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Abstract: Often we are interested in the largest root of an autoregressive process.
Available methods rely on inverting t-tests to obtain confidence intervals. However, for
large autoregressive roots, t-tests do not approximate asymptotically uniformly most
powerful tests and do not have optimality properties when inverted for confidence intervals.
We exploit the relationship between the power of tests and accuracy of confidence
intervals, and suggest methods which are asymptotically more accurate than available
interval construction methods. One interval, based on inverting the Pr or Qr dtatistic, has
good asymptotic accuracy and is easy to compute.
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l. Introduction

The vaue of the largest autoregressive root of a univariate time series can be of interest
for various reasons. The largest root can be of direct economic interest. For example, Sargent
(1998) argues that learning about the largest root in inflation (specifically, learning that the
coefficients on lagged inflation in a Phillips Curve sum to one) led to the willingness of Governors
of the U.S. Federal Reserve Systems to initiate the disinflationary recessions of the early 1980's.
Alternatively, if primary interest isin multivariate regresson models, inference in such
circumstances typically depends on the vaue of the largest autoregressive root of the regressor(s),
see for example Cavanagh et. al. (1995). In both circumstances, researchers might be interested
not just in whether or not the largest autoregressive root is one or not, but in the more genera
guestion of what the root is and in the construction of confidence intervals for that root.

Various methods now exist for the construction of such confidence sets. Stock (1991)
proposed constructing confidence sets by inverting augmented Dickey Fuller (1979) (ADF) t-
tests, and showed the asymptotic validity of this procedure using the local to unity asymptotic
framework of Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987) and Phillips (1987).
Andrews (1993) proposed finite sample methods for the construction of confidence intervalsin the
Gaussian AR(1) model with r T (-1,1]. Hansen (1999) proposes a bootstrap procedure that is
asymptotically valid both for roots in a neighborhood of one and for r bounded away from one.
These papers focus on tests constructed by inverting t ratios. This choiceis, however, one of
convenience. In many economic settings, standard t ratios produce tests that are asymptotically
uniformly most powerful invariant (with Gaussian errors) (UMPI), and inverting these tests results
in asymptotically uniformly most accurate invariant confidence sets. But in the unit root problem
thisis not the case: as shown by Elliott et. a (1996), there does not exist a UMP or UMPI test of
the unit root hypothesis. Moreover, the ADF unit root tests has power which is far from the
Gaussian power envelope, and far less than dternative (feasible) point optimal tests.

This paper proposes new asymptotic methods for the construction of confidence sets for
the largest autoregressive root, r . These methods build on the theory of asymptotically optimal
tests in Gaussian autoregressions and extend these results to the realm of confidence intervals for
r whenr islocal to unity. The specific approach here isto consider confidence intervals
constructed as the acceptance region of a sequence of tests, where each test in the sequenceis
constructed as the point optimal test of a particular null against a particular dternative. The
corresponding confidence set is the set of values that are not rejected by this sequence of tests.



The key motivation for this approach is the link between the power of tests and the accuracy of
confidence intervals: the hope is that the asymptotic point optimality of the constituent tests will
induce good accuracy for the resulting confidence set. These 'sequence tests are computationally
intensive, so in addition we consider approaches based on approximate optimality results in the unit
root case that are computationally smpler and thus more appealing as practical methods.

The paper is set out as follows. The next section details the main model of the data we
are concerned with, and discusses the theory for classical confidence intervals and the relationship
between such confidence intervals and power of tests. The third section discusses a number of
methods for the construction of confidence intervals based on powerful tests. The fourth section
considers an alternate assumption on the initiaization of the data when roots are less than one. In
section five we examine exact methods for the calculation of critical values required to construct
theintervals. We then evaluate the methods in large and small samples in the sixth section. A

fina section concludes. All proofs are contained in an appendix.

[1. The Mode and the Theory of Confidence Intervals.

The time series y; is assumed to have the representation

y, =d, +u,, t=1..T. (@)
where
u =ru._ +n, t=2.T )

and {d=b'z} are deterministic components with z=1 or z=[1,t]" (which we will call the trend),
n=C(L)e; isazero mean stationary process with finite autocovariances g(k) = Ev,v,_, and

o [Ts|

o<w? = é::_¥g(k) < ¥ suchthat T'“a_izlni P wW(s) where W(s) is a standard

Brownian Motion, [.] denotes the greatest lessor integer function and P denotes weak

convergence.

Intervals will be derived and examined under two different assumptions on the initia
condition . These are

Al. u has mean zero and variance g(0) .

A2. u; has mean zero and if r 3 1 has variance g(0), otherwise u; has variance g(0)/(1- r ?).



We model the largest coefficient as being local to unity, i.e. r =1+c/T (see Bobkoski
(1983), Cavanagh (1985), Chan and Wel (1987), Phillips (1987)). Under the latter of these two

sets of assumptions, we have the following limit result for u;

1 0 A% css\ -
WU{E}D W.(9)° e W (0 +e ?’:‘ dw(r) ©)

where W¢(0) ~N(0,(-2c) ™) is independent of W(s), s>0 if c<0 and is zero otherwise. From
Lemma 2 of Elliott (1999) this distributional result is continuousin ¢ a c=0. In the fixed initia
case we have the limit result in (3) with W(0)=0.

For the time series representation above and tests for the null of a unit root against
aternatives less than one, the results of Elliott et a (1996) and Elliott (1999) show that no
uniformly most powerful test exists, even asymptoticaly. Thus there is no uniformly most accurate
confidence interval for c=T(r -1) asymptotically. Despite the lack of existence of a uniformly
most accurate confidence interval for this model, the genera theory underlying the construction of
confidence intervals (see Lehmann (1994), section 5.6) can be used to construct confidence
intervalsfor r that have useful accuracy properties. Further, the theory can also be employed to
evaluate confidence intervals constructed from the inversions of available tests, such as proposed
by Stock (1991).

Suppose that one is interested in constructing a confidence interval for the (one
dimensiona) parameter g . A 100(1-a)% confidence set S, (y) wherey isthe datais a set-valued
function of the data that has the property that P, [q 1 S (y)]® 1-a foralvauesof g. Sucha
confidence set can be derived from the following sequence of tests. Suppose we have a sequence
of tests of asymptotic size a for the hypothesisHg: g = g* vsHx gt g* fordl g* T Q whereQiis
the parameter space (the sequence is one test for each g*, in practice the test could be the same
at each g). We conduct these tests for al possible g* T Q, and define S, (y) as the set of g* that
we cannot reject. Such sets have the desired property that in the limit then

Plal S (y)]31-a forany truevaluefor g.

The probability that any g* isincluded in the confidence set, denoted Pq.[q*T S, (Y)lis

the probability that we fail to reject that g = g* at the true value for g, say q'. The ability of such
a set to exclude g* thus depends on the power of the test of Ho: q =g* against the alternative Hy:
g = q'. The accuracy of the confidence interval at any particular g* is assessed by examining the



power of the test of the null q = g* against other parameter values.

When there is a uniformly most powerful test, a uniformly most accurate confidence
interval can be constructed by inverting thistest. But thisis not the case here, we therefore
consider tests that differ depending on g*, and on whether the test is against the alternative g > g*

orq<dg*.
I1l. The Tests and their Inversion to Intervals : Fixed Case.

1. Sequence Tests.

Returning to the model above, this means that in choosing the sequence of tests to invert
we want tests that have high power at any particular value for r against alternativesin each
direction. The results of Elliott et a. (1996) show that for the case of r =1 and normal errors, no
uniformly most powerful test exists. Thisresult will hold for dl r in the set we are considering,
making the choice of teststo invert at each value for r somewhat arbitrary.

Consider the following tests. For each r we construct the likelihood ratio test statistics

Ho:r =r* vsHy:ir =7 <r * (lower tall test)
and

Ho:r =r* vsHy:r =7 >r *  (upper tail test)

Choosing values for the point dternative T for the upper and lower tail tests chooses the

particular tests within the family of point optimal tests.
Assuming no seria correlation and i~N(0,s?) the log likelihood for the data is of the form

(y,-b'z)*> 11 Y
-~ -Zsztgz[(l-rL)(yt-bz[)] @

The likelihood ratio tests invariant to the trend components are of the form

L(r,s?,b)=A-

LR=- 2{ Urs2b@)]- r.s 2,b(r*)]} ©)
where b (r) arethe GLS estimates of the deterministic trend whenweset r =T,r * (these

reject for small values as the statistics are the negative of the usua transformed LR test).



Proposition 1.
Under the assumptions of the model in (1) and (2), A1 holding with v; ~ N(0,s?) and

serially uncorrelated the Neyman Pearson testsof Ho: r =r* vsHa r = T when

r*=1+c*/Tand T =1+C /T, invariant to d; and s have power functions of the form
G(c,c*,T) = Pr[P(c,¢*,T) < b(c*,T)] (6)

where b(c*,T) isacritical value,
1

P(c,c*,T) = (C° - c**), (9 %ds+ xI'L% (c*,T)x¢ and
0

a)Demeaned case(d=n)

é*-Tt Ou

x"= [W, (D), oW, (t)dt] and L™ (c*,c) = 0 08'

DD

b) Detrended case(d=t)
X, '= W, (1), O (1)t oW, (t)dt| and L (c*,©) = K (2) - K* (c*),

&1-c)(1-1) 0 -cl U
t _e u
K (c)—e 0 0 0 u
g -cl 0 -3%*(1-1)f
where | :%.
1+%-c¢

(all proofs are given in the appendix).
The above results give the power curves for afamily of tests for each null r * (the family

being onefor each 7). Whenr *=1and 7 <l thisisaspecia case of theresultsin Elliott et a

(1996). The results hold dso for other valuesfor r *. The critica values b(c*, T) depend on
both the null and the aternative for the test, as well as the extent of the detrending. It can aso be
seen from the above results that the most powerful test tends to an asymptotic chi-squared
distribution when ©2 ® c*? (for the locally best test). Further, as the best test against the
aternative T dependson T, we have no uniformly most powerful tests at any of the relevant null
hypotheses. We can use these results to compute power envel opes of tests for each null

hypothesis, and examine the power properties of the tests we employ at different null values.



To make this operational for the more general assumptions on the residuals presented in

the previous section, we suggest inverting the following test Satistic

_ 1ér r I u
R (c".0) = = ggl(ut )? - A *)28 (7)

where T, and u * ae eements of the vectors O and u* with U=Y- b'Zand

U* = y*- b*'z* where b ,b * are the GLS estimates of the trend terms under the aternative
and null respectively,

z=[z,(1- TL)z,,....(A- TL)z],

y:[yli(l_ r_l—)yzi-"’(l' r_L)yT]’

Z°,y* are defined similarly with r* and c* replacing ¥ and © respectively, and W?is a

consistent estimator of w ? (a specific estimator W ? is discussed in Section V).

Proposition 2.
When the data are generated according to (1) and (2) with E[u;]=0 and Var(u;)=g(0), the
statistic Pt (c*, T) hasthe asymptotic distribution P(c,c*,T) as defined in Proposition 1.

The results of Proposition 2 show that the statistics have the same distribution as the most
powerful tests against a point alternative from the previous section. Thus they achieve the
asymptotic Gaussian power envelope for the null hypothesis of c=c* against the alternativec = C .
The tests are one sided (the side depends on whether T is greater or less than c*) and reject the
null for sufficiently small or negative values. We can define the acceptance regions of the tests

with Szea; as
A(C*,E;ai )= {y: P (c*,c) > pc*"_:’a'}

where p.., isthelower 100(a)% percentile of the null distribution. We can construct atwo

Sded test for the null hypothesis of c=c* by combining an upper and lower tail test. For smplicity,



rather than searching over various aternatives (and hence tests) for each c* we will instead
consider testing against alternatives that are a fixed distance from c* for al c*. So for upper tail
testswe set T = c* +C,, and for lower tail tests T = c* +C, where T, <0. Thesize of thetest
will bea £ a, + a, (the sum of the size for the lower and upper tail tests respectively). We can

define now the acceptance region at each c* as
A(cs,c,,C;a) :{y: P (c*,c* +C,) > pc*’c*+5u,au}§: {y: P (c*,c*+q) > pc*,c*@al}

We then define the sequence test confidence interval with coverage 100(1-a)%
S; (Y,C,,C,) astheset of c* that are in the acceptance regions A(c*,T,,T,;a). Thisdefinition
admits the possibility of digoint sets, however for practical reasons we rule out this case in
numerical results reported below.

This confidence set has the parameters C,,C ,a,,a, and the accuracy of the

confidence set depends on these parameters. Our choice for T,and C, isguided by the results
of Elliott et. al. (1996). For c*=0they found T, = - 7inthecaseof ameanand T, =- 135 inthe

case of a constant and time trend provide good power for al lower tail aternatives. By numerical

experiments we select ¢, =2 for the demeaned case and T, = 5 for the detrended case, a,=3%

and a,= 2% (so0 a £5%)".

2. Inverting aSingle Test

A computationally simpler dternative to the method described above isto smply invert a
test for a unit root, as undertaken by Stock (1991) for the augmented Dickey and Fuller (1979)
statistic and the (modified) Sargan and Bhargava (1983) dtatistic. In this method al isthe same as
the above except that a single statistic is used for all of the valuesfor c.

For any test for a unit root, T(y), we can determine the asymptotic distribution as a
function of c. We can then use the percentiles of these distributions to construct acceptance
regions for any particular size test and null hypothesis (c*) in our set. These acceptance regions

have the form

! The power curve is much steeper for alternatives that are greater than the null than alternatives less than
the null which suggests choosinga, < a, .



A(C*1a) :{y : q(:*,a:L <T(y) < qc*,l-au}
where Q.. ,, and Q. , ,, aethe100(a;) and 100(1-a,) percentiles of the limit distribution for

T(y) when c* istrue. The confidence set then collects, for any data set y, al the values for c*
wherey is in the acceptance region given above, i.e. we then define the test inversion confidence
interval with coverage 100(1-a)% S(y,a) asthe set of c* that are in the acceptance regions
A(c* :a) defined above.

We construct such tests for various unit root tests which have been found to have good
power properties. These include the Pr (0, T) and the Sargan and Bhargava (1983) statistic as
modified for general residualsin Stock (1991), which we denote as MSB.

Thefirst of these statistics is smply the sequence test where c*=0and T equa to the
vauesin Elliott et al (1996). Thusthe test statistic to invert is

oo Lél 2 -4 ¥
R (0.0)= =5 g (@)°- T4 (u")’

The limit digtribution of this satitic for any cis

P.(0,C) b T N, (t)%dt +x{ 'L (0,€)x © P(c0,T).

1 g

The MSB datistic is constructed as MSB = 7 a (ytd ’SB)Z where
w t=1

thEB =Y - %é- y, and
VP oy - LA v +H[(T+D 1 2(T- D](yy - va)- tyr - V) I (T- D).

The MSB satistic also has an asymptotic representation of aform similar to the above

tests, namely we can write the asymptotic distribution as

MSBY b YN, (t)dt +x¢ LG (C)x¢

where

Ln 2O 0u
*Tp -4
and



&1 0 0f

IV. The Tests and their Inversion to Intervals : Unconditional Case.

The results of the previous section show dependence on the assumption on theinitial
condition in two ways. Firstly, the optimal tests to invert (sequence tests) depend on this
assumption through the specification of the likelihood (this is shown for the case where c*=0in
Elliott (1999)). Second, the limiting distribution in equation (3) and hence critica vaues for each
of the tests when r <1 differ depending on the assumption made, hence for al of the confidence
intervals different intervals are appropriate depending on the assumption made. In this subsection,
we derive limit results for the sequence confidence interva that would be appropriate under the
assumption that the initial condition comes from its Sationary distribution when r <1. We aso
consider the inversion of the ‘near’ optimal test for a unit root in this case and again the Sargan

and Bhargava Statistic under this different distribution.

1. Sequence Tests.
In thismodel the log likelihood for the data when thereis no seria correlation and

vi~N(0,5?) is of the form

_‘%A_ @002 L gy, - b)) <l
|

2 By = 2s ? 25 ? =2
L(I’ ,S ;b) I A- (yl_ b|21)2 ] 1 g[(l- rL)(y ] b.Zt)]Z : \ 1 (8)
t 2s 2 2s % =2 ‘

where the likelihood changes discretely at r =1.

The likelihood ratio tests invariant to the trend components are again of the form
LR:-Z{ UFs2b(r)]- L[r*,sz,b(r*)]} ©)

where b (r) arethe GLS estimates of the deterministic trend given r for this aternate model.

10



Proposition 3.

Under the assumptions of the model in (1) and (2), vi ~N(0,s%) and is not serially

correlated, up drawn from its unconditional distribution when r <1 the Neyman Pearson

testsof Ho: r =r* vsHy r = 1 whenr*=1+c*/Tand r =1+¢C /T, invariant to d; and s?

have asymptotic power functions of the form
G.(c,c*,T) = PQ(c,cx,T) < b(c*,T)] (10)

where Q(c,c*,T) depends on the signs of ¢, ¢* and T and is defined by
1
Q(c,c*,T) =(C* - c*?) V. (s)*ds+ x{, 'L L(c+,T)x<, where
0
a)Demeaned case
For r<1 x{%'=[W,(0),W, (D), W,(t)dt], LT(c*,T) = KI'(T) - KM(c*) and
gl-c) -1 cu

K;”(c)=cf:2§ -1 (1-¢ ¢ gforc<0 and

€ /
g c c -c’f
§c’-c) c -c’u
m _e u 3
Ki()=a ¢ -¢ 0 force 0.
g-c 0 O0f

For r 31 x_, = x; and L7(c*,T) = K7(T) - KI'(c*) where
KT(c)is KJ'(c) as above with the first row and column deleted.

b) Detrended case
for r<1 x{.'=[W(0),W, (1), W, (t)dt, W, (t)dt]| and L (c*,T) = KL (T) - K. (c*) where

11



& (-f)d-c)- ¢k f(c2@E-k)-c)- (1-f) fc2(ck-3) fc2(d-<)

£ f(c?@-K-¢)-@a-f) @-f)-0-cfk fc(E+ck)-9) -fc2(d- )
K (0) =g fc?(ck- ) fe2((d+ck)- < - fc'k f%

é 4

é 21. ¢ -fe2(1- & fi - fct

& fco(1l- %) fc'(1- %) > fc
for c<Owhere f =1/(1+%- %), k=(1+%- ¢)/(c*- 2c)

ec+i(1-0(1-1) 3(1-o@-1) -c¢® %-3(1-o-1)u

e U
=8 HEILD O 0 A e

é -C

B 3(1- - 1) -31-09)@-1) 0 9(1-c)(1-|)-3c23

For r 31 X, =X, and Lt (c*,5) = K\ (5) - K.(c*) whereK}(c)is K (c) as above with

the first row and column del eted.

Itis clear that the sequence tests are different from those in the fixed case, so the
confidence intervals constructed from them will also differ. Further, as the best test against the
aternative T dependson T, we again have no uniformly most powerful tests at any of the
relevant null hypotheses.

To make this operationa for the more genera assumptions on the residuals we suggest

the following test statistic for each side of the hypothesis

Qr (¢*,0) =

|| QJO—i

& (@) A

(u*)%g (11)
u

‘?r‘B?oJ

1

where U, and u, * ae elements of the vectors O and u* with U=Y- b'zand

U* = y*- b*'z* where b,b * are the GLS estimates of the trend terms under the alternative
and null respectively,

i@ 7)"z,0- TUz,..A- TL)z| ©<0

7=
i [2.@- TU)z,,....,(1- TL)z] T30

o.o\ononoonoc



y:‘}[(l- )"y, (1- TL) ,,.n (1- r_L)yT] T <0
P @ Ty, (@ TLY] c3 0

and z*,y* aredefined smilarly with r * and c* replacing T and T respectively.

Proposition 4.

When the data are generated according to (1) and (2) with the u; drawn fromits
unconditional distribution whenr <1 the statistic Qr (c*, T) has the asymptotic
distribution Q(c,c*,T) as defined in Proposition 3.

We can construct sequence confidence intervals using the same method as the previous

section. For the results in this paper we have set T, = - 10 as this was found to provide good
power for al alternatives for the null c*=0 and T, =2 for the demeaned case and T, = 5 for the

detrended case. We again choose a;=3% and a ,= 2% .

2. Inverting aSingle Test

For this dternative assumption on the initial condition we construct such tests for various
unit root tests. These include the Qr (0, T) (constructed in the same way as the Pr (0, € )) and
the Sargan and Bhargava statistic.

Thefirst of these statistics is smply the sequence test where c*=0 and T =-10. Thusthe
test Statistic to invert is

N S !
QT(’C)_V;\\IQ@(ut) _ra(ut)u
et=1 t=1 u

The limit distributions for this statistic as a function of ¢ isthus a specia case of the above results
and are given in Elliott (1999).
The MSB datigtic is constructed as in the previous section, but under the assumptions of
this section its asymptotic representation is
MSB® P W, (1) dt + X7, 'L o (O) X

where

13



€ 0 Ou
m _ 6 U
LSSB_go 0 0y
€0 0 -1
and
¢ -4 -3 1U
e u
Lt :é'% % % ']1]
761 1 -1 0¢
e u
g1 -1 0 04

V. Computing critical values.

The construction of confidence intervals will require the computation of asymptotic
percentage points of the above distributions. This can be accomplished either by the use of Monte
Carlo simulation or through the computation of the characteristic functions of the above statistics
and then by use of the methods of Imhof (1961) to compute percentage points from these
characteristic functions. The Monte Carlo approach, while conceptualy straightforward, is
computationaly very intensive in this application because of the large number of tests, indexed by
the null hypothesis: moreover it is prone to numerical imprecison. We therefore adopt the latter
approach here. This requires deriving the limiting characteristic functions for the various test
datitics.

All of the above statistics have limit distributions with the smilar form

T(y) P agV.(t)*dt +x'Lx
where x is a kx1 vector of functionals of Brownian motion which have ajoint norma distribution

and {aL} are constants depending on the particular test.

Proposition 5.. The characteristic functions for the limit distribution of T(y) are

|—l/2

j-C- by
f(t)=expj—y|l,. - 2SL *
(t) p% 5 %|k

where b =+/c? - 2ita and

14



é (cth) v
e— > 0 0 Ol;I
e +b u
Lr=itL+b 0 LB o o
é 2 u
@ 0 0 0 0@
€ o0 o o of

for the case when W,(0) is non zero and d=t. For d=mwe have k=3 and ignore the last
row and column and for W,(0)=0 we ignore the first row and column. The elements of S

can be computed using stochastic calculus and are given in Appendix 2.

The proof of the Theorem follows Tanaka (1996) directly and is omitted. The
characteristic functions make it fairly straightforward to compute p-values and percentages of the

digtributions. Again following Tanaka (1996), percentiles of the distributions are given by

1 1%2 "
F(X)==- =¢ Im’e'It (2 ]dt
(0=3- 56 (t%)
where Im[.] takes the imaginary part of the argument. Thisis the Imhof (1961) formula (see
Tanaka (1996), equation (6.13)). A change of variablesis used to ensure that the function

integrated is zero at t=0. Simpson’srule is used here to evaluate the integral numericaly.

V1. Evaluating the methods

This section considers large and small sample properties of the methods for constructing
confidence intervalson r discussed above under each of the assumptions on the initial condition.
As large sample properties of the confidence sets map directly to asymptotic power properties of
the tests, these are just various views of the asymptotic power of the tests presented above for
different null and aternative values for r . The small sample results given are from directly

computing the confidence intervals as discussed above.

1. Large Sample Results.

Asthereis adirect relationship between power and exclusion of false valuesof r , we
examine the power of the tests at various null hypotheses. Figures 1ato 1f show asymptotic
power of two sided testsin the conditiona case (where the lower tail test has size 0.03 and the

upper 0.02) for the sequence test, the Py (0, T) test, and the modified Sargan and Bhargavatest in

15



thed = mand t under the assumptions of section 3. The power curves are given for three values
for c* ; ¢*=0, -5 and -10.

A number of features are noteworthy. First, in each case we see that the sequence test
has dightly better power than the other two tests. Second, the Pr(0, T) test is very smilar to the
sequence test for ¢ near zero; thisis partialy by construction as the tests are the same at c*=0in
the lower tail. Third, the MSB test has the lowest power curve in each case and when the model
is close to aunit root this power loss is more severe. Fourth, even though the optimality properties
for the Pr (0, T) statistic and the SB statistic are for the null of r =1 we see that the tests based
on these statistics at other nulls have reasonable power. There is not so great a reason to
consider using a sequence of statistics rather than inverting Py (0, T), at least asymptotically. All
of the results are true for both the demeaned and detrended models, athough the differences are
greater in the demeaned case.

These results suggest that each of these statistics are likely to invert to similarly short
intervals, with Pr(0, T) likely to be preferred over MSB. Note that we do not consider the
augmented Dickey and Fuller (1979) statistic as it has power significantly below that of the Pr(0,-
10) statistic (Elliott et a (1996)) at c*=0 in the lower tail.

Similar figures are given for the unconditional case in Figures 2athrough . Here the
Qr(0,-10) test is examined aong with the Sargan and Bhargava test and the sequence test that is
appropriate for this different assumption. Essentially the results are smilar to the fixed initia

condition case except that the differences are not as large in the demeaned case.

2. Smal Sample Results

The coverage rates for the confidence intervals can be examined in Monte Carlo
experiments. Thereis alarge body of Monte Carlo results on the size performance of tests for a
unit root in awide variety of models for the error terms. The results are not greatly encouraging -
size performance is usualy poor when the extent of serid correlation in n; is unknown, and is aso
poor for modelsin which n; follows a moving average process with a large root (which to some
extent cancels the unit root in the model). This size performance carries across to coverage

performance when the true value for r is 1.
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Here we examine in a number of models the size performance at various true values for
r . Each of the statistics requires estimation of the nuisance parameter w?. We use here
autoregressive estimates of this parameter from estimating the regression

D! = oyl + @ aby,, +e &)
where the datais first detrended according to the model (i.e. if a constant or a constant and time
trend isin the model). Two methods of detrending are employed; OL S detrending (indicated by
having (ols) after the name of the statistic) and GL S detrending under the local alternative?
(indicated by having (loc) after the name of the statistic). The estimate for w? isthen given by
W2 __S° where$? =T'3 & , 40 = ém 4, and € and &, areleast squares

[1- 4] =1

estimates from the above regression. To make this operational we need to select the generally
unknown lag length m. Here, m is selected by the MAIC criterion (recommended in Ng and
Perron (1998)) with a maximum of four lags.

Results when there is no seria correlation and w=0 are compiled in Table 1, where we
examine the performance of the constructed confidence intervals when T=100 for three true

valuesfor r , thesearer =1, 0.95and 0.9. For each of these modds we examine one minus the
coverage rate for avariety of hypothesized rootsr *. In the case of r =1, this means that the

column marked r * =1 gives the probability of fase excluson and the columns marked r * =0.95
and 0.9 give the probability of correctly excluding these values from the confidence interval.

A number of features are noteworthy. First, coverage rates are somewhat different than
the nominal coverage rates. The undercoverage arises from the upper tail rgjections. Second, the
ordering of the ability of the confidence intervas to rule out false valuesis asimplied by the
asymptotic power results. The Sequence test does indeed do the best job in most cases in this
regard, followed closely by the inverted Pr(0,T ) Satistic, with the MSB datistic worst. Given the
extra computation effort required by the sequence tests, then it may be considered just as useful to
use the Pr(0,T ) statistic for inversion for a confidence interval.

Table 2 examines the probability of false exclusions when there are various forms of
seriad correlation in the model. Both MA(1) and AR(1) models for the errors are considered.

These results are similar to those in the unit root testing literature (see Stock (1994) for a detailed

2 Thisfollows Ng and Perron (1998).
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examination of this case). Size distortions (undercoverage) arise in most cases but especially
when there is a negative MA coefficient. These distortions are more severe when the true root is
less than one, regardless of the mode.

Table 3 reports results for models with no seria correlation in the unconditiona case,
examining the sequence test for this case, the Qr(0,-10) statistic and the MSB statistic (using the
correct limit result for thismodel). The results are essentialy similar to those above, with less of a
difference between the sequence method and simply inverting Qr(0,-10). Also, thereisasmaller
difference between the performance of the intervals constructed from inverting the MSB statistic
and the other confidence intervals. Results are not reported for the serial correlation case as they
are smilar to those in the conditiona case.

In addition to coverage and exclusion, we are interested in interval length. Figures 3ato
3d show histograms of the interval lengths for the sequence test, Pr(0,- T ) test, MSB, and ADF
(From Stock (1991)) test from 1000 random samples where the model is as per Table 1 with
I ¢=0.95, however the lag length in estimating nuisance parameters is known to be zero (in each
case a constant only is estimated). The ADF test, whilst having some short intervals, has more
often than the other tests many long intervals. The MSB test has more longer intervals than the
Pr(0,-T) test, which isfairly similar to the Sequence test. For other models (values for c,
unconditiond initial condition) similar results apply so the figures are not included. In practice the

differences between the interval estimators in the unconditional case are much smaller.

VI. Conclusion

Most accurate confidence intervals are constructed from the inversion of a sequence of
most powerful tests. In the case of large roots in autoregressive models, for any root (modeled as
locdl to unity) no UMP test exists against even one sided alternatives, ruling out the possibility of
inverting a sequence of UMP tests. We instead choose to invert a sequence of point optimal
tests, which athough only most powerful at a single point have quite reasonable properties at other
aternatives. By computing the characteristic functions of this family of tests we are able to
provide methods for making computation of the confidence intervals feasible without relying on a
large number of Monte Carlo estimates of critical values.

We find that the confidence intervals constructed from a sequence of point optimal tests
have quite smilar power properties to inverting near optimal tests for a unit root. Given that the

latter confidence intervals are simpler to compute in practice, these are the suggested method.
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We aso find that this asymptotic property holds up reasonably well for smaller samples, so
inversion of the Pr(0,T ) and Q¢ (0,T ) statistics work well in terms of constructing short
confidence intervals for the largest autoregressive root. The main small sample problem that
arises is undercoverage when there is seria correlation of an unknown form, thisis directly
analogous to the problem of overrgection in the unit root testing literature. Confidence intervals
congtructed from inverting these point optimal tests were found to have better properties than that
for the ADF or Sargan Bhargava type tests.

Because no asymptotically most accurate confidence interval exists in this problem, the

work is not definitive. For example, the parameters €, C, ,a,,a , were fixed here after

preliminary investigation for computationa reasons; they could however vary with ¢*. This may
yield more accurate intervals. A quite different approach not considered here is to focus on

Euclidean length of confidence intervals. In these and other dimensions, interesting work remains.
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Proofs of Propositions.
Lemma 1 (Limit results for data detrended under local to unit root detrending)
When the datais generated according to (1) and (2) with r =1+c¢/T and detrending is under
=1+ then
T
a) Demeaned Case.
Whenr <1,

1. For the unconditiona modd with 1 <1

é -1 -1 C Unm
-2 ¢-2 ¢-28°°

T?[b()- b]Pp w

é 1 1 -C U mU
&-2 c-2 c-26=Y
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e
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b) Detrended case.

1. For r <1
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For the fixed initial condition case the results are as above in case 2 for all r with 0 in place of

W0) in ch . For the unconditiond initial condition case when r 3 1, the results are as above with
0in place of W(0).

Proof:

For both the demeaned and detrended results where 1 <1, the results are derived in Elliott (1999)
Lemma 3. The GLS estimators for the case where I 3 1 are those of Elliott et. al. (1996), where

results for W,(0)=0 are shown. When w1 0, the results follow directly from the expressions
(A.2) and (A.3) of Elliott et. a. (1992) and application of the functional central limit theorem and

continuous mapping theorem.
Proof of Proposition 1.

The LR test in (5) can be rewritten as the difference between two LR tests with the null of a unit

root

LR=- 2{ Urs2b@)]- Uis 2,b(1)]} +2{ r*s2b(r")]- Ls 2,b(1)]} .
Each of these tests for a unit root are of the form

-2{ Fs?b(M)]- L[Ls 2,b(1)]} .
As noted after equation (6) of Elliott et. al. (1996) these are equivalent to test statistics of the form

TES?-$?)

SZ
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where TS ? = é;af where T, is defined after equation (7) with 7 in place of T in the text
and TS ? = &, (7 issimilarly defined using 1 in place of T .
T(S2-$?)

SZ

The dtatistics were examined in Elliott et a (1996). With some rearrangement we

have the results

(3) Demeaned Case
TE?-$%)=(1- N2&aL(y.)" + @ N[(y9)?]+B(M) +0,@M)

(b) Detrended Case

TE?-$°)= (- NPl + [T +@- D]y}’ ]+ B +0,(

where y* =y, - b(")'z and (from lemma 1) have limit results that depend on the value for T .

From the results of Lemma 1 and the continuous mapping theorem we have the limit results

(ignoring b (") whichis a constant depending on r and can be subsumed into the critical value)

=2 g2 1
TE =S p g2am(1)dt+x K @)x
0

7 C 0\
where K(€) depends on the (demeaned or detrended) case considered, K™(c) = go OE and
e u

K" isgiven in Proposition 1 . The results are shown for the statistic with n, satisfying the more
genera assumptions after equation (2) rather than that of the specia case in the proposition. In
the special case of the propositionw ? = s 2. The limit results for the generd LR tests thus derive
from noting that the limit results are the difference between the limit resultsreplacing € with ©

and c* respectively.
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Proof of Proposition 2.

The method of proof follows the intuition of the first proposition - rewriting the statistic into those
previoudy andyzed in Elliott et. a. (1996).

1 éd [ v
P (c0)==aa (4)*- —a ")’
W™ ai-1 r*ia a
184 ,_ e LU T4 > ,uu
== &dA @) -TA (0)y- —(& (W*?- r* & @)%y
W™ @l =1 t=1 g N 1= t=1 a
T
= P.(0,C)- — R (0,c*)

*

-

The statistics P, (0,T) were andyzed in Elliott . d. (1996) . The limit distribution for P (O, T)

2 22
differsfrom that of T(S—'Zs)by the constant B( 1) which can be subsumed into the critica
w

r
value. Asthe weight for the second part of the statistic P converges to one asymptotically the

statistics have the same regjection regions as the likelihood ratio statistics in Proposition 1.

Proposition 3.
We can exploit the same rewriting of the LR statistic here as in the proof of proposition 1, and

then employ the results of Elliott (1999) aong with lemma 1.
Proposition 4.

The proof of this follows directly that of Proposition 2 with Q; (c*,T) replacing P; (¢*,T) and
employing the results of Elliott (1999).
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Appendix 2 :

The elements of S for the most general (k=4, where x=X. ) case are

S :-i S :-e'b S :-(1_ e'b) S :-e'2b+(1_ e-2b)

11 2¢' 712 2¢c ' 13 och | 22 2 o0
1él &b 0-b ael bo-2buU

S,,=——=a-+¢ —- l=e —=e ,

28728 €2 @ 2 206 4
1€ 1 3 & 10 b L& 1 106-2pbu

S :—A-—-_+ I - . — e ,

3 bzee"1 2c ' & 2c s ﬁ

Sia= 12§(b+1)e_b'1g, 524‘%e(b 1) - be +(c+b)(b+1)e'2b@,
2ch e ¢ 2ch
1 “by 18 1 1%

Sgy=—gep-1re Dot —- 1@ Pyt ey O

347 5,38 6725 ©3 paf
lel 1G ‘b i 163 b2 _pl

Sy =48 5o p P the T -yt 8y tl-—--(b+le "
b4& 2c 2bF S E 2 i

Thisis the relevent variance covariance matrix for the detrended case where the initial condition is

drawn from its stationary (unconditiona) distribution and r < 1. In this case where d=mthe
relevent variance covariance matrix omits the fourth row and column.

For the other cases (fixed initia condition or unconditional case wherer 2 1) we have S beingin
the most general case a 3x3 matrix as W(0)=0. The elements of this symmetric matrix are

2b , \
_(1-e 4P _1é -b,1-2buo _ 15, 2b
S o ST A ¢ T5° g S =53]~ D+ (0+De®],
16 3, -b 1-2by
Spp=—=gb- 24270 - = ,
BT 32T 72 H
_ 1 g2 -2bu
534__480 b-1+2(b +1)e - (b+1e i
2b
1 3 .2 2 2bu
S =—§1 “p3.p2. (b +1)2%e

For the demeaned case we have the same as above with the last row and column deleted.
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TABLE 1: Smdl Sample results. Zero initia condition.

r =1 r =0.9 r =09

r =1 r'=095 r" =09 r' =1 r =095 r"=09 r'=1 r' =095 r" =09
Demeaned
Sequence 0.052 0.540 0.770 0.206 0.038 0.211 0.579 0.111 0.039
P (olg) 0.034 0.513 0.817 0.206 0.029 0.252 0.579 0.097 0.038
R (loc) 0.031 0.508 0.817 0.199 0.027 0.254 0.568 0.092 0.039
MSB(ols) 0.036 0.375 0.695 0.091 0.035 0.233 0.268 0.044 0.049
MSB(loc) 0.033 0.367 0.690 0.088 0.034 0.236 0.260 0.039 0.048
Detrended
Sequence 0.047 0.182 0.478 0.054 0.046 0.227 0.146 0.060 0.051
R (olg) 0.031 0.120 0.420 0.049 0.028 0.175 0.146 0.058 0.038
P (loc) 0.026 0.110 0417 0.043 0.024 0.174 0.132 0.048 0.034
MSB(ols) 0.035 0.118 0.369 0.033 0.036 0.173 0.092 0.040 0.046
MSB(loc) 0.030 0.109 0.362 0.029 0.034 0.174 0.083 0.033 0.044

Note: The pseudo data are drawn from the model in (1) and (2) processes with N(0,1) errors, r

given in the first column heading and w=0. Nominal coverageis set to 95%. Tedts are

implemented alowing for deterministics as appropriate for the test (see text). Results are
proportion of rejections based on 20000 Monte Carlo replications with sample sizes of 100
observations.
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TABLE 2: Small Sample results with serid dependence: One minus Coverage Rate,Conditiona
case.

Demeaned Detrended

ro=1 ro,=09 r =09 ro=1 r,=09 r, =09

p=0.3,g=0.

Sequence 0.071 0.090 0.107 0.093 0.102 0.122
P. (ols) 0.057 0.073 0.095 0.080 0.084 0.106
P. (loc) 0.046 0.063 0.084 0.060 0.064 0.086
MSB(ols) 0.058 0.068 0.097 0.071 0.076 0.100
MSB(loc) 0.038 0.052 0.083 0.050 0.058 0.082
p=-0.3,g=0.

Sequence 0.077 0.095 0.125 0.110 0.121 0.170
P. (ols) 0.056 0.074 0.121 0.098 0.093 0.132
P. (loc) 0.042 0.067 0.118 0.071 0.074 0.123
MSB(ols) 0.073 0.091 0.154 0.091 0.098 0.143
MSB(loc) 0.048 0.078 0.149 0.066 0.083 0.137
p=0,0=0.3

Sequence 0.076 0.087 0.101 0.106 0.119 0.142
P. (ols) 0.055 0.068 0.0%4 0.092 0.090 0.111
P. (loc) 0.040 0.058 0.089 0.067 0.069 0.098
MSB(ols) 0.074 0.080 0.122 0.091 0.095 0.119
MSB(loc) 0.047 0.065 0.111 0.063 0.077 0.109
p=0,0=-0.3

Sequence 0.075 0.108 0.134 0.102 0.126 0.153
P. (ols) 0.064 0.089 0.121 0.090 0.108 0.139
P. (loc) 0.053 0.075 0.104 0.069 0.079 0.110
MSB(ols) 0.063 0.084 0.117 0.080 0.098 0.128
MSB(loc) 0.045 0.063 0.096 0.057 0.076 0.102

Note: The datais generated according to equations (1) and (2) of the text with

(1+pL)n, =(1+gL)e, and e, ~ N(0,1) . Otherwise the pseudo datais generated asin Table
1. In each case the spectral density at frequency zero is estimated using the method described in
section V1.2. Reported is one minus the coverage rate, i.e. the probability of false exclusion.

28



TABLE 3: Small Sample results. Unconditional case.

r =1 r =095 r =09

r'=1 r'=095 r"=09 r' =1 r' =095 r" =09 r'=1 r' =095 r" =09
Demeaned
Sequence 0.042 0.378 0.717 0.089 0.043 0.305 0.284 0.059 0.060
Q, (o9 0.037 0.358 0.683 0.089 0.039 0.253 0.284 0.066 0.047
Q, (loc) 0.033 0.354 0.684 0.086 0.037 0.254 0.276 0.062 0.046
MSB(ols) 0.036 0.328 0.664 0.070 0.036 0.259 0.226 0.051 0.048
MSB(loc) 0.032 0.325 0.666 0.067 0.035 0.263 0.219 0.047 0.048
Detrended
Sequence 0.042 0.140 0.418 0.040 0.045 0.225 0.094 0.040 0.063
Q, (ol9 0.035 0.120 0.370 0.035 0.038 0.184 0.093 0.043 0.049
Q, (loc) 0.029 0.114 0.370 0.030 0.033 0.184 0.083 0.035 0.045
MSB(ols) 0.032 0.104 0.318 0.026 0.038 0.159 0.067 0.040 0.048
MSB(loc) 0.027 0.099 0.316 0.022 0.035 0.159 0.059 0.035 0.045

Note: As per Table 1 with u drawn from N(O, s%(1-r)) distribution.
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Figure le:
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Figure 2a.

=0

Power (demeaned), c

Seq.
- QT(-10)

- ———MSB

Jamod

0

Figure 2b.

Power (demeaned), c-5

Seq.
- QT(-10)
————MSB

1
09 T

08 T

0.7 T

06 T
05T
04 1
03 T
02T
01T

Jamod

0




Figure 2c.
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Figure 2e.
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Figure 3a: Sequence Interval Length.

seq

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Notes: Vertical axis gives # occurrences in the Monte Carlo, the horizontal axis gives the lengths
of theintervalsin terms of ¢ = 100(r -1) wherer =0.95.

Fig 3b: Pr interval length
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Notes: As per Figure 3a.



Fig 3c: MSB figure Length
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Notes. As per Figure 3a.

Fig 3d: Dickey Fuller Length
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