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Simultaneous Question Comprehension and Answer Retrieval

Scott P. Robertson, Jonathan D. Ullman, Anmol Mehta

Psychology Department
Rutgers University - Busch Campus
New Brunswick, NJ 08903

Abstract

A model is described for question comprehension in
which parsing, memory activation, identification and
application of retrieval heuristics, and answer
formulation are highly interactive processes operating
in parallel. The model contrasts significantly with
serial models in the literature, although it is more in
line with parallel models of sentence comprehension.
Two experiments are described in support of the
parallel view of question answering. In one,
differential reading times for different question types
were shown to be present only when subjects intended
to answer the questions they were reading. In another,
reading times for words in questions increased and
answering times decreased when a unique answer
could be identified early in the questions. The results
suggest that source node activation and answer
retrieval begin during parsing. Both symbolic and
connectionist approaches to modeling question
answering are potentially influenced by this

perspective.

Question Answering

Question answering is a process that has interested
researchers in several disciplines within cognitive
science, especially cognitive psychology (Graesser &
Franklin, 1990; Graesser, Robertson, & Anderson,
1981; Singer, 1984a, 1984b, 1986; Robertson &
Weber, 1990), artificial intelligence (Dyer, 1983;
Lehnert, 1977, 1978), philosophy of language
(Belnap & Steel, 1976), and PDP modeling
(Miikkulainen & Dyer, 1990). Question answering
is also an important applied problem in query-directed
information retrieval systems and in the context of
education (Schank, 1986).

Question answering is interesting because it
involves question-specific retrieval operations over
complex mental representations. Researchers in this
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area have concentrated mainly on the relation between
question types and retrieval heuristics, or on the
heuristics themselves. Largely as a simplifying
assumption, they have considered question answering
to be independent of the language comprehension
processes involved in question parsing or the
language generation processes involved in answer
production. In this paper we take issue with this
view of the independence of question parsing, answer
retrieval, and answer production. Following from
Roberison & Weber (1990) we argue that retrieval and
parsing, at least, occur simultaneously and may
interact.

The main components of question answering are
parsing to produce a conceptual representation of
linguistic input, source node activation based on the
conceptual representation, identification of retrieval
heuristics appropriate for the identified question type,
application of retrieval heuristics to identify or
generate answer candidates, pruning of answer
candidates based on pragmaltic, appropriateness, and
other criteria to isolate a single answer, and
production of the answer in linguistic form. The
most explicit models of question answering in the
literature--Dyer (1983), Graesser & Franklin (1990),
Lehnert (1978), and Singer (1986)--treat these as
stages in a serial process. Indeed, this is the easiest
thing to do since there are many dependencies among
these processes, and most of the dependencies move
from parsing toward production. For example, in
some cases the question category can only be
uniquely identified after it is determined whether the
question presupposition is a motivated action or part
of an unmotivated causal sequence.

The serial bias rests on many assumptions that
may not be valid, however. In particular, serial
models make assumptions about the need to pursue
an answer in a single category or according to a
unique retrieval rule. For example, in answering a



question that begins with "Why did John...," serial
models would be unable to begin because it is unclear
at this point whether retrieval heuristics should be
applied to search goal structures (as in "Why did John
go to the store?") or causal chains (as in "Why did
John fall down?," if he didn't do it on purpose!). If
we imagine, however, that both retrieval processes
could begin, activating all causal consequents
involving "John" and all goals that "John" had, then
we no longer need to assume an ordered relationship
between parsing and retrieval. Instead, we are faced
with describing how independent, but simultaneous,
processes might interact and share resources.

The TSUNAMI Model

As an alternative framework for thinking about
question answering, we are developing a model called
TSUNAMI, for "Theory of Simultaneous
UNderstanding Answering and Memory Interaction.”
At this point the model is offered as a broad
architecture for supporting highly interactive
application of the mechanisms already identified by
question answering researchers. It remains to be seen
how the nature of these mechanisms will change, and
what new mechanisms might be necessary, when
implemented in the TSUNAMI framework.

The TSUNAMI model, depicted in Figure 1,
utilizes two working memory components. One
memory stores question candidates and the other
stores answer candidates. These working memory
components act like "blackboard" data bases in that
items stored there may be inspected and altered by
several processes operating at once (Erman & Lesser,
1980). The question candidate memory and answer
candidate memory are the only knowledge structures
that take output from processes in the model
(processes are indicated by ovals). The influences of
processes on these memories might be to add
propositions, update proposition contents, or delete
propositions. The behaviors of processes that use the
data in the question and answer candidate memories,
in turn, are influenced by the contents of those
memories.

Parsing and Matching

Processing begins when the parser starts receiving
input from a question. the parser utilizes
grammatical, case, and pragmatic information in
semantic memory to produce various propositional
representations which are then stored in the question
candidate buffer. Multiple arrows from the parser into
the question candidate buffer suggest that the parser
can produce many candidates, often only partially
specified propositions, in response to the input at any
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Figure 1. The TSUNAMI model of question answering.
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given time. As words come into the parser, prior
candidate structures may be updated or disconfirmed
and deleted by the parser.

As soon as there is any information in the
question candidate buffer, a matcher begins comparing
question candidate structures with activated
information in episodic memory; specifically, the
subset of episodic memory that is considered relevant
to the question (e.g. a story just read, a set of
memories foregrounded in the conversational context,
etc.). We assume that the matching process occurs
in parallel for several candidates (as indicated by
multiple arrows from both the question buffer and
episodic memory into the matcher) but that its speed
is affected by the number of candidates and the
number of matches. If the matcher finds a
proposition in episodic memory that corresponds to a
question candidate, then this is identified as a likely
source node for answer retrieval processes. Influences
of the matcher on question candidates are indicated by
an arrow from the matcher into the question candidate
memory. Matches in episodic memory raise the
activation level of this information and make it more
available to future analysis by any processes that
utilize episodic memory (in this way the model is
like Anderson's 1983 ACT* model). When a match
is found for a question candidate, other candidates
become less likely interpretations of the input. We
assume that partial propositions in the question
candidate memory can be matched to complete
propositions in memory, thereby updating the
question candidate list to include expectations.
Predicted question candidates can influence answer
retrieval as the retrieval process, described below, is
blind to the status or origin of propositions in the
question buffer.



Answer Retrieval

As soon as there is information in the question
candidate buffer that might suggest a question or
question type, the answer retrieval process can begin.
This mechanism examines question candidates,
attempts to determine question categories appropriate
to the various candidates, and begins applying
retrieval heuristics in episodic memory. The answer
retrieval mechanism utilizes question answering rules
stored in semantic memory and other, relevant general
knowledge. This process operates simultaneously
with the parser and the matcher, but is dependent on
the contents of the question candidate memory and the
activity in episodic memory (which is influenced by
the matcher). The answer retrieval mechanism
operates to highlight relevant portions of episodic
memory. If it is guessed that a question is about a
goal, for example, then the answer retrieval
mechanism may activate goal hierarchies in the
episodic trace. On the other hand, if the mechanism
is expecting a causal antecedent question, then causal
sequences may become more active. This activity
will affect the behavior of the matcher.

The outputs of the answer retrieval process are
propositions that are candidate answers to questions
that the system finds consistent with the input (and
memory) and any given time. Potential answers
produced by the answer retrieval process are stored in
the answer candidate buffer as propositions. These
propositions may also be partially specified, and are
subject to subsequent modification and deletion by the
operation of the answer retrieval process. For
example, if a question candidate that spawned a
retrieval process is later disconfirmed, then the
answer candidate built by that process will be deleted
by the answer retrieval process.

Output

The answer candidates are examined by an output
preparation process which also utilizes grammatical,
case, pragmatic, and relevant general knowledge in
semantic memory. This process can influence the
answer candidate set. For example, if pragmatic
concerns dictate that an answer is inappropriate, then
the output preparation process will delete it from the
answer buffer. Finally, when one candidate remains
in the answer buffer and all of the question has been
input to the parser, the final answer is formulated. It
is reasonable to assume that the output preparation
mechanism will not commit to a final interpretation
until all of the input has been processed since a final
phrase on a question can change its focus, and hence
the appropriate answer, tremendously.
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Experiment on Comprehension
Instructions

The TSUNAMI model posits that parsing,
matching, and retrieval processes share resources.
Effects of retrieval processes on parsing can be seen
in increased reading times for the words of a question.
Such increases would be due to the increased workload
resulting from simultaneous processes sharing
resources. In Robertson & Weber (1990), we showed
that knowledge of the question type during reading of
a question (when the question word was at the
beginning of a question) increased word-by-word
reading times but decreased answer retrieval time
when compared to conditions in which the question
type was not known (when the question word was at
the end of a question). Increased reading times
suggested parallel retrieval and parsing. Decreased
answering times reinforced this interpretation by
showing that the answer was "closer” and that the
workload effect was related to the answer retrieval
process.

In that study we also observed increased answering
times for time questions ("When did...") relative to
reason questions ("Why did..."). Reason questions
were answered 116ms faster than time questions. We
have observed this discrepancy in two subsequent
extensions of that study (299ms in one case and
259ms in the other), and it was the only reliable
effect in another study on presentation speed of
questions (455ms). In short, the reason-time
discrepancy is a highly reliable effect related in some
way to differences in the retrieval processes for these
two types of questions.

In this experiment we exploited the reason-time
discrepancy and sought to find it during reading.
Also, we asked if a reason-time effect would be
present in reading times only when subjects were
reading with the intention of answering a question. If
subjects were not intending to answer a question, then
the answer retrieval mechanism would be inactive and
the reason-time discrepancy should not be apparent.

Method

Subjects. Twenty-six subjects participated in this
study for credit in Introductory Psychology.

Materials. Forty-cight short (5-7 line) stories were
written. In each story a character went to some
location. A reason question and a time question were
prepared for each story. The reason questions read
"Why did <ACTOR> go to the <LOCATION>?,"
whereas the time questions read "When did
<ACTOR> go to the <LOCATION>?"



Design and Procedure. There were three
instruction conditions in the experiment: no-story
paraphrase, story paraphrase, and story answer. In the
no story paraphrase condition subjects read questions
(self-paced one word at a time) and were told to come
up with a paraphrase. When they had reached the last
word of the question they were to press the response
key "when the meaning of the question was
understood.” They then wrote down their paraphrase.
After this they pressed the response key and saw a
computer generated question and were asked to judge
if it "meant the same thing" as the question. The
latter task was intended to reinforce the paraphrase
instruction. Subjects worked through eight reason
questions and eight time questions randomly
intermixed in a block. In the story paraphrase
condition subjects read a paragraph-long story which
was then followed by a question. The question was
presented in the same manner as the no story
paraphrase condition and subjects were instructed to
come up with a paraphrase in the same way. Each
question was followed by a "means the same thing"
judgement and there were again eight reason and eight
time questions randomly intermixed in a block.
Finally, in the story answer condition the subjects
received stories followed by questions as in the story
paraphrase condition, but this time their instruction
was to come up with answers to the questions and
press the response key "when an answer comes to
mind." Similarly, they were asked to judge if the
second question "has the same answer" as the first.
Stories were randomly assigned to conditions and
rotated through the conditions across subjects.
Instruction block orders were counterbalanced.

Table 1
Mean reading time (ms/syllable) for all but the last
word of reason and time questions read under three
comprehension instructions: no-story paraphrase
(NSP), story paraphrase (SP), and story answer (SA).

INSTR
QUEST NSP SP SA Mean
Reason 390 367 332 363
Time 401 370 371 381
Mean 395 368 351 372

Results and Discussion

Table 1 shows the mean reading times per syllable for
all of the words of the question except the last.
Reading time for the last word includes time for
memory retrieval and answer/paraphrase formulation,
and it is not of interest for studying processes
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occurring during parsing. When subjects were
paraphrasing, the question type did not affect their
reading times. When they were answering, however,
the time questions took longer to read than the reason
questions. An interaction between comprehension
instruction and question type confirmed this
interpretation, F(2,50)=3.24, p<.05. The results
support the hypothesis that question-related retrieval
processes are being activated during reading.

One explanation for the reason-time discrepancy is
that the set of possible answers Lo a reason question
is a subset of the set of possible answers to a similar
time question. A goal is always an acceptable answer
to a time question ("John went to the store WHEN he
wanted some milk") whereas a time is a bad answer
to a goal question ("John went to the store
BECAUSE it was Saturday") except in highly
specific circumstances (e.g. if John worked at the
store on weekends in our example). Hence, in the
TSUNAMI framework when a time question is being
processed the question buffer contains more possible
question interpretations relative to a reason question,
the matcher would activate more nodes, and the
retriever would generate more answer candidates. This
would slow the overall operating time of the parser as
seen in this experiment.

Experiment on Number
of Unique Answers

In this experiment we concentrated on the role that
the matcher and answer retriever play in the
TSUNAMI model. In the model, the matcher tries to
find antecedents in episodic memory for propositions
in the question buffer. This process raises the
activation level of the antecedents making them more
likely to serve as source nodes for the retrieval
process. The fewer memory items there are that are
consistent with the input at any given point, the
further the answer retriever can go.

We manipulated the contents of episodic memory
in such a way that sometimes the source node from
which retrieval processes would begin could be
identified early in parsing by virtue of a unique actor.
Subjects read stories in which an action was
performed at four different times for four different
reasons. In each story one actor performed the action
on three occasions while the other performed the
action on one occasion. In the following story, for
example, Mary is the unique actor and John is a
multiple actor:

John went to the store to buy bread on Monday.
John went to the store to buy milk on Tuesday.
John went to the store to buy cheese on Wednesday.
Mary went to the store to buy eggs on Thursday.



Now consider questions like the following:

ql. Why did John drive to the store on Tuesday?
q2. Why did Mary drive to the store on Thursday?

In answering q1 it is impossible to identify the exact
source node in memory that corresponds to the
question presupposition until the end of the question.
In g2, however, it is possible to identify the unique
source node in memory as early at the subject, Mary.
In a question answering architecture with parallelism,
like TSUNAMI, answer retrieval heuristics should
begin earlier when reading q2 than ql. If simultaneous
parsing and retrieval compete for resources as we have
argued, then increased reading times should be
observed for the words in q2 relative to ql as the
parser slows down. Additionally, if the increased
workload is due to retrieval processes, then the
answering time at the end of the questions should be
faster for q2 than ql. In strict serial models, in
contrast, source node activation and application of
retrieval heuristics would be delayed until after
question parsing and no reading time differences
should be apparent (if anything, spreading activation
theory for antecedent concepts predicts longer reading
times for q1 over q2, Anderson 1976).

Method

Subjects. Twenty-eight Rutgers undergraduates
participated for credit in Introductory Psychology.

Materials. Sixteen four-sentence stories like the
one above were constructed for the experiment. Each
story consisted of four instances of the same action
performed at four different times for four different
purposes. In each story there were two characters.
When the stories were presented, one character was
associated with three actions while the second was
associated with a single action. For each story, one
action was chosen as the "query action," about which
a question would be asked. The actor associated with
the query action was varied across subjects so that for
some subjects the query action was performed by the
unique character and for other subjects the query
action was performed by the character who did several
things.

Design and Procedure. Each subject read the
sixteen stories and answered two questions about each
one. The entire text of each story was presented on a
computer screen and subjects spent as long as they
liked reading it. When they were finished they
pressed a response key. At this time a prompt
appeared on the screen. Each subsequent keypress
revealed a word of the question, and the words
appeared side-by-side in their normal positions.
Subjects were instructed that on the last word of the
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questions they should press the response key "as soon
as an answer comes to mind." Reason questions were
in the form "Why did NOUN1 VERB PREP1 DET
NOUN2 PREP2 TIME?" Time questions were of the
form "When did NOUN1 VERB PREP1 DET
NOUN2 AUX VERB2 NOUN3?" The reading times
for each word were recorded.

Subjects were first asked a reason or time question
about each story. Each subject was asked reason
questions about eight stories and time questions about
eight stories. For each subject, half of the questions
were about the action performed uniquely by one actor
(unique action) and half were about one of the three
actions performed by the other actor (non-unique
action). The question type condition (reason/time)
and action uniqueness condition (unique/non-unique)
were crossed. Across subjects, the stories were
rotated through the conditions.

Since it was possible to answer the time and
reason questions without paying attention to the
actors in the story, each reason/time question was
followed by a "who" question about each story. The
antecedent for the who question was chosen randomly
between the unique action and one of the non-unique
actions. The who-question guarantied that subjects
would pay close attention to the actors. Reading
times were not collected for these questions.

Table 2
Mean reading time (ms/word) averaged across the five
common words
Question Actor
Unigue NonUnigue Mean
Reason 483 463 473
Time 507 465 486
Mean 495 464 479

Results and Discussion

Table 2 shows the mean reading times averaged across
NOUN]1, VERB, PREP, DET, and NOUN2 for the
reason questions and time questions in the unique and
non-unique actor conditions. As predicted, the time
to read the questions was greater in the unique action
condition relative to the non-unique action condition,
F(1,27)=7.50, p<.05. There was no effect of question
type and no interaction.

Our second prediction, that answering time would
be faster in the unique action condition relative to the
non-unique action condition, was also confirmed.
The mean answer times were 2449ms vs 3554ms in
the unique vs. non-unique conditions respectively,
F(1,27)=19.11, p<.001. In contrast to other



experiments in our lab, reason questions were
answered more slowly overall than time questions
(3256ms vs 2746ms), F(1,27)=9.39, p<.05. There
was no interaction.

The results support the hypothesis that if a source
node can be identified early during parsing, retrieval
heuristics can be identified and applied. The
simultancous operation of the parser and answer
retriever slows both, but pays off in the end with a
faster answer.

Final Comments

We have proposed a new architecture for question
answering that has many parallel components and
presented empirical evidence in support of it. A
parallel view of question answering would bring this
important aspect of language processing into line
with current thinking on parallel processes in
sentence parsing (Gorrell, 1989; McClelland &
Kawamoto, 1986; Miikkulainen & Dyer, 1991; St.
John & McClelland, 1990; Waltz & Pollack, 1985).
Of course, the experiments support the general idea of
parallelism, not the specifics of the TSUNAMI
model. However, the model is general enough to
incorporate many specific instantiations. As it
develops it will be interesting to see how, or if,
changes will be necessary in the retrieval heuristics
proposed by researchers working within a serial
paradigm. More than likely a new class of problems
will arise having to do with conflict resolution
among competing question interpretations and answer
possibilities in the face of partial input.

Recently there has been considerable progress on
connectionist models of sentence parsing (McClelland
& Kawamoto, 1986; Miikkulainen & Dyer, 1991),
and PDP models will inevitably begin to approach
the problem of question answering. In this paradigm
too it will be necessary to face the issue of whether
the output of a parsing network should be the input
to a question answering network, or whether these
processes are more closely intertwined. Our results
suggest the latter approach.
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