
UC Davis
Computer Science

Title
Parametrization and Effectiveness of Moving Target Defense Security Protections for
Industrial Control Systems

Permalink
https://escholarship.org/uc/item/6ww1c3bw

Author
Chavez, Adrian R.

Publication Date
2017-11-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ww1c3bw
https://escholarship.org
http://www.cdlib.org/

Parametrization and Effectiveness of Moving Target Defense Security
Protections for Industrial Control Systems

By

Adrian R. Chavez

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

COMPUTER SCIENCE

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Dr. Sean Peisert, Chair

Dr. Matthew Bishop

Dr. Karl Levitt

Committee in Charge

2017

-i-

Copyright c© 2017 by

Adrian R. Chavez

All rights reserved.

To Natasha Garcia, Penelope Chavez, Miles Chavez, and all of my family.

-ii-

Contents

List of Figures . vii

Abstract . xvi

Acknowledgments . xvii

1 Introduction 1

1.1 Challenges . 3

1.2 Contributions . 4

1.2.1 MTD within Critical Infrastructure 5

1.2.2 Operational System Impacts . 6

1.2.3 Adversary Workload Impacts . 7

1.3 Organization . 8

2 Background 10

2.1 Moving Target Defense Techniques . 13

2.1.1 Adversarial Distributions . 14

2.2 MTD Categories . 16

2.2.1 Dynamic Platforms . 17

2.2.2 Dynamic Runtime Environments 18

2.2.3 Dynamic Networks . 18

2.2.4 Dynamic Data . 19

2.2.5 Dynamic Software . 20

2.3 Research Goals . 23

3 MTD Applications and Scenarios 27

3.1 Industrial Control Systems . 28

3.1.1 Use Case . 29

3.1.2 Constraints . 31

3.1.3 Requirements . 32

3.2 Information Technology Systems . 32

-iii-

3.2.1 Use Case . 34

3.2.2 Constraints . 35

3.2.3 Requirements . 36

3.3 Cloud Computing Systems . 36

3.3.1 Use Case . 38

3.3.2 Constraints . 39

3.3.3 Requirements . 40

4 Threat Model 41

4.1 Operational Impacts . 44

4.2 Adversarial Models . 45

5 Approaches to Randomization 47

5.1 IP Randomization . 47

5.2 Port Randomization . 53

5.3 Path Randomization . 54

6 Fault Tolerance Theory 58

6.1 Crash Tolerant Algorithms . 59

6.1.1 Two-phase Commit . 61

6.1.2 Three-phase Commit . 63

6.1.3 Replication - Paxos . 66

6.2 Byzantine Fault Tolerant Algorithms . 70

6.3 Adversarial Models . 72

6.4 Operational Impacts . 73

7 Overview of Experimental Setups 76

8 Simulation Environments 80

8.1 Adversary Guessing Strategies . 81

8.1.1 Serial Guessing . 81

8.1.2 Random Start, Serial Guessing 85

-iv-

8.1.3 Random Guessing with Repetition 87

8.1.4 Random Guessing without Repetition 88

8.2 Summary . 89

9 Virtualization Environments 91

9.1 Application Port Randomization Overhead Cost 93

9.2 IP Randomization Overhead Costs . 94

9.3 Path Randomization Overhead Cost . 101

9.4 Port, IP and Path Randomization . 103

9.5 Summary . 106

10 Representative Environments 108

10.1 DETERLab Testbed . 108

10.1.1 Software Defined Networking . 112

10.1.2 Threat Model . 113

10.1.3 Adversary Evaluation . 114

10.1.4 Results . 117

10.1.5 Analysis . 119

10.1.6 Binomial Distribution . 120

10.1.7 Hypergeometric Distribution . 122

10.2 Virtual Power Plant . 126

10.2.1 Metrics . 129

10.2.2 IPv4 . 130

10.2.3 Operational Impacts . 131

10.2.4 Fault Tolerance . 138

10.2.5 IPv6 . 156

10.2.6 Individual Adversaries . 156

10.2.7 Distributed Adversaries . 160

10.2.8 Side Channel Attacks . 163

-v-

11 Conclusions 167

11.1 Limitations and Lessons Learned . 167

11.2 Future Work . 170

11.3 Summary . 173

-vi-

List of Figures

3.1 An example power grid that shows the high level components from gen-

eration of power to transmission to distribution and finally to delivery at

a residential home. 29

3.2 An example enterprise network with the core layer supporting the back-

bone of the network, the distribution layer supporting communications

within the enterprise, and the access layer connecting end users and

servers. The diagram here shows two departments (A and B) with access

to web, email, and human resources servers. These networks also typically

have an Internet connection through a demilitarized zone to protect the

network with firewall, proxy and security services from external threats. 33

3.3 An example of several users accessing cloud computing resources such as

IaaS, SaaS, and PaaS services. 37

5.1 The sequence of events that cause packets to be dropped when random-

izing source and destination IP addresses within an SDN setting. 51

5.2 The sequence of events to correct dropped packets from occurring when

randomizing source and destination IP addresses within an SDN setting. 52

5.3 An example of two hosts communicating through random paths taken as

shown in the red circled text in the command prompt window. The first

path taken is h1→s1→s2→s3→s4→h2, while the next random path taken

is h1→s1→s4→h2 . 57

6.1 The two-phase commit protocol between a coordinator system and a clus-

ter of SDN controllers. The goal is to detect and withstand faults within

the SDN controllers and to synchronize internal state information when

transactions are executed on all controllers. 62

-vii-

6.2 The three-phase commit protocol between a coordinator system and a

cluster of SDN controllers. The goal is to detect and withstand faults

within the SDN controllers and to synchronize internal state information

when transactions are executed on all controllers. An additional state,

pre-prepare, is added to reduce the amount of time blocking when the

coordinator is waiting on controller responses. 65

8.1 The probability of correctly discovering a randomly-selected 16-bit port

number using different guessing strategies given a limited number of probes. 82

8.2 The average number of attempts expected before correctly discovering a

randomly-selected 16-bit port number using different guessing strategies

where the adversary is given a limited number of probes. 84

8.3 The average amount of time needed before correctly discovering a randomly-

selected 16-bit port number using different guessing strategies where the

adversary is given a limited number of probes. 85

9.1 A diagram of an example network where host A wishes to communicate

with host B. The OpenDaylight controller inserts flows within the over-

lay network so that packets have randomized source and destination IP

addresses, randomized port numbers, and take random paths (shown as

the red and green lines passing through the overlay network) through the

network. 92

9.2 The RTT measured across 10,000 pings with port randomization disabled

and enabled. 93

9.3 The bandwidth measured across a 10,000 second (∼2.77 hours) period of

time when application port number randomization is disabled and enabled. 94

9.4 The RTT measured across 10,000 pings when IP randomization is disabled

and enabled. 96

9.5 The average bandwidth measured over a 10,000 second (∼2.77 hours)

period when IP randomization is disabled and enabled. 97

-viii-

9.6 The average throughput measured over a 10,000 second (∼2.77 hours)

period of time when IP randomization is disabled and enabled. 97

9.7 The average bandwidth measured over a 10,000 second (∼2.77 hours)

period when IP randomization is disabled and enabled. 98

9.8 The probability of correctly discovering a randomly-selected 24-bit num-

ber (a CIDR class A IP address) using different guessing strategies given

a limited number of probes. 99

9.9 The expected number of attempts to randomly find a 24-bit number (a

CIDR class A IP address) using different guessing strategies given a lim-

ited number of probes. 101

9.10 Performance metrics of a normal network without randomization tech-

niques introduced, with the three randomization algorithms implemented

independently, and finally with all three algorithms combined and applied. 103

9.11 Performance metrics when transferring 1 MB files within the Tor network

over a three-month period of time. 105

10.1 An experiment allocated within the DETERLab testbed consisting of 16

adversarial nodes labeled nodeE1-nodeE16 and 4 operational nodes la-

beled nodeA-nodeD. 111

10.2 The solid lines represent the number of attempted spoofed packets that

need to be injected into the network with varying frequencies of re-randomized

IP addresses. As the randomization frequencies increase in time, the num-

ber of required attempted adversary spoofed packets before a successful

packet is injected remains constant. The dashed lines represent the theo-

retical expectation results of the binomial distribution, which match the

experimented data closely. Each of the curves represents the total num-

ber of adversaries, varying from 1 adversary to 65,536 adversaries. The

frequency intervals vary from 0.5 seconds to a static configuration. We

performed 10,000 trials with an adversary that was capable of injecting

310 packets per second in the test environment provided. 121

-ix-

10.3 The hypergeometric distribution is followed when the adversary randomly

spoofs the source and destination IP addresses until a success occurs with-

out repeating previous failed attempts. The results captured experimen-

tally match those of the expectation curve (dashed lines) when varying

the number of adversaries and the frequencies at which the defender re-

randomizes the network IP addresses. 123

10.4 The hypergeometric distribution is followed when the adversary serially

spoofs the source and destination IP addresses (starting at IP addresses

X.Y.Z.0-X.Y.Z.255, where X, Y and Z are 8 bit octets of an IP address)

until success. The results captured experimentally match those of the

expectation curve (dashed lines) when varying the number of adversaries

and the frequencies at which the defender re-randomizes the network IP

addresses. 124

10.5 The hypergeometric distribution is similarly followed when the adversary

serially spoofs the source and destination IP addresses (starting at IP

addresses X.Y.Z.[random mod 256]-X.Y.Z.[random mod 256-1], where X,

Y and Z are 8 bit octets of an IP address and random mod 256 is a

randomly-chosen number between 0 and 255 through the modulo opera-

tor) until success. The results captured experimentally match those of the

expectation curve (dashed lines) when varying the number of adversaries

and the frequencies at which the defender re-randomizes the network IP

addresses. 125

10.6 A representative ICS environment that combines both virtual and physical

environments to model a power plant using ICS-based systems and protocols. 128

10.7 The latency impacts of varying the frequencies of randomization from a

static configuration to randomizing once every second. As the random-

ization frequencies increase in time, the latency measurements decrease. 132

-x-

10.8 The TCP retransmits we captured when varying the frequencies of ran-

domization from a static configuration to randomizing once every second.

As the randomization frequencies increase in time, the number of retrans-

mits also increased. A total of 500,037 packets were transmitted in each

of the tests over a 10 minute interval. The resulting percentage of re-

transmits were ∼6.84%, ∼1.01%, ∼0.36%, ∼0.03%, and ∼1.30% when

randomizing every 1 second, 20 seconds, 60 seconds, 10,000 seconds, and

a static configuration, respectively. 133

10.9 We captured latency measurements when sending traffic between two

hosts using two traditional switches forwarding traffic in the middle. La-

tency measurements were also captured when two Open vSwitch instances

replaced the traditional switches with varying randomization frequencies

of IP addresses. 135

10.10 Latency measurements captured when sending traffic between two hosts

with two traditional switches forwarding traffic in the middle. Latency

measurements were also captured when one Open vSwitch instance and

one physical HP-2920 switch replaced a traditional switch with varying

randomization frequencies of IP addresses. 136

10.11 Latency metrics we captured within the VPP environment over a 1,000

second interval of time. We captured these results to measure a baseline

for the VPP environment. 140

10.12 Latency metrics captured within the VPP environment over a 1,000 sec-

ond interval of time. The results show the effects of applying an SDN

framework combined with the IP randomization MTD technique. 141

10.13 Latency metrics captured within the VPP environment over a 1,000 sec-

ond interval of time. The results show the effects of applying the SDN

framework combined with the IP randomization MTD technique and the

Paxos crash tolerant algorithm. 142

-xi-

10.14 Latency metrics captured within the VPP environment over a 1,000 sec-

ond interval of time. The results show the effects of applying the SDN

framework combined with both the IP randomization MTD technique and

the Byzantine fault tolerant algorithms. 144

10.15 Throughput measurements using traditional switches with 10 Mbit/sec

links configured through the iperf3 tool over a 1,000 second period. . . 145

10.16 Throughput measurements using Open vSwitch instances that only for-

ward traffic based on incoming physical ports, with 10 Mbit/sec links

configured through the iperf3 tool over a 1,000 second period. 146

10.17 Throughput measurements using Open vSwitches that randomize source

and destination IP addresses before forwarding traffic. Network links were

configured to operate at 10 Mbits/sec through the iperf3 tool over a 1,000

second period. 147

10.18 Throughput measurements using Open vSwitch instances that random-

ize source and destination IP addresses were collected before forwarding

traffic with 10 Mbit/sec links configured through the iperf3 tool over a

1,000 second period. A cluster of two controllers is configured with the

Raft consensus algorithm [1] where the leader controller fails every 250

seconds. 148

10.19 Throughput measurements using Open vSwitch instances that randomize

source and destination IP addresses before forwarding traffic, with 10

Mbit/sec links configured through the iperf3 tool over a 1,000 second

period. A cluster of three controllers is configured with the Raft consensus

algorithm where the leader controller fails every 250 seconds. 149

10.20 Throughput measurements using Open vSwitch instances that randomize

source and destination IP addresses before forwarding traffic, with 10

Mbit/sec links configured through the iperf3 tool over a 1,000 second

period. A four controller cluster is configured with the Raft consensus

algorithm where the leader controller fails every 250 seconds. 150

-xii-

10.21 Throughput measurements using Open vSwitch instances that randomize

source and destination IP addresses before forwarding traffic, with 10

Mbit/sec links configured through the iperf3 tool over a 1,000 second

period. A five controller cluster is configured with the Raft consensus

algorithm where the leader controller fails every 250 seconds. 151

10.22 CPU impacts on the SDN controller when deploying Byzantine fault toler-

ant algorithms with IP randomization enabled, crash tolerant algorithms

with IP randomization enabled, no fault tolerant algorithms with IP ran-

domization enabled, and a baseline with no fault tolerant algorithms and

IP randomization disabled. 153

10.23 Memory impacts on the SDN controller when deploying Byzantine fault

tolerant algorithms with IP randomization enabled, crash tolerant algo-

rithms with IP randomization enabled, no fault tolerant algorithms with

IP randomization enabled, and a baseline with no fault tolerant algorithms

and IP randomization disabled. 155

10.24 The solid lines represent the number of attempted spoofed packets that

need to be injected into the network with varying randomization frequen-

cies. As the randomization frequencies increase in time, the number of

spoofed packets attempted by the adversary decreases. The dashed lines

represent the theoretical expectation curve of the binomial distribution,

which match the experimented data closely. Each of the curves repre-

sent the total number of adversaries, varying from 1 adversary to 8,192

adversaries. The frequency intervals varied from 0.5 seconds to not ran-

domizing at all (a static configuration). We performed 10,000 trials in the

VPP environment with an adversary that was capable of submitting 310

injected packets per second. 158

-xiii-

10.25 The hypergeometric distribution is followed when the strategy of the ad-

versary is to randomly spoof the source and destination IPv6 addresses

until a success is observed without ever repeating previous failed attempts.

The results captured experimentally match those of the expectation curve

(dashed lines) when the number of adversaries and the frequencies at

which the defender re-randomizes the IPv6 addresses are varied. 159

10.26 The hypergeometric distribution is followed when the strategy of the ad-

versary is to serially spoof the source and destination IPv6 addresses

(starting at IPv6 addresses A.B.C.D.E.F.G.0000-T.U.V.W.X.Y.Z.FFFF,

where A, B, C, D, E, F, G, T, U, V, W, X, Y, and Z are 16 bit values of an

IPv6 address) until success. The results captured experimentally match

those of the expectation curve (dashed lines) when varying the number of

adversaries and the frequencies at which the defender re-randomizes the

IPv6 addresses. 161

10.27 The hypergeometric distribution is similarly followed when the adversary

follows the strategy of serially spoofing source and destination IPv6 ad-

dresses (starting at IPv6 addresses A.B.C.D.E.F.G.R-T.U.V.W.X.Y.Z.Q,

where A, B, C, D, E, F, G, R, T, U, V, W, X, Y, Q, and Z are 16 bit values

of an IPv6 address) until success. R is a random 16-bit value and Q is R-1.

The results captured experimentally match those of the expectation curve

(dashed lines) when varying the number of adversaries and the frequencies

at which the defender re-randomizes the network IPv6 addresses. 162

10.28 The RTT times over a 100 second interval have spikes in latency every

∼2 seconds since these are the periods of time where IP randomization

occurs. The adversary can then understand the amount of time available

to setup an exploit until the next randomized interval occurs. 164

-xiv-

10.29 The RTT times over a 100 second interval have spikes in latency every

∼20 seconds since these are the periods of time where IP randomization

occurs. The adversary can then understand the amount of time available

to setup an exploit until the next randomized interval occurs. 164

-xv-

Abstract

Parametrization and Effectiveness of Moving Target Defense Security

Protections for Industrial Control Systems

Critical infrastructure systems continue to foster predictable communication patterns and

static configurations over extended periods of time. The static nature of these systems

eases the process of gathering reconnaissance information that can be used to design,

develop, and launch attacks by adversaries. In this research effort, the early phases of an

attack vector will be disrupted by randomizing application port numbers, IP addresses,

and communication paths dynamically through the use of overlay networks within In-

dustrial Control Systems (ICS). These protective measures convert static systems into

“moving targets,” adding an additional layer of defense. Moving Target Defense (MTD)

is an active area of research that periodically changes the attack surface of a system to

create uncertainty and increase the workload for an adversary. To assess the effectiveness

of MTD strategies within an ICS environment, performance metrics have been captured

to quantify the impacts introduced to the operational network and to the adversary. Our

MTD strategies are implemented using Software Defined Networking (SDN) to provide a

scalable and transparent solution to the end devices within the network. We show that

our MTD techniques are feasible within an ICS environment and that they can improve

the resiliency of ICS systems. Our MTD strategies meet the real-time constraints of

ICS systems and incur latency impacts of less than 50 ms and in most cases, well under

20 ms. Resiliency is improved by introducing crash tolerant and Byzantine fault tolerant

algorithms to detect and prevent attacks against the SDN controller. We also evaluate

the success rates of individual adversaries, distributed adversaries, and those attempting

side-channel attacks to learn the frequencies at which the MTD techniques reconfigure

the system. We demonstrate the effectiveness of our approaches in simulated, virtualized,

and representative ICS environments.

-xvi-

Acknowledgments

I am forever grateful for the generous amount of support and encouragement that I re-

ceived from my family, friends, and colleagues throughout my life. Because of them, what

originally seemed to be an impossible dream has turned into a reality. I am lucky to have

had the great pleasure and opportunity to work with an elite group of professors, stu-

dents, and coworkers throughout my time as a Ph.D. student over the past five years. I am

thankful for my advisor, Professor Sean Peisert, who has provided a significant amount of

time, guidance, and expertise to help me shape the ideas and concepts that were devel-

oped as part of this research. I am also thankful for my dissertation committee members,

Professor Karl Levitt and Professor Matthew Bishop, who also provided invaluable com-

puter security insights, feedback from the moment I entered the Ph.D. program, and who

also served as members of my qualifying exam committee. I would also like to thank the

additional qualifying exam committee members, Professor Chen-Nee Chuah and Professor

Felix Wu, for taking the time to review my proposed research topic and for providing the

constructive feedback that was needed to further strengthen my research idea. I am also

very grateful for Janet Neff, Kristy Sibert, and Jessica Stoller who all played a major role

in making my educational goals possible through their tireless coordination and support

while I was a remote student. I am also very grateful for the many friends I made while

on campus and the outstanding group of students I had the opportunity to work with in

the UC Davis Computer Security Lab.

Several exceptional individuals also encouraged me to enter into a Ph.D. program and

I am forever thankful for the time they took to write the strong letters of recommenda-

tions that allowed me to be accepted into The University of California, Davis. I consider

each of these individuals as mentors, role models, and friends that I hold in the highest

regard. These individuals include Carol Hawk, Bob Hutchinson, David White, James

Peery, Professor Jared Saia, and Professor John Black. These individuals have provided

me with opportunities I never imagined possible. I am forever grateful to Carol Hawk

for her continued support of my research and for the Presidential Early Career Award

-xvii-

for Scientists and Engineers (PECASE) award which has been the highlight of my career.

Bob Hutchinson provided me with my first opportunities at Sandia National Laboratories

by first hiring me into the Center for Cyber Defenders program and then hiring me on as a

full-time staff member into the One Year On Campus (OYOC) Master’s degree program.

David White and James Peery played a major role in advocating for me to be accepted

into Sandia’s University Part Time (UPT) program which funded my degree program.

Professor Jared Saia and Professor John Black are former Computer Science Professors

who piqued my interests in computer security and algorithms and who also wrote letters

of recommendation for me to be accepted into this degree program.

I am also forever grateful for the Sandia National Laboratories UPT program which has

funded my educational degree program and supported my educational goals for several

years. I would like to specifically thank Bernadette Montano, Han Lin, and the UPT

committee members who accepted my application into the program and sponsored my

research in the UPT program. I am also thankful for the entire Sandia management team,

including Shawn Taylor, Kim Denton-Hill, and James Hudgens who have supported me

throughout my time in the UPT program.

I am also grateful for all of my newly made friends in Davis as well as my longtime friends

in Albuquerque for your continued encouragement throughout this program. Specifically,

thank you to all of the welcoming families we were lucky enough to meet at the Davis

Parent Nursery School and at Pioneer Elementary School. This group includes Luciana

Rowland, Chris Rowland, Sophia Rowland, Isabel Rowland, the Gustafson-Storms fam-

ily, the Moreno-Nyholm family, the Chang family, and many more. Thank you to Judith

Plank for reviewing and providing feedback for this entire dissertation. Thank you also

to Jonathan Saiz and Tony Lopez for your continued friendship and encouragement.

My family has also played a major role in helping me achieve my educational goals.

Thank you to my mother Lorina Rowe for your continued encouragement, support, and

-xviii-

time that you took to raise three successful children all as a single mother. Thank you

to John Rowe for your encouragement, support, and time visiting us in Davis. A special

thank you goes to grandma Leonella Montoya who is the best mean grandma anyone could

ever ask for and who has always taken an interest in my goals throughout my life. I am

also thankful for Anthony Garcia and Debbie Garcia who have supported and welcomed

me into their family over the past 15 years. Thank you to my immediate family members

Ray Chavez, Courtney Chavez, Vicki Garcia, Albert Garcia, Geneva Harrison, Jeremy

Harrison, and Jonathan Garcia who have encouraged me throughout the past five years

and for visiting us during our time in Davis. A very special thank you goes out to all of

my nephews and nieces who we are extremely proud of and who have brought so much

happiness and joy to our family! Starting from oldest to youngest, thank you to Noah

Harrison for being Penny’s best friend, Cora Garcia for your silliness, Liam Harrison for

your smiles, Oliver Garcia for your dance moves, Cedro Garcia for your style, and Camden

Chavez for your happiness. Thank you also to the rest of my extended family and friends

for your continued support.

Finally, I am forever grateful to both Natasha Chavez and Penelope Chavez for going

on this long journey with me. I cannot put into words how much I appreciated everything

you have helped me with along the way while I was entering into the program, completing

homework assignments, studying for exams, performing teaching assistant duties, running

experiments in the lab, and writing this dissertation. If it were not for your continued

encouragement and support, completion of this program would not have been possible.

Thank you Natasha for encouraging me to take on this challenge that I never even con-

sidered to be a remote possibility. We did this together and thank you for being the best

wife and mom anyone could ever ask for! Penelope, you are the best thing that has ever

happened to us and you are such an intelligent, kind, and creative person who continues

to inspire and amaze me. You are going to be an amazing big sister to Miles Chavez and

the sky truly is the limit for you! Thank you both for all of the sacrifices you have made to

support my goals and for your patience. You two are my happiness, my life, and I love you!

-xix-

I would also like to acknowledge and thank the Cybersecurity for Energy Delivery Systems

(CEDS) Program within the U.S. Department of Energy/Office of Electricity Delivery and

Energy Reliability (DOE/OE) and the Sandia National Laboratories UPT program who

both supported this research. The following papers, which have previously published or

are currently in submission, were submitted for publication as part of this research:

• Adrian Chavez and Sean Peisert. “Introducing Resiliency into Moving Target De-

fense Techniques for Industrial Control Systems.” IEEE Security & Privacy 11

(2017): In Submission.

• Adrian Chavez, William Stout, and Sean Peisert. “Techniques for the Dynamic Ran-

domization of Network Attributes.” Proceedings of the 49th Annual International

Carnahan Conference on Security Technology. 2015

• Adrian Chavez, Jason Hamlet, Erik Lee, Mitchell Martin, William Stout. “Network

Randomization and Dynamic Defense for Critical Infrastructure Systems.” Sandia

National Laboratories ReportSAND2015-3324 (2015).

• Moses Schwartz, John Mulder, Adrian Chavez, and Benjamin Allan. “Emerging

Techniques for Field Device Security.” IEEE Security & Privacy 6 (2014): 24-31

-xx-

Chapter 1

Introduction

Historically, control systems have primarily depended upon their isolation [2] from the

Internet and from traditional Information Technology (IT) networks as a means of main-

taining secure operation in the face of potential remote attacks over computer networks.

However, these networks are incrementally being upgraded [3] and are becoming more

interconnected with external networks so they can be effectively managed and configured

remotely. Examples of control systems include the electric power grid, smart grid net-

works, micro grid networks, oil and natural gas refineries, water pipelines, and nuclear

power plants. Given that these systems are becoming increasingly connected, computer

security is an essential requirement as compromises can result in consequences that trans-

late into physical actions [4] and significant economic impacts [5] that threaten public

health and safety [6]. Moreover, because the potential consequences are so great and

these systems are remotely accessible due to increased interconnectivity, they become

attractive targets for adversaries to exploit via computer networks. Several examples

of attacks on such systems that have received a significant amount of attention include

the Stuxnet attack [7], the U.S.-Canadian blackout of 2003 [8], the Ukraine blackout in

2015 [9], and attacks that target the control system data [10] itself. Improving the com-

puter security of electrical power grids is the focus of our research.

The power grid is responsible for providing electricity to society, including homes, busi-

nesses, and a variety of mission critical systems such as hospitals, power plants, oil and

1

gas refineries, water pipelines, financial systems and government institutions. The “smart

grid” acts as an advanced power grid with upgrades that provide power distribution sys-

tems and consumers with improved reliability, efficiency, and resiliency [11]. Some of the

upgrades include automated energy load balancing, real-time energy usage tracking and

control, real-time monitoring of grid-wide power conditions, distributed energy resources,

advanced end devices with two-way communications and improved processing capabilities.

Advanced end devices, which are being integrated into smart grids, include Programmable

Logic Controller (PLCs), Remote Telemetry Units (RTUs), Intelligent Electronic Devices

(IEDs), and smart meters that are capable of controlling and performing physical actions

such as opening and closing valves, monitoring remote real-time energy loads, monitoring

local events such as voltage readings, and providing two-way communications for moni-

toring and billing, respectively. These new devices replace legacy devices that have been

in place for decades that were not originally designed with security in mind since they

were previously closed systems without external network connectivity. Although these

new devices aid efficiency, they may create more avenues for attack from external sources.

Finally, control systems are often statically configured [12] over long periods of time

and have predictable communication patterns [13]. After installation, control systems are

often not replaced for decades. The static nature combined with remote accessibility of

these systems creates an environment in which an adversary is well positioned to plan,

craft, test and launch new attacks. Given that the power grid is actively being developed

and advanced, the opportunity to incorporate novel security protections directly into the

design phase of these systems is available and necessary. Of particular interest are defenses

that can better avoid both damage and loss of availability, as previously documented in

the power grid [6], to create a more resilient system during a remote attack over computer

networks.

2

1.1 Challenges

One of the main challenges of our research is to ensure that the computer security pro-

tections themselves not only improve the security of the overall system, but also do not

impede the operational system from functioning as expected. A security solution that is

usable and practical within an IT environment may not necessarily be practical within an

Industrial Control System (ICS) environment. ICS systems often have real-time require-

ments and any newly introduced software or security solution must also meet those same

requirements.

Another challenge is to identify useful metrics that quantify the effectiveness of the Mov-

ing Target Defense (MTD) techniques from the perspective of both the adversary and

the defender of the system. The goal of the adversary is to exploit the system before the

MTD defense modifies the environment in time. The goal of the defender is to change

the environment frequently enough to evade an adversary but not too frequently so that

the system performance is negatively impacted. Finding the correct balance so that the

adversary cannot exploit the system while throttling the MTD strategy so it does not

prevent the system from maintaining a normal operating state.

Gaining access to a representative ICS environment is another challenge when devel-

oping new security protections for ICS systems. Modeling and simulation tools can be

effective, but gaining a true understanding of the consequences and effects of deploying

a new security protection in practice requires validation within a representative ICS en-

vironment. Several factors, such as network load, processor load, and memory load are

difficult to accurately project within a simulated environment. The harsh working condi-

tions of ICS systems (such as the wide temperature ranges) are one element to consider

when deploying new technologies within these environments.

3

1.2 Contributions

The goals of our research are to develop and combine several MTD techniques that in-

crease the adversarial workload while minimizing the operational network impacts. When

new computer security defenses are introduced into a system, there is often a trade-off

between usability and security of the operational network. It is expected that the oper-

ational network will maintain high availability and responsiveness while also protecting

against a new set of adversaries after applying such defenses. Quantifying and measuring

the associated costs to both the adversary and the defender of the system when deploying

MTD techniques are contributions of our research. The domain of focus for our research

resides within critical infrastructure systems; effective MTD strategies for these distinct

environments will be identified. Additionally, the parameters of each MTD strategy when

deployed within a simulated environment, virtualized environment, and a representative

critical infrastructure environment are evaluated against a variety of adversaries.

Some of the goals of an adversary include gaining unauthorized access to the system,

causing the system to operate outside of what was originally intended, introducing un-

certainty to the operator, and exfiltrating information – all within a certain time bound.

The time bound is an added complexity to the adversary so that they can complete their

goal before detection by the defender of the network. Also of note is that the adversary

may even attack the computer security protection itself directly or indirectly. To cover

this case, the critical infrastructure environment itself is evaluated for security threats

after the new MTD security protections are applied. The first set of metrics captured

are those focused on the increased workload added to the adversary. Examples of these

increased costs imposed on an adversary when applying new computer security defenses

include reducing the value of an adversary’s knowledge about the system, for example, by

changing key parameters so that an adversary’s insights are out of date; delayed (or elim-

inated) potential of exploitation, increased risk of detection, and increased uncertainty

about system operations.

4

The goal of the defender is to maximize the effectiveness of each MTD strategy by pro-

tecting against an adversary while minimizing the operational impact to the system. The

second set of metrics captured are the costs that are associated with the defender of the

system when deploying new security protections. These costs include delayed system per-

formance, delayed network performance, equipment costs, training costs, and labor costs

to interoperate with the existing infrastructure. For MTD techniques specifically, the

frequency at which the MTD technique changes elements of the system is evaluated and

compared against scenarios where one or more adversaries are attempting to defeat those

protections. Additionally, the resiliency of the MTD protection itself is also evaluated

when an adversary targets the newly introduced security protection.

Another contribution of our research comes from the adversaries that are included as

a part of the threat model under consideration. Several types of adversaries with differ-

ent capabilities and strategies to defeat the defenses introduced are evaluated. Singleton

adversaries as well as multiple, distributed adversaries are analyzed against each MTD

technique deployed individually and in combination with one another. Additionally, it is

also important that the introduced security solution does not become a target itself. The

threat model is expanded so that the security protection itself is considered as part of the

attack space. We have built in fault tolerant algorithms directly into the MTD techniques

so that the security protection itself does not become a liability to the ICS system. As a

result, the MTD techniques developed are more robust, resistant, and resilient to survive

and detect several classes of adversaries who have an understanding of the ICS system as

well as the security protections themselves.

1.2.1 MTD within Critical Infrastructure

Critical infrastructure systems bring in a distinctive set of constraints and requirements

when compared against traditional IT based systems. Critical infrastructure systems

are often time sensitive with stringent real-time constraints in the case of cyber-physical

systems [14]. It is therefore important for any new computer security protections intro-

duced to also meet these same time requirements so they do not negatively affect the

5

operational network. Additionally, the most important requirements for these systems

are often to maintain high availability and integrity due to the nature of the systems

that they control (the electrical power grid, water pipelines, oil and natural gas refineries,

hospitals, residential and commercial buildings, etc.). Any loss of availability can result

in significant consequences not only in terms of economics, but also in terms of public

health and safety. Similarly, compromising the integrity of these systems, such as sending

maliciously modified commands, can result in similar consequences. Also of note, is that

critical infrastructure systems are composed of both legacy and modern systems that must

interoperate with one another without affecting availability and security. New security

solutions must take this into account so that they can scale without the requirement of

upgrading every device within the system.

Another goal of our research is to determine if MTD based approaches can successfully be

deployed within critical infrastructure environments in practice while satisfying the dis-

tinct time constraints and requirements of these environments. Since the time constraints

vary from one system to another, the stricter time requirement used for teleprotection

systems are used here (12-20ms) [15]. For Supervisory Control And Data Acquisition

(SCADA) communications, those requirements can, in some cases, be relaxed to 2-15

seconds or more. The computer security solutions presented here have the goal of falling

under 10 ms of additional latency. Additionally, the MTD techniques that we developed

were tested and evaluated within a simulated environment, a virtualized environment,

and also within a representative environment containing industrial grade equipment. We

have designed each environment to harness and measure the effectiveness of each of the

new security protections developed.

1.2.2 Operational System Impacts

Given the strict time constraints of critical infrastructure systems, it is imperative to en-

sure that the security solution itself does not negatively impact the ICS network. Some

of the metrics we measured include latency, bandwidth, throughput, dropped packets and

number of retransmitted packets. Because ICS systems can be time sensitive, it is impor-

6

tant to ensure there are no dropped packets, minimal (if any) latency is introduced, and a

minimal (if any) number of retransmits are required to maintain connectivity in order to

satisfy the real-time constraints that these systems require. Each of these metrics support

the high availability requirements.

Additionally, the ability of security solutions to interoperate with the existing infrastruc-

ture is critical. Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS),

firewalls and even security operations personnel are examples of components that need to

interact with and be trained on the new security solution introduced. The interface to the

security protection must interoperate with each of these systems to aid an operator who

may potentially be actively defending their ICS network or basing their decisions on the

feedback received from the security protection. These requirements placed on the security

protections support the high availability and high integrity needs of ICS systems.

The goal of our research is to quantitatively measure the MTD techniques developed within

the context of an ICS environment. Determining the measurable limits of overhead that

an ICS system can support (if any) to harness such security protections is a necessary

first step to understand the feasibility of introducing these MTD techniques. These limits

serve as parameters that can be used as part of the MTD technique to ensure that the

specified limit is not exceeded. One example of a parameter bounded by the environment

that our research investigates, is the balance of how frequently a MTD approach should

reconfigures the system so that the ICS environment maintains the required response time

needed to operate correctly. The faster the MTD technique reconfigures the system, the

higher the overhead that is required from the underlying environment.

1.2.3 Adversary Workload Impacts

An additional goal of our research is to quantitatively determine the effectiveness of the

MTD techniques deployed. MTD is an active area of research that seeks to thwart attacks

by invalidating knowledge that an adversary must possess to mount an effective attack

against a vulnerable target [16]. MTD approaches are designed to continuously modify

7

and reconfigure system parameters with the goals of evading, confusing, and detecting

an adversary. We evaluated the amount of work required by an adversary to defeat the

applied MTD protections. A number of adversary strategies in attacking the defense were

analyzed. The time it takes for an adversary to accomplish their goal is then passed

as an input parameter into the MTD technique to ensure that it is moving faster than

the adversary. We considered both individual adversaries as well as multiple distributed

adversaries when evaluating each of the MTD techniques.

We also investigate side-channel information that can be gathered from an adversary

to understand the frequency at which the MTD technique reconfigures the system. This

information can aid an adversary in understanding how fast they must craft and execute

their attack. We have identified solutions that can mitigate these side-channel threats.

One such mitigation would be to re-randomize the network configurations at random in-

tervals. This solution would help prevent adversaries from inferring how frequently the

MTD technique re-randomize configurations by passively observing network traffic.

Finally, adversaries who have the goal of launching an attack against the security protec-

tions themselves are also considered. There are documented cases [17, 18] where a security

protection itself becomes the point of entry for an adversary. Software that is designed to

protect a system should be similarly scrutinized for security flaws in the same way that

any application being integrated into a system would be. We have demonstrated that

the MTD techniques developed can be combined with crash tolerant and Byzantine fault

tolerant algorithms to become more resilient against adversaries attacking the system as

well as the data of the system.

1.3 Organization

The remainder of the dissertation is organized as follows: Chapter 2 summarizes back-

ground material and related MTD work; Chapter 3 covers the applications where MTD

techniques can be effective within ICS environments; Chapter 4 covers the threat model

8

of what, specifically, our MTD defenses do and do not protect against; Chapter 5 de-

scribes the MTD techniques developed for our research; Chapter 6 describes the theory

related to the crash tolerant and Byzantine fault tolerant algorithms implemented within

our research; Chapter 7 describes the experimentation testbeds, network topologies and

configurations used for our research; Chapter 8 discusses our simulated results based on

a variety of adversaries probing the network that are applying different attack strategies;

Chapter 9 outlines our results from the virtualized environment developed; Chapter 10

describes the results obtained from the representative ICS environment that was used

when applying each of the MTD techniques developed; and finally Chapter 11 describes

the limitations of each of the MTD techniques deployed, the lessons learned along the

way that can be used to build upon our research, the future directions and the potential

future environments that the research results presented here can be applied towards, and

a summary along with concluding remarks of our research.

9

Chapter 2

Background

Artificial diversity is an active area of research with the goal of defending computer sys-

tems from remote attacks over computer networks. Artificial diversity within computer

systems was initially inspired by the the ability of the human bodies natural immune sys-

tem to defend against viruses through diversity [19]. Introducing artificial diversity into

the Internet Protocol (IP) layer has been demonstrated to work within a software-defined

network (SDN) environment [20]. Flows, based on incoming port, outgoing port, incom-

ing media access control (MAC) and outgoing MAC, are introduced into software-defined

switches from a controller system. The flows contain matching rules for each packet and

are specified within the flow parameters. If a match is made within a packet, then the flow

action is to rewrite source and destination IP addresses to random values. The packets

are rewritten dynamically while they are in flight traversing each of the software-defined

switches. Although applying artificial diversity towards SDN has been demonstrated, the

effectiveness of such approaches has not been quantitatively measured. Furthermore, to

our knowledge, the approach has not been deployed within an ICS setting, which differs

substantially from traditional IT based systems.

It has also been demonstrated that IP randomization can be implemented through the Dy-

namic Host Configuration Protocol (DHCP) service that is responsible for automatically

assigning IP addresses to hosts within the network [21]. Minor configuration modifica-

tions to the DHCP service can be made to specify the duration of each host’s IP lease

10

expiration time to effectively change IP addresses at user defined randomization intervals.

However, this approach only considers long-lived Transmission Control Protocol (TCP)

connections, otherwise disruptions in service will occur as the TCP connection will need

to be re-established. Service interruptions within an ICS setting is not an option due

to their high availability requirements. Quantifying the effectiveness of such approaches

has also not been performed within an ICS setting outside of surveys [22] that evaluate

MTD techniques within an IT setting, where IP randomization by itself was qualitatively

ranked to have low-effectiveness with low operational costs. Also of note is that IP ran-

domization approaches by themselves have been demonstrated to be defeated through

traffic analysis where endpoints of the communication stream can be learned by a passive

adversary observing and correlating traffic to individual endpoints [23]. An additional

concern when leveraging SDN as a solution, is that the SDN controller of the network

can be viewed as a single point of failure [24]. The same can be said, at a smaller scale,

for each of the SDN switches that are providing access to a subset of the users on the

network. Increasing the resiliency of the SDN network by eliminating the single points

of failure and combining MTD techniques together is one of the focus areas of our research.

Anonymization of network traffic is an active area of research with several implementations

available in both the commercial and open source communities. MTD and anonymization

are related in that they both have the goal of protecting attributes of a system from being

discovered or understood. One of the early pioneering groups of anonymous communica-

tions describes the idea of onion routing [25] which is widely used today. This approach

depends on the use of an overlay network made up of onion routers. The onion routers

are responsible for cryptographically removing each layer of a packet, one at a time, to

determine the next hop routing information to eventually forward each packet to their

final destinations. The weaknesses of this solution are that side channel attacks exist

and have been demonstrated to be susceptible to timing attacks [26], packet counting at-

tacks [27], and intersection attacks [28] that can reveal the source and destination nodes

of a communication stream.

11

The Onion Router (Tor) is one of the most popular and widely used implementations of

onion routing with over 2.25 million users [29]. Tor is able to hide servers, hide services,

operate over the TCP, anonymize web-browsing sessions, and is compatible with Socket

Secure (SOCKS) based applications for secure communications between onion routers.

However, it has been shown empirically with the aid of NetFlow data that Tor traffic

can be de-anonymized with accuracy rates of 81.4% [30]. The results are achieved by

correlating traffic between entry and exit points within the Tor network to determine the

endpoints in communication with one another. Furthermore, Tor has an overhead asso-

ciated with the requirement to encrypt traffic at each of the onion routers; this overhead

would need to be limited within an ICS environment to meet the real-time constraints

required of these systems. Similarly, garlic routing [31] combines and anonymizes multiple

messages in a single packet but is also susceptible to the same attacks

Overlay networks have similar goals as Tor with the goal of reducing the overhead as-

sociated with a Tor network. It has been shown that overlay networks can be used to

mitigate Distributed Denial of Service (DDoS) attacks [32]. The overlay networks reroute

traffic through a series of hops that change over time to prevent traffic analysis. In order

for users to connect to the secure overlay network, they must first know and communicate

with the secure overlay access points within the network. The required knowledge of the

overlay systems prevents external adversaries from attacking end hosts on the network

directly. This design can be improved by relaxing the requirement of hiding the secure

overlay access points within the network from the adversary. If an adversary is able to

obtain the locations of the overlay access points, then the security of this implementation

breaks down and is no longer effective.

Steganography is typically used to hide and covertly communicate information between

multiple parties within a network. The methods described in current literature [33] include

the use of IP version 4 (IPv4) header fields and reordering IPsec packets to transmit infor-

12

mation covertly. Although the focus of the steganography research is not on anonymizing

endpoints, it can be used to pass control information to aid in anonymizing network traffic.

The described approach would have to be refined to increase the amount of information

(log2(n) bits can be communicated through n packets) that can be covertly communicated

if significant information is desired to be exchanged. Steganography techniques have the

potential to facilitate covert communication channels for MTD techniques to operate cor-

rectly but have not been applied in this fashion.

Transparently anonymizing IP based network traffic is a promising solution that lever-

ages Virtual Private Networks (VPNs) and the Tor [34] service. The Tor service hides the

user’s true IP address by making use of a Virtual Anonymous Network (VAN) while the

VPN provides the anonymous IP addresses. The challenge of this solution is the require-

ment that every host must possess client-side software and have a VPN cryptographic key

installed. In practice, it would be infeasible for this approach to scale widely, especially

within ICS environments where systems cannot afford any downtime to install and main-

tain the VPN client-side software and the cryptographic keys that would be necessary

at each of the end devices. To reduce the burden on larger scale networks, it may be

more effective to integrate this approach into the network level, as opposed to at every

end device, using an SDN based approach. The goal of the research presented here is to

provide a similar service within an ICS system with the ability to scale to a large number

of devices without significant interruptions in communications.

2.1 Moving Target Defense Techniques

MTD is an active area of research that seeks to thwart attacks by invalidating knowledge

that an adversary must possess to mount an effective attack against a vulnerable tar-

get [16]. For each MTD defense deployed, there is an associated delay imposed on both

the adversary and on the defender of the operational system. A goal of our research is to

quantitatively analyze the delays introduced by each additional MTD technique applied

individually and in combination of one another within an ICS environment. Our analysis

13

will aid in optimally assigning the appropriate MTD techniques to enhance the overall

security of a system by minimizing the operational impacts while maximizing the adver-

sarial workload to a system. We have quantitatively captured the delays associated with

IP, port and path randomization from the perspectives of both a defender and an adver-

sary. Our results have focused on both network based and host based MTD strategies.

Our research evaluates each of the MTD defenses placed at various levels of a system and

aggregates the total delays placed on an adversary. Analysis of such MTD defenses across

an entire system is used to determine the effectiveness of such approaches holistically.

2.1.1 Adversarial Distributions

We model several adversaries with different strategies to reverse engineer the MTD tech-

niques developed. In our analysis, the success rates of the adversarial strategies fit either

the binomial distribution or the hypergeometric distributions depending on the adver-

sarial strategy applied. Since we are interested in both the probabilities of success and

the expected number of attempts needed for an adversary to reverse engineer our MTD

strategies, the probability and expectation functions of these distributions are utilized in

our analysis. These functions inform the MTD techniques of how frequently they should

reconfigure the system.

The binomial distribution consists of a population of size N that contains k success cases

in the population, N − k failure cases, and n independent attempts permitted to find a

success case using a random variable X that selects from the population with replace-

ment. The probability of finding k success cases in the binomial distribution is defined

as:

P (X = k) =
(
n
k

)
pk(1− p)n−k [35]

The expectation formula for the number of attempts before the first expected success in

the binomial distribution is defined as follows:

E(X) = 1
p

14

The hypergeometric distribution consists of a population of size N that contains k success

cases in the population, N −k failure cases, and n independent attempts to find a success

case using a random variable X that selects from the population without replacement.

The probability of k successes in the hypergeometric distribution is defined as:

P (X = k) = k/N

Thus, the probability of failing to find a success case given k probes is p̂ = 1−p = 1−k/N .

Since the hypergeometric distribution does not replace failed attempts, the probability of

finding a success case improves with each subsequent attempt. The general expectation

formula for the hypergeometric distribution is defined as:

E(X) = N+1
2

The general expectation formula does not limit the number of attempts until the first

success is encountered. However, in our research we do place an upper limit on the num-

ber of attempts an adversary can make to reverse engineer the MTD strategy. Because we

place an upper limit on the number of attempts allowed by an adversary, the expectation

formula must be modified to both model the MTD strategies that periodically redefine

the success cases as well as the continuous stream of attempts that are coming from the

adversary. To find the expectation of several independent experiments repeated where an

adversary is limited to k attempts to find the first success case, the expectation function

becomes: the original expectation of the hypergeometric distribution plus the original ex-

pectation of the hypergeometric distribution multiplied by the number of failed attempts

before the first success. The second part of the formula accounts for the number of failed

attempts before the first success is found when limited to k attempts since the MTD

strategy would redefine the success cases after k attempts are made. More simply put,

the formula can be written as follows:

E(X) = N+1
2

+ N+1
2
× (p̂) = N+1

2
+ N+1

2
× (1− k/N) = N+1

2
× (1 + p̂)

The adversaries we model closely follow these two distributions. Since we are interested

in the effectiveness of each MTD technique, our goal is to maximize the expectation value

15

for an adversary to successfully reverse engineer our MTD strategies. As the number of

attempts required by an adversary increases, the level of noise produced by the adver-

sary and the amount of resources they must spend to defeat the MTD approaches also

increases. Additionally, as the expected number of attempts increases for the adversary

their probability of finding a success case decreases within either of the two distributions.

The best strategy for a defender to maximize the expectation value on the number of

attempts until the first success case and minimize the probability of finding a success case

is to expand the size of the population as much as possible. The population size in our

research is the amount of entropy available to the defender of the system. In general, we

show that the more entropy that the defender has available, the more uncertainty that is

placed on the adversary to defeat each of the MTD techniques.

2.2 MTD Categories

The MTD strategies evaluated as part of our research include IP randomization, port

randomization, communicate path randomization, and application library randomization.

Because power systems are statically configured and often do not change over long pe-

riods of time, those environments are ideal for introducing and evaluating MTD based

protections. The goal of our research is to increase the adversarial workload and level of

uncertainty during the reconnaissance phases of an attack. Since it remains an open prob-

lem to completely stop a determined, well-funded, patient, and sophisticated adversary,

increasing the delay and likelihood of detection can be an effective means of computer

security. There are a variety of MTD approaches that can be categorizing according to

where the defense is meant to be applied including at the application level, the physical

level, or the data level of a system. Five high level MTD categories have been described

as part of a MTD survey [36], which include dynamic platforms, dynamic runtime en-

vironments, dynamic networks, dynamic data, and dynamic software. These categories

are described in the sections that follow within the context of a critical infrastructure

environment.

16

2.2.1 Dynamic Platforms

PLCs, RTUs, and IEDs vary widely from one site to another within an ICS environment.

There are a number of vendors that produce these end devices with different processor,

memory and communications capabilities. These devices are responsible for measuring

readings from the field (such as power usage within a power grid context) and taking

physical actions on a system (such as opening or closing breakers in a power grid). Many

of these end devices are several decades old and they must all be configured to work

together. If an adversary has the ability to exploit and control these types of end devices,

they would have the ability to control physical actions remotely through an attack over

computer networks. At the physical layer, several MTD strategies exist to increase the

difficulty of an adversary’s workload to successfully exploit a system. One strategy rotates

the physical devices that are activated within a system [37, 38, 39]. For this strategy to

work, the physical devices and software may vary widely, but the only requirement is

that they must be capable of taking in the same input and successfully producing the

same output as the other devices. If there are variations in the output, then alerts can

be generated to take an appropriate action. These approaches increase the difficulty from

an adversary’s perspective because the adversary would be required to simultaneously

exploit many devices based on the same input instead of exploiting just a single device.

The difficulty for the defender comes in the form of having additional devices that must

be administered and managed while also ensuring the security of the monitoring agents is

maintained and that they do not become additional targets themselves. Strategies such

as n-variant [40] MTD techniques run several implementations of a particular algorithm

with the same input where variations of outputs would be detected by a monitoring agent.

Others [41] have shown firmware diversity in smart meters can limit the effectiveness of

single attacks that are able to exploit a large number of devices with a single exploit.

Customized exploits would have to be designed specifically for each individual device. We

have captured quantitative measurements of the delays introduced to an adversary and a

defender to measure the effectiveness of these approaches.

17

2.2.2 Dynamic Runtime Environments

Instruction Set Randomization [42] and Address Space Layout Randomization [43] are

MTD techniques that modify the execution environment of an application over time.

The effectiveness of such techniques has been measured in traditional enterprise networks

but has not yet been measured on devices found within ICS based environments where

real-time responses are a major requirement. The impact upon the real-time response re-

quirement has been measured along with the adversaries increased workload when ISR [44]

and ASLR [43, 45] are enabled.

We provide a quantitative evaluation of an open source implementation of the Modbus

protocol, libmodbus, when a cluster of SDN controllers are running. We also evaluate the

impacts imposed on both the defender and adversary while taking into account the max-

imum amount of delay these systems can tolerate. We then performed the same analysis

within a representative environment using an embedded Linux based PLC, a “SoftPLC,”

that executes ladder logic code. Finally, we analyzed the tradeoff between security and

availability within a representative ICS environment. While evaluating these tradeoffs,

we also must satisfy the requirement that the cluster of SDN controllers that are commu-

nicating with one another do not negatively affect the operational network by saturating

the network links.

2.2.3 Dynamic Networks

The opening paragraphs of this chapter describe many of the network randomization re-

search efforts that have been performed. This subsection focuses on our research related

to dynamic networks since the prior work has already been described. Our research builds

upon these results and is focused on introducing diversity into network parameters such

as IP addresses, application port numbers, and the paths that packets traverse in a net-

work. Our research analyzes the resilience of network MTD techniques against several

adversaries with different capabilities. We have evaluated distributed adversaries to better

understand the adversarial workloads when several adversaries are working together to

defeat each MTD approach. We have also evaluated the resiliency of each MTD approach

18

when distributing the SDN controller within the network as part of the defense. The

SDN controller is distributed so that there is no longer a single point of failure within

the SDN network. We then analyze and assess the feasibility of the MTD approaches

given the adversarial and defensive capabilities. To evaluate each MTD technique in a

representative environment, we interoperated our MTD solution with a Hewlett-Packard

Enterprise (HP) SDN-capable switch as well as with a Schweitzer Engineering Laboratory

(SEL)-2740 SDN capable switch to gain an understanding of the tradeoffs observed within

a representative ICS environment.

Our research also has the goal of finding the exact point at which the benefit of each

MTD strategy to the defender is maximized and the adversarial workload is maximized.

While we were performing our analysis, we also take into account that we are targeting

ICS systems which have strict real-time and high availability constraints. Finally, we have

evaluated the MTD parameters used, such as rates of randomization and the location of

the MTD techniques themselves (at the network level or the end device level), to find the

balance between security and usability to ensure that the solution does not hinder the

operational network. The contribution of our research is to generalize and apply various

MTD techniques to a wide variety of environments to assess their effectiveness.

2.2.4 Dynamic Data

Randomizing the data within a program is another technique used to protect data stored

within memory from being tampered with or exfiltrated [46]. Compiler techniques to

xor memory contents with unique keys per data structure [47], randomizing APIs for an

application, and SQL string randomization [48] help protect against code injection type

attacks. These techniques have been demonstrated on web servers and have shown vary-

ing levels of impacts to the operational systems. The benefits are that adversaries can be

detected if the data being randomized is accessed improperly when the system is being

probed or an attack is being launched in the case of SQL string randomization.

19

The same techniques can be applied and measured within a control system environment

to assess the feasibility of applying such techniques and meeting the real-time constraints.

For example, a historian server typically maintains a database of logs within an ICS en-

vironment. This server is a prime location to apply SQL string randomization towards

database accesses. Data randomization can be performed on the data stored within the

registers of a SoftPLC. To measure the effectiveness of this technique, metrics of the

response times to find the delays introduced can be captured. After gathering these mea-

surements, an evaluation of the delays introduced can be performed to ensure that they

are within the acceptable limits of an ICS environment. These are a few examples of

where data randomization can be applied within an ICS setting.

2.2.5 Dynamic Software

Introducing diversity into software implementations helps eliminate targeted attacks on

specific versions of software that may be widely distributed and deployed. In the case of a

widely deployed software package, compromising a single instance would then compromise

the larger population of deployed instances. To introduce diversity and help prevent code

injection attacks in networks, the network can be mapped to a graph coloring problem [49]

where no two adjacent nodes share the same color or software implementations. This type

of deployment helps prevent worms from spreading and rapidly infecting other systems in

a network using a single payload. These techniques should also be considered as a defen-

sive mechanism within an ICS environment. However, metrics and measurements need to

be gathered and evaluated using software that is deployed and found within operational

ICS environments.

At the instruction level, metamorphic code is another strategy that has primarily been

utilized by adversaries to evade anti-virus detection [50]. The code is structured so that

it can modify itself continuously in time and maintain the same semantic behavior while

mutating the underlying instructions of the code. The idea is similar to a quine [51] where

a program is capable of reproducing itself as output. Metamorphic code reproduced se-

mantically equivalent functionality but with an entirely new and different implementation

20

with each replication. There are many techniques to develop metamorphic code generat-

ing engines which are outlined in the ensuing sections, but they are typically not used as

a defensive strategy.

When software remains static, it becomes a dependable target that can be analyzed,

tested and targeted over long periods of time by an adversary. Introducing diversity at

the instruction level helps eliminate code injection attacks, buffer overflows, and limits

the effectiveness of malware to a specific version of software in time. Once the code self-

modifies itself, the malware may no longer be effective, depending on the self-modification

being performed. Several techniques [52] exist to use self-modifying code as a defensive

mechanism such as inserting dead code, switching stack directions, substituting in equiv-

alent but different instructions, inlining code fragments, randomizing register allocation

schemes, performing function factoring, introducing conditional jump chaining, enabling

anti-debugging and implementing function parameter reordering.

2.2.5.1 Dead Code

Dead code refers to function calls to code fragments that do not contribute to the overall

goal of an algorithm and is a useful strategy to deter an adversary. Dead code fragments

have the goal of causing frustration, confusion, and generally wasting the time of an ad-

versary in analyzing complex code fragments that are not of importance to the overall

algorithm. However, techniques do exist to dynamically detect dead code [53] fragments,

so this strategy should be deployed with care. Also of note is that if the size of a program

cannot exceed a certain threshold, it may be necessary to take into account the available

space on the system so that the code does not overly cause an excess amount of bloat and

exceed space limitations.

Dead code can help protect against an adversary who is statically analyzing and re-

verse engineering a software implementation. In this case of a MTD protection, when the

dead code is included, the goal is to cause the adversary to spend a significant amount

of time analyzing code that is not useful to the overall software suite. This technique

21

serves as a deterrence and a decoy to protect the important software. Dead code is often

used as an obfuscation technique of software to make it more difficult for an adversary to

understand [54].

Although this technique may be effective against certain types of adversaries perform-

ing static code analysis, the security is based on the assumed limited analytical and

intelligence capabilities placed on an adversary. This assumption is not valid when con-

sidering nation state adversaries who have a wide array of resources in terms of finances,

staff and intelligence available. The technique also breaks down and fails when dynamic

code analysis is performed to recognize that the dead code does not actually provide any

contributions to the overall functionality of the software under consideration.

2.2.5.2 Stack Directions

The direction that the stack grows can be chosen to grow either at increasing memory

addresses or decreasing memory addresses [55]. Buffer overflow attacks must take into

account this direction to effectively overflow the return address so that the adversary can

execute their own arbitrary code. One strategy to eliminate such an attack is to either

run a program that dynamically selects the direction of the stack at runtime or to run

two instances of a program in parallel with each instance having their stacks growing in

opposite directions. The two programs would then be overseen by a monitoring agent to

ensure that there are no deviations in results between the two programs. It is possible

that an attack can still succeed in both cases at the same time, but only in very special-

ized cases where the original code is written in such a way that the overflow works on

different variables simultaneously in both directions that the stack grows; This is, how-

ever, unlikely to occur on the majority of code that is of practical interest to an adversary.

This technique must consider possible space limitations of the system and the overhead

to detect deviations between the two versions of software. If both versions are running

on the same system, then the processor utilization may also be a concern for other appli-

cations running on the system. If the implementations are on separate systems, then the

22

network overhead to communicate the results of each run must also not negatively impact

the system in question. An additional area of importance is the security of the monitoring

agent to validate that a possible attack is in progress. Many security protections often

become a target [17] for adversaries and also need to be taken into consideration.

2.2.5.3 Equivalent Instruction Substitution

Many techniques exist to introduce diversity into a program by substituting equivalent

instructions [56]. The goal of substituting equivalent instructions for multiple instances of

a program is to maintain equivalent functionality while diversifying the implementation

of the underlying software. The benefit is that the difficulty of identifying functionally

equivalent software implementations from one another is increased from the adversaries’

perspective. This increases the difficulty placed on an adversary who is attempting to

develop a scalable malware solution designed to compromise a large number of systems

using a single exploit. The tradeoff is typically in the increased performance of the variants

of equivalent instructions. In many cases, compiler optimizers will automatically reduce

high level programming modifications to the same optimized assembly instructions using

dependency graphs [57]. To disable compiler optimizations, compiler flags must be enabled

to maintain the intended diversity within the binary executable. The impact on the

defender and operational network of applying this approach needs to be measured within

an ICS environment so that the feasibility of applying this approach to other environments

can be quantitatively measured and evaluated.

2.3 Research Goals

The goals of our research address several of the research gaps identified in the above litera-

ture review. Specifically, our research will develop MTD based techniques, measure MTD

techniques for their effectiveness, capture operational metrics of MTD based techniques,

develop a scalable SDN based solution tailored towards ICS, and combine several MTD

techniques into a single solution. We will also provide quantitative evaluations of the

effectiveness of each MTD approach based on the parameters that are specific to each

MTD technique.

23

We have performed a quantitative evaluation of several MTD techniques effectiveness

within an operational setting, coexisting with the same protocols and devices typically

found within a smart grid environment. The same MTD techniques are also evaluated in

other environments beyond the smart grid. Initially the impacts to both the adversary and

defender are measured within a virtualized environment, then in a laboratory testbed, and

finally within an operational microgrid environment. The microgrid environment results

are performed to verify and validate the results obtained from the virtual and laboratory

environments. We then perform an evaluation on the tradeoffs between the operational

network impacts introduced by the MTD techniques and the increased adversarial work-

load incurred from the MTD technique applied. Finally, the optimal combination of the

parameters applied towards each MTD technique is evaluated, individually and in combi-

nation, by minimizing the operational impacts and maximizing the adversarial workloads

required to defeat each defense.

Another area of research we investigate is the rate at which each MTD technique must

reconfigure itself in order to successfully evade an adversary. Simulation based studies

on the effectiveness of MTD strategies have been performed [58], but operational exper-

imentation is needed to determine the frequencies of movement needed by each MTD

approach. If the adversary is able to attack the system more quickly than the defender

reconfigures the systems, the adversary can continue to make progress towards exploiting

the system until they eventually succeed. In this scenario, the effectiveness of the MTD

technique would strictly be the delay introduced to the adversary. A certain amount of

delay may be the primary goal of the defender, which would make this approach feasible.

On the other hand, if the goal of the defender is to prevent the adversary from successfully

attacking a system, independent of time delays, then the MTD technique would be con-

sidered ineffective. We evaluate and measure the frequencies of randomization for each

MTD based approach to be effective in protecting against a variety of adversaries.

24

For each of the MTD technologies developed as part of our research, we evaluate their

effectiveness within a virtualized environment and within a representative environment

of a control system in order to verify and validate the MTD techniques in theory and in

practice. Although every environment is different and will yield a distinct set of results,

without a representative ICS test environment and associated results, it is difficult to

anticipate all variables that could materialize within an operational network.

Another goal of our research is to generalize the measurements that quantitatively deter-

mine the effectiveness of each MTD technique so that they can be applied more broadly

towards a variety of environments outside of ICS. The effectiveness of each MTD defense

will change and be dependent upon the environments that they operate within. “Internet

of Things (IoT)” describes environments where a large number of physical items commu-

nicate with one another, machine-to-machine communications and person-to-computer

communications, that will continue to be extended to other physical “things” [59, 60, 61].

For example, path randomization may be more limited in an ICS environment versus an

IoT environment as the real-time constraints may not necessarily be a primary driver in

an IoT environment. We parameterize the adversaries’ capabilities, the delays introduced

to both adversary and defender, and the environment of operation as part of the contri-

butions of our research. Many MTD strategies lack quantitative measurements [62] that

capture the effectiveness of such techniques outside of specific ad-hoc scenarios. Further-

more, the precise period in time at which to diversify is also an important unexplored area

of research that needs to be taken into consideration. For example, it may not be bene-

ficial to continuously load the operational system by constantly re-randomizing different

parameters when the system is idle and not under attack or any sort of threat. Our results

for port randomization show that randomization periods should be based on a combina-

tion of the number of probes and the time units since the previous randomization period

occurred instead of solely based on time units alone. Our research also combines and

measures several MTD techniques categorized by type [36] to find the adversary-defender

tradeoffs that elevate the overall system security.

25

Combining the techniques mentioned above to create an MTD solution that provides

full anonymity is needed for time critical systems. ICS environments fit this need and

currently have no single solution existing to counter the reconnaissance phase of an at-

tack. Some of the areas that need to be addressed from the prior work identified in this

chapter are reducing the overhead costs of multiple layers of encryption, evaluating MTD

techniques within an ICS environment, developing metrics on the effectiveness of MTD

strategies, scaling up the MTD techniques to a large number of nodes, reducing the num-

ber of single points of failure, and relaxing the requirement to hide nodes participating

in the anonymous service. Addressing these areas of research will provide insights into

when and where MTD techniques can be effectively deployed. Additionally, taking into

consideration that ICS environments are composed of both legacy and modern devices

is an area of research that is needed. Many of the legacy (and some modern) devices

may not be capable of implementing IP randomization, port randomization, and overlay

networks on the end devices directly. A few of the reasons for this are that many of the

end devices found within an ICS environment contain proprietary software, proprietary

firmware, or are legacy devices without the computational resources available to imple-

ment new security features. To resolve these issues, we have researched and developed

a transparent solution to the end devices that merges the above capabilities in an ICS

environment, external to the end devices.

26

Chapter 3

MTD Applications and Scenarios

MTD strategies can benefit a broad range of environments that span enterprise IT systems

that are widely connected and ICS networks which are completely isolated from the In-

ternet. Each environment has different requirements and constraints for which the MTD

approaches and parameters must be specifically configured in order for the strategy to be

feasible in a practical setting. Some of the MTD parameters that can be adjusted include

the frequency of reconfigurations, the amount of entropy supplied to the MTD technique

when performing IP randomization, the maximum number of hops between endpoints

tolerable when performing path randomization, the size of a binary when performing ap-

plication randomization, and the number of SDN controllers available as part of a cluster

to support crash tolerant and Byzantine fault tolerant algorithms. The requirements and

constraints of these systems include meeting strict performance measurements (latency,

bandwidth, and throughput constraints), satisfying the North American Electric Reliabil-

ity Corporation (NERC) Critical Infrastructure Protection (CIP) Standards [63], the In-

ternational Organization for Standardization (ISO)/International Electrotechnical Com-

mission (IEC) 27000 series of Information Security Management Systems standards [64],

and conformance to the National Institute of Standards and Technology (NIST) Cyber-

security Framework [65].

Each environment has their own unique set of requirements and constraints that must

be met in an operational setting. Because MTD approaches can be applied broadly

27

across a number of environments, a few examples of use cases will be discussed in this

chapter. Each of these environments will serve as motivating examples for the types of

scenarios where MTD strategies are effective techniques for providing additional layers

of defense. The examples will also document the parameters of the MTD strategies that

can be adjusted to meet the requirements and constraints of the target environment. The

focus of our research is on ICS environments, but the approaches can be applied similarly

to the other environments described. In this chapter we discuss what some of those appli-

cations and environments might look like before narrowing our focus on ICS environments

in Chapter 4 and beyond.

3.1 Industrial Control Systems

Examples of systems that are categorized as ICS include the electrical power grid, oil and

natural gas refineries, and nuclear power plants. The primary requirement for many of

these systems is to maintain high availability and integrity [2]. In the electrical power

grid, the high availability requirement comes from the criticality of the types of systems

that depend on the power grid to operate (hospitals, governments, educational institu-

tions, commercial & residential buildings, etc.). Figure 3.1 shows an example power grid

and the components found at various layers of the network. These systems involve a num-

ber of utilities communicating with one another and the distribution of power across a

geographically disperse area of customers. A study was performed with the goal of quan-

tifying the economic costs associated with service interruptions to the U.S. power grid

and are estimated to be approximately $79 million annually [66]. From the 2003 blackout

in New York [67], the estimated direct costs were between $4 billion and $20 billion [68]

while there were also in excess of 90 deaths [69]. Though these interruptions were not due

to remote attacks over computer networks, such attacks are capable of causing similar

disruptions. The need for computer security within an ICS setting is clear as the impacts

and consequences of downtime can be dire.

28

Figure 3.1: An example power grid that shows the high level components from generation
of power to transmission to distribution and finally to delivery at a residential home.

3.1.1 Use Case

Because ICS systems operate with both legacy and modern devices, there is a mixture

of serial and IP communications. Typical protocols deployed within ICS networks in-

clude Modbus [70], Distributed Network Protocol (DNP3) [71]. and Process Field Net

(PROFINET) [72]. These protocols are widely used within ICS environments and many,

such as Modbus, were not designed with security in mind since these protocols were orig-

inally intended for serial communications, and only later expanded, with Modbus TCP,

to function over IP networks. Still the expectation was that such IP networks would be

controlled and isolated. Modbus is a protocol that can be used to read and write memory

values to ICS end devices, such as PLCs or industrial computers that can either sense

readings from equipment or perform physical actions based on digital inputs received.

Some of the physical actions include opening or closing a valve within a water pipeline,

opening or closing breakers within a power system, or shutting down a power plant.

Given that ICS systems are becoming more interconnected to business networks for ease

of maintenance and management, remote attacks over computer networks become a real

possibility since the business networks are connected to the Internet. However, as demon-

strated by Stuxnet [7], a network connection to the Internet is not a requirement to exploit

a system, and the attack against Home Depot [73] shows how vulnerable operational tech-

29

nology can be exploited to penetrate additional systems. In a scenario where the Modbus

protocol is configured to read and write memory values from and to, respectively, a PLC

that controls a physical process, an adversary could launch a man-in-the-middle (MITM)

attack [74] to spoof values read/written to the PLC’s memory. Since legacy PLCs are

fundamentally different from the systems we are accustomed to working with (in terms of

the memory and processing resources available) and because they were designed with the

understanding that they would be used only within closed system environments, integrity

and authentication checks were typically not built-into these systems. As ICS environ-

ments have evolved, PLCs and other end devices are becoming more connected externally.

As a result, end devices that do not have integrity and authentication checks built-in are

susceptible to adversaries eavesdropping on communications and/or maliciously modify-

ing those communications via MITM attacks. To mitigate such an attack, a defender

could deploy a number of strategies to protect against this threat.

If the adversary has direct access to the network and has the ability to observe or modify

traffic, spoofed packets can be injected or replayed into the network. The goal of the

adversary in this scenario would be to maliciously write incorrect values into a PLC’s

memory space to cause an unintended physical action to take place within the system.

One defense that could protect against an attack where the adversary crafts and injects

packets into the network could be to deploy a MTD strategy that randomizes application

port numbers in the communication channel (the Modbus standard port number is 502).

Continuously changing this value in time would require the adversary to constantly track

and learn the new random mappings that are active. Another defense that can be deployed

would be to configure a secure communication channel between the endpoints to prevent

the adversary from maliciously observing and spoofing traffic. This solution would require

the adversary to compromise the underlying encryption algorithm or a cryptographic key.

The optimal solution that a defender should select depends on the capabilities of the

end devices as well as the amount of delay that can be tolerated by the network. If the

30

end devices are capable of supporting some of the more well-established modern encryp-

tion algorithms, such as the Advanced Encryption Standard with at least a 128 bit key

length (AES-128) [75], then that is the ideal solution. However, the end devices may

either not be capable of supporting AES or they may not be able to afford the compu-

tationally expensive tasks, in terms of central processing unit (CPU) utilization [76], to

support an encrypted channel. The amount of CPU available depends on the current

load of the system. The other option is to deploy a gateway system that is capable of

serving as a proxy to harness the necessary security protections [77, 78, 79, 80]. The

MTD approach described above follows the gateway solution and is capable of minimally

delaying the network communications while adding on an additional layer of defense into

the network. The parameters of the MTD techniques can then be adjusted to meet the

criteria required by the ICS system to maintain a high availability system while avoiding

the computationally expensive price of encrypting all communication channels.

3.1.2 Constraints

One of the major challenges for new technologies to be deployed within ICS environments

is the fact that legacy and embedded devices occupy a large portion of these systems.

Some of the devices found are decades old and do not have the processing or memory re-

sources available to harness modern security technologies. This can be attributed to the

fact that many of these systems were developed starting from the 1880’s to the 1930’s [81]

and many legacy devices are still in place today. Another constraint is that, even if the

devices are modern and capable of harnessing new security technologies, the software and

specialized hardware are often both closed and proprietary [2]. The proprietary nature

creates a challenge for security researchers to understand, integrate, and test new secu-

rity protections directly into the end devices themselves. In this scenario, an additional

gateway system is typically introduced to proxy the end devices with the new security

technologies enabled. This proxy creates an additional hop that packets must traverse

which affects latency.

31

Another challenge is the diverse set of equipment that can be found within ICS envi-

ronments. These devices, from multiple vendors, must interoperate with one another

which is a challenge of its own. Adding computer security protections into each of these

devices directly in a vendor neutral way requires agreement and collaboration between a

number of competing parties. This is a challenge that is outside of the technical scope

of work and can often times be the most difficult piece of the puzzle. These constraints

cannot be ignored as new security technologies must be retrofitted into the existing en-

vironment with competing vendors working together, as completely replacing all of the

equipment is not a valid option.

3.1.3 Requirements

ICS systems have several requirements, regulations, and standards that must be met. Per-

haps the most important requirements for ICS environments are to minimize the amount

of delay introduced into a system and to ensure the integrity of the commands commu-

nicated within these environments. Latency is one of the primary metrics used and is

typically constrained to 50 milliseconds and in some cases can be in the nanosecond [82]

scale. Any delays on the operational network can result in instability of the power sys-

tem [83]; therefore new security protections must meet the strict time requirements to

be relevant and feasible within these systems. Integrity is also a key requirement as

data integrity attacks could manipulate sensors, control signals, or mislead an operator

into making a wrong decision [10]. Also, interoperability requirements, as mentioned in

the preceding subsection, must be met. The International Electrotechnical Commission

61850 (IEC-61850) [84] standard has outlined a general guide to achieve interoperability.

To maximize the benefit of new security features introduced into an ICS system, these

requirements and standards need to be met.

3.2 Information Technology Systems

Enterprise networks and business networks are often categorized as IT systems. IT sys-

tems, like ICS systems, also have a mixture of legacy and modern devices. However, in

comparison to ICS systems, most computing systems in enterprise environments are com-

32

paratively modern. Even with potentially 5 or 10 year-old versions of Windows or Linux

running, these systems generally outperform their counterparts in ICS environments and

communicate over IP based networks through Ethernet, fiber, or wireless connections [85].

IT systems are also not necessarily isolated from the Internet and may be more widely

accessible in comparison to an ICS environment. An example enterprise network can be a

network with two departments that each have access to a variety of network services. Each

department would also have external access to the Internet through a demilitarized zone

as shown in Figure 3.2. Modern security protections are also available in these networks

since they generally have enough CPU and memory resources to implement and execute

security features. Given that these networks are widely accessible, there are benefits to

both the defenders and the adversaries of these systems.

Figure 3.2: An example enterprise network with the core layer supporting the backbone
of the network, the distribution layer supporting communications within the enterprise,
and the access layer connecting end users and servers. The diagram here shows two
departments (A and B) with access to web, email, and human resources servers. These
networks also typically have an Internet connection through a demilitarized zone to protect
the network with firewall, proxy and security services from external threats.

33

The defenders of these systems can receive alerts, perform analysis on suspicious ac-

tivity, and actively defend against ongoing threats while inside or outside of the office.

The defenders also have access to a wide range of tools that can assist in automating the

detection and response of threats within networks. IT systems also have a larger commu-

nity of IT system administrators who are similarly tasked with defending their systems.

This community is quite a bit larger than that of ICS security specialists because IT sys-

tems are more widespread and accessible to the general public. IT security administrators

can also communicate and federate their tools to correlate events, share observed threats

and mitigations, while also having access to the latest security tools [86]. Although the

IT system administrators can be perceived to have a strong advantage in securing their

networks over that of ICS system administrators, they also have the challenge of facing

well-resourced adversaries..

The adversaries also have a large community of capable, determined, and motivated

individuals to accomplish their goals in exploiting IT based systems. Botnets [87], or

compromised systems that are under the control of an adversary, can be purchased in

large amounts (in the tens of thousands) to assist an adversary in launching a distributed

denial of service (DDoS) attack [88]. Prices per bot are reported to be as low as $0.03-

$0.04 per bot according to a Symantec report [89]. Newly discovered zero-day exploits [90]

can even be purchased on the black market for more immediate use. Another advantage

that favors the adversary is the ability to acquire the software and equipment deployed

within IT systems so that they can perform offline analysis and exploitation. Once the

adversary is confident in their testing, they can then launch the actual attack against the

operational system with a high level of confidence for success.

3.2.1 Use Case

Since IT systems are widely connected, potential adversaries may already have access

to the IT system that they are attempting to exploit. In an enterprise setting, one sce-

nario could be focused on an adversary who has the goal of gaining knowledge about

the underlying network to plan and launch an attack. The reconnaissance phase of an

34

attack is the first step in the so-called “cyber kill chain” [91]. Disrupting this process and

adding MTD techniques to randomize IPv4 addresses is one possible mitigation strategy

that can be deployed by a defender of the IT system. In this scenario, the goal of the

defender would be to re-randomize IP addresses every instance in which an adversary has

discovered an IP address on the network in order to invalidate that adversary’s knowledge.

Another use case is in a similar but upgraded environment where IPv6 addresses are

configured. The MTD strategy of randomizing IPv6 addresses buys the defender 96 ad-

ditional bits of potential entropy since IPv4 addresses are limited to 32 bits and IPv6

addresses contain 128 bits. In an IPv4 setting, an adversary can brute force the entire

IP space and find the random mappings, depending on how frequently the defender re-

randomizes IP addresses and the specifications of the adversary systems. Additionally,

distributing the adversary can defeat an IPv4 randomization scheme by brute force more

quickly, however the distributed attack can also be noticeably observed and potentially

detected by a defender. The goal of MTD applied towards IPv6 addresses is to increase

the difficulty for an adversary to reverse engineer the random IP address mappings since

these addresses contain 128 bits. Even in a distributed case, a brute force attack would

be unlikely to succeed as the adversary would be extremely noisy.

3.2.2 Constraints

The operational constraints a defender faces within an IT enterprise system includes

maintaining high Quality of Service (QoS) standards [92], protecting sensitive/proprietary

hardware and/or software within the network, and enforcing the properties of confidential-

ity, integrity and availability within the active network services along with their associated

communications. The defender can accomplish each of these goals by deploying a number

of off-the-shelf or open source security tools. Economics is another constraint for enter-

prise IT defenders who must purchase and maintain an additional set of tools to protect

their network. It is often a difficult task to quantify the return on investment [93] for

computer security protections which makes for a challenge when attempting to convince

decision makers to include any new security protection.

35

From the perspective of the adversary, one of the main goals is to limit the amount

of noise introduced into the IT system so that they can go by undetected. The goal of

the adversary is to launch an attack with the highest probability of success which may

require extended periods of persistence within the network. If the adversary is detected,

then they may be forced to completely change their approach all together. Once the ad-

versary achieves success, they may or may not desire persistence within the environment

depending on their goals. The adversary is well positioned since they have continuous

access to many IT systems and they also have a wealth of resources available to plan,

launch, and execute an attack within an enterprise environment.

3.2.3 Requirements

One of the requirements of the defender is to install, support, and maintain any new

security tools introduced into the network. The tools installed should elevate the level of

security and not hinder the job of the security operation center staff. The defender must

also understand how the tools work individually and the implications, if any, of using

the tools in combination with other possibly already deployed tools. The security tools

themselves should not introduce any new vulnerabilities when integrated. It is important

for the security tool to be effective and not become a target. One last requirement is

that the defender must ensure that the new security tools do not violate any of the QoS

parameters configured. Any negative impacts on the network itself can create losses of

revenue and productivity within an enterprise IT environment.

3.3 Cloud Computing Systems

Cloud computing environments provide several cost-effective services that are available

on-demand from a pool of configurable computing resources, typically managed by a

third party, for consumers to reserve and access at any time [94]. Examples of the ser-

vices provided include Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS). An example network topology of several users accessing

cloud computing resources is shown in Figure 3.3. There are a number of cloud providers

36

available including public providers, private providers, community providers, and several

hybrid combinations of providers.

Figure 3.3: An example of several users accessing cloud computing resources such as IaaS,
SaaS, and PaaS services.

Cloud providers currently available to consumers include Google Cloud Platform (GCP),

Amazon EC2, Microsoft Azure, and The IBM Cloud to name a few. Each provider offers

different services and can vary in functionality, price and usability. Some of the services

cloud providers offer include storage, backup, computation, and software services. Each

of the cloud environments are flexible and scalable so that users can dynamically expand

and/or discontinue service as needed.

There are also several open source cloud implementations that users can deploy to stand

up and evaluate their own private cloud. When a private cloud is configured, certain

guarantees can be provided, such as the location of the servers, the verification of the

users who have access to the cloud environment, and full control of the operations of the

37

cloud environment. These guarantees are not necessarily true within a public cloud envi-

ronment. OpenStack is one example of such an implementation. These open source cloud

services provide the user with more control and the flexibility to inspect and modify the

implementation details as needed. However, this may come at a higher cost if the entire

source code must be evaluated and assessed for security vulnerabilities before deployment.

Although control is obtained with the physical devices, the source code used to deploy

the private cloud may have embedded vulnerabilities making the system accessible exter-

nally. Furthermore, a security assessment is highly dependent on the team and scope of

the assessment being performed so all vulnerabilities are not guaranteed to be identified.

Consumers have many options when it comes to selecting a cloud provider, each with

their own advantages and disadvantages.

3.3.1 Use Case

Cloud computing services can be a cost-effective solution for consumers to establish a

robust infrastructure of resources that includes backup services, large amounts of stor-

age, and the latest computing resources found on the market today. It is important to

note that there are several security concerns that consumers must consider before making

use of cloud services. One potential issue is that the resources made available within a

cloud environment may be shared between many users. Several researchers or competing

companies may be coexisting on the same physical system. If these resources are not

clearly separated and protected, there is the possibility that proprietary information can

be exfiltrated or compromised. Multi-tenant systems will also suffer from having high

system loads in terms of processing, memory, and network metrics.

An adversary with the ability to bypass security protections that are designed to pre-

vent lateral movements on a system [95] can potentially compromise applications on the

target system. For example, an adversary aware of the applications running on each phys-

ical system that is managed by a separate customer on a cloud provider’s environment can

target and attempt to make a lateral movement. Additionally, an adversary can perform

offline analysis of the target applications over extended periods of time with the goal of

38

finding an exploitable vulnerability that can be launched on the operational system at

the time of the adversaries choosing.

A defender can protect against this scenario by introducing automated, artificial diversity

into the application binaries. There are many opportunities to introduce diversity into the

compilation process of an application such as randomizing the instruction set [96], ran-

domizing register allocation schemes, or substituting different but equivalent sequences of

instructions when possible [97]. Another approach is to randomize the layout of function

locations in memory. In the scenario where an adversary is targeting a specific application

binary, the adversary will need to target each unique binary separately. The approach

would also reduce the success rates even when offline analysis is performed since each

binary will be unique. In the event of a return-oriented program (ROP) [98] based attack,

an adversary depends on function locations to be successful. Randomizing the function

locations within memory would provide a layer of defense against ROP based attacks that

the adversary would have to first bypass in order to initiate an attack.

3.3.2 Constraints

Cloud environments have the ability to support a wide range of scenarios that each have

their own unique sets of constraints. Cloud providers may limit the QoS available to a

consumer based on the consumer’s needs and budget. The consumer would then have

their selected constraints to satisfy, such as storage or memory constraints for example.

The services desired by the consumer may also require specialized hardware or software

that may or may not be possible to integrate into the cloud provider’s environment. An-

other constraint to the defender would be the lack of control over the other users sharing

or competing for the same resources; this may be an automated process or determined by

the cloud provider but is largely outside the control of the consumer.

An adversary would similarly have the same set of constraints as the defender in a cloud

environment. When evaluating a computer and network security defense strategies, how-

ever, the adversary is typically given more power to evaluate the effectiveness of the

39

defense under several worst case scenarios. The adversary is typically believed to have

a larger budget and a larger number of resources available to accomplish their goal of

exploiting a system. As previously mentioned in the IT and ICS environments, the adver-

sary may have the constraint of needing to be stealthy, particularly in cases where they

would like to remain persistent for an extended period of time.

3.3.3 Requirements

The requirements of the cloud environment often depend upon the needs of the consumer.

For example, it may be desired that the computational resources provided by the cloud

provider reside in a certain geographic location or region. This is an example of a request

that could come from government entities that would like to make use of a cloud environ-

ment. The cloud provider has the ability to support such requests in many cases. The

U.S. standard used to support cloud environments suitable for government entities is the

Federal Risk and Authorization Management Program (FedRAMP) [99]. It is ultimately

up to the consumer to decide what the requirements of the provider must be. It may

also be required that the cloud services be offered privately to a consumer, with no other

parties sharing those resources. These types of requirements must be enforced by the

cloud provider and the consumer must, in some cases, trust that the cloud provider is

appropriately implementing these requirements.

The requirements of the adversary are first to gain a presence on the cloud provider’s

environment. Depending on the adversary’s goal, the next step for the adversary is to

pivot and exploit another system within the environment. The adversary would ideally

be stealthy in their attack so that the user and/or the provider would not detect their

presence. In general, the adversary must operate within the bounds of the cloud provider,

as may be defined by the defender, during their attempts to launch an attack.

40

Chapter 4

Threat Model

When evaluating the new computer security protections for their effectiveness, a threat

model must first be established to define the adversaries’ capabilities and the assumptions

placed on the computer security protection. Additionally, the threat model describes the

types of adversary capabilities that the security protections do not protect against. The

focus of our research is on ICS based systems, including the network devices and the end

devices in those environments. The threat model as a whole makes it clear when a par-

ticular protection is and is not an appropriate solution for a given environment or use case.

The network devices we examine in the work presented in this dissertation are comprised

of SDN capable switches and non-SDN capable switches. SDN capable switches provide

administrators with an interface to dynamically program switching decisions and develop

custom switching algorithms directly into the switch. The programmer can interact with

a switch directly or through a controller system that also communicates with all of the

SDN-based switches configured in the network. Traditional switches do not have the ca-

pability to be reprogrammed and are often times proprietary without a user Application

Programming Interface (API) available. Traditional switches are also distributed in na-

ture whereas SDN devices are managed through a centralized controller system that has

a complete understanding of the network topology.

41

The MTD strategies we examine for our research are those that introduce randomization

into IP addresses, port numbers, inter-communicating network paths between systems,

and the combination of the three techniques joined together. When IP addresses, port

numbers and communication paths are randomized and deployed as defensive strategies,

the threat model includes adversaries with the following capabilities:

• network access to the traditional network switches (non-SDN capable switches)

• access to the Switched Port Analyzer (SPAN) ports of all network switches outside

of the edge switches

• ability to observe network traffic traversing traditional network switches (non-SDN

capable switches)

• ability to collect network traffic traversing traditional network switches (non-SDN

capable switches)

• ability to correlate end points within a network when in possession of packet captures

• ability to tap into network communication links outside of the edge switches con-

nected to the end hosts

• ability to launch Denial of Service (DoS) attacks

• ability to launch Distributed DoS (DDoS) attacks

• access to the SDN controller(s)

In summary, the threat model defined for our research considers adversaries with access

to network traffic, either just captured or also removed, injected, or modified in real-time

from the interior switches of the network. Additionally, we assumed that the adversary

will attempt to correlate all endpoints given the packet traces captured. Another as-

sumption is that there may be several adversaries collaborating and attacking the system

together at the same time or separately. For the DoS and DDoS attacks mentioned above,

we have captured metrics to provide the thresholds on how to detect those types of attacks

42

given the number of probes observed within the network. Since the controllers aggregate

all randomized information, we have developed Byzantine fault tolerant algorithms to

protect these systems flows from being tampered with since all of the data is available

for replication and consensus agreement. However, although adversaries with access to

the controller would not be able to modify any one controller individually, the adversary

would have the ability to understand the random mappings since the controller(s) aggre-

gate all of the network flows installed within the network.

Also of importance are the adversaries that this threat model, as applied towards IP,

port and path randomization, does not protect against. This threat model does not

consider adversaries that are in possession of any of the following capabilities:

• access to the end devices behind the network switches

• access to the edge switches that are directly connected to the end hosts

• administrative access to the SDN capable switches

Adversaries with any of the above listed capabilities would have access beyond the point

at which the MTD techniques protect against. Adversaries with access to the end devices

would have access to the underlying information being randomized as well as the systems

that are in direct communication with one another. Adversaries with access to the edge

switches would be able to observe and identify the end hosts whose information is being

randomized. An adversary with administrative access to the SDN switches would be able

to learn all flows installed on those switches which contain the information that is being

randomized, in particular, the flows to randomize network paths and IP addresses on the

edge switches.

It should be noted that when path randomization is enabled, the number of SDN ca-

pable switches should be increased as much as possible. As the number of SDN capable

switches grows, so does the number of possible paths within the randomized pool, making

it more difficult to correlate end points within a network given the additional entropy

43

introduced. The number of hops should be considered as the source of entropy for this

strategy, so the controller or switches themselves are not compromised. As the number of

hops available increases, so does the difficulty level for an adversary to correlate endpoints

in the network.

Finally, an additional area of interest to our research is the amount of information that

can be gained from side channel attacks on the proposed MTD techniques. Specifically,

of interest to our research is the information that can be gained from an adversary who

obtains knowledge about the parameters of the MTD techniques and what advantages

that provides them. One example of a side-channel attack is an adversary learning the

frequencies at which the MTD strategies reconfigure the system based on network latency

measurements. In such a scenario, our research focuses on investigating possible mitiga-

tions to defend against such side-channel based attacks.

The threat model and security protections developed as part of our research do not pro-

tect against every possible adversary, but do add an additional layer of defense. There are

also a variety of other side channel attacks that may be available to extract information

about the computer security defense such as attacking the random number generators

that generate the random MTD mappings, but these additional side-channel attacks are

outside the scope of this research and is an area for future research. We also assume that

the software running in the SDN switches and controllers, such as the packet matching

software, is secure. For the purposes of our research, the threat model is used as a basis

so that the effectiveness of the MTD techniques can be quantitatively measured based on

the criteria outlined in this section.

4.1 Operational Impacts

Each of the MTD techniques introduce additional layers of defense against an adversary

who has the goal of gaining reconnaissance information from a network. Without these

defenses, network access alone would be enough for an adversary to learn the IP addresses,

44

port numbers and communication patterns by passively observing the network packets

traversing the network. After observing this information passively, the adversary can

then plan, research and launch attacks against the IP addresses or services at a later

time. One of the goals of our research is to introduce delays into the reconnaissance phase

of an attack and measure those delays to determine the effectiveness of each technique.

Ideally, the delays will be a significant enough amount of time to detect or deter an

adversary from launching a successful attack. The real-time constraints and requirements

of ICS environments are also taken into account and those impacts on the operational

network are measured. The tradeoff between security and usability as well as finding a

balance between maximizing the adversarial workload while minimizing the impact to

both the defender and to the operational network is the focus of our research. Some of

the operational metrics measured and captured include latency, throughput, bandwidth,

network utilization, CPU utilization, and memory utilization.

4.2 Adversarial Models

We have assessed the MTD strategies developed using a variety of adversaries to measure

the effectiveness of each technique. A single adversary is introduced into the network that

follows the threat model outlined above. The techniques for each of the adversaries follow

the strategies for randomized port numbers found in RFC 6056 [100]. These strategies are

chosen since they are already established as a standard that is widely adopted to select

random port numbers and serves as a baseline measurement for the effectiveness of each

MTD approach. Side channel attacks are also taken into account to evaluate each of the

MTD techniques. One of the side channel attacks evaluated is the information gained

from observing network latency between a pair of end devices. In this case, an adversary

can potentially learn and understand how frequently a defender is reconfiguring the sys-

tem with their deployed MTD strategy. With this knowledge, the adversary would have

the necessary information on how quickly their attack must be crafted and delivered to

successfully exploit the system.

45

The same set of tests and evaluations are performed against distributed adversaries. The

goal is to simulate what a defender can expect in the event that a DDoS is carried out by

a number of adversaries simultaneously. The information gained from the different types

of adversaries evaluated are then taken into account to improve and build upon the MTD

techniques developed. The improvements on each of the MTD techniques developed are

also bounded by environmental constraints and requirements.

46

Chapter 5

Approaches to Randomization

We implemented and evaluated three MTD techniques to quantify their effectiveness, both

individually and in combination of one another. IP modification has the goal of creating

uncertainty and increasing the difficulty for an adversary to discover and track the systems

existing within a computer network. IP randomization is implemented using an SDN

based approach with the flow rules installed at each switch controlling the randomization

intervals. Port modification has the goal of hiding the services offered by a system. Port

randomization is implemented as a standalone solution that is placed at each individual

end point within the network. Path modification supports both of the previous two goals

and also has a third goal of preventing an adversary from learning the end points of a

network by observing traffic and performing analysis to correlate the end systems that

are actively communicating with one another. Path randomization has been implemented

in an SDN based approach with the flow rules controlling the next hop switches in the

network. Each technique provides its own sets of benefits and are described in more detail

in the sections that follow.

5.1 IP Randomization

The first MTD defense we developed focuses on randomizing IP addresses at user config-

urable frequencies to evade adversarial discovery. The randomization algorithms reside

at the network layer, transparent to the end devices themselves, for both usability and

scalability purposes. Improved usability comes from the fact that the randomization al-

47

gorithms are managed at the network level and do not need to be deployed at every

end device. The algorithms are built into the SDN framework which consists of several

SDN-capable switches and a management controller system. The management burden is

reduced since the network security personnel would only have to maintain the network

layer devices as opposed to all of the end devices of the network (which typically outnum-

ber the network layer devices by far). The SDN architecture provides a scalable solution

where any new end device introduced into the network will automatically have the IP

randomization MTD defense activated and enabled, without the end user necessarily hav-

ing any knowledge that the MTD defense deployed. Additionally, there are typically far

fewer end devices than there are network based devices within a network.

An SDN based approach is also used so that routing and switching logic can be customized

to control the frequency at which source and destination IP addresses are randomized.

The customized logic can also account for the periods of time when a packet is traversing

the network and new randomized source and destination IP addresses are installed on

each of the switches in the network. The random IP address mappings are programmed

by flow rules that are managed by a centralized controller. Each flow rule has a “match”

specification and an associated “action” to perform depending on if the match criteria is

satisfied. The flow rules for this implementation match a packet based on a combination

of the source IP address, the destination IP address, and the incoming physical port of

the switch that the packet was received on. If the incoming physical port and source IP

address that the packet was received on corresponds to a host that is directly connected

to the switch, then the action taken within the flow rule is to rewrite the source and

destination IP addresses with a set of newly generated random source and destination IP

addresses. Otherwise if the host is not directly connected to the switch (but rather to an

interior switch interface), the packet is forwarded to the next hop switch. The location

of the next hop switch is specified within the flow rules that matched the randomized

source and destination IP addresses for that particular MTD reconfiguration interval.

The random mappings are communicated to the SDN controller via a Python wrapper

48

script that updates the mappings based on predefined user configurable randomization

intervals desired.

Once the packet reaches the edge switch that is directly connected to the destination

host, the original source and destination IP addresses are restored within the packet back

to the original source and destination IP addresses. The result of this approach is that

an adversary passively observing traffic, on an interior non-SDN capable network switch,

will no longer automatically learn the true IP addresses of the end hosts simply by ob-

serving network traffic passively; in this scenario, the adversary would instead observe a

pair of pseudorandom IP addresses traversing the network. The pseudorandom IP ad-

dresses that are managed by the controller are continuously changing at user configurable

time intervals and the random mappings are generated using a pseudorandom number

generator. For this implementation, the entire 32-bit IP address is randomized since we

are analyzing a flat network that contains only layer 2 switches. If routers are included

in the topology, a quick solution to deploy this MTD technique would be to only modify

the host bits of the IP address. This solution would allow layer 3 devices to appropriately

route packets without having to modify the underlying routing protocols within those

devices. A similar approach could have also randomized MAC addresses or even set all

MAC addresses to the same value since the match criteria of the SDN flow rule does not

depend on MAC addresses. Manipulation of MAC addresses was not performed in this

research but can easily be adapted to do so. We have developed a prototype that has been

tested on topologies of over 300 end devices operating within a virtualized environment

using mininet [101].

The algorithms to randomize the IP addresses had to be slightly modified in practice

to work correctly and avoid packet losses. The OpenDaylight controller [102] is an open

source model-driven SDN controller which communicates to SDN capable devices through

the OpenFlow protocol. The OpenFlow protocol [103] is a standardized interface with

an internal table that manages communications between controllers and the flow rules of

49

how to switch packets. OpenFlow version 1.3 supports axillary connections to the con-

troller(s), functions to control the rates of packets through meters per flow, and cookies

can be added as identifiers to each flow rule to help add, update, and delete flow rules

as desired. Most vendors developing SDN capable switches support the OpenFlow 1.3

protocol.

During our experimentation, it was observed that when using the OpenDaylight im-

plementation packets would occasionally be dropped. The dropped packets occured in

scenarios where new flow rules were installed slightly before a packet arrived at the last

hop SDN switch, which is the switch that is responsible for delivering the packet to the

final destination system. This scenario is shown in Figures 5.1(a) - (g). The hardtimeout

parameter within the OpenFlow protocol is used to configure the time period in which a

flow rule is active. The cause for the dropped packets is that the SDN switches are not

perfectly synchronized in time with each other when new packets flow rules are installed

at each of the switches. These minor variations in flow rule installation time cause the

flow rules to expire at slightly different times through the hardtimeout value specified.

The small window of time where two switches may not have a consistent view of the

network, in terms of the active flow rules installed, needed to be addressed and corrected

for the solution to be usable in practice.

To correct this issue, new flow rules are initialized and installed on each of the SDN-

capable switches by the controller. The old flow rules are configured to overlap with the

new flow rules at a user configurable period of time, 3 seconds in this case. When new

flow rules are installed at each of the SDN-capable switches, they are installed with a

lower priority field, within the OpenFlow protocol, than the existing flow rule previously

installed. After the controller sends the new flow rules to be installed at each of the

switches, the controller receives an acknowledgment from each switch that the new flow

rule was accepted and installed. The new flow rules, however, are not actively matched

at this point since they have a lower priority than the previous flow rules installed. The

50

(a) Two hosts would like to communicate over
an SDN network.

(b) The controller installs Flow Rule 1 on SDN
switches A and B to randomize IP addresses
between Host 1 and Host 2.

(c) After a period of time, new randomized
source and destination IP addresses are gen-
erated to send to each of the SDN switches A
and B labeled as Flow Rule 2. At the same
time Host 1 sends a packet to Host 2.

(d) The new flow rule is installed on the SDN
Switch A but has not reached the SDN Switch
B due to network congestion. The packet from
Host 1 is matched with Flow Rule 2 installed
at SDN Switch A

(e) The source and destination IP addresses are
rewritten according to Flow Rule 2 and are for-
warded to SDN switch 2. Flow Rule 2 has still
not yet reached SDN Switch B.

(f) The packet is received on SDN Switch B and
since Flow Rule 2 has still not yet reached SDN
Switch B, there is no match with Flow Rule 1
which is the only rule installed.

(g) The packet is dropped since Flow Rule 2
has not yet reached SDN Switch B. Flow Rule
2 is now installed on SDN Switch B, but it is
too late.

Figure 5.1: The sequence of events that cause packets to be dropped when randomizing
source and destination IP addresses within an SDN setting.

51

(a) Two hosts would like to communicate over
an SDN network.

(b) The controller installs Flow Rule 1 with pri-
ority 99 on SDN switches A and B.

(c) Immediately after Flow Rule 1 is installed,
Flow Rule 1 is updated to have priority 100.

(d) Flow Rule 1 is updated on both SDN Switch
A and SDN Switch B to have a priority of 100

(e) After a given period of time, the controller
pushes out Flow Rule 2 with priority 99 and
new randomized source and destination IP ad-
dresses. Host 1 sends a packet to Host 2.

(f) The packet is received on SDN Switch A and
matched on Flow Rule 1 since it has a higher
priority. Flow Rule 2 has reached SDN Switch
A but not SDN Switch B.

(g) Flow Rule 2 with priority 99 is installed
on only SDN Switch A so far. The packet is
forwarded to SDN Switch B.

(h) SDN Switch B receives and matches the
packet against Flow Rule 1 since Flow Rule 2
has not been received.

(i) Flow Rule 2 is installed on SDN Switch A
and B with priority 99.

(j) The SDN Controller immediately updates
the priority of Flow Rule 2 to 100.

(k) The SDN Controller updates the priority of
Flow Rule 1 to 99. Flow Rule 2 takes priority.

(l) Flow Rule 1 is updated to priority 99 and
Flow Rule 2 has priority 100.

Figure 5.2: The sequence of events to correct dropped packets from occurring when
randomizing source and destination IP addresses within an SDN setting.

52

next step is to swap the flow priorities of the old and new flow rules that are installed at

each of the switches. Finally, the old flow rules will eventually expire before the new flow

rules at specific time periods that depend on the user configurable setting of the overlap

window. The process of SDN flow rule installation to prevent packets from being dropped

is shown in Figure 5.2(a) - (l). This solution allows old flow rules to deliver packets to the

destination device without worrying about the slight variations in timing when the flow

rules are installed and expired. The priority field is used to determine when flow rules

become active in matching packets to randomized source and destination IP addresses.

5.2 Port Randomization

The second MTD defense developed randomizes the application port numbers of services

running on each of the end devices within the network. Port randomization was imple-

mented using the iptables packet filtering tool, a tool that is typically used to configure

and enforce firewall policies on a system. The iptables tool has several rule chains, each of

which are triggered at different points within the network stack when evaluating packets

that are sent and received. The rule chain used to randomize port numbers is the same

rule chain that manages firewall rules for network address translation (NAT) [104] based

networks. The NAT rule chain evaluates packets just before and just after they exit and

enter the network interface card, respectively. If a match is made within the iptables rule,

then the specified actions are performed on the packet. The actions for port randomiza-

tion involve rewriting the source and destination port numbers, based on a pseudorandom

number generator that is seeded based on time, to random values.

Each host in the network is initiated with the same agent software installed which are all

synchronized in time with an Network Time Protocol (NTP) server so that they can gen-

erate the same pseudorandom port mappings. Alternative methods exist to synchronize

end hosts within the network, but the approach to synchronize on time was chosen to

conceptually evaluate host based MTD solutions. The frequency of creating new random

mappings is user configurable and, in this case, has been chosen to regenerate new map-

53

pings every one second. An effect of applying this MTD strategy is that an adversary can

no longer automatically learn the services running on a network by passively observing

network traffic alone. To defeat this defense, adversaries would be required to have the

ability to perform deep packet inspection to identify the protocol and service offered by

the end devices within the configured randomization interval. This does not completely

eliminate all threats, but does add an additional layer of defense to delay an adversary or

alert an operator if previous port mappings that have expired are actively being scanned

by an adversary.

5.3 Path Randomization

The third technique developed randomizes the communication paths that packets take

within a network. This approach utilizes SDN-capable switches to install flow rules that

specify pseudorandom paths into each of the SDN-capable switches. The flow rules are

installed into each of the network devices and are replaced with new random mappings at

user configurable time periods. The pseudorandom paths are generated by the controller

which has complete knowledge of the network topology. The controller first generates all

possible paths between all possible pairs of systems when the network is being initialized.

After initialization is complete, a randomly-selected path is chosen by the controller and

the flow rules associated to that path are installed at each of the SDN switches to appro-

priately route traffic at user configurable periods. The effectiveness of this technique is

based on the amount of entropy available within the network (i.e. the number of possible

paths within the network in this case). To achieve a high level of entropy, the number

of SDN-capable switches should be increased so that there are more options of paths

that are available within the network. The greater the entropy, the greater the workload

placed on an adversary who has the goal of correlating and identifying ingress and egress

communication patterns in the network.

Without the addition of path randomization, traffic analysis is a concern for each of the

approaches described thus far. A passive adversary observing traffic may still be able to

54

determine the end points in communication by analyzing each of the network communica-

tion streams. We have developed two proof-of-concepts, one using a POX controller and

another using an OpenDaylight controller, that periodically randomize communication

paths using an SDN network. POX [105] is a controller written in the Python program-

ming language which supports the OpenFlow version 1.0 protocol. OpenFlow version 1.0

is very useful for modifying packets through flow rules which is needed to randomize IP

addresses and paths within the network. However, later in our work when we discuss fault

tolerant algorithms, the requirement for the SDN switches to communicate with multiple

controllers is necessary, which OpenFlow version 1.0 does not support.

The algorithm to randomized communication paths assumes that the SDN controller

has a priori knowledge of the network topology and that the systems wishing to commu-

nicate are part of a connected graph [106]. If the assumptions are valid, then all possible

paths between each pair of systems within the network are enumerated and stored within

a hash table stored at the controllers for quick path lookups. To determine the communi-

cation paths, the controller selects a random path between two endpoints and installs the

appropriate flow rules at each of the intermediate switches to enforce that packets will

traverse the random communication path currently selected. The high level algorithm is

shown below.

The FindAllPaths function uses the breadth-first-search algorithm and maintains a stack

to enumerate all possible paths within the network. This cost is incurred on only the first

time that the POX controller is started. During runtime, a user would pass in a parameter

to specify the time intervals when the paths of network flow rules should be re-randomized.

A user may also specify a maximum number of hops to help satisfy the constraints of the

allowable delay in the network. The maximum number of hops could also tie into the QoS

parameters for individual users of the system. If a critical process that must complete

within a certain time bound, then a lower number of maximum hops can be configured.

55

// Generate every non-looping network path between each pair of systems

// within the network

GenertePaths() {

// convert the topology into a graph

$g = CreateGraph()

// global hash table of paths from each pair of systems

$pathhash = {}{}

// enumerate and store each path between each pair of systems

for $host1 in g:

for $host2 in g:

$paths = FindAllPaths($g, $host1, $host2, [])

for $path in $paths:

$pathshash[$host1][$host2].append($path)

}

// When the packet is received at each switch, install the flow rule that

// corresponds to the random path currently selected (which changes

// in time)

PacketIn($packet) {

InstallRandomPathFlow($pathshash[$packet.src][$packet.dst])

SendPacket($packet)

}

As an example, an ongoing session is shown in Figure 5.3 where packets from one host,

h1, sent to another host, h2, originally take the path h1→s1→s2→s3→s4→h2. The

network topology, in this example, consists of two hosts, h1 and h2, along with four

switches between the two hosts. The hosts are connected in a mesh network and the path

56

Figure 5.3: An example of two hosts communicating through random paths taken as
shown in the red circled text in the command prompt window. The first path taken is
h1→s1→s2→s3→s4→h2, while the next random path taken is h1→s1→s4→h2

randomization algorithms select a random path every 1 second interval of time. After a

given period of time supplied by the user passes, the new path taken is re-randomized to

h1→s1→s4→h2.

57

Chapter 6

Fault Tolerance Theory

ICS systems must withstand faults and be resilient against attacks to survive a computer

security incident. Additionally, ICS systems must also meet several real-time constraints

that typically must be within 12-20 ms and cannot tolerate any unnecessary delays within

the operational network. Many of the MTD techniques described thus far depend upon

a centralized system for coordination and management. An example where a centralized

system is needed is when an SDN based solution is deployed, such as the IP randomiza-

tion protection that was described earlier. Because the IP randomization scheme depends

upon SDN, the controller of the SDN system can be viewed as a single point of failure. In

the event that an adversary is able to compromise the controller, the IP randomization

flows would no longer be pushed out to each of the SDN capable switches within the

network. To compensate for this scenario, fault tolerant algorithms can be deployed to

achieve a more resilient controller that can withstand system failures or compromises.

Similarly, diversity amongst the SDN controllers and SDN switches deployed can also

support the fault tolerant algorithms. A diverse set of SDN controllers and switches pro-

vided by multiple vendors would increase the difficulty for an adversary to successfully

compromise multiple independent implementations simultaneously.

The goal when introducing fault tolerant algorithms is to replicate and distribute the

controller so that there is no longer a single point of failure. Coordination and agreement

between the controllers is necessary to maintain a consistent view of the network and

58

to achieve a consensus agreement between the distributed controllers. Distributing the

controller increases the workload of the adversary and would require them to compro-

mise several controllers simultaneously instead of an individual controller by itself. The

consensus algorithms help protect against adversaries who have compromised a controller

with the goal of maliciously corrupting the data or information communicated between

the cluster of controllers.

Several approaches exist that can enable systems to mask against crashes or failures

of controllers within the cluster of controllers [107]. These approaches are referred to,

synonymously, as either crash tolerant or fault tolerant algorithms [108] within this dis-

sertation. Crash tolerant algorithms can detect system failures within the cluster of

controllers by maintaining heartbeat communications. As soon as one of the controllers

does not respond to a heartbeat communication for a given amount of time, it can be pre-

sumed that a controller has crashed. Additional algorithms exist that focus on protecting

the data and information communicated from individual controllers within the cluster

against arbitrary (including malicious) failures, and not just crashes or disrupted links.

These algorithms are referred to as Byzantine fault tolerant algorithms [109]. Byzantine

algorithms have the goal of detecting malicious controllers that have the goal of corrupting

the other controllers within the cluster. Each of these algorithms help to protect against

different types of adversaries who have different goals when attempting to compromise a

system.

6.1 Crash Tolerant Algorithms

Crash tolerant algorithms are capable of detecting individual failures within a cluster

of systems. The number of systems within the cluster dictates the number of failures

or crashes that can be tolerated within the network. After a threshold limit number of

failures is exceeded, the crash tolerant algorithm restricts the cluster from continuing to

function and process inputs received from clients. In our research, the client system is the

IP randomization wrapper software that communicates the flows that will be installed at

59

each of the SDN capable switches to the controller system. In an SDN setting, the cluster

of systems that is required for the crash tolerant algorithms to operate correctly are the

distributed SDN controllers that are installed within the network.

A crash in the cluster can be caused by an unintentional event by a legitimate user

or can intentionally be caused by a malicious actor. A crash, for the purposes of this

discussion, is considered to be a system within the cluster that is no longer responding to

network communications or that has been taken offline or is otherwise no longer reach-

able on the network. Invalid inputs, corrupted information, or abnormal behavior is not

considered to be a crash as the crash tolerant algorithms do not protect against these

types of failures. One of the main goals of the crash tolerant algorithms is to ensure that

there are a minimum number of systems within the cluster that are able to respond and

serve accurate requests from a group of clients. As a result, resiliency is improved since

crashes of individual controllers would no longer prevent the SDN switches from receiving

flow updates. A crashed controller would instead fail over to other controllers that are

correctly operating within the cluster.

The crash tolerant algorithms are desirable in scenarios where availability is a primary re-

quirement. ICS systems are ideal candidates for crash tolerant algorithms to be deployed

as limiting or eliminating downtime, unintentionally or intentionally caused, is a necessity.

In an ICS scenario, it is also a requirement that the crash tolerant algorithms do not limit

or negatively impact the operational network in any way. We measured and analyzed the

impacts and effects of the crash tolerant algorithms to quantify the operational impacts.

In order for the crash tolerant algorithms to operate correctly, several algorithms have

been developed to ensure consistency amongst the cluster of systems. Each of the sys-

tems in the cluster must ensure that they all have the same state information regarding

the systems that are operational and those that have crashed. The algorithms must also

tolerate crashes before, during, and after other failures occur within the cluster. This is

60

a challenge that the two-phase and three-phase commit protocols, described in the fol-

lowing sections, seek to address. Consistency and consensus amongst the systems within

the cluster are the major challenges when developing crash tolerant systems. As stated

earlier, the crash tolerant algorithms do not protect against compromised controllers that

attempt to communicate false or corrupted information to the other controllers within

the cluster.

6.1.1 Two-phase Commit

The two-phase commit protocol is designed to coordinate agreement between multiple

systems within a cluster to withstand potential system failures at any moment [110]. The

goal of the two-phase commit protocol is to make transactions atomic between systems

within the cluster so that all of the systems are synchronized with one another, even in

the event of network delays or potential system crashes. The clients that communicate

over the SDN network depend on the consistency of the controllers within the cluster

when their packets are traversing the network. The dependency exists because each of

the SDN switches could potentially be communicating with any of the controllers within

the cluster to receive and install the randomized flows. As part of the two-phase commit

protocol, a separate system called the “coordinator” communicates with each of the con-

trollers within the cluster when communicating state information regarding the status of

each of the controllers.

There are two states that the coordinator system must advance through and two states

that the controllers within the cluster must advance through before a transaction can

successfully be completed. The two states that the coordinator advances through are

prepare and commit. The two states that the controllers in the cluster advance through

are prepared and done. These states mark different points in the process of achieving a

consensus agreement between the cluster of controllers. These states are divided into two

separate phases within the two-phase commit protocol. The two-phase commit protocol

is shown in Figure 6.1.

61

Figure 6.1: The two-phase commit protocol between a coordinator system and a cluster of
SDN controllers. The goal is to detect and withstand faults within the SDN controllers and
to synchronize internal state information when transactions are executed on all controllers.

The first phase of the protocol is for the coordinator system to send a prepare mes-

sage to each of the controllers within the cluster. The prepare message notifies all of the

controllers within the cluster to prepare for a new transaction to begin. In this phase,

the controllers in the cluster save enough state so that they can rollback to the previous

state in the event that a failure occurs midway through the transaction. Any changes that

occur on individual controllers within the cluster are typically saved to persistent storage

locations such as a log file, in the event that a rollback is required. The individual con-

trollers within the cluster then reply back to the coordinator that either they are or they

are not prepared to begin the transaction. The coordinator then accepts the responses

from each of the systems within the cluster.

The second phase of the protocol depends on the responses received by the coordina-

tor system. If the majority of the controllers within the cluster are prepared, then the

coordinator sends a commit message to each of the controllers within the cluster. If the

majority of the controllers within the cluster are not prepared, then the coordinator sends

an abort message to each of the controllers within the cluster. In either case, the coordina-

tor will log the commit or abort message to each of the controllers. The controllers within

62

the cluster then will act accordingly by either committing or aborting depending on the

result received from the coordinator. The controllers finally will send a done message to

the coordinator to acknowledge the commit message. These steps cover the commit and

done states of the coordinator as well as the states maintained within the controllers that

are in the cluster.

In the event of a failure in any of the states for each of the phases, the goal is for the

transaction to be aborted. In the case of an aborted transaction, all of the controllers in

the cluster will rollback to their previous states. There are problems that exist within

the two-phase commit protocol that cause delays in agreement. One problem that causes

delays in the protocol is the requirement that the coordinator and all of the controllers

within the cluster be up and responsive in order to successfully advance through states.

If the coordinator is not up and running, then there is no way to know if the controllers in

the cluster voted to commit or abort the transaction. This scenario occurs when the co-

ordinator fails before logging the outcome of the votes received from all of the controllers

in the cluster. If any of the controllers in the cluster crash midway through the protocol,

then the coordinator, like the controllers in the cluster, must all wait until a timeout

period expires or until the controllers are repaired so that the coordinator can make a

decision to either commit or abort the transaction. These problems can be overcome by

modifying the algorithms to a three-phase commit protocol.

6.1.2 Three-phase Commit

The three-phase commit protocol [111] solves some of the issues that were identified in

the two-phase commit protocol. Many of the issues are solved by adding another phase

before the commit phase of the protocol. The new phase added is called the pre-prepare

phase and eliminates the time of uncertainty for all participants waiting to receive the

result of the votes from the coordinator. The time of uncertainty is the time between

the controllers sending the prepared message and the controllers waiting to receive the

commit or abort message from the coordinator. The pre-prepare phase helps reduce the

blocking period of time while waiting for either the responses from the controllers in the

63

cluster or waiting for the coordinator to be repaired. The coordinator first sends a pre-

prepare message to each of the controllers in the cluster. After the pre-prepare message

is received by each of the controllers in the cluster, the controllers will respond with a

“yes” message back to the coordinator. If the “yes” responses are not received from the

controllers, those non-responsive controllers are ignored going forward in the remaining

phases of the protocol as well as the transaction that may potentially be executed on each

of the controllers. A timeout parameter is configured to ensure that the algorithm does

not block when a new coordinator is needed or when awaiting a “yes” response from a

controller in the cluster.

The remainder of the protocol is the same as that of the two-phase protocol. The coordi-

nator sends a prepare message to all controllers in the cluster that responded with a “yes”

message. The controllers in the cluster respond with a prepared or abort message. The

coordinator then sends the commit message to each of the systems in the cluster that a

prepared message was received. The controllers in the cluster wait for the commit message

and, when received, acknowledge the commit message with a done message. The coor-

dinator receives all done messages, or times-out waiting for individual requests, and logs

the results. Finally, all controllers in the cluster that received a commit message will go

forward with the transaction. If a commit message is not received after the timeout value

expires, then the transaction is aborted. The full protocol diagram is shown in Figure 6.2.

A problem with both two-phase and three-phase commit protocols is that any communi-

cation error can cause a system in the cluster to block in execution. This is the equivalent

of a DoS attack on the communication link. A DoS attack has the same effect in that

service is denied either through saturating a link, exhausting system resources, causing a

system to go into a state where the system becomes non-responsive, causing packets to

be dropped. An adversary can achieve the same results if they have physical access to

a system by physically removing or cutting network links. A DDoS using the same DoS

strategy multiple times against several systems in the cluster would also cause a block

64

Figure 6.2: The three-phase commit protocol between a coordinator system and a cluster
of SDN controllers. The goal is to detect and withstand faults within the SDN controllers
and to synchronize internal state information when transactions are executed on all con-
trollers. An additional state, pre-prepare, is added to reduce the amount of time blocking
when the coordinator is waiting on controller responses.

in execution, but within a larger subset of the controllers in the cluster. A DDoS is the

equivalent of several coordinated adversaries working together to simultaneously attack a

system to deny service. Both DoS and DDoS attacks are challenging problems that every

communication protocol cannot fully prevent [112] when an adversary has access to the

communication channel, but it is noted here for completeness.

There are a number of optimizations that can be made to both the two-phase and three-

phase commit protocols to reduce the amount of time blocking and the amount of required

communications for the protocols to operate correctly. In read-only transactions, phase

one of the protocol is only required before sending the read-only data to the client. One of

the messages communicated in the protocol can also be eliminated after an abort message

is received from the coordinator. The controllers in this case do not need to respond with

65

a done message since the protocol will reset and start over. The controllers in the cluster

that fail and do not receive the abort message would eventually timeout and request the

response from the coordinator, which would have flushed all knowledge of the results and

would subsequently send an abort message to the controllers. The coordinator state can

also be transferred between systems in the cluster if the coordinator happens to fail in

the three-phase commit protocol. The coordinator has an election protocol where a new

coordinator can be chosen using the two- or three-phase commit protocols. An additional

optimization is when the controllers in the cluster timeout waiting for the outcome to ei-

ther commit or abort the transaction from the coordinator. The controllers in the cluster

can communicate with other controllers in the cluster and abort or commit depending on

the outcomes they have received from the coordinator. If no outcome was received from

the coordinator or the other controllers in the cluster, then there will be a blocking period

until the timeout is reached. This optimization is called the Cooperative Termination

Protocol (CTP). Each optimization can be applied to improve both the availability and

the efficiency of the controllers in the cluster as well as the coordinator system when using

the three-phase commit protocol.

6.1.3 Replication - Paxos

The Paxos algorithm is a practical agreement protocol that relaxes some of the require-

ments of the two- and three-phase commit protocols [113]. Paxos tolerates controller

failures, network failures, and network delays within the cluster. Paxos is a widely used

protocol in academia and industry to establish agreement amongst a cluster of systems.

Some examples of Paxos deployments include Yahoo’s Zookeeper [114] service for coor-

dinating processes of distributed applications, Google’s Chubby service [115] which is a

distributed locking mechanism to store small files, and The University of Washington’s

Scatter application [116] which is a distributed key-value storage system.

Some of the properties of the Paxos algorithm are safety, consistency in data, and fault

tolerance amongst the controllers in the cluster. Safety is the property that ensures that

once an agreement is reached, then all controllers in the cluster have agreed on the same

66

value and that value was proposed by one of the controllers in the cluster. This property

maintains consistency between all controller data within the cluster. Fault tolerance is

the property that allows the algorithm to continue to progress and reach an agreement if

more than half of the controllers in the cluster are still available. The two-phase commit

protocol described earlier could not handle failures from controllers in the cluster midway

through the protocol and would block all other controllers in the cluster from progress-

ing through the algorithm. Finally, the Paxos algorithm is not necessarily guaranteed to

converge upon a value that is agreed upon by all controllers in the cluster. However, in

a practical setting this is considered a rare event and agreement will be achieved in most

cases.

Paxos is similar to the two-phase commit protocol but with the potential to have mul-

tiple coordinators at the same time. When a transaction is desired to be processed, the

coordinator first performs the computation to execute the transaction and then sends the

resulting value to all other controllers in the cluster. The other controllers perform the

same computation and check the resulting value sent by the coordinator. The coordinator

then communicates the agreed upon value if a majority agreement is achieved, or other-

wise tries again until there is a convergence on an agreed upon value. As noted earlier,

any of the controllers in the cluster can become the coordinator at any time and can send

values to the rest of the cluster at the same time. When there are multiple coordinators,

there is an order assigned to each coordinator and the values that are sent to the cluster.

The order defines the sequence in which the other controllers in the cluster perform their

computations.

One other difference from the two- and three-phase commit protocols is that the Paxos

algorithm has the ability to run in separate partitioned segments of a network and still

achieve agreement. This does not cause any issues since the Paxos algorithms only require

a majority vote on a given value produced by a computation that is part of a transaction.

Since there cannot be more than one majority in all partitions combined, there is no

67

ambiguity when the network is partitioned. In the two- and three-phase commit protocol,

there could be conflicting votes in each partition which would prevent the algorithm from

deciding to abort or commit when the network is partitioned evenly in half and the results

are merged together.

For the Paxos algorithm to work correctly, the controllers in the cluster must maintain

state variables to track transaction numbers and values that are in the process of being

agreed upon. The variables tracked include the highest transaction number observed,

the highest transaction number accepted with the corresponding value accepted, and the

current transaction number being communicated to the other controllers in the cluster.

In the first phase of the algorithm, one of the controllers in the cluster decides to become

the coordinator through the two- or three-phase commit protocol. The coordinator then

chooses a transaction number higher than the highest transaction number observed so far.

This transaction number is then communicated to the other controllers in the cluster. The

other controllers in the cluster will either accept or reject the transaction based on if the

transaction number is the highest transaction number observed so far. If other controllers

accept the transaction, then their internal variable that tracks the highest transaction

number will be updated accordingly and that controller will not accept any future trans-

action numbers that are lower than the one just received.

If the coordinator receives accept messages from a majority of the other controllers in

the cluster, then the leader calculates and sets the value corresponding to the highest

transaction number that was previously sent to the other controllers. If a majority of

accepts is not received by the coordinator, an abort message is sent by the coordinator

and the Paxos algorithm is delayed and then restarted. The second phase of the algorithm

begins with the coordinator sending the computed value to the other controllers that are

a part of the cluster. The other controllers in the cluster again verify that the transaction

number matches the highest transaction number observed so far. If it does not match,

then the controllers will send an abort message back to the coordinator. If the transaction

68

number does match, then the highest transaction number observed is updated as is the

highest transaction number accepted along with the associated value computed for that

transaction number. The controllers in the cluster then send an accept message to the

coordinator.

If the coordinator receives a majority of accept messages, then the coordinator sends

an accept back to all of the controllers in the cluster along with the value that was agreed

upon. This extra accept message is sent to update the value and transaction numbers

agreed upon for the controllers that were not part of the majority accept votes. If there

is not a majority of accept messages received from the coordinator, then the Paxos algo-

rithms delay and restart again. At this point the protocol concludes communications and

repeats the same process for the next transaction received.

In the event of a failure of a coordinator, another coordinator from the cluster of con-

trollers will be elected and will take over the coordinator role. This is managed by ensuring

that there is an order enforced on the transactions that occur within the network. The

order enforced provides the controllers in the cluster the knowledge of the state variables

that are being tracked by the coordinator. As a result, increased resiliency is added to

the algorithm that the two-phase commit protocol could not handle.

Although Paxos is a great solution in many applications, it has some limitations. One

important limitation is that it cannot handle controllers that intentionally or unintention-

ally report incorrect information during the replication phase of the value that is being

agreed upon in the cluster. This scenario could arise in the event of an adversary who

has compromised one of the controllers in the cluster and who is attempting to infect

other controllers in the cluster with incorrect information. Another limitation is that

the algorithm may not terminate in rare cases. One scenario when this can happen is

when multiple coordinators have race conditions. The race conditions are caused by dif-

ferent values associated with different transaction numbers that are being proposed for

69

acceptance before an accept condition is reached by any of the individual transactions.

These limitations must be acknowledged due to the high availability requirements of ICS

systems.

6.2 Byzantine Fault Tolerant Algorithms

A Byzantine failure includes classes of attacks where a controller does not necessarily lose

service, but the information being produced becomes untrustworthy due to a malicious

actor [117]. The main goal of a Byzantine fault tolerant algorithm is to tolerate Byzantine

failures from a limited number of the systems, f , and provide reliable results that can

be trusted. The Byzantine Fault Tolerant State Machine Replication Technique (BFT-

SMaRT) [118] algorithm discussed and used in this section requires 3f+1 total systems

in order to tolerate f failures. If there are anywhere between 0 and f failures, the results

can be trusted. The setup of the Byzantine fault tolerant algorithm is similar to those

discussed previously. Read and write operations are performed with the goal of having

an agreed upon consensus value, even in the presence of f compromised controllers where

each of the controllers independently performs the requested calculation. All controllers

initially start in the same state and remain synchronized as requests are submitted by a

set of client systems.

Controllers in the cluster play two separate roles in the algorithm. There is one leader con-

troller and the remainder of the controllers are considered backups. The leader is elected

via a three-phase commit protocol, as described earlier, from the cluster of controllers.

After the leader is selected, all backup controllers follow the three-phase protocol with

the controller elected as the leader. The messages are digitally signed for the Byzantine

failures since malicious actors are assumed to be potentially included in the network. The

leader also typically will send multicast messages on all messages received from clients to

the backup controllers to improve communication efficiencies. A quorum based approach

is applied here where 2f+1 backup systems are required to produce the same result in

order for that result to be trusted. After a quorum number of commit messages are re-

70

ceived, the backups then apply the changes. Each of the client requests also preserve

the order in which the messages are received. This maintains consistency amongst the

controllers in the cluster.

The Byzantine algorithms also have the ability to meet practical constraints, such as

reducing the amount of space required by each of the controllers in the cluster in order to

have the ability to rollback or be restored to previous states. This is handled by regularly

checkpointing the controllers in the cluster. Requests are typically stored in logs and will

continue to grow as requests are submitted by clients. The increasing length of the log

file can be a potential vector for a DoS attack by an adversary attempting to exhaust all

memory resources of the controllers in the cluster. To protect against logs from contin-

uously growing, a defender can transfer the log files to a separate system after the log

files reach a user configured length limit. Checkpoints are agreed upon by the quorum of

controllers in the cluster and can be stored either locally or remotely. In the scenario of

a rollback or restore, the time to synchronize a controller with the others in the cluster is

reduced.

The Byzantine fault tolerant algorithms described make use of the three-phase proto-

col to maintain consistency and to arrive at an agreed upon consensus between a cluster

of SDN controllers. The applications of Byzantine fault tolerant algorithms can be to-

wards high fidelity systems such as those found in network file shared environments [109],

cloud environments [119] where replication occurs regularly and often, or within trans-

actional databases which was the genesis of fault tolerant algorithm research. The goals

are to enhance the resiliency of the SDN controllers when in the presence of failures that

are caused intentionally or unintentionally. The focus of our research is to evaluate fault

tolerant algorithms within an ICS setting. The operational requirements and constraints

will determine the feasibility of deploying fault tolerant algorithms to protect these types

of systems.

71

6.3 Adversarial Models

Examples of the goals of an adversary are to negatively affect the operational network or

to cause a failure in a system, such as a crash or the injection of malicious data into an

SDN controller. The adversary has multiple ways to achieve these goals. The strategy for

the adversary will largely depend upon the applications and protocols installed within the

ICS environment. The path the adversary takes will also depend upon their goals. The

adversary may not take the path of least resistance if they would like to be stealthy and

maintain persistence. Alternatively, the adversary may only have the goal of disrupting a

system and may not mind being detected by the defender. The adversaries also may not

have any goals of disrupting service, but strictly exfiltrating information from the system

undetected. The adversaries will vary widely in their goals, approaches, and definitions

of success.

In the context of fault tolerant algorithms, the adversary may have the goal of caus-

ing a system to crash. The adversary may have physical access where they can easily

succeed at accomplishing this goal. If the adversary only has network access, they would

have to launch a remote exploit which causes a system failure. The difficulty of these

approaches, from an adversary’s perspective, also will vary depending on the skill level

of the adversary and the security protections applied to the system. In the case of the

crash tolerant algorithms, the adversary would have to compromise and cause a crash in

at least f of the 2f+1 controllers in the cluster to succeed.

In the case of the Byzantine fault tolerant algorithms for replication, the adversary

would have to compromise the data in f of the 3f+1 controllers within the cluster si-

multaneously. 3f+1 is a lower bound for replication with several implementations avail-

able [118, 120, 121, 122] that provide different guarantees. The BFT-SMaRT algorithm

was selected for its high throughput and low latency properties when configured with

both crash and Byzantine fault tolerant algorithms. When focusing on compromising an

individual controller, the adversary may be able to inject false information by first Ad-

72

dress Resolution Protocol (ARP) spoofing [123] the controller followed by injecting false

information into the controller. Alternatively, an adversary may have access to a web

interface where an SQL injection [124] can introduce false information into the controller.

Regardless of the approach taken, there are a number of ways an adversary can achieve

their goals of injecting false information into a controller which the Byzantine fault toler-

ant algorithms are designed to protect against. However, the difficulty is increased when

the Byzantine fault tolerant algorithms are applied because the adversary is then required

to compromise f systems to successfully manipulate the data so that a false consensus

agreement would be achieved. As the number of controllers in the cluster increases, so

does the number of controllers that an adversary would be required to compromise in

order to succeed.

Another approach an adversary may pursue to achieve their goals is to attack the fault

tolerant algorithms themselves. In this scenario, the adversary can disrupt the commu-

nications of the fault tolerant algorithms to cause latency delays. These latency delays

in communication may indirectly translate into disruptions in service. The adversary can

also attack the implementation of the fault tolerant algorithms. This vector of attack

should be considered with any security protection software deployed in any system or

environment even outside of ICS. If the fault tolerant algorithms implementations are

vulnerable, the adversary may be able to compromise each of the controllers in the clus-

ter by exploiting the fault tolerant algorithms themselves, which are intended to be the

security protections.

6.4 Operational Impacts

There are costs associated when introducing any security protection into an environment.

ICS networks have a low tolerance for any new delays introduced since they are time

sensitive systems. Minimizing the amount of latency in these systems is critical for en-

suring the operational network will not be negatively impacted. One area of interest is

the performance impacts to the end devices. These metrics are important since ICS end

73

devices may have very limited resources, such as strict memory or CPU constraints. The

devices under consideration may be inverters, PLCs, RTUs, or IEDs. Bandwidth and

throughput metrics are important, but typically not a major concern in an ICS setting.

In most cases, there are not high demands on bandwidth or latency for these systems.

The two time periods of interest when deploying fault tolerant algorithms are when there

are no faults occurring and also at the instances in time where the faults occur in the

network. When there are no faults occurring, the algorithm introduces additional com-

munications into the network to verify all systems are responsive and consistent with one

another. When there are faults occurring, there are also additional communications intro-

duced into the network. These faults can be system failures or malicious manipulations

of information communicated by controllers within the cluster. When the controllers in

the cluster lose connectivity or have a fault in their data, the fault tolerant algorithms

generate increased amounts of network communications. A fault in the coordinator would

also increase the network communications because a new coordinator would need to be

elected using the three-phase commit protocol which would require each of the controllers

to communicate with one another. If there were an intermittent failure of a controller

that was later restored, there would be a period of time where a new controller would be

elected which would increase communications within the cluster. There are multiple ways

to recover, for example BChain [125] prioritizes recovery by using a chain structure rather

than requiring the broadcasting that BFT-SMaRT performs. Because of these additional

communications and potential delays that occur during failures, the latency metrics dur-

ing these intervals are of particular interest.

The goal of our research is to determine if the operational impacts of the fault toler-

ant algorithms are acceptable in the context of an ICS environment. The strict time

constraints for latency in ICS settings are typically 12-20ms [15]. Both the crash tolerant

and Byzantine fault tolerant algorithms will have to meet these constraints in order to be

introduced into an operational ICS environment. The Byzantine algorithms will require

74

additional communications as compared to the crash tolerant algorithms but have pro-

tections built-in that defend against data manipulations. The crash tolerant algorithms

require less communications and can tolerate system crashes but do not protect against

malicious data modifications. The fault tolerant algorithm applied will depend upon the

ICS constraints and the security requirements. It is a trade-off between security and

usability to determine which type of fault tolerant algorithm to select.

75

Chapter 7

Overview of Experimental Setups

We have completed several experiments to quantitatively measure the effectiveness of each

of the MTD strategies described thus far. The initial set of experiments were conducted

within a simulated environment on a stand-alone system. The next set of experiments were

performed within a virtualized environment. The final set of experiments were performed

within a representative control system environment with actual end devices integrated.

Each experiment consisted of a suite of MTD technologies deployed along with a variety

of adversaries attempting to learn the information that the MTD techniques were hid-

ing, such as IP addresses or application port numbers. The level of difficulty for each

of the varying levels of adversaries to succeed is strongly correlated with the amount of

entropy available to the MTD strategy that is enabled. We performed and repeated each

experiment in each environment using 10,000 trial runs for the metrics we captured. The

metrics collected for each MTD technique include throughput, bandwidth and latency

measurements within each of the environments.

The simulated experimentation was performed on a standalone system where both the

defender and adversary were modeled. The defender and adversaries are implemented as

separate Python programs that run in separate processes to simulate the MTD strategies

and the attacks competing against one another. As the MTD strategies were started, the

adversaries were also started and configured to attempt to defeat the MTD protections.

In this case, the adversary had the goal of learning the randomized MTD parameters.

76

The simulated results included a pair of end hosts with a single adversary attempting

to exploit the defenders. The simulations were part of our early phases of research to

determine the feasibility of the IP address and the port randomization MTD approaches

developed. The initial theory for the success rates of the adversary was also verified with

this set of experimentation.The specifications of the standalone system that performed

the simulations were as follows:

• 2.8 GigaHertz (GHz) Intel R© Core i7 CPU processor

• 16 GigaBytes (GB) Random Access Memory (RAM)

• 250 GB Serial Advanced Technology Attachment (SATA) Disk Drive

• Mac Operating System (OS) X Yosemite 64-bit

We developed the virtualized tests within the mininet environment [101]. Two virtual

machines were configured to communicate over a mesh network of four Open vSwitch

instances with an additional virtual machine representing the adversary’s system. The

reason for the mesh network of switches was to test the randomized network communi-

cation paths. The virtualized network was configured on a standalone system where the

virtual machines were Ubuntu installations. The difference from the simulated environ-

ment is that the network stack and the operating system overhead were included in the

virtualized environment. The network overhead was also measured, but since the virtual

machines were all located on a single system, a local bus was used to communicate be-

tween the virtual machines and the links were virtually configured to communicate at a

rate of 100 Mbits/sec. The virtual machines were installed on the same machine used for

the simulated experiments discussed previously. The specifications for each of the virtual

machines were as follows:

77

• 2.13 GHz Intel R© Xeon R© CPU X3210 quad core processor

• 2 GB RAM

• 40 GB SATA Disk Drive

• Quad port Peripheral Component Interconnect Express (PCIe) Intel Gigabit Eth-

ernet card

• Ubuntu 14.04 64-bit

• Linux Kernel 3.13.0-46

There were two separate environments used to test the “representative” environments.

One environment is a public testbed available for security researchers to allocate physical

systems that can be configured and customized as desired. Network settings and topolo-

gies are also configurable in this testbed through Network Simulator (NS2) [126] scripts.

The testbed is named Cyber-Defense Technology Experimental Research Laboratory (DE-

TERLab) [127]. In these experiments, we configured four end hosts with 16 adversaries

added to the network. We then captured performance metrics on the effectiveness of each

MTD technique developed when a number of adversaries were attacking the defenses.The

systems allocated within DETERLab for the IP randomization experiments consisted of

the following specifications:

• 2.13 GHz Intel R© Xeon R© CPU X3210 quad core processor

• 4 GB RAM

• 250 GB SATA Disk Drive

• Quad port Peripheral Component Interconnect Express (PCIe) Intel Gigabit Eth-

ernet card

• Ubuntu 16.04 64-bit

78

The second representative environment developed was used to model an ICS system that

consisted of both physical and virtualized systems. The physical and virtual systems

included common ICS devices such as inverters, PLCs, historian systems, Human Ma-

chine Interfaces (HMIs) as well as the networking devices required for the end devices to

communicate with one another. Actual network communication protocols were present

and active during the experimentation. The Modbus protocol was used in this case, but

other ICS protocols such as (Distributed Network Protocol) DNP3 could also be included

if desired. The ICS network consisted of 24 end devices, five Open vSwitch instances and

one adversarial system. We also captured the same performance metrics to verify and

validate both the simulated and virtualized environments. Each of the experiments and

results are described in more detail in the chapters that follow.

79

Chapter 8

Simulation Environments

We performed simulations on a standalone system to capture performance metrics and

evaluate the effectiveness of several MTD strategies. We implemented simulations in the

Python version 2.7 programming language [128]. We implemented the IP randomization

and port randomization algorithms as two separate programs that were designed to run in

separate processes on the same system. We developed an additional program to simulate

an adversary attempting to find the randomized values assigned to the source and desti-

nation IP addresses as well as the application port numbers. In order for the adversary

to learn if they have successfully discovered the randomized source and destination IP

addresses, the adversary process would communicate with the MTD process which would

indicate a success or failure to the adversary. The specifications of the standalone system

that performed the simulations are as follows:

• 2.8 GigaHertz (GHz) Intel R© Core i7 CPU processor

• 16 GigaBytes (GB) Random Access Memory (RAM)

• 250 GB Serial Advanced Technology Attachment (SATA) Disk Drive

• Mac OS X Yosemite 64-bit

80

Each simulation was run with only the minimum required system processes active in

the background. This precaution was taken in order to limit the chance of external pro-

cesses affecting the experimental results. We captured performance metrics from each of

the simulations every one second with a total of 10,000 simulation trials performed.

8.1 Adversary Guessing Strategies

The first set of experiments simulates an adversary attempting to guess the specific net-

work parameters (IP address or application port number) that have been randomized.

We created a stand-alone program to simulate a network parameter first being altered

uniformly at random followed by an adversary attempting to discover that randomized

network parameter. In the case of an application port number, the program selects a

16-bit value uniformly at random and then allows an adversary to take a limited num-

ber of attempts or probes to discover the correct application port number chosen by the

defender. The number of attempts allowed for an adversary vary from 1 attempt to 221

attempts. The limit was placed on the adversary to model a defender who has the ability

to detect an adversary after a certain number of attempts are made. For each of these

experiments, we assessed adversaries with different guessing strategies for their success

rates in correctly discovering the randomized network parameter in question. Each of

the four guessing strategies evaluated are taken from the Internet Engineering Task Force

(IETF) Request For Comment (RFC) 6056, which outlines the strategies taken for port

randomization [100] selection when a client connects to a server. The results of each

guessing strategy are shown in Figures 8.1, 8.2, and 8.3 the sections that follow. In the

experiments we performed, we assume that the adversary can search the state space before

the port numbers are re-randomized.

8.1.1 Serial Guessing

The simplest strategy an adversary can deploy is to begin guessing application port num-

bers starting at port number 1 and incrementally guessing subsequent port numbers until

the correct 16-bit randomized port number is found. This is a brute force approach that

works well when the attack space is small, such as the case here with a 16-bit number. As

81

Figure 8.1: The probability of correctly discovering a randomly-selected 16-bit port num-
ber using different guessing strategies given a limited number of probes.

shown in Figure 8.1, the number of probes that are configured as the upper limit for the

adversary are shown on the x-axis and the probabilities of success by an adversary are

shown on the y-axis. As the number of probes afforded to an adversary increases, so does

the adversary’s probability of successfully discovering the randomized application port

number. Since previously failed attempts at discovering the application port numbers are

not repeated and the two outcomes are either success or fail, the data captured fits into

the definition of a hypergeometric distribution:

P (X = k) =
(K
k)(N−K

n−k)
(N
n)

[129]

where N is the population size, K is the number of success states in the population, n is

the number of probes allowed by the adversary, and k is the number of successes desired.

Considering that K = 1 and k = 1, the probability simplifies to:

P (X = 1) = n
N

82

As shown in Figure 8.1, the data collected for serial guessing follows the hypergeometric

curve that is also plotted as a dashed line on the same plot. There is a strong corre-

lation as the hypergeometric destination closely matches and overlaps the experimental

results collected. The effectiveness of the port randomization technique can be evaluated

based on the probabilistic results obtained for an adversary successfully discovering the

randomly-chosen port mapping given a certain number of probes allowed. For example,

allowing more than 215 probes would not be in the defender’s best interest since serially

guessing port numbers would give the adversary a probability of success above 50%. If it

is tolerable to allow a less than 5% chance of success, then the defender should consider

allowing 2048 probes as the upper bound limit placed on the adversary. Any amount of

probes above this limit would then be flagged and an operator would be alerted to take

the appropriate action to mitigate the threat. One example of a mitigation strategy an

operator can take would be to blacklist the adversary in a firewall rule so they can no

longer communicate on the network.

We also collected metrics on the average number of probes needed for an adversary to

learn the randomized port number. This average number is obtained when only consider-

ing the cases where the adversary successfully learned the correct randomized application

port number and is summarized in Figure 8.2. Since the serial guessing strategy follows

the hypergeometric distribution, the average number of attempts will continue to grow

until the expectation value is approximated (when there are ≥ 216 probes allowed by

the adversary). After that point, the number of attempts required remains constant as

the upper limit number of probes continues to increase. The expectation formula for the

hypergeometric distribution is as follows:

E(X) = N+1
k+1

= N+1
2

= 32,768.5

The average amount of time required per success, taken over all 10,000 trials, is shown

in Figure 8.3. For the serial guessing strategy starting at port number 1 and incremen-

83

Figure 8.2: The average number of attempts expected before correctly discovering a
randomly-selected 16-bit port number using different guessing strategies where the ad-
versary is given a limited number of probes.

tally probing subsequent port numbers, the average time for an adversary to successfully

find the randomized port number is under 0.03 seconds when the entire state space is

explored. This upper bound time limit is attributed to the limited amount of entropy

within a 16-bit space. Given the minimal amount of time required for an adversary to dis-

cover the application port number by brute force, the frequency at which a defender should

re-randomize port numbers should be based on the number of probes observed instead of

solely based on time units alone. Within the small 0.03 second window, ∼16,000 probes

are injected by the adversary, which is a very noisy adversary that can quickly be detected

if the defender is monitoring the number of probes observed. Additionally, the number

of probes observed provides information to the defender on the likelihood of success for

an adversary, depending on how frequently the application port numbers are being re-

84

randomized as shown from Figure 8.1. Combining the information on the success rate of

the adversary along with the time required by an adversary until a success can be expected

provides the defender with the parameters necessary to protect against adversaries who

follow the strategies described.

Figure 8.3: The average amount of time needed before correctly discovering a randomly-
selected 16-bit port number using different guessing strategies where the adversary is
given a limited number of probes.

8.1.2 Random Start, Serial Guessing

A similar adversarial strategy to discover application port numbers is where an adversary

starts at a random port number within the range of 1-65,536 and then incrementally at-

tempts subsequent port numbers until the correct randomized application port number

is found. Once the maximum port number value is reached by the adversary (65,536 in

this case), the port number overflows back to 1 and the adversary incrementally continues

85

guessing until the correct port number is found or until the original starting port number

is reached. The results of this strategy follow a similar pattern as the serial guessing strat-

egy since the defender chooses the random mapping uniformly at random and because

the adversary starts scanning from an initial application port number chosen uniformly

at random. Because the application port number is chosen uniformly at random by the

defender, this adversary guessing strategy is equivalent to the case where the adversary

starts at application port number 1. Thus, there is no advantage from either the ad-

versary nor the defender when this guessing strategy is chosen. The success rates are

shown in Figure 8.1 verifying this result and also follow the hypergeometric distribution.

The hypergeometric plot significantly overlays the experimental results obtained and is

strongly correlated.

Since the serial guessing strategy with a randomly-chosen starting base for the appli-

cation port number also follows the hypergeometric distribution, the average attempts

needed until success similarly continues to grow until the expected value is approximated

(when there are ≥ 216 probes allowed by the adversary as shown in Figure 8.2). At this

point, the success rate remains constant as the number of attempts permitted by the

adversary continues to grow beyond the expectation value. The average amount of time

per success taken over all 10,000 trials also resembles the serial guessing strategy starting

at application port number 1 as shown in Figure 8.3. For the serial guessing starting at a

random base strategy, the average time for an adversary to successfully find the random-

ized port number is also under 0.03 seconds when the entire state space is explored. The

minimal amount of time required for an adversary to successfully discover the application

port number, again, provides guidance on the frequency at which a defender should re-

randomize application port numbers. The randomization frequencies should be based on

the number of probes attempted by the adversary instead of solely based on time units

alone. The number of attempts that can be made within a 0.03 second period is ∼16,000

attempts which is a large number of attempts. The defender can detect a high number of

probes such as these by monitoring the incoming and outgoing network traffic observed.

86

8.1.3 Random Guessing with Repetition

The next adversary strategy evaluated is when the adversary continuously probes appli-

cation port numbers selected uniformly at random until the correct randomized port has

been found. When using this strategy, it is possible that the adversary repeats previous

incorrect probes that were already made. Since previously failed probes can be repeated,

the probability of discovering the correct application port number from one attempt to

the next does not change. This is in contrast to the serial strategies discussed earlier

where the probability of success improved with each attempt since the pool of available

application port numbers continues to shrink with each attempt to find the correct ap-

plication port number. In this case, the probing strategy follows a binomial distribution.

As shown in Figure 8.1, the binomial distribution curve closely follows the experimental

results obtained for the random with repetition application port probing strategy and the

results are strongly correlated to the theoretical results. The probability function for the

binomial distribution is:

P (X = k) =
(
n
k

)
pk(1− p)n−k [35]

where N is the population size, p is probability of success, n is the number of probes

allowed by the adversary before the defender detects their presence, and k is the number

of successes desired by the adversary. In this case, it is of interest to find the probability of

at least one success which is equivalent to taking the complement of exactly zero successes

to simplify the formula above (k = 0):

P (X = k) = 1−
(
n
0

)
p0(1− p)n−0 = 1− (1− p)n

P (X ≥ 1) = 1− (1− p)n

Of the four strategies evaluated, this strategy is the least likely to be successful for an

adversary since repeating previously failed attempts are a possibility. The average num-

ber of probes needed for an adversary to learn the randomized application port number,

when only considering the successful cases, is summarized in Figure 8.2. Since the random

guessing with repetition strategy follows the binomial distribution, the average number

of attempts needed until a success occurs continues to grow until the expectation value is

87

approximated. In this case, the curve levels out to a constant value when there are ≥ 220

probes permitted by the adversary. The expectation formula for the number of attempts

before the first success is as follows:

E(X) = 1
p

= 1
1

216
= 65,536

The average amount of time required per success, taken over all 10,000 trials, is shown in

Figure 8.3. The average amount of time for an adversary to successfully find the random-

ized application port number is under 0.16 seconds when the entire state space is explored.

Comparing these results to the other strategies which take on average 0.03 seconds, this

strategy is 433% times slower until the first success is encountered. However, this upper

bound time is fairly minimal at 0.16 seconds and again is attributed to the limited amount

of entropy available within the state space of a 16-bit application port number. Given

the small amount of time needed by an adversary to successfully discover the randomized

application port number, the frequency at which the defender should re-randomize port

numbers is advised to be based on the number of probes observed rather than on the

amount of time that has passed. Monitoring the number of probes (∼30,000 in this case)

would provide sufficient information to detect the presence of an adversary.

8.1.4 Random Guessing without Repetition

The final guessing strategy analyzed is when an adversary randomly guesses application

port numbers without repeating any previously failed random probes. To implement such

a strategy, the adversary must track previously failed attempts to avoid repetition. To

succeed in this scenario, the adversary must discover the application port number before it

is remapped by the MTD strategy, based on a user configurable randomization frequency

parameter. This strategy once again maps to the definition of a hypergeometric distri-

bution and the data collected from the experimental results obtained verifies this mapping.

The three guessing strategies for an adversary that follow the hypergeometric distribution

(Serial Guessing; Random Start, Serial Guessing; and Random Guessing without Repeti-

tion) perform similarly with one another in terms of their success rates. The data collected

88

for each of these three strategies overlap one another significantly and are summarized in

Figure 8.1. The average attempts required until a successful attempt is encountered by an

adversary grows until the expectation value is approximated. This occurs when there are

≥ 216 probes allowed by the adversary as shown in Figure 8.2. When permitting more than

the expectation number of attempts by the adversary, the success rate remains constant.

The average amount of time per success taken over all 10,000 trials also resembles both

of the serial guessing strategies as shown in Figure 8.3. For the random guessing without

repetition strategy, the average time for an adversary to successfully find the randomized

port number is again under 0.03 seconds when the entire state space is explored. The

small amount of time required for an adversary to discover the application port number

again provides guidance on the frequency at which a defender should re-randomize the

application port numbers. The re-randomization intervals should be based on the num-

ber of probes observed rather than solely based on time units alone. If a relatively short

amount of time is configured to re-randomize application port numbers, such as every 1

second, then a rather noisy adversary could easily probe the network 65,536 and could

effectively defeat the MTD strategy. Since the results depend on the entropy available

to a defender, randomizing IP addresses produces similar results when 8 bits of both the

source and destination IP addresses are randomized.

8.2 Summary

The simulated environment we developed provided us with the ability to quickly collect

theoretical results during the early phases of our research on the feasibility of each MTD

approach. We were able to simulate four adversarial strategies and the MTD techniques

with stand-alone programs. The stand-alone programs allowed us to easily modify the

network parameters being simulated as part of each MTD technique as well as the adver-

sary strategies. Our findings were that an adversary can brute force a 16-bit application

port number (or 16-bits from a pair of IP addresses) in under 0.03 seconds with three of

the adversary strategies and within 0.16 seconds when one of the adversary strategies is

applied. This is a minimal amount of time for any of the four strategies but what works

89

against the adversary is the number of probes required to be successful. The adversary

must search at least half of the attack space before the first successful discovery of a

randomized 16-bit application port number can be discovered. Also of note, is that the

adversary and defender are communicating through inter-process channels which is much

faster than through an IP network. Considering that there are at least 16-bits of entropy

available to the defender, the adversary must make 215 probes before the first success is

expected. Figure 8.1 and Figure 8.2 show the two curves that provide information on the

success rates of an adversary given a variable number of probes and the number of probes

an adversary must attempt before the first successful randomized mapping is discovered.

Combining the information on the success rate of the adversary along with the time re-

quired by an adversary until a success can be expected provides the defender with the

parameters necessary to protect against adversaries who follow the strategies described.

These results were later verified in both the virtualized and representative environments

developed that are discussed in the following chapters.

90

Chapter 9

Virtualization Environments

We developed a virtualized environment to validate the prior results obtained from the

simulated environment. The virtualized environment introduces the network communi-

cations into the experiments that were not present in the simulated environment. Open-

Flow version 1.3 is the protocol used to facilitate the communications between the SDN

controller and the SDN capable switches. A separate wrapper program manages the

randomized flows that are sent to the SDN controller which are then inserted into the

network. The mininet tool was used to build a network of virtual machines represent-

ing the end hosts of an ICS environment as well as the SDN capable switches. This

environment included the MTD strategies built-in to each of the virtual machines to

demonstrate the concepts beyond simulation. Open vSwitch was the software package we

chose to implement the SDN capable switches within the virtualized environment. Open

vSwitch provides the same functionality of a physical network switch in hardware, but it

is implemented in software where the randomization algorithms have been placed. It has

previously been shown that OpenFlow has the ability to randomize IP addresses within

a network as a standalone solution in a small scale network [20]. Additionally, it has also

been shown that overlay networks can be used to mitigate DDoS attacks [32]. One of the

goals of our research is to build upon those results by merging IP randomization, port

randomization, and overlay networks to counter the reconnaissance phase of an attack all

contained within a single solution.

91

Figure 9.1: A diagram of an example network where host A wishes to communicate with
host B. The OpenDaylight controller inserts flows within the overlay network so that
packets have randomized source and destination IP addresses, randomized port numbers,
and take random paths (shown as the red and green lines passing through the overlay
network) through the network.

The SDN network we used for our experiments operated under the open source OpenDay-

light controller [102]. The OpenDaylight controller communicates to the Open vSwitch

instances through the OpenFlow version 1.3 protocol to install the necessary flows to

manage the randomized network parameters. The OpenDaylight controller is responsible

for installing flows that translate real IP addresses into randomized IP addresses when a

packet is traversing each of the Open vSwitch instances within the network. The Open-

Daylight controller also manages the randomized paths that the packets take through

the overlay network. Figure 9.1 depicts an example network where the OpenDaylight

controller is communicating with the Open vSwitches in the overlay network. The Open-

Daylight controller installs randomized source and destination IP addresses, randomized

port numbers, and randomized paths into the SDN overlay network when packets originat-

ing from host A are sent to host B. The randomized source and destination IP addresses

are translated back to the original source and destination IP addresses at the last hop

switch before reaching the final destination host B. Since the true IP addresses are mapped

to randomized IP addresses when entering the network and then re-mapped back from

92

the randomized IP addresses to the true IP addresses when the packets are leaving the

network, the solution is completely transparent to the end devices within the network.

9.1 Application Port Randomization Overhead Cost

Port randomization is implemented using the iptables [130] firewall tool that is built

into most Linux base installations. The performance impacts that result from using the

iptables rule chain to randomize application port numbers increased the latency by an

average of 0.015 ms and did not interrupt active communication sessions that were already

in progress. The results over a 10,000 second (∼2.77 hours) interval are shown in Figure

9.2. It should be noted that there is little to no performance impact of enabling port ran-

domization given that the maximum impact to the Round Trip Time (RTT) was within

1.2 ms of when port randomization was disabled which is well within the constraints of

a typical ICS environment. The strict timing constraints used within ICS environments

are noted to be no more than between 12-20 ms of additional delay.

Figure 9.2: The RTT measured across 10,000 pings with port randomization disabled and
enabled.

93

The impacts on bandwidth when port randomization is enabled and disabled are shown in

Figure 9.3. We configured the port randomization updates to re-randomize all application

port numbers ranging from port numbers 1-1024 at a frequency of once every 10 seconds.

The iperf3 tool was used to gather the resulting data points over a 10,000 second (∼2.77

hours) interval. We observed a 9.91% reduction in bandwidth when port randomization

was enabled. The increase in overhead is attributed to the time to process each packet

in software and rewrite the application port numbers before forwarding and receiving

packets. There are typically not strict requirements on bandwidth and throughput mea-

surements within ICS environments since the communications usually require minimal

amounts of bandwidth.

Figure 9.3: The bandwidth measured across a 10,000 second (∼2.77 hours) period of time
when application port number randomization is disabled and enabled.

9.2 IP Randomization Overhead Costs

The overhead cost incurred by the SDN switches to lookup the appropriate flow rules

and make the appropriate routing decisions (and rewriting source and destination IP ad-

94

dresses) resulted in an average of 0.04 ms of additional delay. We configured these lookups

only at the edge switches so that the operational impacts are well within the constraints of

a typical ICS environment of 12-20 ms [131]. We also performed experiments to validate

that the connectivity was maintained and uninterrupted between hosts actively commu-

nicating before, during and after each of the randomization periods. The verification of

the uninterrupted communication channels is important since high availability is one of

the primary requirements and concerns for an ICS environment. Availability is a concern

when introducing any new technology, security related or not, into the system. The re-

sults of sending 10,000 ping packets across a network are shown in Figure 9.4. We took

measurements when IP randomization was disabled and then again when it was enabled

on the network. The majority of the measurements collected overlap one another, in both

cases of when IP randomization was enabled or when it was disabled. The increases in

RTT that occur every 500 seconds when IP randomization is enabled typically do not

increase the RTT to more than 15 milliseconds and in the worst case do not increase

more than 30 milliseconds. The latency introduced falls within the bounds of the more

strict constraints (that range in milliseconds) the majority of the time and are well within

relaxed constraints (that range in seconds) of ICS environments.

We also captured bandwidth measurements with and without IP randomization enabled.

The results are as expected in that when IP randomization is enabled, the bandwidth

measurements observed slightly decreased. This decrease is a result of the overhead in-

volved in the SDN flow rules, that when matched, must rewrite both the source and

destination IP address fields at the ingress and egress points in the network instead of

simply forwarding packets as a traditional switch would. However, traditional switches

occasionally require layer 2 traffic, such as ARP traffic, to learn about the locations of

new hosts that are introduced into the network. The overhead associated with rewriting

the IP address fields in an SDN deployment degrades the bandwidth as shown in Figure

9.5. The iperf3 tool was used to measure and capture the results over a 10,000 second

(∼2.77 hours) period of time.

95

Figure 9.4: The RTT measured across 10,000 pings when IP randomization is disabled
and enabled.

The average bandwidth was reduced from 9.31 Gbits/sec to 9.14 Gbits/sec, or a 1.79%

decrease in performance. There is a significant amount of overlap when comparing IP

randomization being enabled and disabled. Also of note are the fluctuations when IP

randomization is enabled that occur every 500 seconds. This is attributed to purge-times

within the OpenDaylight controller (the purge-times flush all flows and are part of the

default configuration) that happen every 500 seconds. When all rules are purged, there

are slight increases in delay because the Open vSwitch instances are forced to consult

with the SDN controller on how to appropriately route the packet. The purge-time is a

user configurable parameter that can be adjusted if desired, but the default value was not

modified for these experiments. Although ICS environments are typically not driven by

bandwidth and throughput measurements, those metrics are captured here for potential

ICS scenarios where high bandwidth and throughput are desired, such as the case when

communicating synchrophasor data.

96

Figure 9.5: The average bandwidth measured over a 10,000 second (∼2.77 hours) period
when IP randomization is disabled and enabled.

Figure 9.6: The average throughput measured over a 10,000 second (∼2.77 hours) period
of time when IP randomization is disabled and enabled.

97

We also evaluated the impacts on the total amount of data transferred over 10,000 second

(∼2.77 hours) intervals using the iperf3 tool when IP randomization was disabled and

then when it was enabled. As shown in Figure 9.6, the impacts on the amount of data

transferred are similar to the bandwidth measurements captured and described above.

The total data transferred provides another way to look at the bandwidth measurements

previously captured, but in terms of the amount of total data transferred over each 1

second interval. The total amount of data transferred without IP randomization enabled

over the 10,000 second (∼2.77 hours) period is 10,834 GB. This number drops to 10,649

GB when IP randomization is enabled, or a 1.79% drop in performance. The drop is

attributed to the added time to overwrite the source and destination IP address fields of

the flow rules that are installed at each of the Open vSwitch instances.

Figure 9.7: The average bandwidth measured over a 10,000 second (∼2.77 hours) period
when IP randomization is disabled and enabled.

We also captured bandwidth metrics when using the Modbus protocol, a widely used

protocol within ICS environments. In this scenario, a Modbus server was running on a

single system and a Modbus client was running on a separate system that is programmed

98

to request 25 million reads of data. The results of the bandwidth metrics captured when

using the Modbus protocol are summarized in Figure 9.7. When IP randomization is not

enabled, the bandwidth on the 25 million reads is an average of 3,737 Kbits/sec. When IP

randomization is enabled, only a small decrease in bandwidth results in 3,525 Kbits/sec,

or a 5.67% decrease in performance. The delays observed are within the bounds of an

ICS environment and make the techniques feasible for deployment when using the Mod-

bus protocol.

Figure 9.8: The probability of correctly discovering a randomly-selected 24-bit number
(a CIDR class A IP address) using different guessing strategies given a limited number of
probes.

Finally, we captured the probability distributions for adversaries who have the goal of

discovering the randomized source and destination IP addresses using different strategies

similar to the application port randomization techniques described earlier. The results

99

are shown in Figure 9.8 and are similar to those shown for the port randomization test

performed in Figure 8.1. We have verified that all strategies, except for the random guess-

ing with repetition strategy, follow the hypergeometric distribution over 10,000 trials of

experiments that model an adversary attempting to guess both of the randomized source

and destination IP addresses. In these sets of experiments, the assumption is that 24-bits

are available to use as host bits. Using 24-bits of the IP address as host bits provides

an upper bound of the effectiveness of the IP randomization technique given that it is

unlikely, in practice, to have a Classless Inter-Domain Routing (CIDR) class A network

available within an IPv4 address space. However, well above 24-bits, typically 64-bits,

of entropy would be available when using IPv6 addressing. The random guessing with

repetition strategy follows the binomial distribution and again is verified through the ex-

perimental results obtained. As shown in Figure 9.8, the adversary gains a better than

50% chance of success when allowed more than 223 attempts. This is much improved

from the application port randomization technique, however as previously mentioned, it

is difficult to obtain a CIDR class A address space with 24-bits of entropy available within

an IPv4 environment. Conversely, within an IPv6 deployment, IP randomization becomes

much more valuable since the IP space is much larger at 128 bits.

The expected number of probes required for an adversary to successfully discover the

24-bit host portion of the IP address behaves similarly to the port randomization. For

the random with repetition strategy, the binomial distribution curve matches the experi-

mental data captured. The average number of probes needed for an adversary to find the

randomized source and destination IP addresses, when only considering the success cases,

is summarized in Figure 9.9. In the binomial distribution, the average attempts needed

until success continue to grow until the expectation value is approximated, in this case,

when there are ≥ 224 probes allowed by the adversary:

E(X) = 1
p

= 1
1

224
= 16,777,216

When the adversary is allowed to make attempts beyond the expectation value, the suc-

cess rate of finding the randomized source and destination IP addresses remains constant.

100

The remaining strategies evaluated all follow the hypergeometric distribution and the

average grows until the expectation value is approximated. The expected number of

guesses until success for the remaining strategies is thus ≥ 224+1
2

probes. If the adversary

is allowed additional attempts beyond the expectation value, their success rate will again

remain constant. The defender should limit the adversary well below the expectation

number of probes when deploying each MTD technique. The result of the expectation

value leveling out the experimental data captured can be seen in Figure 9.9.

Figure 9.9: The expected number of attempts to randomly find a 24-bit number (a CIDR
class A IP address) using different guessing strategies given a limited number of probes.

9.3 Path Randomization Overhead Cost

We implemented the path randomization technique by first capturing the network topol-

ogy and configuration. The topology and configuration knowledge required to initialize

101

the path randomization algorithms are the IP addresses of each host, the connections

of each host, the ports of the SDN switches, and the datapath identifiers that uniquely

identifies each SDN switch in the network. The next step was to learn all possible paths

between each of the pairs of nodes using the Breadth First Search (BFS) algorithm [132]

on the network topology. Once all possible paths are known, the SDN controller then

selects each of the paths randomly from the exhaustive list of all paths and install the

appropriate flows to activate those paths so that all endpoints can communicate. The

randomized paths remain active for user configurable intervals at which point a new ran-

domized path is installed. The intervals for the results shown as part of our research are

configured to install new random paths every 10 seconds.

The path randomization MTD approach introduced the most latency of the three chosen

MTD techniques, as shown in Figure 9.10. The RTT increased from 50 ms in a normal

configuration to 61 ms with path randomization enabled. When we enabled path random-

ization, data transfer rates and bandwidth rates were not affected but these parameters

are usually not of concern in ICS settings since these networks typically communicate

small messages. The time to transfer a 1 MB file had the largest increase in time from

70 ms using traditional switches to 100 ms when path randomization was enabled within

an SDN deployment.

The delays observed are attributed to the additional hops that are taken in the randomly-

chosen path that go beyond the optimal path in the network. In practice, this technique

would have to be throttled, similar to a QoS type of service to meet the potential real-time

constraints of the system that the technology is being applied towards. One of the main

goals of this MTD strategy is to prevent an adversary from discovering the endpoints

within a network by performing traffic analysis. The path randomization implementation

was developed using the POX controller since we developed these algorithms in the early

stages of our research. We also implemented the IP and port randomization schemes in

the POX controller to compare the same metrics against the path randomization metrics.

102

Figure 9.10: Performance metrics of a normal network without randomization techniques
introduced, with the three randomization algorithms implemented independently, and
finally with all three algorithms combined and applied.

Our goal was to further reduce the overhead costs of each of the MTD techniques, which

the OpenDaylight controller satisfied as is shown later in Chapter 10 in Figure 10.7. The

path randomization algorithms can also be developed so that only a specific or a limited

set of desired paths are available to the defender to deploy, but this feature was not in-

cluded as part of our research. This could help support load balancing and could also

enforce a QoS policy to meet the requirements of the given environment.

9.4 Port, IP and Path Randomization

We combined the proof-of-concept POX and OpenDaylight implementations of the three

randomized schemes into a single solution. We set the period of time to re-randomize

each MTD defense to 1 second intervals and the SDN-capable switches were all synchro-

nized together in time. This implementation choice of synchronizing the MTD techniques

simplified the process of gathering consistent performance metrics across multiple trials of

experiments. For example, if two of the three MTD techniques re-randomized at different

points in time, the results would vary from one run to the next. Since all three implemen-

tations are synchronized to re-randomize at the same time, the results are repeatable. We

have also compared the performance metrics collected against a baseline network without

any randomization applied. The results are shown in Figure 9.10.

103

The RTT is the round trip time retrieved from sending an Internet Control Message

Protocol (ICMP) ping message from one host to another and receiving back a response.

The baseline network without any of the MTD techniques enabled was the fastest, fol-

lowed closely by each of the individual MTD schemes enabled. The differences when each

MTD technique is individually enabled and disabled is the time it takes to lookup the

random port mappings, the time to overwrite the source and destination IP addresses,

the time to take additional hops through the network, and the management overhead

of the algorithms in a single centralized POX or OpenDaylight controller. The amount

of data transferred, in the second set of measurements, which we measured over a ten

second period were similar for each of the scenarios evaluated. The large amounts of data

transferred that we observed are due to the small scale network that mininet simulated,

all residing on a single machine with minimal network latency. Also, the Open vSwitch

instances did not have to ARP to repopulate internal tables to learn the locations of the

systems in the network which saved time when comparing against traditional switches.

The bandwidth reported also had similar results to the data transferred over a ten second

period. The 1 MB file transfers varied in latency when combining the three randomization

schemes. Port randomization increased in time because of the management required to

maintain and remap application port numbers within iptables. The IP randomization

further increased in time due to the fact that each packet had to be matched for the

source and destination IP addresses and the source and destination IP addresses had to

be rewritten if a match was made. The path randomization scheme, individually, in-

creased the most due to the additional hops required to be taken through the network.

The combination of all three randomization techniques yielded the largest amount of time

increases required for an attacker due to the cumulative overhead costs of each indepen-

dent technique combined. The metrics we collected, outside of the RTT, were produced

using the iperf3 tool.

104

Figure 9.11: Performance metrics when transferring 1 MB files within the Tor network
over a three-month period of time.

Although the performance was impacted for each individual approach (as well as the

combined approaches), the transfer times of a 1 MB file are still faster than the average

rates that the Tor project is reporting, shown in Figure 9.11. Tor is a traffic anonymizer

which is an alternative to introducing IP randomization into a network. Tor is reporting

approximately five seconds to complete a 1 MB transfer on average, while the random-

ization schemes proposed as part of our research are all completed for the same transfer

in under one second. This difference comes from the fact that Tor requires additional

processing time for the extra hops taken in the Tor network plus the encryption and de-

cryption overhead of each encapsulated portion of a packet. The Open vSwitch instances

must only make a match on the fields within the header of a packet, then potentially

rewrite the source and destination IP addresses, and finally forward the packet. The

Open vSwitch costs shown as part of our research are much lower than the cost of an

encryption or decryption routine that the Tor tool is reporting.

105

9.5 Summary

The virtualized environment we developed served as an intermediate step between the

simulated and representative environments. It was not known that we would have access

to a representative environment until later in our research, so we developed a virtual-

ized environment. We created virtual machines with the necessary software installed to

create a virtualized SDN network with the MTD techniques built-in. We then captured

operational metrics to evaluate the impacts to latency, bandwidth, throughput, and to

a communication channel using the Modbus protocol. We observed the latency impacts

of IP randomization to be within 1.2 ms of the baseline latency impacts. This increase

in time is well within the constraints of a typical ICS environment, which are between

12-20 ms. Although most ICS systems are not bandwidth and throughput driven, we

captured these metrics in the event that there are large bursts of traffic, such as when

synchrophasor data is being communicated. We measured the decreases in bandwidth

and throughput when IP randomization was enabled which both had the same 1.79%

decrease in performance. The percentages are not large and show the potential for these

concepts to be applied within other environments outside of ICS. We observed the impacts

on Modbus communications to drop by 5.67% on the number of reads and writes that

could be performed.

We again evaluated the four types of adversaries and we observed similar results as the

simulated results, but this time using virtual machines. It was verified that the adver-

sary would have to search, at a minimum, half of the attack space as was shown in the

simulated results. We also measured the application port number, IP address, and com-

munication path randomization schemes individually and in combination of each other.

The MTD scheme that incurred the largest amount of latency was the path randomiza-

tion scheme. This is due to the fact that the optimal path is not guaranteed to always be

taken in the network. The time for the additional hops taken in the network increased

the latency but also help prevent an adversary from correlating endpoints based on traffic

analysis. The path randomization technique can also be further developed to restrict the

106

maximum number of hops taken to provide QoS guarantees to the users of the network

who depend on real-time communications to operate. We observed that each of the MTD

techniques applied were feasible and well within the bounds of many ICS systems within

our virtualized environment.

107

Chapter 10

Representative Environments

We developed two representative environments to test and evaluate the MTD techniques

discussed previously in order to model different operational environments. The primary

goal is to capture effectiveness measurements of the MTD protections while also account-

ing for the operational traffic and processes running together that are difficult to reproduce

in simulated and virtualized environments. The two test environments include the DE-

TERLab testbed and an ICS testbed developed with both virtual and physical devices

that interact with each other. The DETERLab testbed provides physical systems and

network equipment that security researchers can allocate, customize, and configure for

security experiments. The environment is in a controlled isolated network so that the

tests can be made repeatable. The second environment is an ICS environment that is

also customizable and includes both physical and virtualized systems within the network.

The environment modeled is a virtual power plant that consists of ICS end devices and

protocols frequently deployed in operational ICS networks. Each environment and the

test results will be described in the sections that follow.

10.1 DETERLab Testbed

The cyber DEfense Technology Experimental Research Laboratory (DETERLab) testbed

hosts a network of physical computers and network devices where approved security re-

searchers around the world can test and evaluate new security technologies within a

controlled environment. The DETERLab testbed consists of over 600 physical computers

108

that can be allocated by security researchers to conduct computer security focused ex-

periments. Each computer can further instantiate up to 23 virtual systems per physical

system if larger experiments are needed. The computers vary in their processing power,

available memory resources, disk size, and number of Network Interface Cards (NICs).

The network link speeds vary in capacity with a maximum of 10 Gigabits per Second

(Gbits/Sec) capable links. DETERLab1, based on the Emulab framework, is operated

by the University of Southern California (USC) Information Sciences Institute (ISI) for

the purpose of performing security research experiments and is under active development.

The DETERLab project is currently funded under the Department of Homeland Security

(DHS) within the Science and Technology (S&T) Directorate.

The DETERLab was used to evaluate and analyze the tradeoffs between the increased

amount of adversarial workload incurred and the increased amount of operational impacts

imposed when IP randomization was enabled. We varied the frequencies at which IP ad-

dresses are randomized and also the number of adversaries attacking the IP randomization

scheme. The systems allocated within DETERLab for the IP randomization experiments

consisted of the following specifications:

• 2.13 GHz Intel R© Xeon R© CPU X3210 quad core processor

• 4 GB RAM

• 250 GB SATA Disk Drive

• Quad port Peripheral Component Interconnect Express (PCIe) Intel Gigabit Eth-

ernet card

• Ubuntu 16.04 64-bit

We configured each of the link speeds to 100 Megabits per second (Mbps) for all network

connections. In all experiments, the legitimate systems participating and supporting the

IP randomization are referred to as “operational nodes”. The systems attacking the

1DETERLab: https://www.isi.deterlab.net/

109

https://www.isi.deterlab.net/

IP randomization scheme are referred to as “adversarial nodes”. For each experiment,

there are 4 operational nodes allocated to manage and run the IP randomization MTD

strategy and there are between 1 and 65,536 (or 216) adversarial nodes that have the

goal of defeating the IP randomization MTD scheme. We ran the experiments within

the DETERLab testbed with up to 32 physical adversarial nodes. The experiments that

had more than 32 adversarial nodes were simulated in our standalone system, since the

simulated results from Chapter 8 were consistent with the DETERLab results. Another

reason we chose to simulate the experiments that had more than 32 adversarial nodes

allocated was because of the DETERLab testbed physical resource limitations on the

number of nodes that had the same specifications at the time that the experiments were

performed. DETERLab currently supports a total of 64 nodes with the specifications

listed above, and each experiment was configured to allocate 4 operational nodes plus 2n

adversarial nodes, where 0 ≤ n ≤ 16. Thus, the maximum number of physical nodes

that can be allocated given the constraints of 2n adversarial nodes plus 4 operational

nodes are experiments that consist of 32 adversarial nodes and 4 operational nodes. An

example of an experiment with 16 adversarial nodes and 4 operational nodes is shown

in Figure 10.1 for reference.

In Figure 10.1, each experiment network includes links that connect all of the nodes to a

single switch, labeled lan0. The switch supports the SDN technology to manage the flows

within the network. The network flows are the rules applied to each SDN switch that

are responsible for routing packets based on the criteria that is specified by the end user.

In this case, the rules specify to first randomize the source and destination IP addresses

and then to correctly route the packets to their destination. The system responsible for

managing the network flows is called the SDN controller which is labeled as nodeD and

is shown on the left side of Figure 10.1. The nodes labeled nodeA-nodeC are operational

nodes that represent the end users that are connected to the network. In this case, all

end users have a direct connection to the SDN controller so that IP addresses can be

randomized and de-randomized as packets leave and enter their NIC, respectively. Each

110

Figure 10.1: An experiment allocated within the DETERLab testbed consisting of 16
adversarial nodes labeled nodeE1-nodeE16 and 4 operational nodes labeled nodeA-
nodeD.

111

of the adversarial nodes has the goal of evenly dividing up the IP space evenly between

all adversarial nodes. Each adversary will then probe their appropriate partition of the

network to attempt to determine all of the random IP address mappings of the nodes

within the network. The network is configured as a CIDR class C network, leaving 8 host

bits for randomization, while the remaining 24 bits are static and unchanged at each of the

endpoints. The network bits are left unchanged so that routers could also be introduced

into the network and the packets would still be able to reach their destination without

requiring any changes to the existing routing algorithms.

10.1.1 Software Defined Networking

SDN is a technology that can be deployed to programmatically manage and control how

computer networks operate and route packets. Within the SDN framework, management

of the network(s) is achieved by separating the “control plane” (called the Southbound

Application Programming Interface (API)) from the “data plane” (called the Northbound

API). In traditional networks, these two planes are combined and hidden from the user

and not accessible for modification. The separation of the two planes is done in a manner

that is transparent to the end users of the network. The SDN framework allows users

to programmatically define how network devices route and switch packets by installing

network flows directly into the network devices control plane. The network flows result

in actions that the network devices perform based on the match criteria that is specified

by the network administrators. Each packet entering and leaving the NIC is inspected

for a possible match, and if a match is successful, then the action is enforced. As an

example. the actions may specify to send the packets out of a particular physical port of

the network device, drop the packet, modify the packet fields directly, or a combination

of the three.

In the SDN architecture, the controller is responsible for installing network flows into

the SDN-capable network devices. The controller communicates over a TCP connection

and can optionally establish a Transport Layer Secure (TLS) connection for secure com-

munications to each of the SDN-capable network devices. The specific controller used for

112

the experiments within the DETERLab testbed was the OpenDaylight controller. Open-

Daylight is an open source project that is under active development and supports the

OpenFlow 1.3 protocol standard. The OpenDaylight controller communicates to each of

the SDN-capable network devices via the OpenFlow 1.3 protocol and the OpenDaylight

“Boron” release version 5.1 SR1 was used for this testing.

The SDN-capable network devices that we used were software implemented switches.

Each of the operational nodes had the appropriate software installed so that the controller

could communicate with them as if they were traditional network switches. The software

switches used for this portion of research comes from the Open vSwitch project [133].

Open vSwitch version 2.6 was used because it communicates using the OpenFlow 1.3

specification which encompasses much of the SDN features including IPv4/IPv6 compati-

bility and IP modification actions. Previous versions of OpenFlow may not be compatible

with commercial SDN products as many of them require the use of at least OpenFlow

version 1.3.

10.1.2 Threat Model

Given the use of SDN, and the ability to randomize IP addresses, we assume that the

goals of an intelligent and motivated attacker would be to commandeer the IP randomiza-

tion scheme and inject spoofed packets into the network with a valid pair of operational

source and destination IP addresses. The adversary may or may not wish to be stealthy

depending on their objective. Additionally, the adversary must find the correct source

and destination IP addresses before the IP addresses are again re-randomized at user

defined frequencies. The adversary must correctly learn both the source and destination

IP addresses since the network flows installed at each SDN-capable network device must

match on both addresses to correctly route traffic. The match criteria could be further

restrictive by also matching on the physical port that the packet was received on in ad-

dition to the IP source and destination addresses. The extra match criteria would then

require an adversary to tap into the link that is between the operational node and the

SDN-capable network switch to succeed. The physical port was not specified as part of

113

the match criteria in each of these tests to simplify the DETERLab experiments that

demonstrate the concept of an adversary injecting an unauthorized packet into the net-

work. The adversary is assumed to have network access and an unlimited number of

network probes to inject into the network. The adversary, again, is not required to be

stealthy in this setup.

The adversary can take a number of approaches to accomplish their goals of correctly

identifying randomized source and destination IP addresses within the network. One ap-

proach may be to leverage a side-channel attack to learn the randomization frequencies

by observing and analyzing network latencies while randomization intervals are passing.

After learning the randomization frequencies, the adversaries would know the amount

of time required to discover the source and destination IP addresses of the operational

nodes before the IP addresses are re-randomized again. Once the adversary determines

the source and destination IP addresses, they can then craft and inject an unauthorized

packet into the SDN-capable network device. When this strategy is combined with mul-

tiple adversaries attacking the IP randomization defense at the same time, the result is a

DDoS attack with up to 65,536 total adversaries which significantly reduces the required

amount of time for an adversary to learn the true IP address mappings. In the scenario of

a DDoS attack, each adversary would evenly divide the attack space of possible IP address

pairs and continuously probe the network devices individually until one of the adversaries

successfully injects a spoofed packet with the correct source and destination IP addresses

into the network. We performed experiments within the DETERLab testbed to evaluate

the success rates of an adversary with varying IP randomization intervals applied.

10.1.3 Adversary Evaluation

We evaluated four adversarial strategies for their effectiveness in defeating the IP random-

ization defense. Each strategy was evaluated individually with 2n adversaries, where n

varied from 0 to 16. Additionally, we varied the IP randomization frequencies from never

randomizing IP addresses to randomizing IP addresses every 0.5 seconds. The four adver-

sarial strategies are based on the Request For Comment (RFC) specification 6056 [100].

114

Each of the strategies represents an adversary who does not gain any additional knowledge

beyond a packet successfully or unsuccessfully being injected into the network, depending

on if the correct source and destination IP address pairs were used. The hping3 tool

was used to craft and inject spoofed ICMP echo request messages into the network. If

an ICMP echo reply is observed in the network after the spoofed ICMP echo request is

sent, then the adversary would know that the source and destination IP addresses were

correctly spoofed, otherwise the IP addresses were incorrectly spoofed and they would

make another attempt with a different source and destination IP address pair. We used

the same adversary strategies that were presented for finding the application port num-

bers in Chapter 8 to find the IP addresses. The four strategies are summarized below, for

reference, along with the specific attacks that we crafted according to each strategy.

10.1.3.1 Random With Repetition

The first strategy evaluated is meant to model an adversary with minimal resources avail-

able who is attempting to avoid detection by a defender that can observe patterns in

the sequence of IP addresses being spoofed. For this strategy, an adversary would first

craft an ICMP echo request packet with spoofed random source and destination IP ad-

dresses (selected uniform at random) and then inject that packet into the network. If

that attempted packet injection fails to generate an ICMP echo reply from the spoofed

destination system, then the adversary would attempt to randomly probe the network

again with a new set of randomly selected source and destination IP addresses. The next

random probe does not take into account the previous attempts that have already failed,

so it is possible that the source and/or destination IP address will be repeated in this

strategy. When there are multiple adversaries attacking the IP randomization defense,

the IP address space is divided evenly into disjoint sets amongst all adversaries. Once a

single adversary succeeds, the successful adversary sends a message to all other adversaries

indicating success and for them to stop probing the network.

10.1.3.2 Random Without Repetition

The second strategy is similar to the first but does not repeat previously failed attempts

of incorrect source and destination IP address pairs. To avoid repeating previous failed

115

attempts, an internal table is maintained with all possible source destination IP address

pairs. A random permutation of that table is then generated and the adversary iterates

through the table to inject packets with the current spoofed source and destination IP

address pairs within the table. If the attempt fails, then the adversary injects a packet

with the next pair of spoofed source and destination IP addresses into the table. This

process is repeated until a packet is successfully injected into the network. When multi-

ple adversaries are involved, the IP address attack space is again divided up evenly into

disjoint sets amongst the adversaries. Each adversary follows the same strategy of first

generating a random permutation of the disjoint IP address space assigned to them fol-

lowed by probing the network with the current source and destination IP address pairs

inserted into a ICMP echo packet. All adversaries follow this strategy and simultaneously

inject spoofed packets until one of the adversaries is successful. An adversary knows when

they are successful because they will receive an ICMP response back after the spoofed

packet is injected into the network. If no successes are encountered before the adver-

sary(ies) exhaust the permutation table, then a new permutation is generated and the

adversary(ies) restart the process as before. This process continues until at least one

adversary is successful.

10.1.3.3 Serial Probing

The serial probing strategy is another strategy that starts by initializing a 16-bit number

to 0. The first 8 bits of the 16-bit number represent the source IP address and the

second 8 bits represent the destination IP address. Packets are spoofed and injected into

the network with the supplied source and destination IP addresses based on the value

of the 16-bit number. The 16-bit number is continuously incremented until the correct

randomized source and destination IP address pairs are found. If the correct source

and destination IP address pairs are not found due to the IP randomization scheme re-

randomizing values of source and destination IP addresses during the network probing

process to a value that was previously attempted by the adversary, then the adversary

will be required to restart the same strategy from the beginning. When there are multiple

adversaries participating in a DDoS attack, the 16-bit number will be divided evenly into

116

disjoint sets amongst all adversaries, and the same process will be repeated until one

of the adversaries succeeds in finding the correct randomized source and destination IP

address pairs.

10.1.3.4 Serial Probing Starting at a Random Base

The final strategy is similar to the serial probing strategy, but instead of always starting

the 16-bit number at 0, a randomly-chosen 16-bit value is chosen as the starting point.

From the random starting point, the same process is continued where the adversary

incrementally probes the network for source and destination IP address pairs sequentially

by splitting the 16-bit value in half. If the source and destination IP address pairs are

not found after exhaustively searching the entire attack space for IP addresses (due to

the IP randomization scheme re-randomizing values to a previously probed source and

destination IP address pair), then the adversary would restart the process by selecting

a different randomly-chosen starting point. Similarly, if multiple adversaries exist, then

the attack space for IP addresses would be divided into disjoint sets for each adversary to

attempt to inject spoofed source and destination IP address pairs into the network. If a

response is received after the spoofed packet is injected, then the adversaries would know

that they have succeeded in spoofing a valid source and destination IP address pair. The

same process would continue until one of the adversaries successfully discovers the correct

randomized source and destination IP address pairs.

10.1.4 Results

We performed experiments within the DETERLab testbed using the previously described

adversary strategies. These are, of course, not the only adversary strategies that can

be developed, but these strategies were used as a baseline. Each experiment consists of

operational nodes with IP addresses that are randomized and adversarial nodes that

have the goal of discovering the randomized IP addresses assigned to a pair of nodes so

that a spoofed packet can be injected into the network. Because an SDN deployment is

used and flows are installed to match on both the source and destination IP addresses,

the adversary must find the combination of both addresses in the spoofed packet to be

successful. The experiments are performed so that an adversary continues to probe the

117

network using one of the four adversarial strategies until the correct source and destina-

tion IP addresses are found. Once the correct pair of IP addresses are successfully found,

the number of attempted probes is recorded and the experiment is repeated for another

trial. Each experiment is performed over 10,000 trials.

While each probe is being injected into the network, the IP addresses are at the same

time being re-randomized periodically by the defender. The frequencies at which the IP

addresses are being re-randomized by the defender range from never randomizing (the

minimum frequency that can be chosen) to randomizing every 0.5 seconds (the maximum

frequency chosen for our research). The specific intervals chosen for these experiments

include re-randomizing IP addresses every 0.5 seconds, 5 seconds, 10 second increments

starting from 10 and going all the way up to 260, and finally every 2m second intervals

where 0 ≤ m ≤ 20. The number of adversaries is also varied for each randomization

interval tested to evaluate the effects of a DDoS attack.

During a DDoS attack, the adversarial nodes will stop probing the network once a single

adversary succeeds. Since DETERLab makes use of the Network File System (NFS), all

adversarial nodes communicate, if they have succeeded, to the other adversarial nodes

by writing a “1” to a specific file on the NFS share. Each of the adversarial nodes checks

if this file has a “1” before injecting each new probe into the network. Once all adversarial

nodes learn that one of the other adversarial nodes have successfully found the correct

source and destination IP address pairs, they wait until they can synchronize with each

other to repeat the same test in another trial. Each experiment was run through 10,000

trials to ensure that a high enough statistical significance was achieved to yield a 99% level

of confidence with a ± ∼1.3% margin of error in the experimental results obtained. The

formula used to calculate the statistical significance of a sample size needed to achieve a

99% confidence level with a ∼1.3% margin of error:

n = z2×p(1−p)
e2

= 2.582×0.5(0.5)
1.292

=10,000

where n is the sample size, z = 2.58 is the normalized value of where 99% of the cumula-

118

tive normal distribution lies, p = 0.50 is the proportion of values above the mean number

of probes, and e = 1.29% is the margin of error. The value of p was chosen as 50%

since the distribution of the resulting number of probes needed until success is normally

distributed and there is an equal chance that the number of probes will be either above

or below/equal to the mean number of probes. The error rate was determined based on

the number of probes, 10,000, that was used for the number of trials performed on each

of the experiments.

Experimentally, we determined that each adversarial node can make approximately 310

probes per second with the given NICs of the DETERLab testbed. Each probe consists of

crafting an ICMP packet, substituting in the spoofed source and destination IP addresses,

and injecting the packet into the network. The links within the DETERLab testbed are

all set to 100 Mbps. As the number of probes per second increases for the adversary, the

time required until the first success occurs decreases.

10.1.5 Analysis

The adversarial strategies discussed above follow two distributions that we have validated

by the test results within the DETERLab testbed and will be presented in this section.

The random with repetition strategy follows the binomial distribution and the remaining

three strategies follow the hypergeometric distribution. The binomial distribution fits

the random with repetition strategy because probes are continually repeated, with the

possibility of repeating previously failed probes, with a constant probability of p = 1
65536

until a successfully spoofed packet with the correct randomized source and destination IP

addresses is injected into the network. The hypergeometric distribution fits the remaining

three adversarial strategies because failed probes are not repeated until a spoofed packet

is successfully injected. In the hypergeometric distribution, the probability changes with

each probe, slightly improving (1
65536

, 1
65535

, 1
65534

, . . .). The number of probes needed for

each success follow the expectation curve for each of the adversarial strategies.

119

10.1.6 Binomial Distribution

The least successful of the four strategies evaluated was the random with repetition strat-

egy. In this strategy, probes may potentially be repeated that have already been known

to fail. This strategy follows the binomial distribution since the probability of success

with each attempted probe does not change. Since there are 8 bits of randomness in each

of the source and destination IP addresses, the total number of bits of entropy available

are 16 bits. In this case, the adversary(ies) has a 1
65,536

chance of success on each and

every probe. If the entropy increased by using a CIDR class B network, the same curve

would result, but requiring more attempts by the adversary until a successful randomized

source and destination IP address is found.

The graph in Figure 10.2 shows the results of varying numbers of adversaries probing the

network with varying frequencies of randomization on the IP addresses. We performed

these tests within the DETERLab testbed. Each of the solid line curves represents a dif-

ferent number of adversaries probing the network and the average number of probes (per

adversary) needed before their first success across 10,000 total trials. The dashed lines

that follow the curve are the expectation curves that are validated from the experiments

performed within the DETERLab testbed. Because the distribution here is binomial,

it follows that the expected number of probes for the random variable x until the first

success follows the formula:

E(x) = 1
p

When a single adversary is probing the network, the adversary must probe the full 16-

bit IP space before the first success is expected to occur. This is attributed to the fact

that the probability is constant across all probes, in this case p = 1
65,536

, no matter

how many probes have already been injected into the network. Thus, the expectation is

E(x) = 1
p

=65,536. When there are two adversaries probing the network, the IP space can

be divided in half (p = 1
32,768

) making the expectation curve become E(x) = 1
p

=32,768.

As the number of adversaries double, the expectation constant curve requires half the

120

total number of expected probes per adversary. This process was repeated until there was

a total of 65,536 adversaries, in which case only a single probe is needed by each adversary

until a success is found since there is one adversary assigned to each of the possible IP

address assignments.

Figure 10.2: The solid lines represent the number of attempted spoofed packets that need
to be injected into the network with varying frequencies of re-randomized IP addresses.
As the randomization frequencies increase in time, the number of required attempted
adversary spoofed packets before a successful packet is injected remains constant. The
dashed lines represent the theoretical expectation results of the binomial distribution,
which match the experimented data closely. Each of the curves represents the total
number of adversaries, varying from 1 adversary to 65,536 adversaries. The frequency
intervals vary from 0.5 seconds to a static configuration. We performed 10,000 trials with
an adversary that was capable of injecting 310 packets per second in the test environment
provided.

121

10.1.7 Hypergeometric Distribution

The most successful adversarial strategies followed the hypergeometric distribution. The

probes of the adversaries in these strategies either repeatedly select source and destination

IP addresses randomly without repetition, serially guess IP addresses starting from 0, or

serially guess IP addresses starting at a random base. Since the definition of the hyperge-

ometric distribution states that previous failed attempts are not repeated, it follows that

each of the strategies fits the definition of the hypergeometric distribution. The graphs

in Figures 10.3 - 10.5 show the results obtained from the DETERLab testbed. All of the

graphs are similar to one another and are strongly correlated with each of the associated

hypergeometric expectation curves, shown as dashed lines.

Focusing on Figure 10.3, the top curve shows the data obtained for a single adversary

probing the network and attempting to inject a packet into the network with a forged

randomly-chosen source and destination IP address. Since our experiments operate within

a CIDR class C network address space, there are 8 bits of entropy for each of the source

and destination IP addresses. Because the adversary must successfully guess the correct

source and destination IP addresses in order to successfully inject a packet into the net-

work, the problem is equivalent to an adversary finding a randomly-chosen 16 bit number

without repeating previously failed attempts as shown in the simulated results in Chapter

8. If the adversary does not guess both correctly, the packet will be dropped since the

network is an SDN based environment that requires flow rules to match both the source

and destination IP addresses in order to route a packet. The values along the x-axis

of the graph show the increase in the amount of time for the defender to re-randomize

the current set of active IP addresses within the network. The y-axis shows the average

number of probes needed by the adversary, over 10,000 trials, until the first successful

packet is injected into the network. When randomizing IP addresses frequently (between

0.5 seconds to 10 seconds), the adversary must attempt ∼65,535 probes before the first

success occurs (on average). As the defender randomizes IP addresses less frequently (>

210 seconds), the adversaries’ number of probes is cut in half to ∼32,768 (on average)

122

probes before the first successful packet is injected into the network. The curve is linear

and is dependent upon the frequency at which an adversary can re-randomize IP addresses

and the number of probes/second an adversary can inject into the network.

In the DETERLab testbed we observed that ∼310 packets/second can be crafted, forged

with newly generated random source and destination IP addresses, and then injected into

the network. These metrics come from the open source tool hping3. The network connec-

tions all operate with 100 Mbits/second capacity links. Therefore, when randomizing IP

addresses every 0.5 seconds, the adversary is capable of injecting ∼310×0.5 ≡ 155 packets

Figure 10.3: The hypergeometric distribution is followed when the adversary randomly
spoofs the source and destination IP addresses until a success occurs without repeating
previous failed attempts. The results captured experimentally match those of the expec-
tation curve (dashed lines) when varying the number of adversaries and the frequencies
at which the defender re-randomizes the network IP addresses.

123

Figure 10.4: The hypergeometric distribution is followed when the adversary seri-
ally spoofs the source and destination IP addresses (starting at IP addresses X.Y.Z.0-
X.Y.Z.255, where X, Y and Z are 8 bit octets of an IP address) until success. The results
captured experimentally match those of the expectation curve (dashed lines) when vary-
ing the number of adversaries and the frequencies at which the defender re-randomizes
the network IP addresses.

124

Figure 10.5: The hypergeometric distribution is similarly followed when the adver-
sary serially spoofs the source and destination IP addresses (starting at IP addresses
X.Y.Z.[random mod 256]-X.Y.Z.[random mod 256-1], where X, Y and Z are 8 bit octets
of an IP address and random mod 256 is a randomly-chosen number between 0 and 255
through the modulo operator) until success. The results captured experimentally match
those of the expectation curve (dashed lines) when varying the number of adversaries and
the frequencies at which the defender re-randomizes the network IP addresses.

125

per second into the network. Given the expectation formula from the hypergeometric dis-

tribution, the first success would be encountered after E(X) = N+1
2

= 65,536+1
2

=32,768.5

probes, where N is the population/attack space. Since the adversary cannot make unlim-

ited probes into the network before the IP addresses are re-randomized, the expectation

formula must be modified to model the IP address targets that are periodically changing

as well as the continuous stream of probes coming from the adversary. The probability

of success, with a restricted number of probes before the IP address changes is p = k/N ,

where k is the number of packets injected into the network with spoofed source and des-

tination IP addresses. Thus, the probability of failing to inject a packet with the correct

pair of source and destination IP addresses given k probes is p̂ = 1−p = 1−k/N . To find

the expectation of an adversary after repeatedly probing the network k times over and

over again before the first success occurs, given that the IP addresses are re-randomized

every k probes, the expectation function then becomes: the original expectation of the

hypergeometric distribution plus the original expectation of the hypergeometric distribu-

tion multiplied by the number of failed attempts before the first success. The second part

of the formula accounts for the number of failed attempts before the first success is found

when limited to k probes before IP addresses are re-randomized. More simply put, the

formula can be written as:

E(X) = N+1
2

+ N+1
2
× (p̂) = N+1

2
+ N+1

2
× (1− k/N) = N+1

2
× (1 + p̂).

This expectation formula is shown in the curve as a dashed line in Figure 10.3. As shown,

the expectation curve has a strong correlation with the data collected from within the

DETERLab testbed. The shape and pattern of the curve continues regardless of the

number of adversaries probing the network. The only change in the formula is the attack

space since the adversaries are evenly dividing up the workload.

10.2 Virtual Power Plant

The Virtual Power Plant (VPP) environment, developed at Sandia National Laborato-

ries [134], is a representative ICS system that includes several virtual machines as well as

physical systems found within an ICS setting. The network topology of the VPP envi-

126

ronment is shown in Figure 10.6. The virtual machine systems are shaded in red and the

physical systems are shaded in blue. The operating systems of the virtual machine in-

stances we used were Linux Ubuntu installs running control system software. The network

includes several inverters (systems that changes direct current (DC) to alternating current

(AC)), power generators, smart meters, battery energy storage systems (BESS), servers

that would be found within a control system, and the necessary routing and switching

equipment for end devices to communicate over the network. We applied the IP ran-

domization, port randomization, and fault tolerant algorithms towards this environment

in order to measure the effectiveness of each MTD strategy within a representative ICS

environment and to validate the simulated and virtualized results captured in Chapter 8

and Chapter 9, respectively.

In this scenario, we used the systems labeled as Engineering Workstation, Historian,

SCADA Server, General HMI, and OPC to manage the MTD techniques. We placed

the SDN controller instances on each of these systems to push and install flows to each

of the SDN-capable switches in the network. The SDN-capable switches in the network

were configured to be Open vSwitch instances. A wrapper program with knowledge of

the network topology was written to communicate with the controller to install new flows

into the network. The protocol used to communicate between the controller and the Open

vSwitch instances is OpenFlow version 1.3.

We implemented each of the virtual machine instances in the environment as separate

isolated virtual machines as shown in red. The physical systems and inverters that were

connected with the virtual environment are shown in blue. The end hosts configured to

communicate with each other in this scenario were the systems labeled as Inverters and

the BESS systems. These systems communicated over the SDN and Open vSwitch fabric.

This was done so that no additional configuration on the end hosts were needed and so

that the solution could be transparent to each of the end hosts. The IP randomization

was enabled, using IPv4 and IPv6 protocols. We then captured the performance metrics

127

while these systems communicated with one another in a similar manner to an operational

ICS environment.

Figure 10.6: A representative ICS environment that combines both virtual and physical
environments to model a power plant using ICS-based systems and protocols.

The second set of tests we performed to evaluate the resiliency of the controller were in

the events of either a crash or a maliciously modified Open vSwitch instance to incor-

rectly route traffic to a location of the adversaries choosing. We applied crash tolerant

and Byzantine fault tolerant algorithms to show that the single point of failure found

in SDN deployments with a single controller could support failover controllers without

downtime and with minimal impacts to the operational network. Performance metrics

128

were then captured to demonstrate the feasibility of applying the fault tolerant algo-

rithms to improve the resiliency of the SDN controllers. The OpenDaylight controller was

used for these experiments, but any controller could have been substituted as long as it

implemented the OpenFlow 1.3 protocol. The Byzantine Fault Tolerant State Machine

Replication (BFT-SMaRt) [135] algorithm was used to proxy the fault tolerant algorithms

to protect the flows that were being installed from attempted compromises on any of the

individual controllers.

We performed all experiments while the systems in the VPP environment continuously

communicated with one another using standard ICS protocols including the TCP/IP

Modbus protocol. We observed that the normal ICS protocol communications were main-

tained and simulated the same levels of communication seen within an actual operational

ICS environment. Metrics such as bandwidth, throughput, latency, memory utilization,

and CPU utilization were captured for each of our experiments. The primary metric of

concern whenever any new hardware or software product is added to the system, in many

instances for ICS, is the latency impacts. The other metrics captured also demonstrate

the approaches are still usable in the rare cases where bandwidth and throughput are top

priorities within ICS environments. An adversary was also deployed in the VPP to at-

tempt to inject packets into the network by spoofing source and destination IP addresses

and then submitting those packets to the Open vSwitch instances. We simulated both

DoS and DDoS attack strategies in the VPP environment to measure the effectiveness of

the MTD strategy deployed.

10.2.1 Metrics

We captured metrics when deploying IPv4, IPv6 and the fault tolerant algorithms within

the VPP environment. The experiments we performed were done independently from one

another to avoid skewed results. The results we captured were, again, strongly correlated

to those obtained in both the simulated and the virtualized environments. The metrics

we captured were focused on quantitatively measuring the amount of time required for

an adversary to understand and reverse engineer the randomization algorithm mappings.

129

The adversarial strategies we applied determined the frequencies at which the defender

should configure the MTD techniques to re-randomize the IP addresses to evade the ad-

versary. We also captured metrics on the success rates of the adversary given a varying

number of probes. These metrics can help support the defender in understanding the

level of confidence that the adversary has in succeeding to inject spoofed packets into

the network given the adversarial strategies applied and the randomization frequencies

configured.

The adversaries follow the same threat model as described in Chapter 4. The adver-

sary has the ability to observe network traffic and is capable of injecting traffic into the

network, either via an SDN switch or a network tap. The adversary may also work in

parallel with other adversaries to create a DDoS attack to more efficiently attack the

system. The defender also has the ability to observe and react to noisy adversaries. This

is handled by modeling the number of probes afforded to an adversary before detection.

After a certain configurable number of attempts are made by the adversary, the defender

has the ability to prevent the adversary from continuing to make progress in their exploits.

The results obtained help determine the feasibility of the MTD approaches being in-

troduced into the ICS environments and also help learn the tradeoffs associated with

each approach. We have parametrized each of the MTD approaches developed so that

the MTD techniques negative impact on the operational ICS environment are minimized.

The MTD parameters can be adjusted according to the unique sets of constraints and re-

quirements that are required for each ICS environment. The implementations and results

for each of the MTD approaches are described in the sections that follow.

10.2.2 IPv4

The VPP environment supports both IPv4 and IPv6 protocols. The majority of tests we

performed using IPv4 addresses were consistent with the simulated and virtualized results.

Additionally, we captured latency, throughput, CPU, and memory metrics for the IPv4

sets of experiments. In these experiments, we integrated physical switches such as the HP-

130

2920 and the SEL-2740 SDN capable switches into the environment to measure latency,

bandwidth and dropped packets within a representative environment. We configured

the switches to interoperate with the OpenDaylight controller and received flows with

randomized source and destination IP addresses to be installed at each of the SDN-capable

switches.

10.2.3 Operational Impacts

One of our primary goals in applying the MTD techniques to the VPP environment was

to introduce a minimal or zero amount of additional latency into the system. High avail-

ability is typically the top priority for an ICS environment. We captured latency metrics

within the VPP environment when varying the frequencies at which IP randomization

occurs. The round trip times were also captured over a 1,000 second interval and those

times were averaged separately for each of the randomization frequencies applied.

The results are shown in Figure 10.7. The randomization frequencies varied between a

static environment (IP randomization disabled) to randomizing IP addresses as frequent

as every 1 second. The static configuration of IP addresses without using SDN had the

largest amount of latency out of the group of experiments that we performed. This has

been attributed to the additional amount of time that is required to periodically com-

municate Layer 2 protocols, such as ARP, for hosts within the network and because the

proactive (instead of reactive) flows are installed on each switch. With proactive flow

rule installation, the flows being pushed to each of the switches is initiated by the SDN

controller. If the SDN network was configured in a reactive flow rule installation set-

ting, then the controller would be consulted on each packet received. The proactive flow

rule installation process provides each switch, immediately, with the knowledge of how

to route each packet received and is responsible for the speed-up observed. The SDN

implementation did not have the overhead of looking up and populating an ARP table

when sending and receiving packets. As shown in the metrics captured, the more frequent

the randomization intervals become, the more delay there is on latency. Randomization

intervals of 1 second resulted in a ∼0.65 ms delay whereas randomizing every 1000 sec-

131

Figure 10.7: The latency impacts of varying the frequencies of randomization from a
static configuration to randomizing once every second. As the randomization frequencies
increase in time, the latency measurements decrease.

onds incurred a ∼0.55 ms delay. All results we captured were within 1 ms of each other

which demonstrates the feasibility of these approaches to be applied within several ICS

environments.

We also captured the TCP retransmits when varying the frequencies of randomization

from a static configuration to randomizing once every second as shown in Figure 10.8.

The retransmits were captured over a 10 minute interval where 500,037 packets in total

were transmitted. In general, as the randomization intervals increase, so do the rates of

TCP retransmits. The number of retransmits are attributed to the workload placed on

the Open vSwitch (OVS) instances during the randomization intervals where flows were

being added, removed, and updated.

132

Figure 10.8: The TCP retransmits we captured when varying the frequencies of random-
ization from a static configuration to randomizing once every second. As the random-
ization frequencies increase in time, the number of retransmits also increased. A total
of 500,037 packets were transmitted in each of the tests over a 10 minute interval. The
resulting percentage of retransmits were ∼6.84%, ∼1.01%, ∼0.36%, ∼0.03%, and ∼1.30%
when randomizing every 1 second, 20 seconds, 60 seconds, 10,000 seconds, and a static
configuration, respectively.

For each of these metrics, two hosts (the BESS and the Inverter in the bottom left of

Figure 10.6) were communicating with one another through two Open vSwitches. All

other systems within the VPP environment continued to communicate with one another

normally to increase the load on the network. The network continued to operate as ex-

pected throughout these experiments and we observed no interruptions in connectivity

between any hosts within the network while the IP randomization strategy was enabled.

The IP randomization technique was configured to re-randomize source and destination

IP addresses every 1 second. An overlap window of 10 seconds was configured so that

each flow would remain on the Open vSwitches for an additional nine seconds after the 1

second period that they were active. After the 1 second active period expired, a new flow

133

with a new random source and destination IP address pair was installed. This was done

to accommodate packets that were still in flight during the time a flow update occurred

containing new random source and destination IP addresses. If packets with previous

random IP address mappings are in flight while new mappings are being installed, the old

flow rules remain available on each Open vSwitch instance so that they can still appro-

priately route the packet to its final destination for a user configurable period of time, if

needed.

10.2.3.1 HP-2920

The HP-2920 is a commercial SDN capable switch that is publicly available and has been

shown to successfully operate within cloud based environments [136]. We have performed

an evaluation of the effectiveness of applying the MTD techniques towards the HP-2920

within an ICS environment. The HP-2920 supports the OpenFlow 1.3 protocol with 20

gigabit ports. The switch was evaluated in the test environment described above and

substituted in for one of the Open vSwitch instances in Figure 10.6. The HP-2920 switch

works by processing the flow rules in software when any packet modifications are desired.

The processing of the flow rules in software is performed on flows that have action rules

that go beyond simply forwarding packets out of a port. For example, rewriting source and

destination IP addresses would be performed in software since those flows make packet

modifications before forwarding the packet. Flows that only forward packets out of a port

are processed in hardware with significant performance improvements.

We measured the performance impacts of the software based implementation when the

IP randomization MTD technique is enabled. A comparison when two Open vSwitch are

routing traffic versus when an Open vSwitch and an HP-2920 switch route traffic has

been performed. Varying the frequency of randomization from a static configuration to a

1 second randomization interval is shown in Figures 10.9 and 10.10. All frequencies are

within 10 ms of each other and are well within the bounds of an ICS environment.

134

Figure 10.9: We captured latency measurements when sending traffic between two hosts
using two traditional switches forwarding traffic in the middle. Latency measurements
were also captured when two Open vSwitch instances replaced the traditional switches
with varying randomization frequencies of IP addresses.

The traditional switches, labeled “Static configuration (Standard ODL L2 Switches)” in-

curred, on average, 2.309 ms of latency when using two Open vSwitch instances and, on

average, 1.562 ms of latency when introducing the HP-2920 switch. The HP-2920 switch

improved the latency metric in this case because the switching is performed in hardware.

When focusing on the data points obtained when the SDN configuration was initialized

to route traffic and matching rules are made without source and destination IP address

rewrites performed (the data points labeled “Static Configuration (Flows installed but

no src/dst modifications)”), the HP switch begins processing packets in software because

flow matching is performed on IP fields instead of MAC addresses only. The average la-

tency for the two Open vSwitches scenario is 0.740 ms and the average latency for the HP

switch paired with an Open vSwitch instance is 4.404 ms, or a 494% increase in latency,

on average. The Open vSwitch instances begin switching traffic faster in this scenario be-

cause ARPs are no longer needed to be communicated between endpoints. The increase

135

Figure 10.10: Latency measurements captured when sending traffic between two hosts
with two traditional switches forwarding traffic in the middle. Latency measurements
were also captured when one Open vSwitch instance and one physical HP-2920 switch
replaced a traditional switch with varying randomization frequencies of IP addresses.

in time is not, however, significant enough, in this scenario, to impact an ICS network

beyond the desired limit of 12-20 ms.

When randomizing IP addresses and rewriting source and destination IP addresses at

10,000 second intervals, the average latency when using two Open vSwitch instances is

1.026 ms and 4.714 ms when using one Open vSwitch instance with the HP-2920 physical

switch. The 360% increase is again attributed to the software matching of the flow rules

performed within the HP-2920 switch. When randomizing at more frequent intervals, the

average latency for both cases of using two Open vSwitch instances or one Open vSwitch

instance paired with one HP-2920 switch are similar. In the scenario where two Open

vSwitch instances are deployed with randomization frequencies of 60 seconds, 20 seconds,

and 1 second, the average latencies are 0.728 ms, 0.711 ms, and 1.091 ms, respectively.

In the one Open vSwitch and one HP-2920 switch case with randomization frequencies of

136

60 seconds, 20 seconds, and 1 second, the average latencies are 4.366 ms, 3.941 ms, and

4.993 ms, respectively. The 1 second randomization frequencies have the largest impact

on latency, but are still within range of the desired 12-20 ms.

10.2.3.2 SEL-2740

We evaluated another publicly-available, commercial switch, the Schweitzer Engineering

Laboratories-2740 (SEL-2740) SDN network switch has been evaluated for latency im-

pacts in a standalone network. The tests were performed on-site at SEL so the only

tests performed at the time were latency tests and dropped packets. The Open Daylight

controller was used and a secure Transport Layer Security (TLS) [137] connection was

established between the controller and both of the SEL-2740 switches. The two SEL-2740

switches were directly connected to each other. Each of the SEL-2740 switches had several

end systems directly connected to them and communicated using ICS specific protocols

such as DNP3 and Modbus TCP.

We performed experiments with randomization frequencies of 60 second and 1 second

intervals. In each scenario, we configured 100 Mbits/second links with separate tests

performed using 1% and 99% link utilizations configured. With the 60 second random-

ization frequency configured and 1% link utilization, the latency introduced was 25.6

microseconds. When 99% link utilization was configured, the latency introduced was

80.6 microseconds. The large improvement in speed compared to the Open vSwitch and

HP-2920 switches is attributed to the flows being processed in hardware as opposed to

software.

When the randomization frequency was adjusted to 1 second intervals, the results were

similar to those obtained when randomizing every 60 seconds. When the link utilization

was set to 1% saturation, 25 microseconds of latency were incurred on the communication

channel. When the saturation level was increased to a 99% link utilization, the latency

increased to 87.8 microseconds. All latency metrics captured using the SEL-2740 switch,

which is specifically tailored towards ICS environments, were well within the constraints

137

of an ICS environment. Given the results of less than 1 ms of latency, the SEL-2740

can be applicable to a wide range of environments that have even more strict latency

constraints than a typical ICS environment.

We also examined the number of dropped packets in our experiments. The IP ran-

domization, with all varying frequencies, did not cause any packets to be dropped. All

switches evaluated including the HP-2920, the SEL-2740, and the Open vSwitch did not

drop any packets during our experiments. This is an especially important metric within

an ICS setting because dropped packets can have severe consequences. Dropped packets

may cause delays or major outages within the power grid, depending on if TCP or UDP

communications are used, respectively. These directly affect the general public and in

some cases, such as when hospitals depend on the power grid and energy delivery sys-

tems, can be a cause for public health and safety concerns. This is one of the reasons why

high availability is so important in ICS environments.

10.2.4 Fault Tolerance

The controller of an SDN network can be considered a single point of failure since it is re-

sponsible for managing and installed the flows that specify how packets should be routed

on each of the SDN-capable network devices. If the controller fails or is compromised,

then the SDN controller would no longer be able to communicate with the SDN switches

and the MTD randomization would no longer continue to function. The network would

then return back to a static configuration and would lose the benefits of the MTD pro-

tections. To protect against the SDN controller from becoming a single point of failure,

intentional or not, we have designed fault tolerant algorithms into the SDN controller.

The effectiveness of each algorithm has been measured using latency and bandwidth met-

rics experimentally captured within the VPP environment.

We integrated both of the crash tolerant and Byzantine tolerant algorithms into the SDN

controller to protect it from having a system failure or from experiencing a compromise

within the flow configurations. To ensure that an operational SDN controller will still

138

be available in the event of SDN failures, we integrated the Paxos algorithms into the

SDN controller. The improved resiliency has been accomplished by allocating a cluster

of controllers to serve as failover systems and also by having consensus agreements on

the flows installed in the network. In this deployment, the single point of failure for the

SDN controller is eliminated when the Paxos algorithms are applied to track the status

of all of the controllers in the cluster. If an adversary is attempting to compromise the

SDN controller with the fault tolerant algorithms enabled, they now must compromise a

majority of the controllers in the cluster to be successful.

Similarly, we have integrated Byzantine fault tolerant algorithms into the SDN controllers

to protect the flows that they are communicating to the SDN-capable switches in the net-

work. In the event that one of the controllers is compromised and attempting to commu-

nicate false information to the other controllers of the cluster, the Byzantine fault tolerant

algorithms will not only detect the false information but will prevent the other controllers

from trusting the false information. The Byzantine fault tolerant algorithms can ensure a

consensus agreement and can tolerate f failures when there are 3f +1 controllers installed

within the cluster.

The fault tolerant algorithms combined with enabling the MTD techniques in an SDN

setting will have performance costs associated with them. ICS environments can only

tolerate minimal amounts of delay to the operational network and any new technology

introduced, including security protections, must be evaluated to meet the strict time con-

straints and requirements. We have captured latency, throughput, CPU, and memory

measurements for each of the fault tolerant algorithms combined with the MTD tech-

niques.

Figure 10.11 shows the VPP environment running as a traditional ICS network without

the SDN framework, the MTD strategies or the fault tolerant algorithms enabled. The

139

Figure 10.11: Latency metrics we captured within the VPP environment over a 1,000
second interval of time. We captured these results to measure a baseline for the VPP
environment.

average latency measured experimentally over a 1,000 second period of time is 0.612 ms.

We captured this baseline measurement of latency independently to compare against the

latencies captured when enabling each of the security protections separately within the

VPP environment.

Next, we captured performance metrics when the IP randomization techniques were en-

abled within the VPP environment. The latency results captured over a 1,000 second

interval are shown in Figure 10.12. We configured the randomization frequencies to gen-

erate new random source and destination IP addresses every 1 second. The average

latency over the 1,000 second period of time improved from the traditional network base-

140

Figure 10.12: Latency metrics captured within the VPP environment over a 1,000 second
interval of time. The results show the effects of applying an SDN framework combined
with the IP randomization MTD technique.

line that was previously captured since the SDN network does not require ARP requests

and replies to operate and because the proactive (instead of reactive) flows are already

installed on each switch before each packet is first observed. The latency captured for the

round trip time of an ICMP message was observed to be 0.546 ms, a 10.78% improvement

in performance.

To determine the performance impacts of the fault tolerant algorithms, we enabled the

crash tolerant algorithms and captured latency metrics within the VPP environment.

Figure 10.13 shows the results that build on Figure 10.12 where the IP randomization

technique is additionally enabled. In this case, we configured four controllers to be part

141

Figure 10.13: Latency metrics captured within the VPP environment over a 1,000 second
interval of time. The results show the effects of applying the SDN framework combined
with the IP randomization MTD technique and the Paxos crash tolerant algorithm.

of the cluster of failover controllers to handle the event of crash related faults. The exper-

iment was setup so that every 250 seconds, one of the controllers from the cluster would

crash and no longer be responsive. The crash is meant to simulate an adversary exploit-

ing a controller one at a time and to measure the performance impacts during those time

periods when a failover occurs. As shown in Figure 10.13, connectivity is lost 500 seconds

into the experiment. This is caused due to the fact that at least half of the systems, 2 in

this case, in the cluster of 4 had crashed at that time (since the experiment was designed

for controllers to crash every 250 seconds). The Paxos crash tolerant algorithms require

a majority of the cluster to be responsive in order to have a consensus agreement which

is not possible when half of the controllers fail. The average latency measured when a

142

consensus agreement could be successfully reached was 0.542 ms, which is comparable to

the IP randomization algorithms running independently without the fault tolerant algo-

rithms enabled.

We then captured latency measurements when the Byzantine fault tolerant algorithms

were enabled. In this set of experiments, an individual flow residing on one of the con-

trollers was maliciously modified to route traffic to the adversary instead of to the original

destination endpoint. The Byzantine fault tolerant algorithms implemented could handle

f failures when there are 3f+1 controllers. In this scenario, 1 failure can be tolerated since

there are 4 controllers configured within the cluster. Figure 10.14 shows the round trip

time measurements associated with the Byzantine fault tolerant algorithms and the IP

randomization enabled. The results are similar to those of the crash tolerant algorithms in

that communications discontinued after 500 seconds. After 2 failures, a consensus agree-

ment on the flows installed could no longer be achieved. The increased latency, as shown

in Figure 10.14, is attributed to the compromised controllers attempting to communicate

the malicious flow to the other controllers in the cluster and the other controllers waiting

for a consensus agreement amongst the cluster. However, since the other controllers are

also participating in the Byzantine fault tolerant algorithms, they detect the differences

in the malicious flows being communicated to them and reject those differences until a

consensus agreement can be achieved between the cluster. The spikes in latency after

every 250th packet show the additional communications taking place when the malicious

flows are sent. The average latency when we enabled all of the SDN framework, the IP

randomization, and the Byzantine fault tolerant algorithms was measured to be 0.587 ms,

which is also comparable to the VPP baseline.

We also captured throughput measurements when the crash tolerant and Byzantine fault

tolerant algorithms were enabled. A baseline measurement of throughput was captured

over a 1,000 second interval with a 10 Mbits/sec link configured. As shown in Figure

10.15, the baseline measurements in the VPP environment, the link is capable of full uti-

143

Figure 10.14: Latency metrics captured within the VPP environment over a 1,000 second
interval of time. The results show the effects of applying the SDN framework combined
with both the IP randomization MTD technique and the Byzantine fault tolerant algo-
rithms.

lization at 10 Mbits/sec when configured without any of the SDN framework, the MTD

techniques or the fault tolerant algorithms enabled.

Figure 10.16 shows the results that we collected over a 1,000 second interval when the

VPP is configured to operate in an SDN configuration. The throughput was unaffected

when SDN was enabled and when the iperf3 tool was configured to maintain a continu-

ous throughput rate of 10 Mbit/sec across the network. In this experiment, we configured

two Open vSwitch instances with two end hosts communicating to one another through

the Open vSwitches. We installed flow rules on each of the Open vSwitch instances to

appropriately forward traffic between the two switches. In the flow rules, the source or

144

Figure 10.15: Throughput measurements using traditional switches with 10 Mbit/sec links
configured through the iperf3 tool over a 1,000 second period.

destination IP addresses were not rewritten. The flow rules only matched packets based

on the incoming physical port and the source and destination IP addresses before for-

warding out the appropriate output port.

Figure 10.17 shows the throughput results captured in the VPP environment when IP ran-

domization is enabled. We obtained similar results from the baseline indicating that the

IP randomization and SDN framework do not have a noticeable impact on the throughput

observed within the VPP environment. These results are consistent with those discussed

previously on the latency impacts of enabling both the SDN framework and the IP ran-

domization technique. Throughput is not typically a strong requirement for ICS environ-

ments since only small amounts of data are usually sent, except for potentially in the case

145

where synchrophasor data is continuously being communicated across the network which

can require high amounts of bandwidth.

Figures 10.18 - 10.21 show the throughput measurements when the crash tolerant algo-

rithms are enabled within the VPP environment. The performance metrics were captured

over the same 1,000 second interval of time with a 10 Mbits/sec link configured across the

network. In each of these experiments, an SDN controller was manually brought down to

simulate an adversary causing a crash in one of the controller every 250 seconds. It was

also assumed that the controllers would remain in a crashed state and could not recover.

The number of controllers in the cluster varied between 2 controllers and 5 controllers.

Figure 10.16: Throughput measurements using Open vSwitch instances that only forward
traffic based on incoming physical ports, with 10 Mbit/sec links configured through the
iperf3 tool over a 1,000 second period.

146

Figure 10.17: Throughput measurements using Open vSwitches that randomize source
and destination IP addresses before forwarding traffic. Network links were configured to
operate at 10 Mbits/sec through the iperf3 tool over a 1,000 second period.

Figure 10.18 shows the results obtained when 2 SDN controllers form the cluster. The

throughput initially maintains a 10 Mbit/sec connection, until the first controller crashes

at the 250 second time mark. After the first controller fails at 250 seconds, throughput

drops to 0 Mbits/sec. The decrease in throughput is attributed to the requirement that

a majority of the cluster systems to be up and running. As soon as a single controller

in the cluster crashes, there can no longer be a majority consensus agreement since there

are only 2 controllers configured as part of the original cluster.

147

Figure 10.18: Throughput measurements using Open vSwitch instances that random-
ize source and destination IP addresses were collected before forwarding traffic with 10
Mbit/sec links configured through the iperf3 tool over a 1,000 second period. A cluster
of two controllers is configured with the Raft consensus algorithm [1] where the leader
controller fails every 250 seconds.

148

Figure 10.19 shows the results obtained when 3 controllers form the cluster. The through-

put is maintained at 10 Mbit/sec, until 2 of the controllers crash at the 500 second time

mark. After the first controller failure occurs at 250 seconds, throughput is maintained at

10 Mbits/sec because a majority of the controllers, 2 in this case, are still up and running.

As soon as the second controller crashes, the throughput drops to 0 Mbits/sec. The drop

in throughput is attributed to the requirement that a majority of the cluster systems be

up and running. As soon as 2 out of 3 controllers in the cluster crash, there can no longer

be a majority consensus agreement.

Figure 10.19: Throughput measurements using Open vSwitch instances that randomize
source and destination IP addresses before forwarding traffic, with 10 Mbit/sec links con-
figured through the iperf3 tool over a 1,000 second period. A cluster of three controllers
is configured with the Raft consensus algorithm where the leader controller fails every 250
seconds.

149

Figure 10.20: Throughput measurements using Open vSwitch instances that randomize
source and destination IP addresses before forwarding traffic, with 10 Mbit/sec links
configured through the iperf3 tool over a 1,000 second period. A four controller cluster
is configured with the Raft consensus algorithm where the leader controller fails every 250
seconds.

150

Figure 10.20 shows the results obtained when 4 controllers form the cluster. The through-

put is maintained at 10 Mbit/sec, until 2 of the controllers crash at the 500 second time

mark. After the first controller failure occurs at 250 seconds, throughput is maintained at

10 Mbits/sec because a majority of the controllers, 3 in this case, are still up and running.

As soon as the second controller crashes, the throughput drops to 0 Mbits/sec. The drop

in throughput is attributed to the requirement that a majority of the cluster systems be

up and running. As soon as half of the four controllers in the cluster crash, there can no

longer be a majority consensus agreement.

Figure 10.21: Throughput measurements using Open vSwitch instances that randomize
source and destination IP addresses before forwarding traffic, with 10 Mbit/sec links
configured through the iperf3 tool over a 1,000 second period. A five controller cluster is
configured with the Raft consensus algorithm where the leader controller fails every 250
seconds.

151

Figure 10.21 shows the results obtained when 5 controllers form the cluster. The through-

put is maintained at 10 Mbit/sec, until 3 of the controllers crash at the 750 second time

mark. After the first controller failure occurs at 250 seconds, throughput is maintained at

10 Mbits/sec because a majority of the controllers, 4 in this case, are still up and running.

When the second controller crashes at the 500 second mark, the cluster can still reach a

consensus agreement since a majority 3 out of 5 controllers are still up and running. As

soon as the third controller crashes, the throughput drops to 0 Mbits/sec. The drop in

throughput is attributed to the requirement that a majority of the cluster systems be up

and running. As soon as 3 or more of the 5 controllers in the cluster crash, there can no

longer be a majority consensus agreement.

The next set of metrics we captured are collected from the end devices that serve as the

SDN controllers. CPU and memory utilization measurements were captured to under-

stand the impacts to the SDN controllers themselves, which are responsible for installing

the appropriate flows on each of the SDN switches to correctly route traffic. We initially

performed the measurements to capture a baseline of the VPP environment, then also

when enabling the IP randomization techniques, then when also enabling the crash toler-

ant algorithms, and finally when enabling the Byzantine fault tolerant algorithms. The

specifications of the SDN controller systems are as follows:

• 2.60 GHz Intel R© Xeon R© CPU ES-2670 processor

• 1 GB RAM

• 20 GB SATA Disk Drive

• Gigabit Ethernet card

• Ubuntu 16.04 64-bit

152

Figure 10.22: CPU impacts on the SDN controller when deploying Byzantine fault tolerant
algorithms with IP randomization enabled, crash tolerant algorithms with IP randomiza-
tion enabled, no fault tolerant algorithms with IP randomization enabled, and a baseline
with no fault tolerant algorithms and IP randomization disabled.

Figure 10.22 shows the CPU utilization impacts on the controllers over a 1,000 second

interval of time. All scenarios are plotted on the same graph to compare different mea-

surements easily. The lowest CPU impact came from the baseline CPU measurements

when the VPP was configured to run without any of the SDN, IP randomization, or fault

tolerant algorithms enabled. The average CPU utilization in that scenario was measured

to be ∼2.7% of CPU overhead. When IP randomization is enabled, the average CPU

utilization increases to ∼10.3% of CPU overhead. When the crash tolerant and IP ran-

domization algorithms are enabled, the average CPU utilization becomes ∼20.4% of CPU

overhead. Finally, when the Byzantine and IP randomization algorithms are enabled, the

average CPU utilization is measured to be ∼20.7% of CPU overhead.

153

The largest increase measured when we incrementally enabled new features was after the

fault tolerant algorithms were enabled. An additional ∼7.6% (on average) of CPU usage

was needed when enabling the IP randomization algorithms from the baseline measure-

ments. After enabling the fault tolerant algorithms, an additional (on average) ∼17.7% of

CPU usage was required for the crash tolerant algorithms and ∼17.9% of CPU usage was

needed for the Byzantine fault tolerant algorithms. The fault tolerant algorithms were

implemented in Java and the Java Virtual Machine environment required 512 megabytes

to be initialized. Although the endpoint controllers did experience a higher level of load

on the CPU, there were not significant degradations in latency and throughput as shown

in Figures 10.11 - 10.14 and Figures 10.17 - 10.21. Within an ICS environment, the fault

tolerant algorithms do not provide a significant amount of overhead and would be ap-

propriate to apply, provided that the controllers have similar specifications as described

previously. Outside of an ICS environment, the feasibility of applying the fault tolerant

algorithms will depend on the requirements of those environments as well as the other

processes that would also be running on the SDN controller. Isolating and separating the

controller onto its own standalone system may be an appropriate option if there are a

significant number of processes and applications hosted on the same system.

The memory overhead was also captured on each of the controllers within the cluster.

The metrics we captured were for a baseline configuration, when IP randomization was

enabled, when IP randomization combined with the Paxos crash tolerant algorithms were

enabled, and when IP randomization combined with the Byzantine fault tolerant algo-

rithms were enabled. The baseline memory consumption within the VPP environment

running without any of the security protections over a 1,000 second interval was measured

at ∼28.8% utilized on average. When enabling IP randomization, the crash tolerant algo-

rithms, and the Byzantine fault tolerant algorithms, the average memory usage increased

to 91.4%, 92.2%, and 92.6%, respectively. These results are reflected in Figure 10.23. The

reason for the large increase is due to the memory required to initialize the Java Virtual

154

Figure 10.23: Memory impacts on the SDN controller when deploying Byzantine fault
tolerant algorithms with IP randomization enabled, crash tolerant algorithms with IP
randomization enabled, no fault tolerant algorithms with IP randomization enabled, and
a baseline with no fault tolerant algorithms and IP randomization disabled.

Machine that is needed to start the OpenDaylight controller. The amount of memory used

within OpenDaylight was configured to be 512 megabytes, or half of a gigabyte, which was

the major contributor to the increase in memory usage. The large memory requirements

combined with the fact that the controllers each only had 1 gigabyte of memory is the

reason for the greater than 50% increases in memory usage. In an operational setting, the

memory requirements of the OpenDaylight controller should be factored into the decision

about the specifications chosen for that system. With the small amount of memory avail-

able on the controller systems used in this set of experiments, the memory was nearly at

a maximum. This could cause delays in communicating new flows to each of the SDN

switches in the network which would then potentially cascade into latency increases.

155

10.2.5 IPv6

An evaluation of the IP randomization MTD technique using IPv6 addresses was per-

formed within the VPP environment. IPv6 was chosen to validate the simulated results

of the adversarial workload increases described in Chapter 9 for IPv4 and also to eval-

uate the feasibility and effectiveness of IPv6 within an ICS setting. IPv6 is currently

not widely deployed within ICS environments but researchers have been considering it

for inclusion for several years [138]. IPv6 is the successor of IPv4 and was designed to

expand on the limited amount of IPv4 addresses available [139]. IPv4 addresses consist of

32 bit addresses whereas IPv6 addresses consist of 128 bit addresses. The larger address

space provides additional entropy for the IP randomization scheme. As shown previously

in Chapter 9, an adversary can brute force a pair of CIDR class C IP addresses in under

0.03 seconds, which is a minimal delay for an adversary. Using IPv6 addresses allows

the defender to expand the entropy beyond the typical 8 bits of entropy that would be

customary in an IPv4 deployment. IPv6 addresses would typically have on the order of

64 bits available in many deployments [140] or 100× (256− 1) percent more entropy. This

added entropy makes brute force techniques infeasible for an individual adversary.

We have captured metrics on the effectiveness of IPv6 randomization to evaluate the

impacts on the increased amount of workload placed on the adversary. We have also ana-

lyzed individual adversaries and distributed adversaries for their effectiveness in learning

the randomized IPv6 mappings. Our experiments within the VPP environment captured

the number of probes that an adversary must attempt before successfully reverse engi-

neering the randomized IPv6 addresses. The IPv6 addresses chosen contained 10 bits of

entropy on both the source and destination addresses. In our tests, we repeated each

experiment with 10,000 trials to verify that the results obtained from the IPv4 addresses

scaled similarly when expanding the IP address space.

10.2.6 Individual Adversaries

Figures 10.24 - 10.27 show the experimental results obtained within the VPP environ-

ment when an individual adversary attacks the IPv6 randomization schemes using the

156

four adversarial strategies described in Section 10.1.3 to reverse engineer the randomized

IPv6 addresses. The first strategy is to spoof randomly-chosen source and destination

IPv6 addresses continuously until a successful spoofed packet is injected into the network.

This process may potentially repeat previously failed attempts. The second strategy per-

forms the same strategy except a table is maintained to avoid repeating previously failed

attempts. The last two strategies scan IPv6 addresses sequentially, with the first of the

two starting with the first available IPv6 address and the second strategy starting at a

random IPv6 address. The four strategies we used were taken from RFC 6056 [100].

The top most curves for each of the four strategies are shown in Figures 10.24 - 10.27

for an individual adversary attacking the system. The random with repetition strategy,

again, followed the binomial distribution. Since previous attempts may be repeated, the

probability from one probe to the next is constant and does not improve as more probes

are made. Figure 10.24 shows the constant curve and the expectation of 210+10 = 220

probes required until the first success that was experimentally encountered within the

VPP environment. The source and destination IPv6 addresses both had 10 bits of en-

tropy built in for a total of 20 bits of entropy combined.

The same analysis was performed when the adversary strategy was modified to randomly

probe the network with spoofed IPv6 addresses that did not repeat. The difference in

this strategy is that the adversaries’ probability will improve with each attempt since

previous attempts are not repeated. We varied the randomization frequencies in these

experiments and the intervals are shown along the x-axis of Figure 10.25. As the ran-

domization frequencies increase in time going to the right on the curve, the success rate

of the adversary improves. This is attributed to the environment remaining statically

configured for longer periods of time which allows the adversary to probe the network

over longer periods of time before the IP address configuration changes. Once the ran-

domization intervals increase beyond 256 seconds, the adversary success rates begin to

improve more significantly. However, when there is any amount of randomization fre-

157

Figure 10.24: The solid lines represent the number of attempted spoofed packets that
need to be injected into the network with varying randomization frequencies. As the
randomization frequencies increase in time, the number of spoofed packets attempted by
the adversary decreases. The dashed lines represent the theoretical expectation curve of
the binomial distribution, which match the experimented data closely. Each of the curves
represent the total number of adversaries, varying from 1 adversary to 8,192 adversaries.
The frequency intervals varied from 0.5 seconds to not randomizing at all (a static con-
figuration). We performed 10,000 trials in the VPP environment with an adversary that
was capable of submitting 310 injected packets per second.

158

Figure 10.25: The hypergeometric distribution is followed when the strategy of the ad-
versary is to randomly spoof the source and destination IPv6 addresses until a success
is observed without ever repeating previous failed attempts. The results captured ex-
perimentally match those of the expectation curve (dashed lines) when the number of
adversaries and the frequencies at which the defender re-randomizes the IPv6 addresses
are varied.

159

quency beyond 4,096 seconds, the adversaries’ success rates become constant. The reason

for the constant rate of success beyond 4,096 seconds of randomization is because with 20

bits of entropy, the entire attack space can be exhausted when the adversary is capable

of injecting 310 probes per second (310*4,096 ≈ 28 ∗ 212 = 220). The 310 probes per

second includes the time to craft, spoof random addresses, and inject the packet into the

network. This strategy follows the hypergeometric distribution which is overlayed onto

the experimental results collected and closely matches those results.

The serial guessing strategies shown in Figures 10.26 - 10.27 have similar results as the

random without repetition strategy shown in Figure 10.25. The results of this strat-

egy also follow the hypergeometric distribution and the experimental results are strongly

correlated with that distribution.

10.2.7 Distributed Adversaries

The next set of experiments show the results when the adversary divides the work be-

tween several adversaries to reduce the overall amount of time until success. The number

of distributed adversaries was varied between 2 adversaries and 8,192 adversaries. The

adversaries we evaluated were those that fit the formula 2n where 0 ≤ n ≤ 13. This

experiment setup was developed to evaluate the success rates of a DDoS attack on the

IPv6 randomization scheme within the VPP environment. Each of the curves below the

top curve in Figures 10.25 - 10.27 show the experimental results obtained from a varying

number of adversaries beyond a single adversary.

As the number of adversaries increases, the number of attempts by each adversary de-

creases since the work is divided evenly between them. Similar to the IPv4 results from

the DETERLab experiments shown in Figure 10.5, the y-axis shows the number of probes

required until the first successful spoofed packet is injected into the network by any of the

individual adversaries. The number of probes until a success occurs when two adversaries

are launching a DDoS varies between 218 − 219 probes. This is a large number of probes

that should easily be noticed by a defender. As the number of adversaries increases, the

160

Figure 10.26: The hypergeometric distribution is followed when the strategy of the ad-
versary is to serially spoof the source and destination IPv6 addresses (starting at IPv6
addresses A.B.C.D.E.F.G.0000-T.U.V.W.X.Y.Z.FFFF, where A, B, C, D, E, F, G, T, U,
V, W, X, Y, and Z are 16 bit values of an IPv6 address) until success. The results cap-
tured experimentally match those of the expectation curve (dashed lines) when varying
the number of adversaries and the frequencies at which the defender re-randomizes the
IPv6 addresses.

161

number of overall probes stays the same amongst all adversaries combined but the time

needed until a success occurs is reduced. This reduction in time highlights the need for

the defender to monitor the number of probes observed in the network. As the number

of total probes observed approaches 800,000, at a minimum, the defender should begin to

take action on the noisy activity produced by the adversary. The defender may choose

to block the adversaries by activating firewall rules or should at least begin to investigate

the anomalous behavior.

Figure 10.27: The hypergeometric distribution is similarly followed when the adversary
follows the strategy of serially spoofing source and destination IPv6 addresses (starting
at IPv6 addresses A.B.C.D.E.F.G.R-T.U.V.W.X.Y.Z.Q, where A, B, C, D, E, F, G, R,
T, U, V, W, X, Y, Q, and Z are 16 bit values of an IPv6 address) until success. R is
a random 16-bit value and Q is R-1. The results captured experimentally match those
of the expectation curve (dashed lines) when varying the number of adversaries and the
frequencies at which the defender re-randomizes the network IPv6 addresses.

162

Both of the remaining two strategies (serial probing strategy starting at the first available

IPv6 address and incrementally probing until the maximum IPv6 address is reached and

the serial probing starting at a random IPv6 address) followed the same pattern as the

random without repetition strategy previously discussed. These two strategies also fol-

low the hypergeometric distribution and we have experimentally shown that they exhibit

similar behavior as the address space scales to IPv6 addresses. The amount of entropy

to be expected in an IPv6 address could be 64 bits in a typical IPv6 deployments. 64

bits would significantly increase the time and number of adversaries needed to carry out

a successful attack. In fact, to achieve the same results as the 20-bit case described in our

research, the adversary would require 244 adversaries when launching a DDoS to achieve

the same success rates. IPv6 yields a higher level of protection, in terms of the amount

of entropy available to a defender, when protecting ICS environments from attack.

10.2.8 Side Channel Attacks

An adversary can also make use of side-channel information to attack the MTD techniques

deployed. For the IP randomization schemes, the adversary may be aware that the IP

randomization defense has been deployed and may wish to understand how much time is

available until the next randomization period occurs. If the adversary is passively observ-

ing round trip times in the network, the randomization frequencies can be determined.

Figure 10.28 and Figure 10.29 show our round trip time latency measurements that were

captured over a 100 second interval with two hosts communicating over an SDN network

with IP randomization enabled.

Figure 10.28 shows the round trip times when 2 second randomization frequencies are

configured. In the plot, there are fluctuations that occur every ∼2 seconds. The increases

are attributed to the new flow updates being installed on each of the switches and the

additional time required to make a match with the new flow rules installed. The Open

vSwitch takes time to install the new flow rules, remove old flow rules that have expired,

and also match incoming and outgoing packets against the additional flow rules installed.

From this information gathered, the adversary can then learn that they must launch their

163

Figure 10.28: The RTT times over a 100 second interval have spikes in latency every
∼2 seconds since these are the periods of time where IP randomization occurs. The
adversary can then understand the amount of time available to setup an exploit until the
next randomized interval occurs.

attack within a ∼2 second window of time. This knowledge can help an adversary work

on an exploit offline so that it meets this criteria.

Figure 10.29: The RTT times over a 100 second interval have spikes in latency every
∼20 seconds since these are the periods of time where IP randomization occurs. The
adversary can then understand the amount of time available to setup an exploit until the
next randomized interval occurs.

Similarly, Figure 10.29 shows the round trip times when 20 second randomization frequen-

cies are configured. In the plot, there are fluctuations that occur every ∼20 seconds. The

increases are attributed to the new flow updates being installed on each of the switches

and the additional time required to make a match with the new flow rules installed. The

Open vSwitch takes time to install the new flow rules every 20 seconds, remove old flow

rules that are expired, and also match incoming and outgoing packets against the ad-

ditional flow rules installed. The adversary can then learn that they must launch their

attack within a ∼20 second window of time in this scenario. Comparing Figure 10.28 and

Figure 10.29 can easily allow the adversary to differentiate the randomization frequen-

164

cies of re-randomizing the IPv6 addresses every 2 seconds and every 20 seconds. This

knowledge can help an adversary work on an exploit offline so that their exploits meet

this criteria.

One possible mitigation for this side channel attack is to configure the randomization fre-

quency intervals to occur at random frequencies. The random frequencies can be bounded

by user configurable lower and upper bound limits to ensure that the randomization fre-

quencies are occurring often enough to be effective so that the network does not keep

the same configuration for too long. Keeping the same configuration for too long would

provide the adversary with more time to launch their attacks against a fixed target. The

algorithms to install random flows would also have to be slightly modified for this ap-

proach to work so that each randomized flow remains active until the next flow with a

different randomly-chosen expiration time is installed. Given that the flows will expire

at random times, the algorithms will have to ensure that the next flow is installed before

the previous randomized flow expires. This will require the randomization algorithms to

track the previous randomization expiration times and to ensure that the next flows are

installed before the current flow expires.

Alternatively, the randomization techniques can be activated only at the points in time

where a suspected attack is detected. This approach pushes the burden out to the detec-

tion agent to trigger the IP randomization scheme and reduces the amount of overhead

introduced onto the network. One potential risk of this approach would be if the detection

agent did not detect the exploit until it was too late. In this scenario, this particular side

channel attack would be eliminated and the adversary would not be able to determine

the randomization intervals, but the adversary would accomplish their goal of evading the

detection agent and ultimately exploiting the system. This tradeoff should be considered

when determining the frequency of the randomization intervals.

165

This is just one example of a side channel attack that an adversary can leverage to

their advantage. Other possible side-channel attacks can include performing power analy-

sis [141] on the Open vSwitch instances to learn the randomization intervals, observing the

flow processing time to learn the forwarding table of the Open vSwitch being used [142],

recovering keys [143] of crypto algorithms if a secure communication channel is used be-

tween the controller and the SDN switches, or by attacking the pseudo random number

generators that is used to produce and generate the random mappings [144] of the MTD

technique. Side channel attacks should be considered when deploying each of the MTD

protections described.

166

Chapter 11

Conclusions

The MTD approaches we developed have been shown to be effective within an ICS en-

vironment. We performed several experiments with a variety of configurations for each

MTD technique. The techniques presented here, although effective individually, are meant

to be a piece of the larger computer security puzzle. The MTD techniques presented here

can be thought of as additional layers of defense to help protect a system from an adver-

sary attempting to gain an understanding of a system in the early stages of an attack.

Additional defenses can be deployed alongside the MTD techniques to create an even

more secure system. This chapter is meant to highlight the limitations, lessons learned,

opportunities for future research, and to summarize our research.

11.1 Limitations and Lessons Learned

We applied MTD techniques and fault tolerant algorithms to ICS environments with suc-

cessful experimental results. However, there are several lessons learned along the way and

limitations of each approach that we observed. The lessons learned and limitations apply

to both the techniques themselves as well as the experimental processes used to capture

the results. Our intent in this section is to convey that the solutions presented here are ad-

ditional layers of defense available to a defender. Deploying an individual MTD technique

or a suite of MTD techniques alongside other computer security protections will depend

on the application. Combining the MTD and fault tolerant techniques with additional

security protections is often a requirement in order to meet security guarantees that are

167

not necessarily provided by the MTD techniques by themselves. For example, the MTD

techniques may provide a mitigation to a “hitlist” type of attack [145], but the MTD

techniques themselves do not provide the ability to detect the hitlist attack. Intrusion

detection systems (IDSs), firewalls, security information and event management systems,

and virus scanners, for example, should all be included as part of the overall security pro-

tection. The MTD strategies by themselves are not meant to be a comprehensive security

solution that protects against all threats, but rather should be applied as an additional

layer of defense in general.

One of the lessons learned in our research was that if there are commercially available

products that are under consideration for integration as part of any security solution,

they should be fully evaluated to ensure that they will meet all of the requirements of

the targeted use case. If there is a mismatch in performance or functionality, early iden-

tification is important. We evaluated several switches that are SDN capable and their

implementations varied significantly. The variations in implementation resulted in dras-

tically different results. The differences did not impact the feasibility of applying the

MTD approaches to an ICS environment in this case, but could make a difference in envi-

ronments outside of ICS. Comparing performance in the software implementation to the

hardware implementation required several experiments to identify and narrow down the

observed slow down in latency to be attributed to the software based implementation.

The next lesson we learned in our research was that a full analysis of several software

options that are candidates for integration into a system should be performed. We lever-

aged several open source software packages to support the MTD techniques developed.

Open source software can be an extremely valuable and cost effective solution, but these

solutions are not necessarily always stable production-ready solutions. The Open Daylight

controller is a large code base written in the Java programming language with numerous

contributors and a large amount of features available. The complexity of Open Daylight

makes it difficult to troubleshoot and correct any errors encountered. Care should be

168

taken when selecting open source software as bugs that are discovered along the way may

become problematic to correct or fit within the timeline of the project. We encountered

a few OpenDaylight bugs, but we developed workarounds for those bugs. One problem

we observed was when submitting a bulk amount of flows to be installed that was con-

tained within a single transaction using a module named “bulk-o-matic.” When the Open

Daylight controller received the bulk flow inquiries, the bulk-o-matic module would throw

several null pointer exceptions frequently but not every time, even when resubmitting the

same query. The uncertainty of knowing if a flow would successfully install or fail is not

an option within ICS environments. The workaround was to continuously submit queries

until the bulk-o-matic module eventually accepted the bulk flow query. This solution was

not ideal, but it did work after a few attempted queries so it was not a major focus of

concern. This could be a major concern in a production environment because of the un-

certainty about knowing when the bulk-o-matic module would actually accept and install

the bulk flow.

Another lesson learned came from the experimentation process itself where we repeat-

edly performed experiments, each within a higher fidelity environment. Our research

took the approach of running experiments in a simulated environment, then in a virtu-

alized environment, and finally in a representative environment. The reason for this was

that the simulated environment provided a means to collect results quickly to evaluate the

feasibility of each MTD approach. The virtualized results provided a higher fidelity model

that could be used to collect metrics of each MTD approach with network latency built

in. Finally, the representative environment provided a platform to obtain results that did

not potentially overlook pieces of the system that could not be anticipated in a simulated

or virtualized environment. The sequence of tests provided insights into the effectiveness

of each approach and allowed for cross-validation of each environment. The approach also

allowed for easier troubleshooting early in the process before reaching the representative

environment. Not all research projects will have access to a representative testbed, but in

either case it is important to perform experimentation and simulations beforehand to en-

169

sure that the technology is feasible for the target environment before investing a significant

amount of time and money into an approach that has not been fully tested and evaluated.

A limitation of the approaches we have presented are that they each depend on IP routable

communications to operate. The concepts can be applied towards communications at layer

2 and below but have not been adapted towards those use cases at this point. The ability

to introduce SDN into ICS environments may also not be an option as the environments

may already be fully developed so it may be difficult to integrate new technologies. In

this scenario, it may be difficult to convince decision makers to upgrade hardware or

introduce software to support the SDN capabilities when everything in the network has

been working fine as is for several years. This could also be a difficult proposition since

standards and requirements must be met before introducing any technology into an ICS

setting. There is also a long testing process that must be satisfied before any technology

can make it to a field deployment, particularly in an ICS setting.

11.2 Future Work

Future areas of research can focus on expanding our research beyond ICS environments.

Additional environments for potential research include cloud computing, Internet of Things

(IoT), and mobile environments, each of which has their own unique sets of constraints

and requirements. The tradeoffs between security and usability can similarly be analyzed

and evaluated in each of those respective environments. Cloud computing has a large

capacity, in terms of resources, however complete control of the physical infrastructure is

lost. The loss of physical control may make some MTD defenses more difficult to deploy

such as the MTD defenses that depend on specific hardware that must be installed. IoT

environments may be difficult to scale path randomization since the enumeration of all

possible paths in the network grows exponentially as the size of the network grows. Mo-

bile environments may make IP randomization more challenging in recognizing the large

number of devices that are dynamically entering and leaving the network constantly.

170

Furthermore, including the ability to perform forensic analysis as the MTD techniques

are operating is another area of future research. If the IDSs are alarming on packets and

logging randomized IP addresses, that information by itself is of little value to a forensic

analyst. The forensic analysis has to be tied into and aware of the MTD techniques de-

ployed to be effective which needs further investigation. Forensic capabilities built into

the MTD techniques will be important for analysis in the event of a system compromise

or also when actively observing the current state of the network. For better situational

awareness, the MTD techniques should be available for security operations personnel to

understand the current state of the network.

Autonomous systems are another area of future research for each of the MTD techniques

discussed. If the SDN controller fails or one of the SDN capable switches fail, instabilities

within the network will occur. To address this problem, building autonomy into the design

is an interesting area of future research. With autonomy built-in, the SDN controllers and

SDN switches can continue to operate and self-heal after a failure occurs. Currently, fault

tolerant algorithms are developed to protect the SDN controller from failures. However, if

all controllers fail, an interesting area of research is whether or not the switches can detect

the controller failures and continue to operate on their own and take over the role of the

controller. Similarly, if any of the SDN switches fail, an additional area of research would

be to detect such failures and automate the reconfiguration of the network parameters to

continue to operate as expected.

Another area for future research is to investigate the MTD techniques being applied

and retrofitted into environments where SDN is not prevalent. In the case of traditional

networks, an end point solution may be an appropriate area to apply the MTD tech-

niques. As an endpoint solution, however, the MTD techniques should be designed so

that network connections are not broken as network configurations are randomized. For

IP randomization, modifications to the kernel would be necessary to maintain established

connections within the TCP/IP stack during reconfiguration periods. Another solution

171

outside of the endpoint solution would be to introduce the MTD as a gateway device.

This was the approach taken as part of our research. A related potential area for future

research is to borrow techniques from metamorphic code generation typically used by

an adversary, but instead apply those strategies as a computer defense. Continuously

modifying software so that it is functionally equivalent but continuously changing im-

plementations in time would increase the difficulty for an adversary to exploit software

vulnerabilities.

Another area of research is to develop the SDN switches so that they are individually

fault tolerant. Designing in crash tolerant and Byzantine fault tolerant algorithms would

introduce resiliency into the SDN switches. These algorithms would require a cluster con-

figuration for each of the SDN switches which may not be practical in all cases. However,

in high fidelity environments, this would create resiliency for both the controller and the

SDN switches. The ability to tolerate faults, crash or Byzantine faults, is an important

area of research when designing and deploying any security system. An evaluation of the

tradeoffs to the impact on the operational network and the adversary should also be per-

formed in future areas of research to measure and quantify the effectiveness of the MTD

techniques.

An additional area of future research is to introduce diversity into the SDN controllers as

well as the SDN capable switches deployed. Diversity amongst implementations provided

by several vendors would increase the difficulty for an adversary to successfully attack

a large number of systems with a single exploit. The system as a whole would also be

more resilient to attacks launched by adversaries. The adversary would be required to de-

velop several versions of an exploit that would have to be tailored to each implementation

in order to be successful. Furthermore, certain implementations may not be vulnerable

to exploits which would result in a more robust solution when combined with the crash

tolerant and Byzantine fault tolerant algorithms. An evaluation of the operational perfor-

mance impacts of the diverse deployments would be another area of future research that

172

would help determine if the solution is still feasible of meeting the real-time constraints

of an ICS environment.

11.3 Summary

We have developed several MTD approaches with the goal of introducing additional se-

curity protections to ICS environments. ICS networks are typically statically configured

and have predictable communication patterns that do not change over extended periods

of time. We have developed IPv4 randomization, IPv6 randomization, application port

number randomization, and network communication path randomization to serve as MTD

strategies for ICS networks. We evaluated all of the strategies for their effectiveness within

an ICS environment. We implemented the MTD solutions as an SDN based solution and

as an endpoint based solution. The SDN solution had the benefit of being a scalable

solution that was transparent to the end devices, whereas the end point solution had the

benefit of building the security protections directly into the end devices. Additionally, we

developed the SDN controller systems to be fault tolerant to system crashes and Byzan-

tine faults.

Each of the MTD strategies proved to be feasible within an ICS setting, all of which

increased latency by less than 50 ms and in most cases under 20 ms. The environments

evaluated as part of our research included a simulated environment, a virtualized environ-

ment and two representative environments. The simulated environment was a standalone

system using local processes to simulate an adversary and a defender. The virtualized

environment consisted of virtual machines to model an ICS system with the same ICS

protocols enabled that would typically be seen in a field deployment. The representative

environments included physical systems that harnessed the defender systems and the ad-

versary systems.

The path randomization technique was the only technique that incurred more than 20 ms

because of the possibility to take much longer paths than the fastest optimal path of

173

communication. All other approaches were well under the 20 ms requirement of most ICS

environments. The operational measurements captured included bandwidth, throughput,

CPU and memory utilization. Although bandwidth and throughput are typically not

critical in most ICS environments due to the low bandwidth communications, the eval-

uation was performed in the event of synchrophasor measurements being a part of the

network communications, which can consume bandwidth rates of 150 Mbits/sec[146]. We

configured the network links to 10 Mbits/sec in the experiments performed and there

were no significant performance impacts observed Our results showed a ∼1.8% decrease

of bandwidth and throughput on average.

We also captured CPU utilization, memory utilization, and latency metrics when in-

troducing the fault tolerant algorithms. The fault tolerant algorithms included crash

tolerant algorithms and Byzantine fault tolerant algorithms for the SDN controller. The

SDN controller was distributed into a cluster of SDN controllers and was shown to with-

stand crashes and malicious modifications of network flows. The CPU overhead of the

crash tolerant algorithms averaged to be 17.7% more utilization than the baseline. The

Byzantine fault tolerant algorithms consumed 17.9% more of the CPU to operate than

the baseline measurements. These metrics may or may not be acceptable depending on

the load placed on the SDN controller which would vary in each deployment. The mem-

ory requirements on the controller were quite a bit higher, mainly attributed to the open

source SDN controller operating in a Java Virtual Machine that required 512 MB to run.

An additional 92.2% and 92.6% of memory usage was utilized when enabling the Paxos

crash tolerant algorithms and the Byzantine fault tolerant algorithms, respectably. The

latency improved when enabling the SDN network because packets match criteria was

minimal and ARP requests were not needed. The baseline round-trip time was observed

to be 0.612 ms, while the crash tolerant and Byzantine tolerant algorithms showed a

round-trip time of 0.546 ms and 0.542 ms, respectively. The fault tolerant algorithms im-

pact observed in the set of experiments performed as part of our research was not a factor.

174

We evaluated several SDN capable switches, including two hardware switches and one

software switch. The two hardware switches varied in their functionality. The first switch

performed the match criteria and the action for the flows within software. The second

switch performed these same operations in hardware. The latency was drastically reduced

in the hardware implementation compared to the software implementation. The delays

of the hardware switch were on the order of microseconds, while the software flow imple-

mentation gave results that were delayed on the order of milliseconds. The open source

software switch evaluated also gave results that were in the milliseconds of increased delay.

All SDN capable switches were well within the constraints of a typical ICS environment,

but the hardware switch had the best performance results observed.

MTD is an active and promising area of research for ICS environments. We have shown

that MTD techniques can be beneficial and effective in such a setting. The approaches

were researched and analyzed against a number of adversaries either performing a DoS

or DDoS attack. We performed experiments that showed that the amount of entropy

available to the defender directly affected the adversaries’ success rates. As the entropy

increased, the success rates of the adversary decreased. We also considered adversaries

performing side channel attacks and we discussed strategies to prevent such attacks against

the MTD techniques, one of which was to vary the randomization frequencies to random

intervals of time instead of fixed intervals of time. We then evaluated the operational

costs and adversarial costs against one another to determine a balance between security

and usability.

The MTD approaches presented here are meant to provide an additional layer of defense

to an ICS system. The MTD approaches are not intended to be deployed by themselves,

but rather integrated into a system of security tools to achieve an elevated overall level

of security. A number of open problems that can build upon our research include eval-

uating these approaches in environments outside of ICS, exploring possible options of

developing the same techniques for systems that have not adopted SDN, integrating the

175

MTD approaches within existing security monitoring systems, developing the MTD solu-

tions so that they can run autonomously if needed, introducing fault tolerant algorithms

to the SDN switches, adding in self-healing techniques to recover from attacks that are

successful, and finally introducing diversity into the SDN controllers and SDN switches

deployed. Each of the future areas of research can improve and enhance the existing con-

cepts to create more resilient solutions that complement and build upon our research. We

have shown that MTD techniques can be successful in an ICS setting and they have the

potential of being applied more broadly towards other general computing environments.

176

References

[1] Diego Ongaro and John K. Ousterhout, “In Search of an Understandable Consensus

Algorithm,” in USENIX Annual Technical Conference, pp. 305–319, 2014.

[2] Keith Stouffer, Joe Falco, and Karen Scarfone, “Guide to Industrial Control Systems

(ICS) Security,” NIST special publication, vol. 800, no. 82, pp. 16–16, 2011.

[3] Rodrigo Chandia, Jesus Gonzalez, Tim Kilpatrick, Mauricio Papa, and Sujeet

Shenoi, “Security Strategies for SCADA Networks,” in Critical Infrastructure Pro-

tection, pp. 117–131, Springer, 2007.

[4] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen

Huang, and Shankar Sastry, “Attacks Against Process Control Systems: Risk As-

sessment, Detection, and Response,” in Proceedings of the 6th ACM symposium on

information, computer and communications security, pp. 355–366, ACM, 2011.

[5] Yu-Lun Huang, Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Hsin-Yi Tsai,

and Shankar Sastry, “Understanding the Physical and Economic Consequences of

Attacks on Control Systems,” International Journal of Critical Infrastructure Pro-

tection, vol. 2, no. 3, pp. 73–83, 2009.

[6] Bill Miller and Dale Rowe, “A Survey SCADA of and Critical Infrastructure In-

cidents,” in Proceedings of the 1st Annual conference on Research in information

technology, pp. 51–56, ACM, 2012.

[7] Nicolas Falliere, Liam O. Murchu, and Eric Chien, “W32. Stuxnet Dossier,” White

paper, Symantec Corp., Security Response, vol. 5, 2011.

[8] Pouyan Pourbeik, Prabha S. Kundur, and Carson W. Taylor, “The Anatomy of a

Power Grid Blackout,” IEEE Power and Energy Magazine, vol. 4, no. 5, pp. 22–29,

2006.

177

[9] Gaoqi Liang, Steven Weller, Junhua Zhao, Fengji Luo, and Zhao .Y. Dong, “The

2015 Ukraine Blackout: Implications for False Data Injection Attacks,” IEEE Trans-

actions on Power Systems, vol. 32, pp. 3317–3318, July 2017.

[10] Siddharth Sridhar and Manimaran Govindarasu, “Data Integrity Attacks and Their

Impacts on SCADA Control system,” in IEEE PES General Meeting, pp. 1–6, July

2010.

[11] Hassan Farhangi, “The Path of the Smart Grid,” Power and energy magazine,

IEEE, vol. 8, no. 1, pp. 18–28, 2010.

[12] Rosslin John Robles, Min-kyu Choi, Eun-suk Cho, Seok-soo Kim, Gil-cheol Park,

and Jang-Hee Lee, “Common Threats and Vulnerabilities of Critical Infrastruc-

tures,” International journal of control and automation, vol. 1, no. 1, pp. 17–22,

2008.

[13] Carl H. Hauser, David E. Bakken, and Anjan Bose, “A Failure to Communicate:

Next Generation Communication Requirements, Technologies, and Architecture for

the Electric Power Grid,” IEEE Power and Energy Magazine, vol. 3, no. 2, pp. 47–

55, 2005.

[14] Ragunathan Rajkumar, Insup Lee, Lui Sha and John Stankovic, “Cyber-Physical

Systems: The Next Computing Revolution,” in Design Automation Conference,

pp. 731–736, June 2010.

[15] Göran N. Ericsson, “Cyber Security and Power System CommunicationEssential

Parts of a Smart Grid Infrastructure,” IEEE Transactions on Power Delivery,

vol. 25, no. 3, pp. 1501–1507, 2010.

[16] Sushil Jajodia, Anup K. Ghosh, V.S. Subrahmanian, Vipin Swarup, Cliff Wang,

and X. Sean Wang, Moving Target Defense II. Springer, 2013.

178

[17] Byungho Min, Vijay Varadharajan, Udaya Tupakula, and Michael Hitchens, “An-

tivirus Security: Naked During Updates,” Software: Practice and Experience,

vol. 44, no. 10, pp. 1201–1222, 2014.

[18] Feng Xue, “Attacking Antivirus,” in Black Hat Europe Conference, 2008.

[19] Steven A. Hofmeyr and Stephanie Forrest, “Architecture for an Artificial Immune

System,” Evolutionary Computation, vol. 8, no. 4, pp. 443–473, 2000.

[20] Ehab Al-Shaer, Qi Duan, Jafar Haadi Jafarian, “Random Host Mutation for Moving

Target Defense,” in SecureComm, pp. 310–327, Springer, 2012.

[21] Spyros Antonatos, Periklis Akritidis, Evangelos P. Markatos, and Kostas G. Anag-

nostakis, “Defending Against Hitlist Worms Using Network Address Space Ran-

domization,” Computer Networks, vol. 51, no. 12, pp. 3471 – 3490, 2007.

[22] Katheryn A Farris and George Cybenko, “Quantification of moving target cyber

defenses,” in SPIE Defense+ Security, pp. 94560L–94560L, International Society

for Optics and Photonics, 2015.

[23] Azulai Sharon, Ran Levy, Yaacov Cohen, Alexander Haiut, Ariel Stroh, David Raz,

“Automatic Network Traffic Analysis,” Oct. 24 2000. US Patent 6,137,782.

[24] Lucas F. Müller, Rodrigo R. Oliveira, Marcelo C. Luizelli, Luciano P. Gaspary,

and Marinho P. Barcellos, “Survivor: An Enhanced Controller Placement Strategy

for Improving SDN Survivability,” in Global Communications Conference (GLOBE-

COM), 2014 IEEE, pp. 1909–1915, IEEE, 2014.

[25] David Goldschlag, Michael Reed, and Paul Syverson, “Onion Routing for Anony-

mous and Private Internet Connections,” Communications of the ACM, vol. 42,

no. 2, pp. 39–41, 1999.

[26] Vitaly Shmatikov and Ming-Hsiu Wang, “Timing Analysis in Low-Latency Mix

Networks: Attacks and Defenses,” Computer Security–ESORICS 2006, pp. 18–33,

2006.

179

[27] Jean-François Raymond, “Traffic Analysis: Protocols, Attacks, Design Issues

and Open Problems,” in Designing Privacy Enhancing Technologies, pp. 10–29,

Springer, 2001.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson, “Tor: The Second-

Generation Onion Router,” in Usenix Security, 2004.

[29] , “The Tor Project.” https://metrics.torproject.org/torperf.html, 2014.

[30] Sambuddho Chakravarty, Marco V. Barbera, Georgios Portokalidis, Michalis Poly-

chronakis, and Angeles D. Keromytis, “On the Effectiveness of Traffic Analysis

Against Anonymity Networks Using Flow Records,” in PAM, pp. 247–257, Springer,

2014.

[31] Gildas Nya Tchabe and Yinhua Xu, “Anonymous Communications: A Survey on

I2P,” CDC Publication Theoretische Informatik-Kryptographie und Computeralge-

bra (https://www. cdc. informatik. tu-darmstadt. de), 2014.

[32] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein, “SOS: An Architecture

For Mitigating DDoS Attacks,” IEEE Journal of Selected Areas in Communications,

vol. 22, no. 1, pp. 176–188, 2004.

[33] Kamran Ahsan and Deepa Kundur, “Practical Data Hiding in TCP/IP,” in Proc.

Workshop on Multimedia Security at ACM Multimedia, vol. 2, 2002.

[34] Lexi Pimenidis and Tobias Kölsch, “Transparent Anonymization of IP Based Net-

work Traffic,” In Proceedings of 10th Nordic Workshop on Secure IT-Systems, 2005.

[35] J.G. Skellam, “A Probability Distribution Derived from the Binomial Distribution

by Regarding the Probability of Success as Variable Between the Sets of Trials,”

Journal of the Royal Statistical Society. Series B (Methodological), vol. 10, no. 2,

pp. 257–261, 1948.

180

https://metrics.torproject.org/torperf.html

[36] H. Okhravi, M. A. Rabe, T. J. Mayberry, W. G. Leonard, T. R. Hobson, D. Bigelow,

and W. W. Streilein, “Survey of Cyber Moving Target Techniques,” tech. rep.,

MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, 2013.

[37] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael

Franz, “Runtime Defense Against Code Injection Attacks Using Replicated Exe-

cution,” IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 4,

pp. 588–601, 2011.

[38] David A. Holland, Ada T. Lim, and Margo I. Seltzer, “An Architecture a Day Keeps

the Hacker Away,” ACM SIGARCH Computer Architecture News, vol. 33, no. 1,

pp. 34–41, 2005.

[39] Hamed Okhravi, Adam Comella, Eric Robinson, and Joshua Haines, “Creating a

Cyber Moving Target for Critical Infrastructure Applications Using Platform Di-

versity,” International Journal of Critical Infrastructure Protection, vol. 5, no. 1,

pp. 30–39, 2012.

[40] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack

Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser, “N-Variant Systems:

A Secretless Framework for Security Through Diversity,” in USENIX Security Sym-

posium, pp. 105–120, 2006.

[41] McLaughlin, Stephen E and Podkuiko, Dmitry and Delozier, Adam and Mi-

adzvezhanka, Sergei and McDaniel, Patrick, “Embedded Firmware Diversity for

Smart Electric Meters,” in HotSec, 2010.

[42] Gaurav S . Kc, Angelos D. Keromytis, and Vassilis Prevelakis, “Countering Code-

Injection Attacks with Instruction-Set Randomization,” in Proceedings of the 10th

ACM conference on Computer and communications security, pp. 272–280, ACM,

2003.

[43] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh, “On the Effectiveness of Address-Space Randomization,” in Proceedings

181

of the 11th ACM conference on Computer and communications security, pp. 298–

307, ACM, 2004.

[44] Ana Nora Sovarel, David Evans, and Nathanael Paul, “Where’s the FEEB? The

Effectiveness of Instruction Set Randomization,” in USENIX Security Symposium,

2005.

[45] Jonathan Ganz and Sean Peisert, “ASLR: How Robust is the Randomness?,” in

Proceedings of the 2017 IEEE Secure Development Conference (SecDev), 2017.

[46] Stephanie Forrest, Anil Somayaji, and David H. Ackley, “Building Diverse Com-

puter Systems,” in Operating Systems, 1997., The Sixth Workshop on Hot Topics

in, pp. 67–72, IEEE, 1997.

[47] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Phillipe Martin, and Miguel

Castro, “Data Randomization,” tech. rep., Technical Report TR-2008-120, Mi-

crosoft Research, 2008. Cited on, 2008.

[48] Stephen W. Boyd, and Angelos D. Keromytis, “SQLrand: Preventing SQL Injection

Attacks,” in Applied Cryptography and Network Security, pp. 292–302, Springer,

2004.

[49] Adam J. O’Donnell, and Harish Sethu, “On Achieving Software Diversity for Im-

proved Network Security using Distributed Coloring Algorithms,” in Proceedings of

the 11th ACM conference on Computer and communications security, pp. 121–131,

ACM, 2004.

[50] Qinghua Zhang and Douglas S. Reeves, “Metaaware: Identifying Metamorphic Mal-

ware,” in Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-

Third Annual, pp. 411–420, IEEE, 2007.

[51] Melanie R. Rieback, Bruno Crispo, and Andrew S. Tanenbaum, “Is Your Cat In-

fected with a Computer Virus?,” in Pervasive Computing and Communications,

182

2006. PerCom 2006. Fourth Annual IEEE International Conference on, pp. 10–pp,

IEEE, 2006.

[52] Ilsun You and Kangbin Yim, “Malware Obfuscation Techniques: A Brief Survey,”

in 2010 International conference on broadband, wireless computing, communication

and applications, pp. 297–300, IEEE, 2010.

[53] J. Adam Butts and Guri Sohi, “Dynamic Dead-Instruction Detection and Elim-

ination,” ACM SIGOPS Operating Systems Review, vol. 36, no. 5, pp. 199–210,

2002.

[54] Andrew H. Sung, Jianyun Xu, Patrick Chavez, and Srinivas Mukkamala, “Static

Analyzer of Vicious Executables (save),” in Computer Security Applications Con-

ference, 2004. 20th Annual, pp. 326–334, IEEE, 2004.

[55] Babak Salamat, Andreas Gal, and Michael Franz, “Reverse Stack Execution in a

Multi-Variant Execution Environment,” in Workshop on Compiler and Architectural

Techniques for Application Reliability and Security, pp. 1–7, 2008.

[56] Bjorn De Sutter, Bertrand Anckaert, Jens Geiregat, Dominique Chanet, and Koen

De Bosschere, “Instruction Set Limitation in Support of Software Diversity,” in

Information security and cryptology–ICISC 2008, pp. 152–165, Springer, 2009.

[57] David J. Kuck, Robert H. Kuhn, David A. Padua, and Bruce Leasure, and Michael

Wolfe, “Dependence Graphs and Compiler Optimizations,” in Proceedings of the

8th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pp. 207–218, ACM, 1981.

[58] Rui Zhuang, Su Zhang, Scott A DeLoach, Xinming Ou, and Anoop Singhal,

“Simulation-based Approaches to Studying Effectiveness of Moving-Target Network

Defense,” in National Symposium on Moving Target Research, pp. 1–12, 2012.

[59] Luigi Atzori, Antonio Iera, and Giacomo Morabito, “The Internet of Things: A

Survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

183

[60] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelfflé, “Vision

and Challenges for Realising the Internet of Things,” Cluster of European Research

Projects on the Internet of Things, European Commision, vol. 3, no. 3, pp. 34–36,

2010.

[61] Sean Dieter Tebje Kelly, Nagender Kumar Suryadevara, and Subhas Chandra

Mukhopadhyay, “Towards the Implementation of IoT for Environmental Condi-

tion Monitoring in Homes,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3846–3853,

2013.

[62] Rui Zhuang, Scott A. DeLoach, and Xinming Ou, “Towards a Theory of Moving

Target Defense,” in Proceedings of the First ACM Workshop on Moving Target

Defense, pp. 31–40, ACM, 2014.

[63] North American Electricity Council, “NERC Critical Infrastructure Pro-

tection (CIP) Reliability Standards.” http://www.nerc.com/pa/Stand/Pages/

CIPStandards.aspx, 2009.

[64] Georg Disterer, “ISO/IEC 27000, 27001 and 27002 for Information Security Man-

agement,” Journal of Information Security, vol. 4, no. 02, p. 92, 2013.

[65] North American Electric Reliability Corporation, “North American Electric Relia-

bility Corporation (NIST) Cybersecurity Framework (CSF).” https://www.nist.

gov/cyberframework, 2014.

[66] Kristina Hamachi LaCommare and Joseph H. Eto, “Cost of Power Interruptions

to Electricity Consumers in the United States (U.S.),” Energy, vol. 31, no. 12,

pp. 1845–1855, 2006.

[67] Göran Andersson, Peter Donalek, Richard Farmer, Nikos Hatziargyriou, Innocent

Kamwa, Prabhashankar Kundur, Nelson Martins, John Paserba, Pouyan Pourbeik,

and Juan Sanchez-Gasca, Ronald Shultz, John A. Stankovic, Carson Taylor, and

184

http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
https://www.nist.gov/cyberframework
https://www.nist.gov/cyberframework

Vijay Vittal, “Causes of the 2003 Major Grid Blackouts in North America and Eu-

rope, and Recommended Means to improve System Dynamic Performance,” IEEE

Transactions on Power Systems, vol. 20, no. 4, pp. 1922–1928, 2005.

[68] U.S.-Canada Power System Outage Task Force, “Final Report on the August 14,

2003 Blackout in the United States and Canada: Causes and Recommendations,”

IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1922–1928, 2005.

[69] G. Brooke Anderson and Michelle L. Bell, “Lights Out: Impact of the August 2003

Power Outage on Mortality in New York, NY,” Epidemiology (Cambridge, Mass.),

vol. 23, no. 2, p. 189, 2012.

[70] IDA Modbus, “Modbus Application Protocol Specification v1. 1a,” North Grafton,

Massachusetts (www. modbus. org/specs. php), 2004.

[71] Gordon R. Clarke, Deon Reynders, and Edwin Wright, Practical Modern SCADA

Protocols: DNP3, 60870.5 and Related Systems. Newnes, 2004.

[72] Feld, Joachim, “PROFINET-Scalable Factory Communication for all Applications,”

in Factory Communication Systems, 2004. Proceedings. 2004 IEEE International

Workshop on, pp. 33–38, IEEE, 2004.

[73] Riley Walters, “Cyber Attacks on U.S. Companies in 2014,” The Heritage Founda-

tion, vol. 4289, pp. 1–5, 2014.

[74] Bonnie Zhu, Anthony Joseph, and Shankar Sastry, “A Taxonomy of Cyber Attacks

on SCADA Systems,” in Internet of things (iThings/CPSCom), 2011 international

conference on and 4th international conference on cyber, physical and social com-

puting, pp. 380–388, IEEE, 2011.

[75] Frederic P. Miller, Agnes F. Vandome, and John McBrewster, “Advanced Encryp-

tion Standard,” 2009.

[76] Pawel R. Chodowiec, Comparison of the Hardware Performance of the AES Candi-

dates using Reconfigurable Hardware. PhD thesis, George Mason University, 2002.

185

[77] F. Russell Robertson, J. Ritchie Carroll, William Sanders, Timothy Yardley, Erich

Heine, Mark Hadley, David McKinnon, Barbara Motteler, Jay Giri, William Walker,

and Esrick McCartha, “Secure Information Exchange Gateway for Electric Grid

Operations,” tech. rep., Grid Protection Alliance, Chattanooga, TN (United States),

2014.

[78] Steven A. Hurd, Jason E. Stamp, and Adrian R. Chavez, “OPSAID Initial Design

and Testing Report,” Department of Energy, 2007.

[79] Brian P. Smith, and John Stewart, Ron Halbgewachs, and Adrian Chavez, “Cyber

Security Interoperability-The Lemnos Project,” in 53rd ISA POWID Symposium,

vol. 483, pp. 50–59, 2010.

[80] Ronald D. Halbgewachs and Adrian R. Chavez, “OPSAID Improvements and Ca-

pabilities Report,” tech. rep., Sandia National Laboratories, 2011.

[81] Thomas Parke Hughes, Networks of Power: Electrification in Western Society,

1880-1930. JHU Press, 1993.

[82] Paolo Castello, Paolo Ferrari, Alessandra Flammini, Alessandra Muscas, and Ste-

fano Rinaldi, “An IEC 61850-Compliant Distributed PMU for Electrical Substa-

tions,” in Applied Measurements for Power Systems (AMPS), 2012 IEEE Interna-

tional Workshop on, pp. 1–6, IEEE, 2012.

[83] Federico Milano and Marian Anghel, “Impact of Time Delays on Power System

Stability,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59,

no. 4, pp. 889–900, 2012.

[84] R. E. Mackiewicz, “Overview of IEC 61850 and Benefits,” in Power Systems Con-

ference and Exposition, 2006. PSCE’06. 2006 IEEE PES, pp. 623–630, IEEE, 2006.

[85] Halsall, Fred and Links, Data, “Computer networks and open systems,” Addison-

Wesley Publishers, pp. 112–125, 1995.

186

[86] Dorothy Elizabeth Robling Denning, Information Warfare and Security, vol. 4.

Addison-Wesley Reading, MA, 1999.

[87] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger, “Botz-4-Sale:

Surviving Organized DDoS Attacks that Mimic Flash Crowds,” in Proceedings of

the 2nd conference on Symposium on Networked Systems Design & Implementation-

Volume 2, pp. 287–300, USENIX Association, 2005.

[88] Jelena Mirkovic and Peter Reiher, “A Taxonomy of DDoS Attack and DDoS Defense

Mechanisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2,

pp. 39–53, 2004.

[89] Marc Fossi, Gerry Egan, Kevin Haley, Eric Johnson, Trevor Mack, Téo Adams,

Joseph Blackbird, Mo King Low, Debbie Mazurek, and David McKinney, “Symantec

Internet Security Threat Report Trends for 2010,” Volume XVI, 2011.

[90] Rohan M. Egelman, Cormac Herley, and Paul C. Van Oorschot, “Markets for Zero-

Day Exploits: Ethics and Implications,” in Proceedings of the 2013 workshop on

New security paradigms workshop, pp. 41–46, ACM, 2013.

[91] L. Martin, “Cyber kill chain R©,” URL: http://cyber. lockheedmartin.

com/hubfs/Gaining the Advantage Cyber Kill Chain. pdf, 2014.

[92] Christian Gronroos, “Service Quality: The Six Criteria of Good Perceived Service,”

Review of business, vol. 9, no. 3, p. 10, 1988.

[93] Wes Sonnenreich, Jason Albanese, and Bruce Stout, “Return On Security Invest-

ment (ROSI)-A Practical Quantitative Model,” Journal of Research and practice in

Information Technology, vol. 38, no. 1, pp. 45–56, 2006.

[94] Peter Mell and Tim Grance, “The NIST Definition of Cloud Computing,” NIST

Special Publication, vol. 800, p. 145, 2011.

187

[95] Paul G. Dorey and Armando Leite, “Commentary: Cloud Computing–A Security

Problem or Solution?,” information security technical report, vol. 16, no. 3, pp. 89–

96, 2011.

[96] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and

Dino Dai Zovi, “Randomized Instruction Set Emulation to Disrupt Binary Code

Injection Attacks,” in Proceedings of the 10th ACM conference on Computer and

communications security, pp. 281–289, ACM, 2003.

[97] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz, “SoK: Auto-

mated Software Diversity,” in Security and Privacy (SP), 2014 IEEE Symposium

on, pp. 276–291, IEEE, 2014.

[98] Nicholas Carlini and David Wagner, “ROP is Still Dangerous: Breaking Modern

Defenses,” in USENIX Security Symposium, pp. 385–399, 2014.

[99] Council, Industry Advisory, “Federal risk and authorization management program

(FedRAMP),” 2012.

[100] Michael Larsen, and Fernando Gont, “Recommendations for Transport-Protocol

Port Randomization,” tech. rep., 2011.

[101] Rogério Leão Santos de Oliveira, Ailton Akira Shinoda, Christiane Marie Schweitzer,

and Ligia Rodrigues Prete, “Using Mininet for Emulation and Prototyping Software-

Defined Networks,” in Communications and Computing (COLCOM), 2014 IEEE

Colombian Conference on, pp. 1–6, IEEE, 2014.

[102] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray, “Opendaylight: Towards

a Model-Driven SDN Controller Architecture,” in 2014 IEEE 15th International

Symposium on, pp. 1–6, IEEE, 2014.

[103] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner, “OpenFlow: enabling inno-

188

vation in campus networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69–74, 2008.

[104] Yakov Rekhter, Bob Moskowitz, Daniel Karrenberg, Geert Jan de Groot, and Eliot

Lear, “Address Allocation for Private Internets,” tech. rep., 1996.

[105] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan

Smeliansky, “Advanced Study of SDN/OpenFlow Controllers,” in Proceedings of

the 9th central & eastern european software engineering conference in russia, p. 1,

ACM, 2013.

[106] Douglas Brent West, Introduction to Graph Theory, vol. 2. Prentice hall Upper

Saddle River, 2001.

[107] Mogens Blanke, Michel Kinnaert, Jan Lunze, Marcel Staroswiecki, and J. Schröder,

Diagnosis and Fault-Tolerant Control, vol. 691. Springer, 2006.

[108] Leslie Lamport, “Using Time Instead of Timeout for Fault-Tolerant Distributed

Systems,” ACM Transactions on Programming Languages and Systems (TOPLAS),

vol. 6, no. 2, pp. 254–280, 1984.

[109] Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Tolerance,” in OSDI,

vol. 99, pp. 173–186, 1999.

[110] Jim Gray, “A Transaction Model,” Automata, Languages and Programming,

pp. 282–298, 1980.

[111] Dale Skeen, “Nonblocking Commit Protocols,” in Proceedings of the 1981 ACM

SIGMOD international conference on Management of data, pp. 133–142, ACM,

1981.

[112] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt, “Network Intrusion

Detection,” IEEE network, vol. 8, no. 3, pp. 26–41, 1994.

189

[113] Leslie Lamport, “Paxos Made Simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25,

2001.

[114] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed,

“ZooKeeper: Wait-Free Coordination for Internet-Scale Systems,” in USENIX an-

nual technical conference, vol. 8, p. 9, Boston, MA, USA, 2010.

[115] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone, “Paxos Made Live:

An Engineering Perspective,” in Proceedings of the twenty-sixth annual ACM sym-

posium on Principles of distributed computing, pp. 398–407, ACM, 2007.

[116] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas Ander-

son, “Scalable Consistency in Scatter,” in Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, pp. 15–28, ACM, 2011.

[117] Leslie Lamport and Robert Shostak and Marshall Pease, “The Byzantine Generals

Problem,” ACM Transactions on Programming Languages and Systems (TOPLAS),

vol. 4, pp. 382–401, July 1982.

[118] Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Tolerance and Proac-

tive Recovery,” ACM Transactions on Computer Systems (TOCS), vol. 20, pp. 398–

461, Nov. 2002.

[119] Yilei Zhang, Zibin Zheng, and Michael R. Lyu, “BFTCloud: A Byzantine Fault Tol-

erance Framework for Voluntary-Resource Cloud Computing,” in Cloud Computing

(CLOUD), 2011 IEEE International Conference on, pp. 444–451, IEEE, 2011.

[120] Sisi Duan and Sean Peisert and Karl Levitt, “hBFT: Fast Byzantine Fault Tol-

erance With Optimal Resilience,” IEEE Transactions on Dependable and Secure

Computing (TDSC), vol. 12, pp. 58–70, Jan./Feb. 2015.

[121] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba

Shrira, “HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault Toler-

190

ance,” in Proceedings of the 7th symposium on Operating systems design and imple-

mentation, pp. 177–190, USENIX Association, 2006.

[122] Ramakrishna Kotla, Lorenzo Alvisi, Allen Dahlin, Allen Clement and Edmund

Wong, “Zyzzyva: Speculative Byzantine Fault Tolerance,” in ACM SIGOPS Oper-

ating Systems Review, vol. 41, pp. 45–58, ACM, 2007.

[123] Sean Whalen, “An Introduction to ARP Spoofing,” Node99 [Online Document],

April, 2001.

[124] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst, “Au-

tomatic Creation of SQL Injection and Cross-Site Scripting Attacks,” in Software

Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, pp. 199–

209.

[125] Sisi Duan and Hein Meling and Sean Peisert and Haibin Zhang, “BChain: Byzan-

tine Replication with High Throughput and Embedded Reconfiguration,” in Pro-

ceedings of the 18th International Conference on Principles of Distributed Systems

(OPODIS), (Cortina, Italy), Dec. 15–19, 2014.

[126] Teerawat Issariyakul and Ekram Hossain, Introduction to Network Simulator NS2.

Springer Science & Business Media, 2011.

[127] Michael Mirkovic and Terry Benzel, “Teaching Cybersecurity with DeterLab,” IEEE

Security & Privacy, vol. 10, no. 1, pp. 73–76, 2012.

[128] Guido Van Rossum, and others, “Python Programming Language.,” in USENIX

Annual Technical Conference, vol. 41, p. 36, 2007.

[129] Norman L. Johnson, Adrienne W. Kemp, and Samuel Kotz, Univariate Discrete

Distributions, vol. 444. John Wiley & Sons, 2005.

[130] Gregor N. Purdy, Linux iptables Pocket Reference: Firewalls, NAT & Accounting.

“O’Reilly Media, Inc.”, 2004.

191

[131] Steven M. Rinaldi, James P. Peerenboom, and Terrence K. Kelly, “Identifying,

Understanding, and Analyzing Critical Infrastructure Interdependencies,” Control

Systems, IEEE, vol. 21, no. 6, pp. 11–25, 2001.

[132] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach. Pren-

tice Hall, third ed., 2010.

[133] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno Ra-

jahalme, Jesse Gross, Alex Wang, Joe Stringer, and Pravin Shelar, Keith Amidon,

and Martin Casaado, “The Design and Implementation of Open vSwitch.,” in NSDI,

pp. 117–130, 2015.

[134] J. Johnson, “Virtual Power Plants and Large Scale Renewable Integration,” tech.

rep.

[135] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri, “State Machine Repli-

cation for the Masses with BFT-SMaRt,” in Dependable Systems and Networks

(DSN), 2014 44th Annual IEEE/IFIP International Conference on, pp. 355–362,

IEEE, 2014.

[136] Kannan Govindarajan, Kong Chee Meng, Hong Ong, Wong Ming Tat, Sridhar

Sivanand, and Low Swee Leong, “Realizing the Quality of Service (QoS) in Software-

Defined Networking (SDN) based Cloud Infrastructure,” in Information and Com-

munication Technology (ICoICT), 2014 2nd International Conference on, pp. 505–

510, IEEE, 2014.

[137] Eric Rescorla, SSL and TLS: Designing and Building Secure Systems, vol. 1.

Addison-Wesley Reading, 2001.

[138] Tyson Macaulay and Bryan L. Singer, Cybersecurity for Industrial Control Systems:

SCADA, DCS, PLC, HMI, and SIS. CRC Press, 2011.

[139] Stephen E. Deering, “Internet Protocol, Version 6 (IPv6) Specification,” 1998.

[140] Susan Thomson, “IPv6 Stateless Address Autoconfiguration,” 1998.

192

[141] Stefan Mangard, Elisabeth Oswald, and Thomas Popp, Power Analysis Attacks:

Revealing the Secrets of Smart Cards, vol. 31. Springer Science & Business Media,

2008.

[142] Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan,

Muhammad Imran, and Sghaier Guizani, “Securing Software Defined Networks:

Taxonomy, Requirements, and Open Issues,” IEEE Communications Magazine,

vol. 53, no. 4, pp. 36–44, 2015.

[143] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon, “Al-

gebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA,” in

Conference on Cryptographic Hardware and Embedded Systems (CHES), vol. 5747,

pp. 97–111, Springer, 2009.

[144] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the linux random number

generator,” in Security and Privacy, 2006 IEEE Symposium on, pp. 15–pp, IEEE,

2006.

[145] Stuart Staniford, Vern Paxson, and Nicholas Weaver, “How to Own the Internet in

Your Spare Time,” in USENIX Security Symposium, vol. 2, pp. 14–15, 2002.

[146] Krish Narendra and Tony Weekes, “Phasor Measurement Unit (PMU) Communi-

cation Experience in a Utility Environment,” in Canadian National Committee on

the International Council of Large Electric Systems (CIGRE) Conference on Power

Systems, pp. 1C9–21, 2008.

193

	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Challenges
	Contributions
	MTD within Critical Infrastructure
	Operational System Impacts
	Adversary Workload Impacts

	Organization

	Background
	Moving Target Defense Techniques
	Adversarial Distributions

	MTD Categories
	Dynamic Platforms
	Dynamic Runtime Environments
	Dynamic Networks
	Dynamic Data
	Dynamic Software

	Research Goals

	MTD Applications and Scenarios
	Industrial Control Systems
	Use Case
	Constraints
	Requirements

	Information Technology Systems
	Use Case
	Constraints
	Requirements

	Cloud Computing Systems
	Use Case
	Constraints
	Requirements

	Threat Model
	Operational Impacts
	Adversarial Models

	Approaches to Randomization
	IP Randomization
	Port Randomization
	Path Randomization

	Fault Tolerance Theory
	Crash Tolerant Algorithms
	Two-phase Commit
	Three-phase Commit
	Replication - Paxos

	Byzantine Fault Tolerant Algorithms
	Adversarial Models
	Operational Impacts

	Overview of Experimental Setups
	Simulation Environments
	Adversary Guessing Strategies
	Serial Guessing
	Random Start, Serial Guessing
	Random Guessing with Repetition
	Random Guessing without Repetition

	Summary

	Virtualization Environments
	Application Port Randomization Overhead Cost
	IP Randomization Overhead Costs
	Path Randomization Overhead Cost
	Port, IP and Path Randomization
	Summary

	Representative Environments
	DETERLab Testbed
	Software Defined Networking
	Threat Model
	Adversary Evaluation
	Results
	Analysis
	Binomial Distribution
	Hypergeometric Distribution

	Virtual Power Plant
	Metrics
	IPv4
	Operational Impacts
	Fault Tolerance
	IPv6
	Individual Adversaries
	Distributed Adversaries
	Side Channel Attacks

	Conclusions
	Limitations and Lessons Learned
	Future Work
	Summary

