3H4
V (φ)

]
= N exp

(
− 8π2

3H4
βnφ

2n

)
. (A.3)

Since the V (φ) is even under φ → −φ, the expectation value 〈φ〉 vanishes. Thus, we are

interested in the expectation value of φ2

〈
φ2
〉

=

∫
φ2P (φ) dφ∫
P (φ) dφ

, (A.4)

which can be computed by evaluating the integral of the form

Wm ≡
∫ ∞
−∞

P (φ)φmdφ. (A.5)

128



Defining α ≡ 8π2/3H4, we have

Wm = N

∫ ∞
−∞

exp
(
−αβnφ2n

)
φmdφ = 2N

∫ ∞
0

exp
(
−αβnφ2n

)
φmdφ. (A.6)

Rescale x ≡ αβnφ
2n, which gives φ = (x/αβn)1/2n, and

dφ =
1

2n

(
1

αβn

) 1
2n

x
1
2n
−1dx. (A.7)

Then one can find the close form for the integral Wm

Wm =
N

n

(
1

αβn

)m+1
2n
∫ ∞

0

e−xx
m+1
2n
−1dx =

N

n

(
1

αβn

)m+1
2n

Γ

(
m+ 1

2n

)
, (A.8)

where Γ (z) is the gamma function. The expectation value of φ2 is then given by

〈
φ2
〉

=
W2

W0

=

(
3H4

8π2βn

)1/n Γ
(

3
2n

)
Γ
(

1
2n

) , (A.9)

as presented in Eq. (1.30). We then refer to the VEV of φ as φ0 =
√
〈φ2〉 since 〈φ〉 vanishes.

For a massive non-interacting scalar field with V (φ) = 1
2
m2φ2 potential, we have n = 1

and βn = 1
2
m2. Since Γ

(
3
2

)
/Γ
(

1
2

)
= 1

2
, the expectation value of φ2 is

〈
φ2
〉

=
3H4

8π2m2
, (A.10)

as used in Eq. (1.27). The VEV of φ is

√
〈φ2〉 =

√
3

8π2

H2

m
≈ 0.19

H2

m
, (A.11)

which accords with the claim that V (φ0) ∼ H4. For a massless interacting scalar field with

V (φ) = 1
4
λφ4 potential, we have n = 2 and βn = λ/4. The expectation value φ2 is [12]

〈
φ2
〉

=

√
3

2π2λ
H2 Γ (3/4)

Γ (1/4)
. (A.12)

The corresponding equilibrium VEV of φ is

√
〈φ2〉 =

√
Γ (3/4)

Γ (1/4)

(
3

2π2λ

)1/4

H ≈ 0.36
H

λ1/4
, (A.13)

which also agrees with V (φ0) ∼ H4.
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APPENDIX B

Appendices for Relaxation Leptogenesis

B.1 Interpretting the O6 Operator as an External Chemical Po-

tential

In section 2.2, we remarked that the O6 operator in equation (2.12) acts like an external

chemical potential. In this appendix, we explain why this is so and how this leads to a

number density asymmetry in chemical equilibrium.

This O6 operator induces a term proportional to (∂0φ
2)/Λ2

nj
0
B+L in the Lagrangian. If φ

is treated as an external field (which we discuss further below), then this produces a term of

the form −(∂0φ
2)/Λ2

nj
0
B+L in the Hamiltonian, which has the appropriate form −µeffj

0
B+L.

A term similar to this, using the phase of the Higgs VEV is frequently used in spontaneous

baryogenesis scenarios, in which the phase of the Higgs VEV is used instead of its magnitude

(e.g., [168]),

O′6 = (∂tθ)j
0
B+L. (B.1)

However, in such scenarios, the asymmetry is produced via the decay of the Higgs condensate,

and therefore, it is not appropriate to treat θ as an external degree of freedom. When the

Hamiltonian is determined using

H =
∑
i

∂L
∂φ̇i

φ̇i − L, (B.2)

there is no contribution from O′6. Although an asymmetry may be produced in such

cases [123, 124, 169], it is not appropriate to interpret θ̇ as a chemical potential.

In the scenario we consider in this work, the time scale for the reactions which maintain
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the thermal distribution of the plasma is smaller than that of the evolution of the Higgs VEV.

Therefore, for purposes of asymmetry generation, it is reasonable to consider the Higgs VEV

as a background field, in which case it is appropriate to consider this as a chemical-potential-

like term [169], as we explain below.

The O6 operator shifts i∂0 → i∂0 − (∂0φ
2)/Λ2

n in the Lagrangian. Consequently, the

asymptotically free eigenfunctions are ∼ exp(∓i(E ∓ (∂0φ
2)/Λ2

n)t), which justifies our com-

ment that this is equivalent to decreasing the energy of particles by E0 = (∂0φ
2)/Λ2

n and

increasing the energy of antiparticles by the same amount.

If we use the ideal gas approximation, then the phase space densities are

fp = exp(−(E − E0 − µp)/T )

fp̄ = exp(−(E + E0 − µp̄)/T ) (B.3)

The number densities of particles and antiparticles can be found in the normal manner, using

np =

∫
d3p

(2π)3
exp(−(E − E0 − µp)/T )

np̄ =

∫
d3p

(2π)3
exp(−(E + E0 − µp̄)/T ) (B.4)

If we use the non-relativistic relation E = p2/2m, then we find

µp = −E0 + T ln(λ3np)

µp̄ = E0 + T ln(λ3np̄), (B.5)

where λ =
√

2πmT . In the above relation, the first term can be interpretted as an external

chemical potential (due to the “driving” effect of the O6 operator), while the T ln(λ3np) is

the usual chemical potential of an ideal gas.

If a lepton-number-violating process or baryon-number-violating establishes chemical

equilibrium between the species, then the chemical potentials will be equal, µp = µp̄. This

gives the expected result
np
np̄

= e2E0/T . (B.6)

A similar result can be derived using the relativistic relation E = p instead.
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B.2 Calculation of Lepton-Number-Violating Cross Section and

Reaction Rate

In this section, we calculate the cross section and reaction rate for the processes shown in

Fig. 2.1, assuming a thermal number density for Higgs bosons and neutrinos, as discussed in

Section 2.3. This improves the order of magnitude estimates used in [1]. As explained in the

text, we can use the approximate cross section with the energy shift due to the O6 operator

set equal to zero. In this approximation, the reaction rates for processes with neutrinos and

antineutrinos are equal.

The top two diagrams of Fig. 2.1 are the s- and t-channel diagrams of the process h0ν →

h0ν̄, whereas the bottom diagram describes the process νν → h0h0. The s-channel has

a resonance at E ∼ MR; however, the typical energy scale T is far beneath this. For

completeness, we include the resonance, although it will have negligible effect. In calculating

these cross sections, we follow the conventions of [170] for the Feynman rules of Majorana

fermions.

The matrix element for the ν`h
0 → ν̄Lh

0 process is

−iM = i
∑
i

YLiY
∗
i`

2

[
MRi − iΓi/2

s−M2
Ri + iΓiMRi + Γ2

i /4
+

MRi − iΓi/2
t−M2

Ri + iΓiMRi + Γ2
i /4

]
× xLα(p1, s1)yβ` (p4, s4)δαβ , (B.7)

where s and t are the Mandelstam variables, and Γi is the width of the right-handed Majorana

neutrino. (For a discussion of Breit-Wignar propagators, see [171]). The indices 1, 2, 3,

and 4 refer to the incoming neutrino, incoming Higgs boson, outgoing Higgs boson, and

outgoing antineutrino, in that order. The index i indicates a sum over the heavy right-

handed Majorana neutrinos. Let us define

Ai = s−M2
Ri + Γ2

i /4,

Bi = t−M2
Ri + Γ2

i /4,

Ci = ΓiMRi. (B.8)
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Then the matrix element squared, summed over both the initial and final spin states (as

discussed in [75]), is

∑
s1,s2

|M|2 =
∑
i

2p1 × p4
|YLi|2|Yi`|2

4

(
M2

Ri +
Γ2
i

4

)
×[

1

A2
i + C2

i

+
1

B2
i + C2

i

+
2(AiBi + C2

i )

(AiBi + C2
i )2 + C2

i (Ai −Bi)2

]
. (B.9)

In the center of mass reference frame, the cross section is

σCM(s) =
1

16π

∑
i

|YLi|2|Yi`|2

4

(
M2

Ri +
Γi
4

)
×
∫ 0

−s
dt (s+ t)

[
1

A2
i + C2

i

+
1

B2
i + C2

i

+
2(AiBi + C2

i )

(AiBi + C2
i )2 + C2

i (Ai −Bi)2

]
. (B.10)

Generically, the thermally averaged cross section is related to the CM cross section

by [172]

〈σv〉0 =
1

8T ×m2
1K2(m1/T )×m2

2K2(m2/T )

×
∫ ∞

(m1+m2)2

[s− (m1 −m2)2][s− (m1 +m2)2]√
s

K1(
√
s/T )σCM(s), (B.11)

and so the thermally averaged cross section for h0ν → h0ν̄ is

〈
σ(h0ν → h0ν̄)v

〉
0

=
∑
i

|YLi|2|Yi`|2

512π

(
M2

Ri +
Γi
4

)∫ x

0

dx

∫ x

0

dy(x2 − y2)K1(x)[
1

(x2T 2 −M2
Ri + Γ2

i /4)2 + Γ2
iM

2
Ri

+
1

(y2T 2 +M2
Ri − Γ2

i /4)2 + Γ2
iM

2
Ri

− 2((x2T 2 −M2
Ri + Γ2

i /4)(y2T 2 +M2
Ri − Γ2

i /4)− Γ2
iM

2
Ri)

((x2T 2 −M2
Ri + Γ2

i /4)(y2T 2 +M2
Ri − Γ2

i /4)− Γ2
iM

2
Ri)

2 + Γ2
iM

2
Ri(x

2 + y2)2T 4

]
(B.12)

where we have introduced the dimensionless variables x ≡
√
s/T and y ≡

√
−t/T . Since the

temperature evolves in time, the cross section also does; however, when expanded in powers

of T/MRi, the lowest order contribution is ∼ 1/M2
Ri, as expected. Repeating the same steps

with the ν`νL → h0h0 cross section, which does not have a resonance, gives

〈
σ(ν`νL → h0h0)v

〉
0

=
∑
i

|YLi|2|Yi`|2

64πM2
Ri

. (B.13)

133



The reaction rates are related to these cross sections by

γeq0 (αβ → γδ) = neqα,0n
eq
β,0 〈σ (αβ → γδ) v〉0 , (B.14)

which holds for any 2→ 2 process. Since we take E0 = 0 in this section, the number densities

for Higgs bosons, neutrinos, and antineutrinos are all equal to neq0 ≈ T 3/π2, and so for both

processes,

γeq0 =
T 6

π4
〈σv〉0 . (B.15)

As noted in the text, in order to simplify the calculation, we will consider only the case

in which the flavor indices ` and L are equal, and the contribution of a single right-handed

neutrino dominates. Its decay rate is Γ ' y2MR/16π, from the only decay NR → h0νL.
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APPENDIX C

Lepton-Number-Violating Cross Section in the EGH

Model

In Sec. 3.3.4, we remarked that the thermally averaged cross section of the lepton-number-

violating processes in the EGH model is enhanced by a factor of 16 in comparison to the SM

Higgs case. In this appendix, we discuss the calculation of the cross section, including this

prefactor. The lepton-number-violating processes that we consider are (i) νLφi ↔ ν̄Lφj and

(ii) νLνL ↔ φiφj as shown in Fig. 3.1. The scalar fields that are involved in these processes

are φi =
{
σ, Π4, Θ, Π̃4, Π3, Π̃3

}
. Their cross sections depend on the Yukawa couplings to

LH and RH neutrinos, which can be read from Eq. (3.10) as

Y ν
i = {Y ν sin θ, Y ν cos θ, iY ν sin θ, iY ν cos θ, iY ν , Y ν} , (C.1)

respectively.

For the (i) νLφi ↔ ν̄Lφj channel, the cross section depends on Y ν
i as σ (νLφi → ν̄Lφj) ∝

|Y ν
i |

2
∣∣Y ν
j

∣∣2 . Summing the contribution from each i and j, the thermally averaged cross

section from the channel (i) is

〈σv〉(i) =
∑
i,j

〈σ (νLφi ↔ ν̄Lφj) v〉 =
〈σ (νLφ↔ ν̄Lφ) v〉

|Y ν |4
∑
i,j

|Y ν
i |

2
∣∣Y ν
j

∣∣2 (C.2)

= 16 〈σ (νLφ↔ ν̄Lφ) v〉 , (C.3)

where φ is a Standard Model-like scalar with the Yukawa coupling |Y ν | to LH and RH

neutrinos, and 〈σ (νLφ↔ ν̄Lφ) v〉 can be obtained from Eq. (3.35).

For the (ii) νLνL ↔ φiφj channel, one has to consider the symmetry factor due to the
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identical outgoing particles. The CM cross section in the limit T �MR is approximated as

σ (νLνL → φiφj) ≈
1

4πS

|Y ν
i |

2
∣∣Y ν
j

∣∣2
M2

R

, (C.4)

where the symmetry factor S = 2 if i = j, and S = 1 if i 6= j. Summing different outgoing

particles, the net CM cross section is

∑
i

∑
j≥i

σ (νLνL → φiφj) =
∑
i

[
σ (νLνL → φiφi) +

∑
j>i

σ (νLνL → φiφj)

]
(C.5)

=
σ (νLνL → φφ)

|Y ν |4
∑
i

(
|Y ν
i |

4 + 2
∑
j>i

|Y ν
i |

2
∣∣Y ν
j

∣∣2) (C.6)

=
σ (νLνL → φφ)

|Y ν |4
∑
i,j

|Y ν
i |

2
∣∣Y ν
j

∣∣2 (C.7)

= 16σ (νLνL → φφ) , (C.8)

where again φ denotes a Standard-Model like scalar which has a coupling constant Y ν [which

is related to the couplings of the EGH scalars via equation (C.1)]. Again, we see the en-

hancement by the factor of 16,

〈σv〉(ii) =
∑
i

∑
j≥i

〈σ (νLνL ↔ φiφj) v〉 = 16 〈σ (νLνL ↔ φφ) v〉 . (C.9)
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APPENDIX D

Appendices for the Relaxation Leptogenesis,

Isocurvature Perturbations, and the Cosmic Infrared

Background

D.1 Relationship between Lepton Number Density and Initial

Higgs VEV

Within the Higgs relaxation leptogenesis paradigm, the generation of the asymmetry can

occur through several mechanisms, even when the lepton-number-violating operator appears

in the neutrino sector due to heavy right-handed Majorana states. The asymmetry can be

generated through particle production from the condensate as described by the Bogoliubov

transformations [3], or via lepton-number-violating scatterings occurring in the plasma, e.g.,

[1, 2]. In this work, we are interested in the latter scenario, which requires a rapid production

of plasma, perhaps even via some preheating mechanism. This in turn entails that the

thermal corrections to the Higgs potential, ∼ T 2φ2, tend to be large.

In this case, the Higgs VEV relaxes rather rapidly, and throughout all of the parameter

space shown in Figs. 5.9 and 5.10, the relaxation time scale is faster than the reheat time

scale, determined by the decay rate of the inflaton. This raises the concern that relaxation

may proceed faster than the thermalization of the plasma, and therefore, that the finite

temperature corrections to the Higgs potential are unreliable during relaxation.
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According to Ref. [173], the thermalization time scale is

tth ≈ α−16/5 m
4/5
I

M
3/5
Pl Γ

6/5
I

, (D.1)

where mI is the mass of the inflaton field, which is thus far undetermined in the Higgs

relaxation scenario. We note that for successful reheating, the inflaton must have available

decay channels, despite the relatively large Higgs VEV φ0. However, even at values mI ∼

10−5φ0 the inflaton is able to efficiently decay into electrons. We have verified that in this

limit, the thermalization time scale is faster than the relaxation time scale (using α ≈ 1/40

for the coupling, which accounts for its running at high scales). Thus, it is consistent to

consider the regime in which the relaxation time scale is less than the reheat time scale,

trlx < tRH , and also that the Higgs potential during relaxation is dominated by the T 2φ2

thermal correction.1

Therefore, we here consider only the case that the effective potential of the scalar field is

dominated by the thermal mass term

V (φ, T ) =
1

2
α2
TT

2φ2. (D.2)

For the standard model Higgs field, the coefficient is αT ≈
√(

λ+ 9
4
g2 + 3

4
g′2 + 3h2

)
/12 ≈

0.33 at the energy scale µ ≈ 1013 GeV. During the epoch of coherent oscillations of the

inflaton, the energy density of the radiation as a function of time can be described by

ρr (t) =
m2
plΓI

10π (t+ tosc)

[
1−

(
tosc

t+ tosc

)5/3
]
, (D.3)

where tosc = 2
3

√
3

8π
mpl/Λ

2
I and ΓI is the decay rate of the inflaton. At all times we use an

effective temperature for the plasma given by ρr = π2g∗T
4/30; as discussed, this is valid for

t > tth.

For tosc < t < tRH , we approximate the temperature of the plasma by

T (t) ' TRH

(
tRH
t

)1/4

, (D.4)

1We note that for φ0 � mI , the Higgs bosons that participate in the scattering h0ν ↔ h0ν̄ are produced
via the thermalization of the plasma. We also emphasize that we ensure that throughout the relaxation
period, the energy density in the inflaton and produced radiation is greater than the energy density in the
Higgs condensate.
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where the reheat temperature is TRH ≈ (3/π3)
1/4
g
−1/4
∗S (TRH)

√
mplΓI and tRH = 1/ΓI is the

time when reheating is complete. For times between tosc and tRH , the equation of motion

for the scalar field is then

φ̈ (t) +
2

t
φ̇ (t) + α2

T

T 2
RH

√
tRH√
t

φ (t) = 0 (D.5)

if the thermal corrections dominate the effective potential, and we have taken H (t) ≈ 2/3t

since during the epoch in which the inflaton undergoes coherent oscillation the universe

evolves as if it were matter dominated. We can rescale φ (t = xtRH) = φ0y (x) and t = xtRH

to rewrite Eq. (D.5) as

y′′ (x) +
2

x
y′ (x) +

α2
Tβ

2

√
x
y (x) = 0, (D.6)

where β = TRHtRH = 6.06× 104
(

108GeV
ΓI

)1/2

. The independent solutions for Eq. (D.6) are

y1 (x) =

(
3

2

)2/3

Γ

(
5

3

)
J2/3

(
4αTβ

3
x3/4

)
1

(αTβ)2/3√x
, (D.7)

y2 (x) =

(
3

2

)2/3

Γ

(
1

3

)
J−2/3

(
4αTβ

3
x3/4

)
1

(αTβ)2/3√x
, (D.8)

where Jn (z) is the Bessel function of the first kind. Since y2 (0) diverges, and y1 (0) = 1

and y′1 (0) = 0, we should take only y1 as the physical solution, subject to the boundary

condition that φ(t = 0) = φ0 (where we shift our zero of time by tosc). Both the analytical

solution given by Eq. (D.7) with this boundary condition and the actual numerical solution

are shown in Fig. D.1.

As discussed in Sec. 2.4, one must be concerned with washout due to the subsequent

oscillations of the Higgs VEV. This is avoided when the scattering processes are not too

efficient in the early universe (which gives the result that a large chemical potential is needed

to generate the asymmetry). Washout can be avoided either by having these interactions

turn off rapidly, or by considering parameters such that there is significant damping of the

Higgs oscillations, such as those in Fig. D.1. Regardless of the balance of factors, the end of

the asymmetry production, trlx, occurs around the time when the Higgs VEV passes zero.

This can be approximated analytically by noting that the Bessel function with n = 2/3 has
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Figure D.1: Higgs evolution with ΛI = 1.5×1016 GeV, ΓI = 108 GeV, and φ0 = 6×1013 GeV.

First crossing times are 6.28× 10−14 GeV−1 (numerical) and 6.39× 10−14 GeV−1 (analytical

approximation).

a first zero at z0 = 3.376. The relaxation time of the scalar field can then be approximated

using the first crossing at

z0 =
4αTβ

3
x

3/4
rlx , (D.9)

which gives

trlx = tRHxrlx ≈ tRH

(
3z0

4αTTRHtRH

)4/3

. (D.10)

Note that since Eq. (D.5) is linear in φ, the relaxation time is independent of the initial φ0.

Hence fluctuations in φ0 does not affect the relaxation time, in the regime considered here:

where the potential of the scalar field is dominated by the thermal mass and trlx < tRH . In

fact, as long as the potential is dominated by the thermal mass term (quadratic in φ), the

relaxation time is always independent of φ0.

The final lepton-to-entropy ratio can be estimated by

Y ≈ 45

2π2g∗S

2φ2
0

π2Λ2
n

T 2
rlxtrlxΓ2

I

T 3
RH

min

[
1,

2

π2
σRT

3
rlxtrlx

]
exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
, (D.11)

which can be found in [4] and improves on the estimates in [1, 2] by O(1) factors. In

this expression, σR is the thermally averaged cross section for the lepton-number-violating

interaction, h0ν̄ ↔ h0ν, and a thermal distribution has been assumed for participating
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particles. Using the above expressions, we have

Y ≈ 90σR
π6g∗S

(
φ0

Λn

)2
3z0TRH
4αT tRH

exp

(
−8 +

√
15

π2
σRT

3
RHtRH

)
. (D.12)

Since TRH and tRH are independent of φ0, Eq. (D.12) entails that Y ∝ φ2
0. Note that since

trlx and therefore Trlx are independent of φ0, this is true whether the scale Λn in the O(6)

operator (5.1) is a constant or whether it is the temperature of the plasma.

D.2 Power Spectrum of the Lepton Asymmetry

In the case that a scalar field φ (x) has a nonzero homogeneous part, 〈φ (x)〉 6= 0, the

fluctuation in any quantity that scales as X ∝ φ2 is simply δX ∝ 2 |〈φ (x)〉| δφ for small δφ,

which gives
δX

〈X〉
≈ 2

δφ

|〈φ (x)〉|
. (D.13)

However, this is not applicable to the baryonic asymmetry in the relaxation leptogenesis

model because the homogeneous part of φ is zero, 〈φ (x)〉 = 0, due to the symmetry of the

potential. We note that it is φ0 ≡
√
〈φ2 (x)〉 which is nonzero, and as we have explained

in the Appendix D.1, the lepton asymmetry depends on the initial value of φ via Y ∝ φ2
0.

In this appendix, we now proceed to calculate the primordial power spectrum of the lepton

asymmetry taking into account the fact that it is
√
〈φ2 (x)〉, not 〈φ(x)〉, which is nonzero.

In the following analysis, we adopt the following conventions for the Fourier transform:

φ (x) =

∫
d3k

(2π)3 e
i~k·~xφ~k, (D.14)

φ~k =

∫
d3xe−i

~k·~xφ (x) . (D.15)

The power spectrum of φ, Pφ (k), is defined through the two-point correlation function of φ~k

〈
φ~kφ~k′

〉
= (2π)3 δ3

(
~k + ~k′

) 2π2

k3
Pφ (k) . (D.16)

As we mentioned in Eq. (5.8), we approximate the power spectrum of φ by

Pφ (k) =

(
HI

2π

)2

θ (k − ks) θ
(
kse

Nlast − k
)
. (D.17)

141



We remind the reader that ks is the comoving scale which leaves the horizon when the Higgs

VEV begins growing, Nlast e-folds before the end of inflation. Our results are insensitive

to very large values of k; however, for completeness, we have included a high-scale cutoff

imposed by the fact that φ grows until the end of inflation. The comoving scale k that

leaves the scale at the end of inflation is the highest scale on which isocurvature modes are

produced; this scale is kse
Nlast . Again, though, such high k values are not relevant to our

results, which means that we are insensitive to the end of inflation.

We now look at the fluctuation of f (x) ≡ φ2 (x) with respect to its expectation value,

δf (x) = φ2 (x)−
〈
φ2 (x)

〉
=

∫
d3k

(2π)3 e
i~k·~xf~k. (D.18)

The power spectrum of δf (x) can be computed from the two-point function of the Fourier

transform of δf 〈
f~kf~k′

〉
= (2π)3 δ3

(
~k + ~k′

) 2π2

k3
Pδf (k) , (D.19)

which is

〈
f~kf~k′

〉
=

∫
d3xd3ye−i

~k·~x−i~k′·~y 〈δf (x) δf (y)〉 (D.20)

=

∫
d3xd3ye−i

~k·~x−i~k′·~y [〈φ2 (x)φ2 (y)
〉
−
〈
φ2 (x)

〉 〈
φ2 (y)

〉]
(D.21)

=

∫
d3xd3ye−i

~k·~x−i~k′·~y
∫
d3k1d

3k2d
3k3d

3k4

(2π)12 ei(
~k1+~k2)·~xei(

~k3+~k4)·~y

×
(〈
φ~k1φ~k2φ~k3φ~k4

〉
−
〈
φ~k1φ~k2

〉 〈
φ~k3φ~k4

〉)
. (D.22)

Using Wick’s theorem, one can express the 4-point function in terms of 2-point functions as

〈
φ~k1φ~k2φ~k3φ~k4

〉
=
〈
φ~k1φ~k2

〉 〈
φ~k3φ~k4

〉
+
〈
φ~k1φ~k3

〉 〈
φ~k2φ~k4

〉
+
〈
φ~k1φ~k4

〉 〈
φ~k2φ~k3

〉
. (D.23)
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Integrating over ~x and ~y, and making use of Eq. (D.16), we have

〈
f~kf~k′

〉
= 2

∫
d3k1d

3k2d
3k3d

3k4δ
3
(
~k − ~k1 − ~k2

)
δ3
(
~k′ − ~k3 − ~k4

)
× δ3

(
~k1 + ~k3

)
δ3
(
~k2 + ~k4

) 2π2

k3
1

2π2

k3
2

Pφ (k1)Pφ (k2) (D.24)

= 2

∫
d3k1d

3k2δ
3
(
~k − ~k1 − ~k2

)
δ3
(
~k′ + ~k1 + ~k2

) 4π4

k3
1k

3
2

Pφ (k1)Pφ (k2) . (D.25)

= 2δ3
(
~k + ~k′

)∫
d3k1

4π4

k3
1

∣∣∣~k1 − ~k
∣∣∣3Pφ (k1)Pφ

(∣∣∣~k1 − ~k
∣∣∣) . (D.26)

Thus, the power spectrum of δf is

Pδf (k) =
k3

2π

∫
d3k1

1

k3
1

∣∣∣~k1 − ~k
∣∣∣3Pφ (k1)Pφ

(∣∣∣~k1 − ~k
∣∣∣) . (D.27)

For the power spectrum of φ given by Eq. (D.17), this gives

Pδf (k) =
k3

2π

(
HI

2π

)4 ∫
d3k1

1

k3
1

∣∣∣~k1 − ~k
∣∣∣3 θ (k1 − ks) θ

(
kse

Nlast − k1

)
× θ

(∣∣∣~k1 − ~k
∣∣∣− ks) θ (kseNlast −

∣∣∣~k1 − ~k
∣∣∣) . (D.28)

For k � ks, the power spectrum is suppressed as

Pδf (k) ≈ k3

2π

(
HI

2π

)4 ∫ ∞
ks

4πdk1

k4
1

=
2

3

(
HI

2π

)4(
k

ks

)3

. (D.29)

For ks < k < kse
Nlast , integral is dominated by ~k1 ∼ ~ks and ~k1 ∼ ~k − ~ks, so one can

approximate (see also Appendix A of [174])

Pδf (k) ≈ k3

2π

(
HI

2π

)4

2

∫ k

ks

4πk2
1dk1

k3
1k

3
(D.30)

= 4

(
HI

2π

)4

ln

(
k

ks

)
. (D.31)

The power spectrum reaches a maximum ∼ 4Nlast (HI/2π)4 before being suppressed severely

beyond k = kse
Nlast . However, as mentioned, this large scale cutoff does not affect our CIB

signal, which is dominated by k ≈ 1.4ks. The behavior of Eqs. (D.28), (D.29), and (D.31)

are shown in Figs. D.2 and D.3.
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Figure D.2: Power spectrum of the fluctuation of f = φ2 with respect to its expectation

value, 〈φ2〉. The yellow solid line denotes the numerical integration result of Eq. (D.28).

The blue dashed curve shows the approximation (D.31) for k > ks. The green dash-dotted

line shows the (k/ks)
3 suppression as described by Eq. (D.29), for k < ks.
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Figure D.3: Same plot as Fig. D.2 with Nlast = 5 as an example; this enables us to see

the large scale cutoff. The yellow solid line denotes the numerical result. The blue dashed

curve shows the approximation (D.31). The deviation between them appears at the scale

k ∼ kse
Nlast . The power spectrum reaches an upper limit around 4Nlast (HI/2π)4. Since our

calculation of the CIB is dominated by k ≈ 1.4ks, the large scale cutoff is irrelevant to our

signal.
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Since the fluctuation of δf is suppressed for k < ks, we take

Pδf (k) ≈ 4

(
HI

2π

)4

ln

(
k

ks

)
θ (k − ks) (D.32)

for k � kse
Nlast . The average fluctuation of f per ln k interval is then given by δfk =√

Pδf (k). Therefore, the spectrum of the fluctuation of YB is

δYB
YB

∣∣∣∣
k

=
δfk
〈f〉
≈ 2 ln1/2 (k/ks)

Nlast

θ (k − ks) , (D.33)

as used in Eq. (5.9).
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