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I. Introduction

The value of the largest autoregressive root of a univariate time series can be of interest

for various reasons.  The largest root can be of direct economic interest.  For example, Sargent

(1998) argues that learning about the largest root in inflation (specifically, learning that the

coefficients on lagged inflation in a Phillips Curve sum to one) led to the willingness of Governors

of the U.S. Federal Reserve Systems to initiate the disinflationary recessions of the early 1980's.

Alternatively, if primary interest is in multivariate regression models, inference in such

circumstances typically depends on the value of the largest autoregressive root of the regressor(s),

see for example Cavanagh et. al. (1995).  In both circumstances, researchers might be interested

not just in whether or not the largest autoregressive root is one or not, but in the more general

question of what the root is and in the construction of confidence intervals for that root.

Various methods now exist for the construction of such confidence sets.  Stock (1991)

proposed constructing confidence sets by inverting augmented Dickey Fuller (1979)  (ADF) t-

tests, and showed the asymptotic validity of this procedure using the local to unity asymptotic

framework of Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987) and Phillips (1987).

Andrews (1993) proposed finite sample methods for the construction of confidence intervals in the

Gaussian AR(1) model with ρ ∈ (-1,1].  Hansen (1999) proposes a bootstrap procedure that is

asymptotically valid both for roots in a neighborhood of one and for ρ bounded away from one.

These papers focus on tests constructed by inverting t ratios.  This choice is, however, one of

convenience. In many economic settings, standard t ratios produce tests that are asymptotically

uniformly most powerful invariant (with Gaussian errors) (UMPI), and inverting these tests results

in asymptotically uniformly most accurate invariant confidence sets.  But in the unit root problem

this is not the case: as shown by Elliott et. al (1996), there does not exist a UMP or UMPI test of

the unit root hypothesis.  Moreover, the ADF unit root tests has power which is far from the

Gaussian power envelope, and far less than alternative (feasible) point optimal tests.

This paper proposes new asymptotic methods for the construction of confidence sets for

the largest autoregressive root, ρ.  These methods build on the theory of asymptotically optimal

tests in Gaussian autoregressions and extend these results to the realm of confidence intervals for

ρ when ρ is local to unity.  The specific approach here is to consider confidence intervals

constructed as the acceptance region of a sequence of tests, where each test in the sequence is

constructed as the point optimal test of a particular null against a particular alternative.  The

corresponding confidence set is the set of values that are not rejected by this sequence of tests.
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The key motivation for this approach is the link between the power of tests and the accuracy of

confidence intervals: the hope is that the asymptotic point optimality of the constituent tests will

induce good accuracy for the resulting confidence set.  These 'sequence tests' are computationally

intensive, so in addition we consider approaches based on approximate optimality results in the unit

root case that are computationally simpler and thus more appealing as practical methods.

The paper is set out as follows.  The next section details the main model of the data we

are concerned with, and discusses the theory for classical confidence intervals and the relationship

between such confidence intervals and power of tests. The third section discusses a number of

methods for the construction of confidence intervals based on powerful tests. The fourth section

considers an alternate assumption on the initialization of the data when roots are less than one.  In

section five we examine exact methods for the calculation of critical values required to construct

the intervals.  We then evaluate the methods in large and small samples in the sixth section.  A

final section concludes.  All proofs are contained in an appendix.

II. The Model and the Theory of Confidence Intervals.

The time series yt is assumed to have the representation

y d u t Tt t t= + =, ,... .1 (1)

where

Ttuu ttt ,...2,1 =+= − νρ (2)

and {dt= β‘zt} are deterministic components with zt=1 or zt= [1,t]’ (which we will call the trend),

νt=C(L)ε t is a zero mean  stationary process with finite autocovariances γ ( )k Ev vt t k= −  and

0 2< = < ∞
=−∞

∞∑ω γ ( )k
k

 such that [ ]T W sii

Ts−
=∑ ⇒1 2

1
/ ( )ν ω where W(s) is a standard

Brownian Motion, [.] denotes the greatest lessor integer function and ⇒ denotes weak

convergence.

 Intervals will be derived and examined under two different assumptions on the initial

condition u1.  These are

A1.  u1 has mean zero and variance γ(0) .

A2.  u1 has mean zero and if ρ≥1 has variance γ(0), otherwise u1 has variance )1/()0( 2ργ − .
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We model the largest coefficient as being local to unity, i.e. ρ =1+c/T (see Bobkoski

(1983), Cavanagh (1985), Chan and Wei (1987), Phillips (1987)).  Under the latter of these two

sets of assumptions, we have the following limit result for ut;

1
0

0ω T
u W s e W e e dW rTs c

cs
c

cs cr
s

[ ] ( ) ( ) ( )⇒ ≡ + −∫ (3)

where Wc(0) ~N(0,(-2c)-1) is independent of Wc(s), s>0 if c<0 and is zero otherwise.  From

Lemma 2 of Elliott (1999) this distributional result is continuous in c at c=0.  In the fixed initial

case we have the limit result in (3) with Wc(0)=0.

For the time series representation above and tests for the null of a unit root against

alternatives less than one, the results of Elliott et al (1996) and Elliott (1999) show that no

uniformly most powerful test exists, even asymptotically. Thus there is no uniformly most accurate

confidence interval for c=T(ρ -1) asymptotically.  Despite the lack of existence of a uniformly

most accurate confidence interval for this model, the general theory underlying the construction of

confidence intervals (see Lehmann (1994), section 5.6) can be used to construct confidence

intervals for ρ that have useful accuracy properties.  Further, the theory can also be employed to

evaluate  confidence intervals constructed from the inversions of available tests, such as proposed

by Stock (1991).

          Suppose that one is interested in constructing a confidence interval for the (one

dimensional) parameter θ . A 100(1-α)% confidence set Sα (y) where y is the data is a set-valued

function of the data that has the property that P S yθ αθ α[ ( )]∈ ≥ −1  for all values of θ.  Such a

confidence set can be derived from the following sequence of tests. Suppose we have a sequence

of tests of asymptotic size α for the hypothesis H0: θ = θ* vs Ha: θ ≠ θ* for all θ* ∈Θ where Θ is

the parameter space (the sequence is one test for each θ*, in practice the test could be the same

at each θ).  We conduct these tests for all possible θ* ∈Θ, and define Sα (y) as the set of θ* that

we cannot reject. Such sets have the desired property that in the limit then

αθ αθ −≥∈ 1)]([ ySP  for any true value for θ.

          The probability that any θ* is included in the confidence set, denoted )](*[' ySP αθ θ ∈ is

the probability that we fail to reject that θ = θ* at the true value for θ, say θ'.  The ability of such

a set to exclude θ* thus depends on the power of the test of H0: θ =θ* against the alternative Ha:

θ = θ'. The accuracy of the confidence interval at any particular θ* is assessed by examining the
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power of the test of the null θ = θ* against other parameter values.

When there is a uniformly most powerful test, a uniformly most accurate confidence

interval can be constructed by inverting this test.  But this is not the case here, we therefore

consider tests that differ depending on θ*, and on whether the test is against the alternative θ > θ*

or θ < θ*.

III. The Tests and their Inversion to Intervals : Fixed Case.

1. Sequence Tests.

Returning to the model above, this means that in choosing the sequence of tests to invert

we want tests that have high power at any particular value for ρ against alternatives in each

direction.   The results of Elliott et al. (1996) show that for the case of ρ=1 and normal errors, no

uniformly most powerful test exists.  This result will hold for all ρ in the set we are considering,

making the choice of tests to invert at each value for ρ somewhat arbitrary.

Consider the following tests. For each ρ we construct the likelihood ratio test statistics

H0: ρ = ρ* vs Ha :ρ ρ ρ= < * (lower tail test)

and

H0: ρ = ρ* vs Ha :ρ ρ ρ= > * (upper tail test)

Choosing values for the point alternative ρ  for the upper and lower tail tests chooses the

particular tests within the family of point optimal tests.

Assuming no serial correlation and vt~N(0,σ2) the log likelihood for the data is of the form

[ ]L A
y z

L y zt t
t

T
( , , )

( ' )
( )( ' )ρ σ β

β
σ σ

ρ β2 1 1
2

2 2

2

22
1

2
1= −

−
− − −∑

=
      (4)

The likelihood ratio tests invariant to the trend components are of the form

[ ] [ ]{ }LR L L= − −2 2 2ρ σ β ρ ρ σ β ρ, , ( ) *, , ( *)   (5)

where β ρ( )  are the GLS estimates of the deterministic trend when we set ρ ρ ρ= , * (these

reject for small values as the statistics are the negative of the usual transformed LR test).
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Proposition 1.

Under the assumptions of the model in (1) and (2), A1 holding  with  vt ~ N(0,σ2) and

serially uncorrelated the Neyman Pearson tests of H0 : ρ =ρ* vs Ha: ρ = ρ  when

ρ*=1+c*/T and ρ =1+c /T, invariant to dt and σ2 have power functions of the form

[ ]Γ( , *, ) Pr ( , *, ) ( *, )c c c P c c c b c c= < (6)

where b c c( *, )  is a critical value,

P c c c c c W s ds x c c xc c
d d

c
d( , *, ) ( * ) ( ) ' ( *, )= − ∫ +2 2 2

0

1

Λ  and

a)Demeaned case(d=µ)

[ ]x W W t dtc c c
µ ' ( ), ( )= ∫1  and Λµ ( *, )

*
c c

c c
=

−









0
0 0

.

b) Detrended case(d=τ)

[ ]x W W t dt tW t dtc c c c
τ ' ( ), ( ) , ( )= ∫ ∫1  and Λτ τ τ( *, ) ( ) ( *)c c K c K c= − ,

K c
c c

c c

τ

λ λ

λ λ
( )

( )( )

( )
=

− − −

− − −

















1 1 0
0 0 0

0 3 1

2

2 2

where λ =
−

+ −
1

1
2

3

c
cc

.

(all proofs are given in the appendix).

The above results give the power curves for a family of tests for each null ρ* (the family

being one for each ρ ).  When ρ*=1 and ρ <1 this is a special case of  the results in Elliott et al

(1996).  The results hold also for other values for ρ*.   The critical values b(c*, c ) depend on

both the null and the alternative for the test, as well as the extent of the detrending.  It can also be

seen from the above results that the most powerful test tends to an asymptotic chi-squared

distribution when c c2 2→ * (for the locally best test).  Further, as the best test against the

alternative c  depends on c , we have no uniformly most powerful tests at any of the relevant null

hypotheses.  We can use these results to compute power envelopes of tests for each null

hypothesis, and examine the power properties of the tests we employ at different null values.
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To make this operational for the more general assumptions on the residuals presented in

the previous section, we suggest inverting the following test statistic

P c c u uT t
t

T

t
t

T
( *, )

$
( )

*
( *)= ∑ − ∑











= =

1
2

2

1

2

1ω
ρ

ρ
(7)

where ut  and ut *  are elements of the vectors u  and u* with u y z= − β ' and

u y z* * *' *= −β  where β ,β *  are the GLS estimates of the trend terms under the alternative

and null respectively,

[ ]z z L z L zT= − −1 21 1, ( ) ,..., ( )ρ ρ ,

[ ]y y L y L yT= − −1 21 1,( ) ,..., ( )ρ ρ ,

z y*, * are defined similarly with ρ* and c* replacing ρ  and c  respectively, and $ω 2 is a

consistent estimator of ω 2 (a specific estimator $ω 2 is discussed in Section V).

Proposition 2.

When the data are generated according to (1) and (2) with E[u1]=0 and Var(u1)=γ (0),  the

statistic PT (c*, c )  has the asymptotic distribution P c c c( , *, ) as defined in Proposition 1.

The results of Proposition 2 show that the statistics have the same distribution as the most

powerful tests against a point alternative from the previous section.  Thus they achieve the

asymptotic Gaussian power envelope for the null hypothesis of c=c* against the alternative c = c .

The tests are one sided (the side depends on whether c  is greater or less than c*) and reject the

null for sufficiently small or negative values. We can define the acceptance regions of the tests

with size αi as

{ }
iccTi pccPyccA αα ,*,)*,(:);*,( >=

where pc c i*, ,α  is the lower 100(αi)% percentile of the null distribution.  We can construct a two

sided test for the null hypothesis of c=c* by combining an upper and lower tail test.  For simplicity,
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rather than searching over various alternatives (and hence tests) for each c* we will instead

consider testing against alternatives that are a fixed distance from c* for all c*.  So for upper tail

tests we set c c cu= +*  and for lower tail tests c c cl= +*  where cl <0.  The size of the test

will be α ≤ αl + αu (the sum of the size for the lower and upper tail tests respectively). We can

define now the acceptance region at each c* as

{ } { }
lluu ccclTcccuTlu pcccPypcccPycccA ααα ,**,,**, )**,(:)**,(:);,*,( ++ >+∩>+=

We then define the sequence test confidence interval with coverage 100(1-α)%

S y c cs
u lα ( , , )  as the set of c* that are in the acceptance regions );,*,( αlu cccA .  This definition

admits the possibility of disjoint sets, however for practical reasons we rule out this case in

numerical results reported below.

This confidence set has the parameters  ullu cc αα ,,,  and the accuracy of the

confidence set depends on these parameters.  Our choice for uc and  lc  is guided by the results

of Elliott et. al. (1996).  For c*=0 they found cl = −7 in the case of a mean and cl = −13 5.  in the

case of a constant and time trend provide good power for all lower tail alternatives.  By numerical

experiments we select cu = 2 for the demeaned case and cu = 5 for the detrended case, αl=3%

and αu= 2% (so α ≤5%)1.

2. Inverting a Single Test

A computationally simpler alternative to the method described above is to simply invert a

test for a unit root, as undertaken by Stock (1991) for the augmented Dickey and Fuller (1979)

statistic and the (modified) Sargan and Bhargava (1983) statistic.  In this method all is the same as

the above except that a single statistic is used for all of the values for c.

For any test for a unit root, T(y), we can determine the asymptotic distribution as a

function of c.  We can then use the percentiles of these distributions to construct acceptance

regions for any particular size test and null hypothesis (c*) in our set.  These acceptance regions

have the form

                                                
1 The power curve is much steeper for alternatives that are greater than the null than alternatives less than
the null which suggests choosing αu < αl .
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})(:{)*;( 1*,*, 1 ucc qyTqycA ααα −<<=

where qc l*,α  and qc u*,1−α  are the 100(αl) and 100(1-αu) percentiles of the limit distribution for

T(y) when c* is true.  The confidence set then collects, for any data set y, all the values for c*

where y is in the acceptance region given above, i.e. we then define the test inversion confidence

interval with coverage 100(1-α)% S y( , )α  as the set of c* that are in the acceptance regions

):*( αcA defined above.

We construct such tests for various unit root tests which have been found to have good

power properties.  These include the PT (0, c ) and the Sargan and Bhargava (1983) statistic as

modified for general residuals in Stock (1991), which we denote as MSB.

The first of these statistics is simply the sequence test where c*=0 and c  equal to the

values in Elliott et al (1996). Thus the test statistic to invert is

P c u uT t
t

T

t
t

T
( , )

$
( ) ( *)0

1
2

2

1

2

1
= ∑ − ∑



= =ω

ρ

The limit distribution of this statistic for any c is

P c c W t dt x c x P c cT c c
d d

c
d( , ) ( ) ' ( , ) ( , , )0 0 02 2⇒ ∫ + ≡Λ .

The MSB statistic is constructed as MSB = ( )1
2 2

2

1$
,

ω T
yt

d SB

t

T

=
∑  where

y y yt
SB

t T t
µ, = − ∑1  and

[ ]y y y T T y y t y y Tt
SB

t T t T T
τ , ( ) / ( ) ( ) ( ) / ( )= − + + − − − − −∑1

1 11 2 1 1 .

The MSB statistic also has an asymptotic representation of a form similar to the above

tests, namely we can write the asymptotic distribution as

MSB W t dt x c xd
c c

d
SB

d
c
d⇒ +∫ ( ) ' ( )2 Λ

where

ΛSB
µ =

−










0 0
0 1

and
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Λ SB
τ =

−

−
−

















1
12

1
2

1
2

1

1 0
1 0 0

IV. The Tests and their Inversion to Intervals : Unconditional Case.

The results of the previous section show dependence on the assumption on the initial

condition in two ways.  Firstly, the optimal tests to invert (sequence tests) depend on this

assumption through the specification of the likelihood (this is shown for the case where c*=0 in

Elliott (1999)).  Second, the limiting distribution in equation (3) and hence critical values for each

of the tests when ρ<1 differ depending on the assumption made, hence for all of the confidence

intervals different intervals are appropriate depending on the assumption made.  In this subsection,

we derive limit results for the sequence confidence interval that would be appropriate under the

assumption that the initial condition comes from its stationary distribution when ρ <1.  We also

consider the inversion of the ‘near’ optimal test for a unit root in this case and again the Sargan

and Bhargava statistic under this different distribution.

1. Sequence Tests.

In this model the log likelihood for the data when there is no serial correlation and

vt~N(0,σ2) is of the form

[ ]

[ ]
L

A
y z

L y z

A
y z

L y z

t t
t

T

t t
t

T
( , , )

( )( ' )
( )( ' )

( ' )
( )( ' )

ρ σ β

ρ β
σ σ

ρ β ρ

β
σ σ

ρ β ρ

2

2
1 1

2

2 2

2

2

1 1
2

2 2

2

2

1
2

1
2

1 1

2
1

2
1 1

=
−

− −
− − −∑ <

−
−

− − −∑ ≥










=

=

      (8)

where the likelihood changes discretely at ρ=1.

The likelihood ratio tests invariant to the trend components are again of the form

[ ] [ ]{ }LR L L= − −2 2 2ρ σ β ρ ρ σ β ρ, , ( ) *, , ( *) (9)

where β ρ( )  are the GLS estimates of the deterministic trend given ρ for this alternate model.
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Proposition 3.

Under the assumptions of the model in (1) and (2),  vt ~N(0,σ2) and is not serially

correlated,  u0 drawn from its unconditional distribution when ρ <1 the Neyman Pearson

tests of H0 : ρ =ρ* vs Ha: ρ = ρ  when ρ*=1+c*/T and ρ =1+c /T, invariant to dt and σ2

have asymptotic power functions of the form

[ ]Γs c c c Q c c c b c c( , *, ) Pr ( , *, ) ( *, )= < (10)

where Q c c c( , *, )  depends on the signs of c, c* and c  and is defined by

Q c c c c c W s ds x c c xc s c
d

s
d

s c
d( , *, ) ( * ) ( ) ' ( *, ), ,= − +∫2 2 2

0

1

Λ  where

a)Demeaned case

For ρ<1  [ ]x W W W t dts c c c c, ' ( ), ( ), ( )µ = ∫0 1 , Λs s sc c K c K cµ µ µ( *, ) ( ) ( *)= − and

K c
c

c

c c
c c

c c c
s
µ ( )

( )
( )=

−

− −
− −

−

















2

1 1
1 1

2

 for c < 0  and

K c
c c c c

c c
c

s
µ ( )

( )
=

− −
−

−

















2 2

2

0
0 0

for c ≥ 0 .

 For ρ ≥ 1 x xs c c,
µ µ=  and Λ s s sc c K c K cµ µ µ( *, ) ( ) ( *)= − where

K cs
µ ( ) is K cs

µ ( ) as above with the first row and column deleted.

b) Detrended case

for ρ<1  [ ]x W W W t dt tW t dts c c c c c, ' ( ), ( ), ( ) , ( )τ = ∫ ∫0 1  and Λs s sc c K c K cτ τ τ( *, ) ( ) ( *)= − where
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( )
( ) ( )

( )

























−−−−

−−+−

−−−+−−−−−−−
−−−−−−−−−

−=

4
4

2
2

2
2

4
4

22
12

2
12

2
2

22
122

2
12

2
2

2
12

2
122

2
)1()1(

2
)()(

)1()()1)(1()1()(
)1()()1()()1)(1(

)(

c
c

cc

c
kcckcckc

cckckccckc
cckcckckcc

cK

cc

c

cc

c

s

φ
φ

φφ

φ
φφφ

φφφφφφ
φφφφφφ

τ

  for c < 0  where  φ = + −1 1
2

12 2/ ( )c c , k c c cc= + − −( ) / ( )1 2
2

3
2

K c

c c c c
c c c
c

c c c c

s

c c

c

τ

λ λ λ
λ λ λ

λ λ λ

( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

=

+ − − − − − − − −
− − − − − − −

−
− − − − − − − − −





















2 2

2

4
1
4

1
2

2 3
2

3
2

1
2

2

3
2

3
2

2

1 1 1 1 1 1
1 1 1 1 0 3 1 1

0 0 0
1 1 3 1 1 0 9 1 1 3

for c ≥ 0 .

For ρ ≥ 1 x xs c c,
τ τ=  and Λ s s sc c K c K cτ τ τ( * , ) ( ) ( *)= −  where K cs

τ ( ) is K cs
τ ( ) as above with

the first row and column deleted.

It is clear that the sequence tests are different from those in the fixed case, so the

confidence intervals constructed from them will also differ. Further, as the best test against the

alternative c  depends on c , we again have no uniformly most powerful tests at any of the

relevant null hypotheses.

To make this operational for the more general assumptions on the residuals we suggest

the following test statistic for each side of the hypothesis

Q c c u uT t
t

T

t
t

T
( *, )

$
( )

*
( *)= ∑ − ∑











= =

1
2

2

1

2

1ω
ρ
ρ

(11)

where ut  and ut *  are elements of the vectors u  and u* with u y z= − β ' and

u y z* * *' *= −β  where β ,β *  are the GLS estimates of the trend terms under the alternative

and null respectively,

 [ ]
[ ]

z
z L z L z c

z L z L z c
T

T

=
− − − <

− − ≥






( ) , ( ) ,...,( )

, ( ) ,...,( )

/1 1 1 0
1 1 0

2 1 2
1 2

1 2

ρ ρ ρ
ρ ρ

,
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[ ]
[ ]

y
y L y L y c

y L y L y c
T

T

=
− − − <

− − ≥






( ) ,( ) ,..., ( )

,( ) ,..., ( )

/1 1 1 0
1 1 0

2 1 2
1 2

1 2

ρ ρ ρ
ρ ρ

and z y*, * are defined similarly with ρ* and c* replacing ρ  and c  respectively.

Proposition 4.

When the data are generated according to (1) and (2) with the u1  drawn from its

unconditional distribution when ρ <1 the statistic QT (c*, c )  has the asymptotic

distribution Q c c c( , *, ) as defined in Proposition 3.

We can construct sequence confidence intervals using the same method as the previous

section.  For the results in this paper we have set cl = −10 as this was found to provide good

power for all alternatives for the null c*=0 and cu = 2 for the demeaned case and cu = 5 for the

detrended case.  We again choose αl=3% and αu= 2% .

2. Inverting a Single Test

For this alternative assumption on the initial condition we construct such tests for various

unit root tests.  These include the QT (0, c ) (constructed in the same way as the PT (0, c )) and

the Sargan and Bhargava statistic.

The first of these statistics is simply the sequence test where c*=0 and c = -10.  Thus the

test statistic to invert is

Q c u uT t
t

T

t
t

T

( , )
$

( ) ( *)0
1

2
2

1

2

1

= −










= =
∑ ∑ω

ρ

The limit distributions for this statistic as a function of c is thus a special case of the above results

and are given in Elliott (1999).

The MSB statistic is constructed as in the previous section, but under the assumptions of

this section its asymptotic representation is

MSB W t dt x c xd
c s c

d
s SB
d

s c
d⇒ ∫ +( ) ' ( ), , ,

2 Λ

where
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Λs SB,
µ =

−

















0 0 0
0 0 0
0 0 1

and

Λ s SB,
τ =

− −
− −
− −

−



















1
12

1
12

1
2

1
12

1
12

1
2

1
2

1
2

1
1

1 0
1 1 0 0

V. Computing critical values.

The construction of confidence intervals will require the computation of asymptotic

percentage points of the above distributions.  This can be accomplished either by the use of Monte

Carlo simulation or through the computation of the characteristic functions of the above statistics

and then by use of the methods of Imhof (1961) to compute percentage points from these

characteristic functions.  The Monte Carlo approach, while conceptually straightforward, is

computationally very intensive in this application because of the large number of tests, indexed by

the null hypothesis: moreover it is prone to numerical imprecision.  We therefore adopt the latter

approach here.  This requires deriving the limiting characteristic functions for the various test

statistics.

All of the above statistics have limit distributions with the similar form

T y a W t dt x xc( ) ( ) '⇒ +∫ 2 Λ

where x is a kx1 vector of functionals of Brownian motion which have a joint normal distribution

and {a,Λ} are constants depending on the particular test.

Proposition 5.. The characteristic functions for the limit distribution of T(y) are

φ
β

( ) exp *
/

t
c

I k=
− −








−
−

2
2

1 2
ΣΛ

where β = −c ita2 2  and
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Λ Λ*

( )

( )
= +

−
+

+























it

c

c

β

β
2

0 0 0

0
2

0 0

0 0 0 0
0 0 0 0

for the case when Wc(0) is non zero and d=τ.  For d=µ we have k=3 and ignore the last

row and column and for Wc(0)=0 we ignore the first row and column.  The elements of Σ

can be computed using stochastic calculus and are given in Appendix 2.

The proof of the Theorem follows Tanaka (1996) directly and is omitted.  The

characteristic functions make it fairly straightforward to compute p-values and percentages of the

distributions.  Again following Tanaka (1996), percentiles of the distributions are given by

[ ]F x
t

e t dtit x( ) Im ( )= − −
∞

∫
1
2

1 2 2 2

0π
φ

where Im[.] takes the imaginary part of the argument.  This is the Imhof (1961) formula (see

Tanaka (1996), equation (6.13)).  A change of variables is used to ensure that the function

integrated is zero at t=0.  Simpson’s rule is used here to evaluate the integral numerically.

VI. Evaluating the methods

This section considers large and small sample properties of the methods for constructing

confidence intervals on ρ discussed above under each of the assumptions on the initial condition.

As large sample properties of the confidence sets map directly to asymptotic power properties of

the tests, these are just various views of the asymptotic power of the tests presented above for

different null and alternative values for ρ. The small sample results given are from directly

computing the confidence intervals as discussed above.

1. Large Sample Results.

As there is a direct relationship between power and exclusion of false values of ρ, we

examine the power of the tests at various null hypotheses.  Figures 1a to 1f show asymptotic

power of two sided tests in the conditional case (where the lower tail test has size 0.03 and the

upper 0.02) for the sequence test, the PT(0, c ) test, and the modified Sargan and Bhargava test in
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the d = µ and τ under the assumptions of section 3.   The power curves are given for three values

for c* ; c*=0, -5 and -10.

A number of features are noteworthy.  First, in each case we see that the sequence test

has  slightly better power than the other two tests. Second, the PT(0, c ) test is very similar to the

sequence test for c* near zero; this is partially by construction as the tests are the same at c*=0 in

the lower tail.  Third, the MSB test has the lowest power curve in each case and when the model

is close to a unit root this power loss is more severe.  Fourth, even though the optimality properties

for the PT(0, c ) statistic and the SB statistic are for the null of ρ =1 we see that the tests based

on these statistics at other nulls have reasonable power.  There is not so great a reason to

consider using a sequence of statistics rather than inverting PT(0, c ), at least asymptotically.  All

of the results are true for both the demeaned and detrended models, although the differences are

greater in the demeaned case.

These results suggest that each of these statistics are likely to invert to similarly short

intervals, with PT(0, c ) likely to be preferred over MSB.  Note that we do not consider the

augmented Dickey and Fuller (1979) statistic as it has power significantly below that of the PT(0,-

10) statistic (Elliott et al (1996)) at c*=0 in the lower tail.

Similar figures are given for the unconditional case in Figures 2a through 2f.  Here the

QT(0,-10) test is examined along with the Sargan and Bhargava test and the sequence test that is

appropriate for this different assumption.  Essentially the results are similar to the fixed initial

condition case except that the differences are not as large in the demeaned case.

2. Small Sample Results

The coverage rates for the confidence intervals can be examined in Monte Carlo

experiments.  There is a large body of Monte Carlo results on the size performance of tests for a

unit root in a wide variety of models for the error terms.  The results are not greatly encouraging -

size performance is usually poor when the extent of serial correlation in νt is unknown, and is also

poor for models in which νt follows a moving average process with a large root (which to some

extent cancels the unit root in the model).  This size performance carries across to coverage

performance when the true value for ρ is 1.
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Here we examine in a number of models the size performance at various true values for

ρ. Each of the statistics requires estimation of the nuisance parameter $ω 2 .  We use here

autoregressive estimates of this parameter from estimating the regression

∆ ∆y a y a y et
d

t
d

i t i
d

i

m

t= + +− −
=

∑0 1
1

(12)

where the data is first detrended according to the model (i.e. if a constant or a constant and time

trend is in the model).  Two methods of detrending are employed; OLS detrending (indicated by

having (ols) after the name of the statistic) and GLS detrending under the local alternative2

(indicated by having (loc) after the name of the statistic).  The estimate for $ω 2  is then given by

[ ]
$

$

$( )
ω

σ2
2

21 1
=

− a
  where $ $σ 2 1 2= − ∑T et  , $( ) $a a i

i

m

1
1

=
=

∑  and $et  and $a i  are least squares

estimates from the above regression.  To make this operational we need to select the generally

unknown lag length m.  Here, m is selected by the MAIC criterion (recommended in Ng and

Perron (1998)) with a maximum of four lags.

Results when there is no serial correlation and u0=0 are compiled in Table 1, where we

examine the performance of the constructed confidence intervals when T=100 for three true

values for ρ, these are ρ = 1, 0.95 and 0.9.  For each of these models we examine one minus the

coverage rate for a variety of hypothesized roots ρ*.  In the case of ρ=1, this means that the

column marked ρ*=1 gives the probability of false exclusion and the columns marked ρ* =0.95

and 0.9 give the probability of correctly excluding these values from the confidence interval.

A number of features are noteworthy.  First, coverage rates are somewhat different than

the nominal coverage rates. The undercoverage arises from the upper tail rejections. Second, the

ordering of the ability of the confidence intervals to rule out false values is as implied by the

asymptotic power results.  The Sequence test does indeed do the best job in most cases in this

regard, followed closely by the inverted PT(0,c ) statistic, with the MSB statistic worst.  Given the

extra computation effort required by the sequence tests, then it may be considered just as useful to

use the PT(0,c ) statistic for inversion for a confidence interval.

Table 2 examines the probability of false exclusions when there are various forms of

serial correlation in the model.  Both MA(1) and AR(1) models for the errors are considered.

These results are similar to those in the unit root testing literature (see Stock (1994) for a detailed

                                                
2  This follows Ng and Perron (1998).
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examination of this case).  Size distortions (undercoverage) arise in most cases but especially

when there is a negative MA coefficient.  These distortions are more severe when the true root is

less than one, regardless of the model.

Table 3 reports results for models with no serial correlation in the unconditional case,

examining the sequence test for this case, the QT(0,-10) statistic and the MSB statistic (using the

correct limit result for this model).  The results are essentially similar to those above, with less of a

difference between the sequence method and simply inverting QT(0,-10).  Also, there is a smaller

difference between the performance of the intervals constructed from inverting the MSB statistic

and the other confidence intervals.  Results are not reported for the serial correlation case as they

are similar to those in the conditional case.

In addition to coverage and exclusion, we are interested in interval length.  Figures 3a to

3d show histograms of the interval lengths for the sequence test, PT(0,- c ) test, MSB, and ADF

(From Stock (1991)) test from 1000 random samples where the model is as per Table 1 with

ρ0=0.95, however the lag length in estimating nuisance parameters is known to be zero (in each

case a constant only is estimated).  The ADF test, whilst having some short intervals, has more

often than the other tests many long intervals.  The MSB test has more longer intervals than the

PT(0,- c ) test, which is fairly similar to the Sequence test.  For other models (values for c,

unconditional initial condition) similar results apply so the figures are not included.  In practice the

differences between the interval estimators in the unconditional case are much smaller.

VI. Conclusion

Most accurate confidence intervals are constructed from the inversion of a sequence of

most powerful tests.  In the case of large roots in autoregressive models, for any root (modeled as

local to unity) no UMP test exists against even one sided alternatives, ruling out the possibility of

inverting a sequence of UMP tests.  We instead choose to invert a sequence of point optimal

tests, which although only most powerful at a single point have quite reasonable properties at other

alternatives.  By computing the characteristic functions of this family of tests we are able to

provide methods for making computation of the confidence intervals feasible without relying on a

large number of Monte Carlo estimates of critical values.

We find that the confidence intervals constructed from a sequence of point optimal tests

have quite similar power properties to inverting near optimal tests for a unit root.  Given that the

latter confidence intervals are simpler to compute in practice, these are the suggested method.
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We also find that this asymptotic property holds up reasonably well for smaller samples, so

inversion of the PT(0,c ) and QT(0,c ) statistics work well in terms of constructing short

confidence intervals for the largest autoregressive root.  The main small sample problem that

arises is undercoverage when there is serial correlation of an unknown form, this is directly

analogous to the problem of overrejection in the unit root testing literature.  Confidence intervals

constructed from inverting these point optimal tests were found to have better properties than that

for the ADF or Sargan Bhargava type tests.

Because no asymptotically most accurate confidence interval exists in this problem, the

work is not definitive.  For example, the parameters ullu cc αα ,,, were fixed here after

preliminary investigation for computational reasons; they could however vary with c*.  This may

yield more accurate intervals.  A quite different approach not considered here is to focus on

Euclidean length of confidence intervals.  In these and other dimensions, interesting work remains.
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Proofs of Propositions.

Lemma 1 (Limit results for data detrended under local to unit root detrending)

When the data is generated according to (1) and (2) with ρ=1+c/T and detrending is under

~ ~
ρ = +1

c
T

 then

a) Demeaned Case.

When ρ<1,

1. For the unconditional model with ~ρ <1
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2. For ~ρ ≥1
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b) Detrended case.

1. For ~ρ <1
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2. For ~ρ ≥1
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For the fixed initial condition case the results are as above in case 2 for all ~ρ  with 0 in place of

Wc(0) in xs c
d
, .  For the unconditional initial condition case when ρ≥1, the results are as above with

0 in place of Wc(0).

Proof:

For both the demeaned and detrended results where ~ρ <1, the results are derived in Elliott (1999)

Lemma 3.  The GLS estimators for the case where ~ρ ≥1 are those of Elliott et. al. (1996), where

results for Wc(0)=0 are shown.  When u1 ≠ 0, the results follow directly from the expressions

(A.2) and (A.3) of Elliott et. al. (1992) and application of the functional central limit theorem and

continuous mapping theorem.

Proof of Proposition 1.

The LR test in (5) can be rewritten as the difference between two LR tests with the null of a unit

root

[ ] [ ]{ } [ ] [ ]{ }LR L L L L= − − + −2 1 1 2 1 12 2 2 2ρ σ β ρ σ β ρ σ β ρ σ β, , ( ) , , ( ) *, , ( *) , , ( ) .

Each of these tests for a unit root are of the form

[ ] [ ]{ }− −2 1 12 2L L~, , (~) , , ( )ρ σ β ρ σ β .

As noted after equation (6) of Elliott et. al. (1996) these are equivalent to test statistics of the form

T(~ $ )σ σ
σ

2 2

2

−
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where T utt

T~ ~σ 2 2
1

=
=∑ where ~ut  is defined after equation (7) with ~ρ  in place of ρ  in the text

and T utt
T$ $σ 2 2

1= ∑ = is similarly defined using 1 in place of ~ρ .

The statistics 
T(~ $ )σ σ

σ

2 2

2

−
 were examined in Elliott et al (1996). With some rearrangement we

have the results

(a) Demeaned Case
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(b) Detrended Case
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where y y zt
d

t t= − β ρ(~)'  and (from lemma 1) have limit results that depend on the value for ~ρ .

From the results of Lemma 1 and the continuous mapping theorem we have the limit results

(ignoring  )~(ρβ which is a constant depending on ~ρ  and can be subsumed into the critical value)

T
c W t dt x K c xc c

d d
c
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where K c(~) depends on the (demeaned or detrended) case considered, K c
cµ ( ) =
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


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0
0 0

 and

Kτ is given in Proposition 1 . The results are shown for the statistic with νt satisfying the more

general assumptions after equation (2) rather than that of the special case in the proposition.  In

the special case of the propositionω σ2 2= . The limit results for the general LR tests thus derive

from noting that the limit results are the difference between the limit results replacing ~c  with c

and c* respectively.
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Proof of Proposition 2.

The method of proof follows the intuition of the first proposition - rewriting the statistic into those

previously analyzed in Elliott et. al. (1996).
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The statistics P cT ( , )0  were analyzed in Elliott et. al. (1996) . The limit distribution for P cT ( , )0

differs from  that of T( $ )σ σ
ω

2 2

2

− by the constant B( ρ ) which can be subsumed into the critical

value. As the weight for the second part of the statistic 
ρ
ρ *

 converges to one asymptotically the

statistics have the same rejection regions as the likelihood ratio statistics in Proposition 1.

Proposition 3.

We can exploit the same rewriting of the LR statistic here as in the proof of proposition 1, and

then employ the results of Elliott (1999) along with lemma 1.

Proposition 4.

The proof of this follows directly that of Proposition 2 with Q c cT ( *, ) replacing P c cT ( *, )  and

employing the results of Elliott (1999).
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Appendix 2 :

The elements of Σ for the most general (k=4, where x= xs
τ  ) case are
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This is the relevent variance covariance matrix for the detrended case where the initial condition is
drawn from its stationary (unconditional) distribution and ρ < 1.  In this case where d=µ the
relevent variance covariance matrix omits the fourth row and column.

For the other cases (fixed initial condition or unconditional case where ρ ≥1) we have Σ being in
the most general case a 3x3 matrix as Wc(0)=0.  The elements of this symmetric matrix are
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For the demeaned case we have the same as above with the last row and column deleted.
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TABLE 1: Small Sample results. Zero initial condition.
1=ρ 95.0=ρ 9.0=ρ

ρ * = 1 ρ* .= 0 95 ρ * .= 0 9 ρ * = 1 ρ* .= 0 95 ρ * .= 0 9 ρ * = 1 ρ* .= 0 95 ρ * .= 0 9

Demeaned

Sequence 0.052 0.540 0.770 0.206 0.038 0.211 0.579 0.111 0.039
P olsT ( ) 0.034 0.513 0.817 0.206 0.029 0.252 0.579 0.097 0.038
P locT ( ) 0.031 0.508 0.817 0.199 0.027 0.254 0.568 0.092 0.039
MSB ols( ) 0.036 0.375 0.695 0.091 0.035 0.233 0.268 0.044 0.049
MSB loc( ) 0.033 0.367 0.690 0.088 0.034 0.236 0.260 0.039 0.048

Detrended

Sequence 0.047 0.182 0.478 0.054 0.046 0.227 0.146 0.060 0.051
P olsT ( ) 0.031 0.120 0.420 0.049 0.028 0.175 0.146 0.058 0.038
P locT ( ) 0.026 0.110 0.417 0.043 0.024 0.174 0.132 0.048 0.034
MSB ols( ) 0.035 0.118 0.369 0.033 0.036 0.173 0.092 0.040 0.046
MSB loc( ) 0.030 0.109 0.362 0.029 0.034 0.174 0.083 0.033 0.044

Note: The pseudo data are drawn from the model in (1) and (2) processes with N(0,1) errors, ρ
given in the first column heading and u0=0.  Nominal coverage is set to 95%.  Tests are
implemented allowing for deterministics as appropriate for the test (see text).  Results are
proportion of rejections based on 20000 Monte Carlo replications with sample sizes of 100
observations.
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TABLE 2: Small Sample results with serial dependence: One minus Coverage Rate,Conditional
case.

Demeaned Detrended

ρ 0 1= ρ 0 0 95= . ρ 0 0 9= . ρ 0 1= ρ 0 0 95= . ρ 0 0 9= .

 π=0.3,θ=0.
Sequence 0.071 0.090 0.107 0.093 0.102 0.122

)(olsPT
0.057 0.073 0.095 0.080 0.084 0.106

)(locPT
0.046 0.063 0.084 0.060 0.064 0.086

MSB ols( ) 0.058 0.068 0.097 0.071 0.076 0.100
MSB loc( ) 0.038 0.052 0.083 0.050 0.058 0.082

π=-0.3,θ=0.
Sequence 0.077 0.095 0.125 0.110 0.121 0.170

)(olsPT
0.056 0.074 0.121 0.098 0.093 0.132

)(locPT
0.042 0.067 0.118 0.071 0.074 0.123

MSB ols( ) 0.073 0.091 0.154 0.091 0.098 0.143
MSB loc( ) 0.048 0.078 0.149 0.066 0.083 0.137

π=0,θ=0.3
Sequence 0.076 0.087 0.101 0.106 0.119 0.142

)(olsPT
0.055 0.068 0.094 0.092 0.090 0.111

)(locPT
0.040 0.058 0.089 0.067 0.069 0.098

MSB ols( ) 0.074 0.080 0.122 0.091 0.095 0.119
MSB loc( ) 0.047 0.065 0.111 0.063 0.077 0.109

π=0,θ=-0.3
Sequence 0.075 0.108 0.134 0.102 0.126 0.153

)(olsPT
0.064 0.089 0.121 0.090 0.108 0.139

)(locPT
0.053 0.075 0.104 0.069 0.079 0.110

MSB ols( ) 0.063 0.084 0.117 0.080 0.098 0.128
MSB loc( ) 0.045 0.063 0.096 0.057 0.076 0.102

Note: The data is generated according to equations (1) and (2) of the text with
( ) ( )1 1+ = +π ν θ εL Lt t  and )1,0(~ Ntε .  Otherwise the pseudo data is generated as in Table
1. In each case the spectral density at frequency zero is estimated using the method described in
section VI.2. Reported is one minus the coverage rate, i.e. the probability of false exclusion.
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TABLE 3: Small Sample results. Unconditional case.

1=ρ 95.0=ρ 9.0=ρ

ρ * = 1 ρ* .= 0 95 ρ * .= 0 9 ρ * = 1 ρ* .= 0 95 ρ * .= 0 9 ρ * = 1 ρ* .= 0 95 ρ * .= 0 9

Demeaned

Sequence 0.042 0.378 0.717 0.089 0.043 0.305 0.284 0.059 0.060
Q olsT ( ) 0.037 0.358 0.683 0.089 0.039 0.253 0.284 0.066 0.047
Q locT ( ) 0.033 0.354 0.684 0.086 0.037 0.254 0.276 0.062 0.046
MSB ols( ) 0.036 0.328 0.664 0.070 0.036 0.259 0.226 0.051 0.048
MSB loc( ) 0.032 0.325 0.666 0.067 0.035 0.263 0.219 0.047 0.048

Detrended

Sequence 0.042 0.140 0.418 0.040 0.045 0.225 0.094 0.040 0.063
Q olsT ( ) 0.035 0.120 0.370 0.035 0.038 0.184 0.093 0.043 0.049
Q locT ( ) 0.029 0.114 0.370 0.030 0.033 0.184 0.083 0.035 0.045
MSB ols( ) 0.032 0.104 0.318 0.026 0.038 0.159 0.067 0.040 0.048
MSB loc( ) 0.027 0.099 0.316 0.022 0.035 0.159 0.059 0.035 0.045

Note: As per Table 1 with u0 drawn from N(0, σ2/(1-ρ)) distribution.
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Figure 1a.

Power (demeaned), c=0,u0=0
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Figure 1b.

Power (demeaned), c=-5,u0=0
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Figure 1c:

Power (demeaned), c=-10,u0=0

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

10 6 2 -2 -6 -1
0

-1
4

-1
8

-2
2

-2
6

-3
0

-3
4

-3
8

c

p
o

w
er

Seq.

PT

MSB

Figure 1d.

Power (detrended), c=0,u0=0
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Figure 1e:

Power (detrended), c=-5,u0=0
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Figure 1f:

Power (detrended), c=-10,u0=0
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Figure 2a.

Power (demeaned), c=0
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Figure 2b.

Power (demeaned), c-5
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Figure 2c.

Power (demeaned), c=-10
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Figure 2d.

Power (detrended), c=0
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Figure 2e.

Power (detrended), c-5
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Figure 2f.

 

Power (detrended), c=-10
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Figure 3a: Sequence Interval Length.

Notes: Vertical axis gives # occurrences in the Monte Carlo, the horizontal axis gives the lengths
of the intervals in terms of c = 100(ρ -1) where ρ =0.95.

Fig 3b: PT interval length

Notes: As per Figure 3a.
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Fig 3c: MSB figure Length

Notes: As per Figure 3a.

Fig 3d: Dickey Fuller Length

Notes: As per figure 3a.
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