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ABSTRACT OF THE DISSERTATION 
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Professor Kyunghyun Sung, Chair 

	

Purpose 

 Prostate cancer (PCa) is the second leading cause of cancer-related death in men in the 

United States. The accurate diagnosis of PCa is crucial for proper treatment decision. Although 

biopsy is still the gold standard for diagnosis, it is limited to low sensitivity and invasiveness. On 

the other hand, as a non-invasive imaging tool, multi-parametric MRI (mp-MRI) has excellent 

potential in PCa diagnosis such as detection and stratification of aggressiveness. The mp-MRI 

includes both anatomical and functional information to be able to provide a comprehensive 

characterization of the tissue. However, diagnosis with mp-MRI is limited to inconsistent and 
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qualitative interpretation. Clinically, the evaluation of mp-MRI is often through a standardized 

scoring system, PIRADS v2, which can lead to high inter- and intra-observer variability, and with 

a large amount of data for each case, the diagnosis process can be time-consuming. In order to get 

a more consistent quantitative evaluation, there are mainly two ways to utilize algorithms to help 

the diagnosis. The first one is creating quantitative biomarkers through mathematical models 

proposed based on assumption and understanding of physics and physiology, such as 

pharmacokinetic models for quantitative dynamic contrast-enhanced (DCE) MRI. The second one 

is using a machine learning technique to train a system with existing data to get diagnosis 

prediction on new data. The purpose of this work is to improve the quantitative interpretation of 

mp-MRI in PCa diagnosis regarding consistency and accuracy. 

Methods 

 To evaluate existing B1+ estimation techniques to achieve a more consistent pre-contrast 

T1 estimation for quantitative DCE- MRI, 21 volunteers were prospectively recruited and scanned 

twice on two 3T MRI scanners, resulting in 84 variable flip angle (VFA) T1 exams. Two B1+ 

mapping techniques, including reference region variable flip angle (RR-VFA) and saturated turbo 

FLASH (satTFL), were used for B1+ correction, and T1 maps with and without B1+ correction were 

tested for the intra-scanner repeatability and inter-scanner reproducibility. Volumetric regions of 

interest were drawn on the transition zone, peripheral zone of the prostate and the obturator 

internus left and right muscles in the corresponding slices. The average T1 within each ROI for 

each scan was compared for both intra- and inter-scanner variability using concordance correlation 

coefficient and Bland-Altman plot.  

 To simplify B1+ compensation for quantitative DCE MRI in clinical and clinical research 

settings, an analytical B1+ correction method is proposed using a Taylor series approximation to 
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the steady-state spoiled gradient echo signal equation. The proposed approach only requires B1+ 

maps and uncorrected pharmacokinetic (PK) parameters as the input, and was evaluated using a 

prostate digital reference object (DRO) and 82 in-vivo prostate DCE-MRI cases. The 

approximated analytical correction was compared with the ground truth PK parameters in 

simulation, and compared with the reference numerical correction in in-vivo experiments, using 

percentage error as the metric. 

 To develop a deep transfer learning (DTL) based model to distinguish indolent lesions 

from clinically significant PCa lesions using multiparametric MRI, 140 patients with 3T mp-MRI 

and whole-mount histopathology (WMHP) were included as the study cohort with IRB approval. 

The DTL based model was trained on 169 lesions in 110 arbitrarily selected patients and tested on 

the remaining 47 lesions in 30 patients. We compared the DTL based model with the same deep 

learning (DL) model architecture trained from scratch and the classification based on PIRADS v2 

score with a threshold of 4 using accuracy, sensitivity, specificity, and area under curve (AUC). 

Bootstrapping with 2000 resamples was performed to estimate the 95% confidence interval (CI) 

for AUC. 

Results 

 Both RR-VFA-corrected T1 and satTFL-corrected T1 showed higher intra- and inter-

scanner correlation (0.89/0.87 and 0.87/0.84 respectively) than VFA T1 (0.84 and 0.74). Bland-

Altman plots showed that VFA T1 had a wider 95% limits of agreement and a larger range of T1 

for each tissue compared to T1 with B1+ correction.  

  The prostate DRO results show that the proposed approach provides residual error less 

than 0.4% for both Ktrans and ve, compared to the ground truth. This noise-free residual error was 

smaller than the noise-induced error using the reference numerical correction, which had a 
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minimum error of 2.1±4.3% with baseline SNR of 234.5. For the 82 in-vivo cases, percentage error 

compared to the reference numerical correction method had a mean of 0.1% (95% central range of 

[0.0%, 0.2%]) across the prostate volume. 

 After training on 169 lesions in 110 patients, the AUC of discriminating indolent from 

clinically significant PCa lesions of the DTL based model, DL model without transfer learning and 

PIRADS v2 score > 4 were 0.726 (CI [0.575, 0.876]), 0.687 (CI [0.532, 0.843]) and 0.711 (CI 

[0.575, 0.847]), respectively in the testing set.  

Conclusion 

 The application of B1+ correction (both RR-VFA and satTFL) to VFA T1 results in more 

repeatable and reproducible T1 estimation than VFA T1. This can potentially provide improved 

quantification of the prostate DCE-MRI parameters. 

 The approximated analytical B1+ correction method provides comparable results with less 

than 0.3% error within 95% central range, compared to reference numerical B1+ correction. The 

proposed method is a practical solution for B1+ correction in prostate DCE-MRI due to its simple 

implementation. 

 The DTL based model achieved higher AUC compared to the DL model without transfer 

learning and PIRADS v2 score > 4 in discriminating clinically significant lesions in the testing set. 

The DeLong test indicated that the DTL based model achieved comparable AUC compared to the 

classification based on PIRADS v2 score (p = 0.89).  
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1 INTRODUCTION 

 Prostate cancer (PCa) is among one of the most common cancers and is a leading cause 

of cancer-related death in men in the United States1. Detection and grading of PCa are important 

for patient prognosis and treatment since small low grade lesions may undergo observation, 

whereas larger, higher grade lesions would be treated aggressively with surgery or radiation2. For 

the past 25 years, the standard diagnostic method of PCa diagnosis has been elevation of prostate-

specific antigen (PSA) followed by transrectal ultrasound (TRUS)-guided biopsy, which has 

resulted in decreased PCa mortality by 20%-30%3. However, this approach is associated with the 

underdetection of higher-grade (clinically significant) lesions and overdetection of low-grade 

(indolent) lesions due to sampling bias.4 As a result, patients can receive overtreatment related 

morbidity such as incontinence and impotence 5,6 or repeated invasive biopsy assessment, which 

is costs for both patients and health care systems.7 

 On the other hand, multi-parametric (mp-MRI), mainly consists of diffusion-weighted 

imaging, dynamic contrast-enhanced (DCE) imaging as well as T2 weighted imaging, is a great 

non-invasive diagnosis tool and has been widely used in PCa diagnosis8. 3T mp-MRI enables 
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detection of 50% of all PCa lesions and 80% of clinically significant lesions9. Moreover, studies 

have shown the diagnosis improvement with MRI guided biopsy compared to TRUS-guided 

systematic biopsy.4,7 However, one of the main limitations of the broader applications of mp-MRI 

is its requirement for training and expertise for image interpretation by subspecialized radiologists, 

which may lead to high inter- and intra-reader variability in diagnosis10, even with standardized 

guidelines such as Prostate Imaging Reporting and Data System (PIRADS v2)11. These guidelines 

which mainly evaluate qualitative parameters for T2, DWI and DCE enable more standardized and 

reproducible reporting of clinically significant PCa foci, but are still subject to limitations such as 

interobserver variability12 and improved but limited correlation with final pathology13. 

Specifically, the reader’s experience was proved to influence the inter-reader agreement and cancer 

detection rate.14,15 Methods to standardize image interpretation would be desirable, and one 

solution is to establish quantitative models to automate the image interpretation procedure to help 

diagnosis.  

One way to build the quantitative interpretation model is to develop quantitative MRI 

biomarkers based on prior knowledge of physics and physiology. Current clinical acquisition of 

mp-MRI in prostate is not quantitative since they are mainly based on so-called weighted images 

that the image intensity is affected by different factors including various tissue properties and 

scanning protocol. On the other hand, quantitative MRI image intensity is expected to represent 

certain physical or chemical variables that can be measured in physical units and compared 

between tissue regions and among subjects. In this way, the images can be used as a measuring 

tool instead of a camera. In other words, the quantification value should be accurate so that it 

reflects certain tissue character, and precise so that the changes in the measurements corresponds 

to tissue property changes. So quantitative MRI can help to achieve more consistent interpretation 
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for tissue characterization but can still be limited due to error in the acquisition and modeling. For 

example, volume transfer factor Ktrans is a biomarker to estimate vascular permeability calculated 

from DCE MRI, which was proved useful in lesion detection, aggressive and treatment response.16 

However, B1+ inhomogeneity effect could lead to variation in Ktrans estimation from scan to scan, 

reducing the estimation consistency.  

Another way to build a quantitative model is to use machine learning technique. In general, 

a model is can be developed with optimization algorithms to explore the correlation between mp-

MRI and histopathology based on known data, namely training data, in order to make predictions 

on the unknown data, namely testing data. Traditional machine learning models mainly consisted 

of two steps. Careful designed handcrafted features were extracted from images and then served 

as the input for the classifier. The performance of the model was highly dependent on the design 

of the feature extraction, which is less representative and needs expertise in feature engineering. 

In recent years, the development in deep learning models enables to explore highly nonlinear 

features from images directly and achieved better performance at the same time. Among them, 

convolutional neural networks (CNN) has become the leading model architecture for most image 

classification tasks. In PCa diagnosis, distinguishing clinically significant lesion from indolent 

lesion using mp-MRI is an important and challenging task, which can benefit from deep learning 

techniques.  

 The purpose of this dissertation was to improve the quantitative interpretation of mp-MRI 

by improving the consistency of quantitative DCE MRI biomarkers and developing deep learning-

based lesion classification model using mp-MRI. The background and overview of each project 

are discussed in the following.  
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1.1 Evaluation of B1+ Estimation Techniques 

Growth of PCa is reportedly associated with the development of a rich blood supply fed by 

a large network of immature, leaky blood vessels, and the density of this network was related to 

tumour grade and metastasis potential.17 Therefore as one major component in mp-MRI, DCE-

MRI has shown great promise for detection and grading of PCa18–20 for it reveals tissue vasculature 

property. Conventional image analysis for DCE-MRI are typically based on subjective evaluation 

or qualitative analyses of signal uptakes, and such evaluations are limited by inter-observer 

variability and highly dependent on data acquisition21. To develop quantitative biomarkers, 

pharmacokinetic DCE MRI analysis was proposed for tissue vasculature evaluation16,22 and 

became one of the most popular analysis models in DCE-MRI23–28. The general idea of quantitative 

DCE MRI was to estimate the contrast agent concentration curve based on the change of T1 

induced by contrast agent and then analyze the curve. However, quantitative DCE-MRI analysis 

results still suffer from high variability among different perfusion analysis tools and among 

different scanners29.   

Radiofrequency transmit field (B1+) inhomogeneity is one of the major challenges in 

quantitative DCE-MRI, for it varies the prescribed flip angles, thus reducing the accuracy of T1 

and contrast agent concentration curve estimation. The B1+ inhomogeneity becomes more severe 

with high field scanners (≥ 3.0 T). An intra-subject B1+ variation from 30% - 50% over the chest 

was observed30. Additionally, an inter-subject average B1+ variation of 30% is observed in the 

prostate region31. Although various techniques were proposed to measure B1+ inhomogeneity, 

there are few applied in the clinic. One reason is that most techniques require a separate scan and 

may not be available on all systems. There is no clear clinical guideline on which technique to use 

to estimate B1+ inhomogeneity. Also, B1+ inhomogeneity problem in T1 estimation in prostate at 
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3T has not been fully evaluated.  

Chapter 2 describes the work to evaluate how different B1+ estimation techniques will 

influence the pre-contrast T1 estimation regarding inter-scanner repeatability and intra-scanner 

reproducibility on 21 healthy volunteers on two 3T systems. It is important to evaluate the variation 

induced by B1+ inhomogeneity in prostate at 3T. Moreover, T1 estimation consistency is a crucial 

evaluation metric for B1+ estimation. With this project, the B1+ inhomogeneity problem and several 

B1+ estimation techniques can be better understood. 

1.2 Simplified B1+ Estimation Technique 

 Although multiple techniques have been proposed to estimate B1+ accurately32–39 and two 

of them were evaluated on healthy volunteers in my previous work, the broad application of B1+ 

compensation in quantitative DCE-MRI is still hard to achieve. One reason is that the conventional 

numerical B1+ correction approach is demanding40. It requires repeating the pixel-by-pixel 

modeling process for 3D coverage and needs access to both raw images and complete modeling 

implementation, which can be hard in clinical settings. Therefore, a simplified analytical based 

correction approach can be beneficial for it can be more clinically feasible.  

Chapter 3 describes the work on the development of the approximation based analytical 

B1+ correction approach, and the evaluation of this B1+ correction technique in comparison to the 

conventional numerical B1+ correction method using both simulation and in-vivo data. The 

proposed B1+ correction method only requires the B1+ maps and the uncorrected quantitative DCE 

MRI maps as the input with simplified computation. It is a promising technique to both understand 

the error propagation from B1+ inhomogeneity to quantitative DCE biomarkers and increase the 

feasibility of integrating B1+ compensation into clinical workflow. 
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1.3 Deep Transfer Learning based Lesion Classification 

With a large number of images to process per case and the variety of scanning protocols 

and readers, a fast and consistent interpretation of mp-MRI can be challenging. Specifically, one 

crucial task in PCa diagnosis is to distinguish clinically significant lesions from indolent lesions. 

Gleason Score (GS) from histopathology analysis was shown to be a powerful indicator for patient 

outcome and is used to define clinically significant lesion.  As described before, machine learning 

models can help identify clinically significant lesions automatically, reducing the reading time and 

diagnosis variability.41 Many attempts have been made to develop reliable machine learning 

systems for this task42–45. However, most of them are utilizing handcrafted features. On the other 

hand, the deep neural networks draw considerable attention for they are capable of extracting 

multi-level abstraction from raw images directly with little human intervention. Deep learning has 

achieved great success in various computer vision tasks46.  

Although deep learning technique is promising, its transition to medical imaging domain 

is challenging. To train a reliable CNN, it often requires a large amount of labeled data to make 

sure the trained model is generalizable in prediction tasks.  In the medical imaging domain, getting 

large numbers of high-quality data is difficult. First of all, organized patients’ images are scarce 

and expensive to collect compared to natural images. Also, patient privacy issue makes it harder 

to share medical images, limiting data collection from multiple centers. Moreover, the labeling 

process of medical images requires great expertise and can be expensive, making it even harder to 

get large numbers of well-labeled data. For example, GS from biopsy samples is not as accurate 

as GS from whole-mount histopathology (WMHP) after prostatectomy because of the sampling 

bias, and labelling with the latter information improves the data quality. However, getting GS from 

WMHP further limits the patient population so this type of data is less available.  On the other 
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hand, to overcome the data size requirement limitation in CNN, one technique called deep 

translation learning was proposed, which utilizes information from models trained in natural 

images or other different imaging domains to help to solve the problem in target image domain 

with fewer data available. Fine-tuning is a representative and powerful technique in this category47 

and can be used in the lesion classification model. 	

Chapter 4 describe the work on the development and evaluation of a deep transfer learning-

based algorithm in distinguishing clinically significant lesions from indolent lesions using mp-

MRI. The proposed method was compared with the deep learning model without transfer learning 

as well as PIRADS v2 score from experienced radiologists. The goal of this study is to propose a 

deep transfer learning-based model to distinguish indolent lesions from clinically significant 

lesions and to compare the proposed model with deep learning model without transfer learning 

and PIRADS v2 on 3T mp-MRI with WMHP validation.   
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2 REPEATABILITY AND 
REPRODUCIBILITY OF 
VARIABLE FLIP ANGLE T1 
QUANTIFICATION IN THE 
PROSTATE AT 3 TESLA 

2.1 Introduction 

Quantitative DCE-MRI is an important tool in the diagnosis of PCa due to its ability to 

reveal changes in tissue vascular physiology such as tissue perfusion and permeability 18,19. Unlike 

qualitative or semi-quantitative analysis, the quantitative DCE-MRI is theoretically independent 

of patient- and scanner-specific variations but in practice can be highly influenced by errors in 

estimation of pre-contrast T1 and arterial input function 48. Variable flip angle (VFA) T1 mapping 

is a common approach to measure pre-contrast T1 49,50 but is limited due to its sensitivity to transmit 

RF (B1+) field inhomogeneity, which becomes more severe at higher field strengths (≥ 3 Tesla). 

Several studies showed that the VFA T1 mapping can be improved after compensating for B1+ 

inhomogeneity 51–53. Since B1+ inhomogeneity mainly depends on the subject geometry and 

hardware, the B1+ field inhomogeneity should be measured by a subject-by-subject basis. Around 

30% inter-subject B1+ variation has been noted in the prostate region at 3T 31,54. Therefore, accurate 

and reproducible methods for T1 mapping with B1+ correction should be important for prostate 

DCE-MRI.   
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Many techniques have been proposed to measure the B1+ inhomogeneity. These methods 

can be grouped into two main categories 55: magnitude-based 33,34,36,37,56 and phase-based methods 

39,55. Although these techniques have been shown to provide accurate and fast B1+ mapping, the 

majority of these B1+ correction techniques employ a 2D multi-slice acquisition, leading to slice 

profile and position mismatches with the corresponding 3D VFA imaging for T1 mapping. More 

importantly, all the proposed techniques require a separate B1+ mapping scan, which requires 

additional scan time and may not be available on all MRI scanner systems.  

Recently, a simultaneous 3D T1 and B1+ mapping technique, called reference-region 

variable flip angle (RR-VFA), was proposed 31,57. In RR-VFA, it was assumed that the reference 

region (e.g., fatty tissue) has a known T1 relaxation time, and the B1+ variation for the target tissue 

was interpolated based on the B1+ calculated from the reference region. The study demonstrated 

the feasibility of using RR-VFA in the breast 31 and prostate 57 without adding any additional scan 

time. The RR-VFA has the potential to avoid potential mismatches between B1+ mapping and 

actual imaging sequences and can be a better practical choice due to wide availabilities on many 

MRI systems. Therefore, further investigation of the repeatability and reproducibility of RR-VFA 

may increase the utilities of RR-VFA in various settings. In this study, we aim to evaluate the 

intra-scanner repeatability and inter-scanner reproducibility of prostate VFA T1 estimation with 

and without B1+ inhomogeneity correction using either saturated turbo FLASH (satTFL) 37 or RR-

VFA B1+ estimation at 3.0 T. 

2.2 Theory 

2.2.1 Quantitative DCE MRI 

As described in Chapter 1.1, the foundation of DCE MRI is that paramagnetic contrast 
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agent injected in the vascular system will reduce T1, and the perfusion can be estimated by 

observing the temporal variation of signal or T1 in the tissue. The acquisition comprised of a set of 

T1 weighted images, which is usually acquired with radiofrequency-spoiled gradient echo (SPGR) 

sequence, including baseline images before contrast injection and dynamic images after contrast 

injection within a few minutes. From those images, a signal intensity curve can be generated for 

each pixel. This signal intensity curve is related to contrast agent concentration variation, but the 

scaling factor is unknown and varies for different scanning protocols. Analysis performed on this 

curve is called semi-quantitative analysis, and the resulting biomarkers can be hardly compared 

between different scans.  

To make the quantification more reliable, pre-contrast T1 maps can also be estimated so 

that the contrast agent concentration curve can be generated based on the T1 variation before and 

after contrast injection. This process is called MRI modeling for it is based on MRI physics. This 

curve is independent of scanning protocol and solely related to the tissue perfusion property. With 

the contrast agent concentration curve available, the pharmacokinetic analysis58 can be performed 

on, and this analysis is also called quantitative DCE MRI. The quality of the quantitative DCE-

MRI analysis highly relies on the accuracy of pre-contrast T1 quantification.  

2.2.2 Pre-contrast VFA T1 Estimation Method 

In prostate pre-contrast T1 estimation, VFA is a commonly used. This technique requires 

multiple spoiled gradient-echo (SPGR) acquisitions with constant short repetition time and a set 

of flip angles. T1 maps can be estimated based on the pixel-wise linear fitting on the acquired 

images. This method is also called Driven Equilibrium Single-Pulse Observation of T1 

(DESPOT1).59 The quantification process is described in the following. 
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The signal intensity (S) of SPGR, ignoring T2* decay, can be expressed as, 

 

		Equation	2-1	

k = lm
nopq(r − tr)
r − tr uvnq

 

where M0 is the equilibrium magnetization, θ is the flip angle, and wx = yz{|/{~.  

VFA with SPGR can be used to generate T10 maps by employing a set of flip angles, �Ä ∈

{�x, �É,⋯ , �Ö}, with fixed repetition time (TR) and echo time (TE)4950. T10 can be calculated using 

a simple linear regression by substituting �Ä and E10= yz{|/{~á into Equation 2-1,  

Equation	2-2	

 
k(àâ)
nop	(àâ)

= trm
k(àâ)
äãp(àâ)

+lm(r − trm)  

Figure 2-1 shows the general workflow for quantitative DCE MRI analysis. It is 

demonstrated that if the actual flip angles deviate from the prescribed ones, the error will propagate 

to the T1 estimation and then to the quantitative DCE biomarkers, so it is crucial to consider B1+ 

inhomogeneity effect in VFA T1 quantification. In this chapter, the repeatability and 

reproducibility of T1 maps with and without B1+ compensation will be evaluated.  
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Figure 2-1 General workflow for quantitative DCE-MRI. Representative VFA images, Dynamic T1 

weighted images, contrast agent concentration curve for one pixel, quantitative DCE biomarkers 
Ktrans and ve map were also shown for each step. 

 

2.3 Methods 

Twenty-one male volunteers prospectively participated in the study, approved by the local 

institutional review board (IRB), for which all subjects provided written informed consent. The 

twenty-one subjects (27 ± 4 years old) were imaged twice in two different 3T MRI scanners (Skyra 

as “Scanner 1” and Prisma as “Scanner 2”; Siemens Healthcare, Erlangen, Germany) using the 

body coil for RF transmission and receive-only phased-array coil for signal reception, resulting in 

84 scans. All subjects underwent MRI exams in a feet-first supine position, and the vendor-

provided “TrueForm” RF transmission mode was active for both scanners for B1+ shimming 60.  

Pre-Contrast T1
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The overall experiment setup for repeatability and reproducibility testing is summarized in 

Figure 2-2. For each scan, our protocol included a 2D T2-weighted Turbo Spin Echo (T2w-TSE) 

sequence, a 2D satTFL-B1+ mapping sequence, and 3D VFA imaging with a dual echo bipolar 

readout. The axial multi-slice 2D T2w-TSE was used for an anatomical reference 

(TE/TR=101/4000 ms, FOV=200´200 mm2, spatial resolution=0.6´0.6´3.0 mm3, flip 

angle=160°, and total scan time = 3 min 38 s). The multi-slice 2D satTFL sequence was 

commercially available for all Siemens scanners, and the axial satTFL B1+ mapping sequence was 

used to cover the entire prostate (TE/TR =1.83/8000 ms, FOV=300 ´ 300 mm2, spatial 

resolution=4.7´4.7´8.0 mm3, flip angle = 80°, and total scan time = 20 s). The 3D VFA imaging 

was acquired axially and consisted of four flip angles, identical to our standard clinical prostate 

Figure 2-2 Experiment design summary. Each volunteer was scanned four times on two 3.0 T 
scanners. The volunteers were repositioned between two scans on the same scanner, and the time 
interval between scans on two scanners varies from same-day to 70 days. Each scan consists of three 
different sequences and after post-processing, we obtained one T2W image, two B1+ maps and 
three T1 maps to analyze. 
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DCE-MRI protocol. The two-point Dixon option was used to create fat- and water-only images 

(TEs=1.23/2.46 ms, TR=4.17 ms, FOV=260 ´ 260 mm2, spatial resolution=1.6´1.6´3.6 mm3, flip 

angles = 2°/5°/10°/15°, and total scan time = 4 ´ 35 s). The protocol was repeated twice on each 

scanner. After the first scan, the subject was taken off the scanner table, re-positioned on the 

scanner table, and scanned again. The time interval between scans on two different scanners varied 

from same-day to 70 days.  

2.3.1 Image Analysis  

The optimized prostate RR-VFA method 31 was used to simultaneously estimate both B1+ 

and T1. The fatty reference tissue was identified in fat-only images using Otsu’s method 61, and a 

population-based effective fat T1 of 320 ms was used 31. The B1+ inhomogeneity was initially 

calculated in the fatty tissue surrounding the prostate and then interpolated to the prostate, in terms 

of relative flip angle (rFARR-VFA = obtained flip angle/prescribed flip angle×100 %). For 

comparison, the relative flip angle maps from satTFL were generated using the obtained flip angle 

divided by the prescribed flip angle (rFAsatTFL = obtained flip angle/prescribed flip angle×100 %). 

Three T1 maps were calculated based on VFA (T1,VFA), VFA with B1+ correction using 

satTFL (T1,satTFL), and RR-VFA (T1,RR-VFA) for each scan. To account for different resolutions 

among the different sequences (T2w-TSE, VFA and satTFL), the B1+ and T1 maps were linearly 

interpolated with respect to T2w-TSE images. All post-processing was performed using in-house 

scripts written in Matlab (Mathworks, Natick, Mass). Since the repeated MRI scans include re-

positioning the subjects, we did rigid registration between four scans for the same volunteer using 

T2W images and registered corresponding B1+ and T1 maps accordingly.  

A genitourinary (GU) radiologist (interpreted over 2,000 prostate MR exams) reviewed the 
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T2w-TSE images of all volunteers and confirmed no visible abnormalities. The GU radiologist 

manually defined the regions of interest (ROIs) to cover the transition zone (TZ), peripheral zone 

(PZ) in the prostate and the obturator internus left and right muscles (left and right pelvic muscles) 

on the same slices as the prostate on T2w-TSE images. These latter muscle ROIs were selected to 

check the consistency by comparing T1 values on contralateral sides. Four volumetric ROIs were 

drawn for each volunteer, and the registered T2w-TSE images as well as the volumetric ROIs on 

one representative volunteer were shown in Figure 2-3. We also minimized partial volume effects 

Figure 2-3 Representative ROI placements on T2W-TSE images after registration. Volumetric ROIs 
were created for transition zone (TZ), peripheral zone (PZ) in the prostate and the obturator 
internus left and right muscles (left and right pelvic muscles) 
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by excluding the tissue boundary. Each ROI was copied to the corresponding interpolated B1+ and 

T1 maps. The average value within each ROI was computed for statistical analysis.  

2.3.2 Statistical Analysis 

A total of twenty-one subjects with 84 VFA T1 scans were evaluated for the repeatability 

and reproducibility test. For each subject, there were two scans on two scanners, and the 

comparison was performed between scans both intra- and inter-scanners. The repeatability of VFA 

T1 estimation with and without B1+ correction was evaluated by comparing T1 values between two 

scans on the same scanner (intra-scanner), and the reproducibility was evaluated by comparing T1 

values between two scanners (inter-scanner). Three groups of T1 estimation, including T1,VFA, 

T1,satTFL and T1,RR-VFA were evaluated separately.  

Statistical analysis of repeatability and reproducibility was performed based on 

Quantitative Imaging Biomarkers Alliance (QIBA)’s recommendation.62 Lin’s Concordance 

correlation coefficients (CCC) were mainly used to assess both repeatability and reproducibility. 

T1 measurements from both prostate and muscles were evaluated using CCC between each pair of 

scans, and there were two intra-scanner comparisons and four inter-scanner comparisons in total. 

The intra- and inter-scanner CCC was then averaged respectively. Z-test with Bonferroni 

adjustment was used to compare the CCC between three pairs of T1 maps (� = 0.05/3 = 0.017). 

The null hypothesis for the z-test is two types of T1 maps have equal CCCs for either repeatability 

or reproducibility comparison with the critical value zc = 1.96 for two-sided comparison. Bland-

Altman plots were also used to compare the agreement between scans with 95% confidence 

interval (CI) and limits of agreement (LOA). Linear regression plots were created to reveal the 

Due to limited sample size and non-Gaussian distribution, bootstrapping sampling with 

replacement (n = 1000) was used to calculate the mean T1, repeatability coefficient (RC) and 
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reproducibility coefficient (RDC), mean and 95% confidence interval (CI) of the difference 

between two measurements. RC was defined as 2.77 ´ sR and RDC was defined as 2.77 ´ sRD, 

where sR and sRD were the standard deviations of the difference between two measurements from 

repeatability test and reproducibility test respectively. Statistical analysis was performed using the 

in-house software in Matlab. 
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2.4 Results 

One example scan with representative slices in apex, midgland and base were shown in 

Figure 2-4. The left and right pelvic muscles showed clearly different T1, VFA but the T1 became 

more consistent in T1, satTFL and T1, RR-VFA after B1+ compensation.  

Figure 2-5 shows the Bland-Altman plots for intra-scanner (a, c, e) and inter-scanner 

comparison (b, d, f) of average T1 values within ROIs. Figure 2-5 (a, c, e) showed the comparison 

Figure 2-4 Representative slices (apex, midgland and base) for one scan with T1, VFA, T1, satFTL as well 
as T1, RR-VFA within ROIs overlaid on T2w-TSE images. The inconsistent T1, VFA estimation between 
left and right pelvic muscles became more consistent in T1, satTFL, and T1, RR-VFA. 
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between two scans on Scanner 1. Note that T1, VFA had a broader range of mean T1 for similar 

tissues among different volunteers (Figure 2-5a), and the T1 value became much more consistent 

after compensating for B1+ variation using both B1+ mapping techniques (Figure 2-5c, e). The mean 

T1 among volunteers converged to a more consistent value using both B1+ correction techniques, 

and the 95% LOA was narrower for T1,satTFL (510ms)  and T1,RR-VFA (460ms) compared with T1,VFA 

(720ms). Figure 2-5 (b, d, f) showed the Bland-Altman plots for comparison between Scan 1 on 

Scanner 1 and Scan 1 on Scanner 2, and the conclusion is similar, T1,satTFL (LOA 680ms) and T1,RR-

VFA (LOA 610ms) showed more consistent T1 for each tissue compared to T1,VFA (LOA 1140ms). 
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Moreover, T1, RR-VFA achieved similar agreement with T1,satTFL.  

Figure 2-5 Bland-Altman Plot for comparing mean T1 within ROIs between two scans on Scanner 
1 (a, c, e) and between Scan 1 on Scanner 1 and Scanner 2 (b, d, f). Each encoded color indicates 
one tissue. The mean T1 for each tissue had a more condensed distribution for T1, satTFL (c, d) and 
T1, RR-VFA (e, f) compared to T1, VFA (a, b).  
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Figure 2-6 Linear regression plots for comparing mean T1 within ROIs between two scans on Scanner 
1 (a ,c ,e) and between Scan 1 on Scanner 1 and Scanner 2 (b, d, f). Each encoded color indicates one 
tissue.  

 

Statistical analysis results are summarized in Table 2-2. Based on the averaged CCC evaluation of 

intra- and inter-scan pairs in Table 2-2, all correlations for each T1 data were excellent. However, 

T1, RR-VFA gave a generally higher correlation (0.89 and 0.87) than T1, satTFL (0.87 and 0.83) and T1, 
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VFA (0.84 and 0.74), showing higher T1 correlation both intra- and inter- scanner. P-values from z-

test of CCCs are also reported in Table 2-2. The reproducibility between T1,VFA and T1,RR-VFA 

showed statistically significant difference (p = 0.015). CCC of other pairs of comparison did not 

show significant difference due to our limited sample size. Table 2-1 contained the intra-scanner 

(left column) and inter-scanner (right column) comparison of mean T1, mean difference, RC and 

RDC after bootstrapping for each tissue respectively. T1, VFA had inconsistent mean T1 between 

left and right pelvic muscles, wider difference between measurements, higher RC and RDC 

compared to both corrected T1.  
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Table 2-1 Summary of mean T1, mean difference, 95% CI of the difference and RC after 
bootstrapping for each tissue repeatability and reproducibility. Metrics were averaged among each 
pair of comparisons (two pairs for intra-scanner and four pairs for inter-scanner) respectively. 

	

2.5 Discussion 

Repeatable and reproducible T1 estimation is the foundation for accurate quantitative DCE 
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MRI. In this study, we mainly compared the repeatability and reproducibility of T1 estimation 

regarding different B1+ estimation techniques. When evaluating repeatability within each scanner, 

since the time interval between two scans is minimal, the main influence factor of the fluctuation 

is from the change of B1+ pattern resulting from the change of patient location relative to the 

isocenter. On the other hand, the inter-scanner reproducibility integrates more factors such as 

various scanning intervals, different hardware properties on different scanners as well as patient 

location relative to isocenter. All intra-scanner CCCs were higher than inter-scanner CCCs, which 

are as expected. In general, both T1,satTFL and T1,RR-VFA showed great repeatability and 

reproducibility under all of the conditions.   

We mainly evaluated the variable flip angle T1 estimation in male pelvis, and we expect 

Table 2-2 CCC between pairs of scans for intra-scanner repeatability and inter-scanner 
reproducibility. CCCs were averaged among each pair of comparisons (two pairs for intra-scanner 
and four pairs for inter-scanner) respectively. P-value from z-test of CCCs for repeatability and 
reproducibility comparison (after Bonferroni adjustment statistically significant difference was 
marked with *). 
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similar behavior in other organs. Quantitative DCE MRI is not only useful in PCa diagnosis. As 

minimal invasive treatment has been playing a more important role, highly repeatable and 

reproducible quantitative DCE MRI has great potential to help monitor the treatment response as 

well.  

We also compared the B1+ estimation between two B1+ mapping techniques directly, and 

the linear regression plots of two methods showed good linear correlations with slopes slightly 

larger than one. This could be the main reason of different mean T1 values between T1, satTFL and 

T1, RR-VFA. We believe this may be due to the imperfect slice profile correction in satTFL as the 

technique is based on multi-slice 2D imaging and the bias was consistent across different scans 

and scanners. Further investigation may be needed to fully eliminate the inconsistencies between 

2D and 3D imaging. In addition, 1000-1300ms prostate T1 was reported in previous studies using 

inversion recovery approach, and we observed ~2000ms T1 using VFA at 3.0T. The overestimation 

is expected due to both field difference and pulse sequence variation. For example, a 30% 

overestimation of white matter T1 from VFA compared to inversion recovery was reported.63 

In this study, we used satTFL B1+ as a reference to compare the repeatability and 

reproducibility because it is the only commercially available B1+ mapping technique on Siemens 

MRI systems. On the other hand, RR-VFA is widely available across scanners by different vendors 

as it does not require additional B1+ mapping sequences, and we expect the comparable 

repeatability and reproducibility would not be different for other scanners. Other advantages of 

using RR-VFA include no extra scan time and no inconsistencies between B1+ and T1 mapping 

sequences (e.g., 2D/3D imaging, and in-plane and through-plane resolution). As a result, RR-VFA 

may provide a good practical solution to accurate pre-contrast T1 estimation for prostate 

quantitative DCE MRI. 
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Our study has the following two major limitations: small cohort size and noise introduced 

by motion.  The scan was performed on two scanners and repeated on two systems on twenty-one 

volunteers, resulting in 84 scans in total. Based on power analysis, to achieve 80% power, we need 

390, 1250, 2000 volunteers respectively to detect the repeatability difference between T1,VFA vs. 

T1,RR-VFA, T1,VFA vs. T1,satTFL and T1,satTFL vs. T1,RR-VFA with alpha = 0.05. Similarly, we need 110, 

280, 750 volunteers respectively to detect the reproducibility difference between T1,VFA vs. T1,RR-

VFA, T1,VFA vs. T1,satTFL and T1,satTFL vs. T1,RR-VFA to achieve 80% power with alpha = 0.05. Even we 

could only detect statistically significant difference between the reproducibility between T1,VFA 

and T1,RR-VFA with current sample size, the conclusion is not expected to be changed with a larger 

cohort. Also, we observed several scans had motion-induced artifact in T1 maps, especially on the 

edge. We excluded the edge when creating the contour to reduce the influence from motion, but 

the motion artifact could hardly be fully removed. This indicates that the repeatability and 

reproducibility was slightly underestimated. Nonetheless, the comparison between T1,VFA, T1,satTFL 

and T1,RR-VFA was fair regardless motion-induced noise exist or not.   

2.6 Conclusion 

We showed improved repeatability and reproducibility of VFA T1 estimation with 

compensating for B1+ variation in the prostate MRI at 3T. Both RR-VFA and satTFL B1+ mapping 

methods had comparable repeatability and reproducibility of T1 estimation while RR-VFA does 

not require additional scan time nor a B1+ mapping sequence. The application of RR-VFA T1 

estimation has great potential to improve T1 quantification resulting in more repeatable and 

reproducible prostate DCE-MRI quantification.  

This work has been published as: 
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Zhong X, Liu D, Sayre J, Wu HH, Sung K, Repeatability and Reproducibility of Variable 

Flip Angle T1 Quantification in the Prostate at 3 Tesla. Journal of Magnetic Resonance Imaging. 

2018. https://doi.org/10.1002/jmri.26596  
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3 PROSTATE DCE-MRI WITH 
B1+ CORRECTION USING AN 
APPROXIMATED ANALYTICAL 
APPROACH 

3.1 Introduction 

PCa is one of the leading causes of cancer deaths for men in the United States1. Biopsy is 

one of the current gold standards for diagnosing PCa, however, it is invasive and has a relatively 

low specificity64. Mp-MRI, which includes DCE-MRI is now widely used as a promising non-

invasive technique for diagnosing PCa18–20. Conventional image analyses for DCE-MRI are 

typically based on qualitative analyses of signal uptake, where the subjective evaluation or 

qualitative analyses are limited by inter-observer variability and high dependence on data 

acquisition21.  

Quantitative DCE-MRI has shown great potential in tumor detection, staging, and 

treatment response evaluation16,24,28. Quantitative analysis of DCE-MRI usually requires modeling 

to generate contrast concentration curves in the tissue and then employs pharmacokinetic (PK) 

analysis to estimate parameters such as volume transfer constant (Ktrans) and extravascular 

extracellular volume fraction (ve)65. To calculate an accurate contrast agent concentration curve, 

pre-contrast T1 (T10) maps need to be estimated.  A variable flip angle (VFA) method is commonly 

used for T10 estimation49,50. However, the VFA image acquisition is sensitive to flip angle variation 



 

 29  

caused by transmit radiofrequency (B1+) field inhomogeneity51,53,66.  

Increased signal-to-noise (SNR) from 3T MRI systems can improve the quantification 

accuracy, thus becoming preferable for prostate mp-MRI22. However, B1+ field inhomogeneity 

becomes more severe with increased field strengths (≥ 3.0T)67. If B1+ field is inhomogeneous, the 

spins within excitation can fail to achieve the exact flip angle as prescribed, thus reducing the 

accuracy of the quantitative analysis of DCE-MRI. Previous studies have shown an inter-subject 

B1+ variation of 32% in the prostate31 at 3T, which can induce significant errors into the PK 

estimation. Di Giovanni et al. showed that the 55% overestimation of flip angle due to B1+ 

inhomogeneity could result in up to 66% underestimation for measured Ktrans and 77% 

underestimation of ve68.  

 Various B1+ mapping techniques have been developed to enable B1+ compensation, 

including the double-angle method (DAM)32, Block-Siegert (BS)38, actual flip angle imaging 

(AFI)36 and reference region variable flip angle (RR-VFA)57. However, even if B1+ maps are 

available, applying the B1+ correction to quantitative DCE-MRI analysis is sometimes difficult due 

to practical limitations when closed-form software is used. Using B1+-corrected flip angles, the B1+ 

correction requires a full numerical reprocessing of the entire DCE-MRI modeling, from signal 

intensity to PK parameters. This numerical reprocessing can be challenging especially when 

closed-source software is used for DCE-MRI analysis40 and can be time-consuming due to the 

pixel-by-pixel reprocessing. Especially for clinical or clinical research settings, simple yet efficient 

B1+ correction approaches will be highly desirable since closed-form or commercial software is 

commonly used. 

In this work, we present a simplified and practical approach that compensates for B1+ 

inhomogeneity in quantitative prostate DCE-MRI analysis. Our proposed approximated analytical 
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approach enables a simple and practical application of B1+ correction in quantitative DCE-MRI 

since it does not require full access to the entire DCE-MRI analysis and avoids repeated pixel-by-

pixel PK parameter estimation. The accuracy of the approximated analytical approach was 

evaluated using numerical simulation and prostate-specific digital reference object (DRO). The 

approximated analytical approach was also compared with reference numerical correction40 on 82 

in-vivo 3T prostate DCE-MRI cases. 

3.2 Theory 

3.2.1  Quantitative Analysis for prostate DCE-MRI  

As described in the theory session in Chapter 2, the pre-contrast T1 (T10) can be estimated 

using VFA method. Once T10 is estimated, the dynamic T1-map, T1(t), generated by using SPGR 

sequence with the flip angle å, can be computed by using T10 and the normalized signal intensity 

S(T1(t))/S(T10), where S(T10) is the pre-contrast baseline signal intensity and S(T1(t)) is the 

dynamic contrast-enhanced signal intensity, as shown in Equation 3-1. 

Equation	3-1	

 ç =
k(ér(è)) − k(érm)

k(érm)
=

(tr(è) − tr,m)(êëíì − r)
(tr,m − r)(tr(è)êëíì − r)	  

 

 To determine the PK parameters, the tissue contrast agent concentration, C(t), needs to be 

calculated from T1(t) and T10. C(t) is proportional to the change of longitudinal relaxation rate and 

can be computed by  
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Equation	3-2	

 î(è) =
r
ïr

(
r

ér(è)
−

r
érm

)	  

where r1 is the T1 relaxivity related to the contrast agent. Once C(t) is estimated, PK 

modeling such as standard Tofts model58 can be applied to estimate PK parameters (Ktrans and ve) 

using nonlinear curve fitting: 

 

Equation	3-3	

î(è) = ñèïóòí ô îö(õ
è

m
)úz

ñèïóòí

ùú
(èzõ)ûõ 

where Cp(t) is the contrast agent concentrations in the plasma (or arterial input function, 

AIF), Ktrans is the rate constant from plasma to extravascular-extracellular space (EES), and ve is 

the fractional volume constant of the EES. Cp(t) can be either measured or pre-assumed21.  

 When there exists B1+ inhomogeneity, the prescribed flip angles (�Ä and å) are not the 

same as the actual flip angle, which causes errors in the measurement of PK parameters. B1+ 

estimation is needed to accurately determine �Ä and å for each pixel. 

3.2.2 B1+ Correction: Reference Numerical Approach 

The conventional approach that compensates for B1+ inhomogeneity numerically 

reprocesses the whole quantitative DCE-MRI analysis with B1+-corrected flip angles40. For a given 

B1+ mapping technique, a pixel-by-pixel relative flip angle (defined as ü = †°¢
†°
= £¢

£
, where �Ä and 

å are the prescribed flip angles, and �Ä¢ and å¢ are the actual flip angles), is determined. The B1+-

corrected flip angle, assumed to be the actual flip angle, can be simply computed by multiplying 

k and the prescribed flip angle. The whole DCE-MRI analysis needs to be reprocessed for each 

pixel using the B1+-corrected flip angles. As a note, all variables with prime (’) indicate B1+-
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corrected variables. When �Ä¢ is determined, then it is used in Equation 2-2 to estimate T10’, and 

å¢ has to be used in Equation 3-1 to estimate T1’(t). Once T10’ and T1’(t) are computed, both Ktrans’ 

and ve’  can be computed by §′(¶) from Equation 3-2 and Equation 3-340. 

 This numerical approach is well defined, but can be demanding since it requires full access 

to the MRI modeling, PK modeling and raw DCE-MRI images. Many commercial and closed-

source software do not include pixel-by-pixel B1+ correction, nor can we modify the software to 

perform B1+ correction with the numerical approach. Moreover, even when the numerical approach 

is possible, the B1+ correction would need to repeat the pixel-by-pixel estimation of PK parameters, 

which can be time-consuming, especially for volumetric PK maps.  

3.2.3 B1+ Correction: Approximated Analytical Approach  

An analytical approach is desirable in many clinical and research settings as it allows direct 

derivation of B1+-corrected PK parameters. Analytical correction does not require full access to 

the DCE modeling, nor raw DCE-MRI images, and can enable a more practical B1+ correction 

process by only using B1+ maps and uncorrected PK maps as input. However, the full analytical 

expression of the B1+-corrected PK parameters is highly complicated to derive due to multiple 

nonlinear processes, as described before in Equation 2-2 to Equation 3-3. Here, we describe an 

approximated analytical approach to derive B1+-corrected PK parameters (Ktrans’ and ve’) by 

approximating the full analytical expression with certain assumptions. This approximated 

analytical approach will improve the utility of B1+ correction in DCE-MRI in various settings with 

minimal approximation error69. 

 In the approximated analytical approach, we assume that the flip angles and TR/T1 are 

small (�Ä3	≈	0, å ≈	0, TR/T10	≈	0, and TR/T1(¶) ≈	0), and k is close to 1 (k ≈	1). Using a Taylor 
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series approximation on Equation 2-2 and Equation 3-1, T10’ and T1’(t) can be simply expressed 

as ®x©¢ ≈ x
™´
®x©	and ®x¢(¶) ≈

x
™´
®x(¶). For simplicity, we used two flip angles for VFA process in 

the analytical derivation. Based on
 
Equation 3-2, the corrected contrast agent concentration curve 

§′(¶)=üÉ§(¶)	can be derived. As a result, the B1+-corrected PK parameters can be approximated 

as ¨≠ÆØ∞±′ ≈ üÉ¨≠ÆØ∞±	and ≤≥¢ ≈ üÉ≤≥	from Equation 3-3. The full derivation of the approximated 

approach can be found in Chapter 6. Using the approximated derivation of B1+-corrected PK 

parameters from uncorrected PK parameters allows for direct compensation for B1+ inhomogeneity 

without fully accessing MRI modeling and PK modeling because the relationship does not change 

regardless of corrected T10, Ktrans and ve value. Figure 3-1 shows the comparison between the 

proposed approximate    analytical correction method and the conventional numerical correction 

method. The conventional correction method requires the access to the images and MRI modeling 

and pharmacokinetic modeling while the approximated analytical correction method only requires 

the uncorrected Ktrans and ve maps as the input.  
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Figure 3-1 Comparison between the two B correction approaches. Conventional correction method 
needs to repeat MRI modeling and PK modeling pixel by pixel with original T1 images and dynamic 
T1 weighted images, while approximated analytical correction method only requires the uncorrected 
PK parameters to perform the correction and simplifies the computation. 

3.3 Methods 

Our approximated analytical approach relies on a set of assumptions, including small flip 

angles, small TR/T1, and k close to one. We first evaluated the approximation by numerical 

simulation and DRO and then compared the approximated analytical approach with the 

conventional numerical correction using 82 in-vivo prostate DCE-MRI cases based on our 

standard clinical prostate DCE-MRI protocol.  

3.3.1 Prostate Digital Reference Object (DRO)  

We used the numerical simulation and prostate DRO70–72 to carefully separate each source 

of errors (e.g. noise and B1+ inhomogeneity), providing a more systematic way to evaluate B1+ 

correction approaches. The DRO was composed of simulated grid-based MRI images with a set 

of pre-assumed PK parameters, including VFA images as well as dynamic images. We assumed a 

certain set of PK parameters, Ktrans (ranged from 0.01 to 0.35 min-1) and ve (ranged from 0.01 to 

0.5), defined as a ground truth set Pnat, and generated C(t) based on the set. The detailed sequence 

parameters are shown in Table 3-1, and are derived from our clinical prostate DCE-MRI protocol. 

We then created signals in both VFA imaging and dynamic T1-weighted images based on actual 

flip angles. The B1+-induced uncorrected flip angles were created by applying various k (ranged 

from 0.7 to 1.3) to the actual flip angle, and these uncorrected flip angles were used in the following 

model fitting from signal intensity to pharmacokinetic parameters (Equation 2-2 to Equation 3-3). 

The calculated parameters were defined as uncorrected parameters Puncor. Both the numerical and 

approximated analytical correction methods were applied on the simulated signals to generate the 
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corrected parameters (Pcor,N and Pcor,A).  

 All signal simulations and fittings were done using Matlab (Mathworks, Inc., Natick, MA, 

USA), and the trust-region reflective algorithm73 with lower bound of zero for Ktrans and ve was 

used in the nonlinear fitting process in PK modeling. In the following analysis, the percentage 

error relative to ground truth, Pnat, was calculated as the evaluation metric. The B1+-induced error 

(EB1, DRO) was defined as |µ∂∑∏π∫zµ∑ªº|
µ∑ªº

× 100%	and the correction residual errors for Pcor,N and Pcor,A 

were defined by wÖ,Ω|æ = øµ∏π∫,¿zµ∑ªºø
µ∑ªº

× 100% and w¡,Ω|æ = øµ∏π∫,¬zµ∑ªºø
µ∑ªº

× 100%.  

 To assess the bias and variance of the percentage errors for B1+ correction under a certain 

prostate-like DCE-MRI conditions, we first calculated B1+-induced and correction residual errors 

within a realistic range for B1+ inhomogeneity in the prostate31. The numerical simulation included 

Table 3-1 Details of the DRO modification. Compared to QIBA DRO designed for brain DCE MRI, 
the proposed DRO modified the flip angles, repetition time and the size of the DRO. 
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100 points with uniformly distributed k between 0.7 – 1.3 for one representative combination of 

Ktrans  = 0.05 min-1, ve = 0.1 and T10 = 1000 ms. To further assess the B1+-induced errors with 

various Ktrans and ve, we created a prostate DRO, modified from the original DRO by Quantitative 

Imaging Biomarkers Alliance (QIBA)74, using our clinical prostate DCE-MRI parameters (see 

Table 3-1). Other parameters of the prostate DRO are shown in Table 3-1. The DRO simulation, 

shown in Figure 3-2, was repeated by using three different widely-used population-based AIFs29 

(Parker75, Weinmann76 and Fritz-Hansen77)  with the standard Tofts model.  

 Noise was added to both VFA images and dynamic images by √′ = ƒ(√ + ≈x)É + ≈ÉÉ, 

where S is the original signal intensity, and n1 and n2 are Gaussian noise with the mean 0 and 

standard deviation ranging from 5 to 150, resulting in a baseline SNR ranging from 7.8 to 234.5. 

PK maps with and without correction were calculated as shown in Figure 3-2 B). With each SNR, 

the process was repeated 25 times, resulting in 100 available samples for each Ktrans and ve 

combination. For fair comparison, estimation parameters (Ktrans or ve) larger than 1 were excluded 

as outliers78. EN,DRO and EA,DRO for each SNR from 3000 pixels (5×6×100), except for those 

outliers, were averaged to evaluate residual errors varying with SNRs. Here, EN, DRO provided an 

estimation of the error tolerance due to noise, compared with the approximation-induced error (EA, 
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DRO without noise). Moreover, EN, DRO and EA, DRO for each parameter combination were averaged 

separately to show the correction residual error distribution with Pnat. Linear regression and Bland-

Altman plots were used to evaluate the correlation between PK parameters corrected by the two 

correction methods.  

 Similarly, to test the sensitivity of the two correction methods for k variation, we 

performed Monte-Carlo simulation with random Gaussian noise (zero mean and standard deviation 

ranging from 0.001 to 0.1) added in ground truth k = 1.2. The sensitivity was evaluated using 

EA,DRO and EN,DRO.   

Figure	3-2	Summary	of	the	simulation	study	design	using	DRO	under	various	population-
averaged	AIFs	(a)	and	Gaussian	noise	(b).	The	images	in	(a)	are	examples	of	corresponding	Ktrans	
and	ve	maps	in	each	step	and	DRO	images.	P	represents	PK	parameters	Ktrans	and	ve 
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3.3.2 In-vivo Prostate DCE-MRI Data 

With the local Institutional Review Board (IRB) approval, 82 cases were used to evaluate 

the approximated analytical approach in-vivo. The 82 cases were acquired between June 2010 and 

September 2014 (age = 65.9 ± 6.9 years and mass = 81.9 ± 13.5 kg). All in-vivo DCE-MRI cases 

were performed on two 3T scanners (MAGNETOM Skyra and MAGNETOM Trio, Siemens 

Medical Systems), using a body array matrix and spine array coil. The 3D SPGR sequence was 

used in both VFA and dynamic imaging with a TR of 4.17ms.  The slice thickness was 3.6mm, 

and the flip-angles used were 2, 5, 10, 15° for variable flip angle acquisition and 12° for dynamic 

acquisition. For most cases a matrix size of 160�160 with 20 slices was used, and those 

parameters varied slightly for other cases. For VFA imaging, a dual-echo bipolar readout (TE1 = 

1.23ms, TE2 = 2.46ms) was used to generate the fat-only and water-only images using a two-point 

Dixon algorithm79, and the B1+ maps were estimated using RR-VFA31. A single-dose injection of 

gadopentetate dimeglumine (Magnevist; Bayer, Wayne, NJ) contrast agent was administered to 

the patients at a dose of 0.1 mmol/kg through a peripheral vein at a rate of 2mL/sec using a 

mechanical injector, and dynamic images were acquired before, during, and after contrast 

injection. About 65 contrast-enhanced sets of images (temporal resolution of 4.3 sec) were 

acquired sequentially without delay between acquisitions with the total acquisition time of 5 min.  

 The standard Tofts model with Parker AIF75 was used for the PK modeling. The fitting 

algorithm and constraint are the same as in DRO experiments. Prostate regions of interest (ROIs) 

were manually drawn on the five central slices in the contrast-enhanced images and were copied 

to other images such as B1+, B1+-corrected, and uncorrected PK maps. A representative example 

of the prostate ROI is shown in Figure 3-3. The evaluation was performed using percentage error 

with respect to the B1+-corrected parameters using the numerical approach. Specifically, the B1+-
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induced error (EB1, in-vivo) was defined by øµ∂∑∏π∫∫zµ∏π∫,¿ø
µ∏π∫,¿

× 100%, and the correction residual error 

(EA, in-vivo) was defined by øµ∏π∫,¬zµ∏π∫,¿ø
µ∏π∫,¿

× 100%. The mean, standard deviation and 95% central 

range of all the voxels within the ROIs from all 82 patients were computed. An average k and the 

residual error for each patient’s volumetric ROI from five central slices were also computed to 

evaluate the approximated analytical method among different cases. Any pixels with estimated ve 

or Ktrans larger than one were considered to be outliers78 and therefore were excluded for all in-

vivo experiments. 

Figure 3-3 A representative slice of ROI positioning for in-vivo prostate data. ROI was first drawn 
on contrast-enhanced images (a) and was copied to corresponding relative B1

+ (k) map (b) EB1, in-

vivo map (c) as well as EA,in-vivo for Ktrans 
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3.4 Results 

3.4.1 Prostate DRO  

Figure 3-4 shows that the numerical and approximated analytical methods are comparable 

in the numerical simulation with k variation. Within k range of 0.7 to 1.3, the maximum EA,DRO is 

less than 0.4% for Ktrans and ve. This is negligible compared to EB1, DRO (maximum of 104.1%). 

Figure 3-4 also describes how Puncor deviates from the ground truth as k varies. For example, when 

k equals to 1.28, uncorrected Ktrans and ve underestimate around 40% of the true value. For all 

simulated points, Pcor,N and Pnat are the same with a precision of 10-12 as expected, assuring the 

accuracy of the numerical correction method.  

 Despite Ktrans and ve variation, the EA, DRO is small and uniform for Ktrans and ve for all 

three AIFs based on the DRO simulation with a k of 1.2 (Figure 3-5). The maximum EA,DRO is 

0.2% for Ktrans estimation and 0.4% for ve estimation, while the EB1, DRO of 30.7±0.1%. Overall, 

EA,DRO is almost negligible compared to EB1, DRO regardless of Pnat and the pre-assumed AIFs. By 

comparison, EN, DRO has a maximum of 0.2%. This further confirms the accuracy of the numerical 

correction method under the noise-free situation. These results are consistent with our expectation 

in the Theory section. 
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a) b)

c)

Figure 3-4 Comparison between numerical correction method and approximated analytical 
correction method in simulation with k ranging from 0.7 to 1.3 (ground truth Ktrans’ = 0.05 min-1, ve 
= 0.1, T10 = 1000 ms) for Ktrans (a) and ve (b) and EA,DRO for Ktrans and ve (c). Two example areas 
around k of 1.1 and 1.3 are zoomed. The difference between blue and red curves indicates EA, DRO 
(also shown in (c)), and the difference of y-axis and 100% indicate EB1, DRO. EA, DRO is negligible 
compared to EB1, DRO. 
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Figure 3-5 EA, DRO maps using three population-averaged AIFs for Ktrans estimation (a-c) and for ve 
estimation (d-f). The maximum residual error for Ktrans is 0.2% and for ve is 0.4%. 

	

 With various levels of noise added in DRO, a minimum EN, DRO of 2.1%±4.3% with 

baseline SNR of 234.5 was observed, which indicates the estimation uncertainty induced by noise. 

Based on previous simulation, the maximum EA, DRO without noise is 0.4%, which is much smaller 

than the minimum EN, DRO induced by minimal noise of standard deviation of 5. The overall 

residual errors against baseline SNR are shown in Figure 3-6. Across various baseline SNR 

(ranging from 7.8 to 234.5), the difference between EN, DRO and EA, DRO is minimal compared to 

EN, DRO, which means that the approximation induced error is small compared to noise-induced 

error. For example, when baseline SNR is 41.2, the noise-induced error for numerical correction 

method is 21.9% for Ktrans and 14.4% for ve. However, the difference of the mean error of the 

analytical correction method from mean error of numerical correction method is 4.3% for Ktrans 

and -0.1% for ve. Those results indicate that under various noise levels, the analytical correction 
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method provides similar performance as numerical correction method. 

 More specifically, with an example baseline SNR of 38.5 when n1 and n2 had standard 

deviation of 30, Figure 3-6 displays the average of all Monte-Carlo experiments for each PK 

parameter combination (100 pixels) excluding outliers. Figure 3-7 indicates that both methods 

provide robust estimation except in extreme PK parameters. The large errors occur when ve is small 

(ve = 0.01) for Ktrans estimation. Those areas with large correction residual errors are mainly 

because the curve characteristic is more sensitive to noise under those circumstances. The 

difference maps between the two correction residual error maps on the right column confirms that 

the inconsistency exists only under extreme situations. Both correction methods are not reliable 

under extreme situations. Additionally, comparison between the corrected PK parameters from 

two methods, with added noise, was performed using linear regression and Bland-Altman plots (as 

shown in Figure 3-8). With 100 times Monte-Carlo simulation for each PK parameters 

combination, most Ktrans and ve values are highly comparable between two methods. Pearson 

Figure 3-6 Comparison of correction residual percentage errors between two correction methods 
(EN,DRO and EA, DRO) for Ktrans maps (a) and ve maps (b) with various levels of noise added. There are 
100 Monte-Carlo simulations for each PK parameter combination. For each SNR level, noise-induced 
errors for 3000 pixels (5 × 6 × 100) excluding outliers were averaged. Across all simulated baseline 
SNRs, the residual error for both correction methods are comparable to each other. 
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correlation results also show that the approximated analytical method is comparable to the 

conventional numerical correction methods (r2 = 0.97 for Ktrans and r2 = 1.00 for ve).  

 With noise added in ground truth k, the difference between average EN,DRO and EA,DRO 

based on the Monte-Carlo simulation over each PK parameter was smaller than 0.1%. For example, 

with the noise standard deviation of 0.01, both EN,DRO and EA,DRO were almost identical (4.1 ±  

3.5%) for both Ktrans  and ve. The results show that the robustness to k measurement accuracy for 

those two correction methods is similar.  

3.4.2 In-vivo Prostate DCE-MRI Data 

Based on B1+ maps measured from 82 cases, mean k value from each subject gives a range 

Figure 3-7 EN, DRO averaged for each parameter (100 pixels) (a, d) and EA,DRO averaged for each 
parameter (b, e) for Ktrans and ve maps with baseline SNR of 38.5. The error patterns are similar 
between the two methods. The absolute value difference maps (EN,DRO – EA,DRO) averaged for each 
parameter (c and f) indicate outliers appear when ve is low, where the fitting process is more sensitive 
to noise.  
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from 0.78 to 1.22 with projected 80% inter-subject B1+-induced error difference based on our 

analytical theory, indicating the necessity for B1+ correction.  

 A representative Ktrans and ve comparison is shown in Figure 3-9. This figure shows EA, in-

vivo (Figure 3-9e and Figure 3-9j) is small compared to EB1, in-vivo (Figure 3-9d and Figure 3-9i). A 

Figure 3-8 Linear regression and Bland-Altman plots for Ktrans maps (a-b) and ve maps (c-d) in DRO 
experiment with noise added. There are 100 Monte-Carlo simulations for each PK parameter 
combination. The corrected PK parameters from approximated analytical correction and numerical 
correction are highly comparable (r2 = 0.97 for Ktrans and r2 = 1.00 for ve) with baseline SNR of 38.5. 
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summary of in-vivo measurements statistics for all 82 cases is shown in Table 3-2. With a wide 

Figure 3-9 Ktrans maps after numerical B1+ correction method (a), before B1+ correction (b) and 
after approximated analytical correction method (c), B1+ induced error for Ktrans (d), correction 
residual error of Ktrans (e), ve maps after numerical B1+ correction method (f), before B1+ 
correction (g) and after approximated analytical correction method (h), B1+ induced error for ve 
(i), and correction residual error of ve (j) 
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range of B1+ variation, residual correction error from analytical correction method for Ktrans and ve 

are 0.1±0.3% and 0.1±0.4%, which are minimal. Figure 3-10 summarizes the average k, EA, in-vivo 

for Ktrans and ve among different cases, and the cases are grouped with different scanners (3T Skyra 

and 3T Trio). The B1+ inhomogeneity patterns were significantly different between two scanners 

(p < 0.01), due to different B1+ shimming modes. The corresponding correction residual error 

shows good consistency with k, and all average EA, in-vivo is smaller than 0.4%.  

3.5 Discussion 

In this work, a simple and practical B1+ correction for quantitative DCE-MRI analysis using 

an approximated analytical approach was proposed and evaluated. We performed a numerical 

simulation and a prostate DRO to evaluate the behavior of the approximated analytical method 

under a set of clinical imaging parameters and noise. The approximated analytical approach was 

also tested using 82 in-vivo prostate DCE-MRI cases by comparing it with the conventional 

numerical correction method. All the evaluations showed that the approximated analytical method 

provides comparable B1+ correction to the reference numerical method (less than 0.4% percentage 

Table 3-2 Summary of in-vivo results. The mean, standard deviation and 95% central range 
for Ktrans, ve, k, EA, in-vivo for Ktrans and ve were listed. 
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error) under the practical situation in prostate DCE-MRI. 

 The approximated analytical method will enable more practical solutions for B1+ 

correction in DCE-MRI because it does not need access to the full modeling implementation in 

quantitative DCE-MRI analyses and does not need the acquired images for T10 mapping and 

dynamic MRI. The approximated analytical method only requires B1+ maps and uncorrected PK 

parameter maps as input to estimate the corrected PK parameters. This makes the approximated 

analytical correction method more practical in clinical research environments, where the model 

implementation access may be limited. In addition, the approximated analytical correction method 

provides an easy implementation of B1+ correction and can potentially improve the computational 

efficiency, because for each voxel, the calculation becomes a simple multiplication instead of a 

series of fitting. For example, in our in-vivo analysis, the reference numerical correction method 

Figure 3-10 Summary of average k (a), correction residual error EA, in-vivo (b) for 82 patients. 
Different scanners (Skyra and Trio) have slightly different k distribution as shown in (a), but all the 
average EA, in-vivo is smaller than 0.4%. 
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took more than 3 hours for each case while the approximated analytical correction method required 

less than 0.01s using Matlab on the same computer. Although there exist computational 

acceleration techniques for the numerical correction method, such as parallelization and 

approximation80, the approximated correction method can be a good alternative when such 

accelerations are not available. 

The approximated analytical correction relies on three assumptions: small flip angles, small 

TR/T1, and k close to one. The experiments in this paper employ our clinical protocol to evaluate 

the reliability of those assumptions. The first assumption (i.e. small flip angles), can be violated 

with increased flip angles and this could increase the approximation-induced error. However, in 

our experiment using the original QIBA DRO flip angles shown in Table 3-1ntio, the maximum 

percentage error in the simulation is only 0.2%, which is smaller than using our protocols 

(maximum = 0.4%). Considering those two protocols are similar to other studies16,22,81, we expect 

the approximated analytical correction method generalizes well to other flip angle settings. The 

second assumption is that k is close to 1, and based on our simulation within the k range from 0.7 

to 1.3, the correction residual error is smaller than 0.4%. Even when B1+ overestimation is 100%, 

the approximation-induced error is still smaller than the baseline defined in the noise DRO 

experiments (2.1%±4.3%). Considering the increasing trend of the residual error (difference 

between two curves) shown in Figure 3-4, we do not expect residual error lager than 1% within a 

practical B1+ range. Also, the derivation in the Appendix actually assumes (1-k2)·TR is small, 

considering TR is usually a few milliseconds; the dependency on k is not strong. The last 

assumption is that TR/T1 is small, and this is generally true for T1W imaging protocols. For 

example, in our clinical protocol, TR is 4.17 ms, and a T1 value of 1579 ±42ms in the prostate 

region was reported82.  
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Figure 3-6 shows how residual errors vary with baseline SNR in the DRO experiment. 

Because of the potential difference of our pre-assumed parameters in DRO compared to in-vivo, 

the scale of signal enhancement relative to baseline signal was not exactly the same as in-vivo 

data. Also, motion-induced errors may play a more important role than image noise for in-vivo 

data. We do not expect the residual error curve with baseline SNRs will be identical to in-vivo 

data, but we believe to observe a similar trend for the residual error from numerical correction 

method.   

The noise in the DRO and in-vivo experiments caused outliers with relatively large 

correction residual error when ve is low. This is because the fitting procedure is highly sensitive to 

noise under those circumstances. In the DRO experiments, the numerical correction method also 

gives EN, DRO, as shown in Figure 3-7. For in-vivo experiments, the large noise may arise from 

rectal and bowel motion. We observed outliers near the edge of the prostate as shown in Figure 

3-3d. Although we tried to avoid the boundary of the prostate during ROI positioning, due to the 

anatomy complexity of in-vivo cases, we still observed 0.09% of the pixels with EA, in-vivo lager 

than 1%. As shown in the DRO experiment, when large noise exists, neither of the fitting methods 

are reliable; therefore in our in-vivo evaluation, we reported 95% central range of the data to 

exclude the outliers.  

In the numerical simulation and DRO experiments, we determined the percentage error 

relative to the ground truth, Pnat, to utilize the advantage of numerical simulation for error 

evaluation. We evaluated the percentage error relative to the numerical corrected Pcor,N in in-vivo 

experiments for comparison because we do not have the ground truth, and Pcor,N is proved to be a 

good estimation of the ground truth in simulation experiment in noise-free situation (EN,DRO less 

than 0.2%). With this in mind, we chose Pcor,N as the reference in in-vivo experiments because we 
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want the evaluation in in-vivo experiment be more consistent with that of the simulation and DRO 

experiments.  However, the DRO experiment also showed that if noise is present, Pcor,N might 

deviate from the ground truth (as shown in Figure 3-7a). With baseline SNR of 38.5 and without 

taking outliers into evaluation, the numerical correction method will have an average of 14.4% 

EN,DRO. This error will lead to inconsistent evaluation between the results of simulation and in-

vivo experiments.  

Our study included a few limitations. One limitation is the practical utility of the 

approximated correction is mainly limited to situations where closed-form or commercial software 

is used for quantitative DCE-MRI analysis. However, closed or commercial software is widely 

used in clinical prostate DCE-MRI83, and to the best of our knowledge, most of them do not include 

the B1+ correction. Also, our approach can be practically useful when an in-house B1+ correction 

process is time-consuming, especially in clinical or clinical research settings. The second 

limitation is that we focused on the error propagation behavior under the standard Tofts model 

with population averaged AIFs, which are commonly used techniques in clinical prostate DCE-

MRI1629. The error propagation analysis may need to be updated if other PK modeling settings is 

used for DCE-MRI quantification, including subject-based measured AIF84 and/or the extended 

Tofts model58. For a subject-based measured AIF, our approximation method can be easily 

modified with minimal error if blood T10 is also measured (AIF1). The modified correction method 

becomes ∆
º∫ª∑«¢

∆º∫ª∑« ≈ (™º
™»
)É, … ¢

… 
≈ (™º

™»
)É, where kt and kp are k values in measured blood and tissue 

pixel or ROI. However, if pre-determined blood T10 is used for the subject-based measured AIF 

(AIF2), the modification becomes highly complicated, which may need to be further investigated 

in future. With DRO simulation with kt = 1.2 and kp = 1.1, EA,DRO using AIF1 is 0.4% for Ktrans 

while EA,DRO using AIF2 is 87.6% for Ktrans. Lastly, the difference between the standard and 
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extended Tofts models is generally small in the prostate due to the small contribution of vp. Based 

on the in-vivo simulation (n=82), vp within the prostate was 0.0026±0.0030, and the approximation 

errors with the extended Tofts model (EA, in-vivo) were 0.1±0.1% and 0.1±0.6% for Ktrans and ve, 

similar to the ones with the standard Toft model. With higher vp relative to ve, the approximation 

induced error could be significant, and therefore the method is limited to organ with small vp (see 

Figure 3-11 for the influence of vp in extended Tofts model).  

3.6 Conclusion 

We have demonstrated the feasibility and accuracy of a simple approximated analytical 

B1+ correction approach for quantitative prostate DCE-MRI. This method only requires B1+ maps 

and uncorrected PK parameters as input to calculate corrected PK parameter maps. The 

approximated analytical method was evaluated by both numerical digital reference object and 82 

Figure 3-11 Extend Tofts model was simulated in the DRO with three vp value, 0.001, 0.005 and 
0.01. The results were evaluated using EA,DRO for Ktrans (a-c) and ve estimation (d-f). 
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in-vivo prostate DCE-MRI cases. In all cases, the approximated analytical method had very low 

approximation error (less than 0.3% correction residual error compared to conventional numerical 

correction within 95% central range). Most importantly, this B1+ correction method can be easily 

implemented in clinical workflow, and has the potential to improve the performance and 

reproducibility of clinical quantitative prostate DCE-MRI. 

This work has been published as: 

Zhong X, Martin T, Wu HH, Nayak K, Sung K. Prostate DCE-MRI with B1+ correction 

using an approximated analytical approach. Magnetic Resonance in Medicine 2018;80;2525-2537.  
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4 DEEP TRANSFER LEARNING-
BASED PROSTATE CANCER 
CLASSIFICATION USING 3 
TESLA MULTIPARAMETRIC 
MRI 

4.1 Introduction 

As described in Chapter 1, PCa is the most common solid organ malignancy and the second 

leading cause of cancer-related deaths in men in the United States85.  The identification of clinically 

significant lesion is crucial for proper patient management. Gleason Score from histopathology 

has been proved to be a powerful prognostic factor. In Gleason Score, cell pattern can be described 

with a Gleason grade raging from 1-5, indicating the tissue aggressiveness, and Gleason Score is 

composed of two Gleason grades of the most and second most predominant cell pattern. The 

histological primary or secondary Gleason grade of 4 has generally been shown to be predictive 

of less favorable outcomes such as increased rates of cancer progression and mortality 86. As a 

result, a lesion with GS > 7 is defined as a clinically significant lesion with higher rates of adverse 

outcomes 87.  

Over the past decade, 3T mp-MRI, mainly consisting of 2D or 3D T2 weighted (T2) 

imaging, high b-value DWI, and high temporal resolution DCE-MRI, has become the dominant 
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noninvasive diagnostic tool for diagnosing and grading PCa8. Current PIRADS v2 provides a 

standardized guideline to detect clinically significant lesion with high sensitivity but moderate 

specificity, so the detection accuracy is still not optimal.  Moreover, as described in Chapter 1, the 

inter-observer diagnosis variety from PIRADS v2 can be improved with the help with automatic 

models. 

Of currently available techniques, deep neural networks have demonstrated superior 

capabilities in non-medical imaging domains for extracting multi-level abstraction from raw 

images directly with little human intervention 46. Application in medical imaging domains remains 

challenging in part due to large amount of labeled data required to train a reliable neural network. 

In addition, the labeling process is tedious, requires expertise and can be expensive. Another 

technique, deep transfer learning (DTL) using fine-tuned pre-trained convolutional neural network 

(CNN) alleviates the large labeled data requirement and has been successfully applied in medical 

domains 47.  

In this study, we develop the DTL based PCa classification model and compare the 

classification performance of the DTL based model with deep learning (DL) model without 

transfer learning and standard PIRADS v2 radiologist interpreted score to distinguish clinically 

significant from indolent PCa lesions on a curated 3T mp-MRI dataset with whole-mount 

histopathology (WMHP) correlation.    

4.2 Methods 

4.2.1 Study Population and MR Imaging Technique 

This retrospective study was approved by the institutional review board (IRB) and was 

compliant with the 1996 Health Insurance Portability and Accountability Act. Between December 
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2010 and June 2016, a standardized 3T mp-MRI protocol consisting of T2, DWI and DCE imaging 

was performed. The initial study cohort consisted of 154 patients scanned prior to planned robotic 

radical prostatectomy with biopsy-proven PCa. Out of 154 patients, 14 were excluded due to lack 

of pathology. The final study cohort comprised of 140 patients (age 43 to 80 years and weight 59.0 

to 133.8 kg, and PSA = 7.9 ± 12.5 ng/dl) with 216 lesions identified on mp-MRI and correlated to 

thin section WMHP. 41% of the patients had MRI scans before undergoing MRI-targeted fusion 

biopsy (n = 58), and the rest had MRI scans after biopsy for surgical planning and local staging (n 

= 82). The scans were interpreted by one of three expert readers and each MR detected lesion was 

scored by PIRADS v2 components.    

3T mp-MRI was performed on a variety of scanners (Trio, Verio, Prisma or Skyra, Siemens 

Healthineers, Erlangen Germany) using a pelvic phase-array coil with or without the endorectal 

coil. Each scan used a standard mp-MRI scanning protocol including 3D axial T2 images using 

Sampling Perfection with Application optimized Contrasts using different flip angle Evolution 

(SPACE) sequence, echo-planar imaging DWI sequence, and DCE images using Time-resolved 

angiography With Interleaved Stochastic Trajectories (TWIST). In this study, we used T2 SPACE 

images and apparent diffusion coefficient (ADC) images calculated from DWI. The echo time and 

repetition time of the T2 SPACE was 2200/200ms, and the echo train length was 88. With a 17cm 

FOV and matrix size of 256 x 230, we acquired and reconstructed T2 SPACE images with 0.66mm 

in-plane resolution and 1.5mm through plane resolution. For DWI acquisition, we used echo time 

and repetition time of 4800 and 80ms. With FOV of 21 x 26 cm and matrix of 94 x 160, DWI 

images were reconstructed with in-plane resolution of 1.6 mm and a slice thickness of 3.6mm. The 

ADC images were calculated from four b values 0, 100, 400 and 800 s/mm2.  

The ground-truth of this study was lesions detected by genitourinary (GU) pathologist on 
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post robotic-assisted laparoscopic prostatectomy WMHP, blinded to all MRI information. At a 

separate matching session, a team of one GU radiologist and one GU pathologist matched each 

previously reported lesion on 3T mp-MRI and each previously reported lesion on WMHP 

classifying MRI lesions as true or false positives. After matching, the T2 SPACE and ADC images 

were imported into a commercially available image processing program OsiriX (Pixmeo SARL, 

Bernex, Switzerland) and a region of interest (ROI) was drawn around each true and false positive 

lesion on T2 SPACE and ADC images. Each ROI was marked as either clinically significant lesion 

(GS ≥ 7) or indolent lesion (GS ≤ 6 or false positive) 87. In total we marked 111 indolent lesions 

and 105 clinically significant lesions, consisting of 45 false positive lesions (21%), 66 GS 3+3 

lesions (31%), 66 GS 3+4 lesions (31%), 23 GS 4+3 lesions (11%) and 16 GS�7 lesions (7%). 

Representative lesion segmentation and corresponding label definition are shown in Figure 4-1.    

4.2.2 General Workflow 

 Our general workflow is shown in Figure 4-1. The input data were T2 SPACE and ADC 

images with each lesion contoured on both sequences using OsiriX. After proper pre-processing, 

the image patches enclosing the lesion were generated as the input to the proposed DTL based 

model. A predicted probability of clinically significant PCa lesion was estimated through the 

model and was evaluated to determine the final prediction. The zone information of the prostate 

lesion (either peripheral zone or transition zone) was reviewed by the multidisciplinary team and 
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added to the DTL based model as a separate feature input. 

4.2.3 Pre-processing 

During pre-processing, the square image patches of T2 SPACE and ADC enclosing the 

lesion were created based on the lesion contour (shown in Figure 4-2). To prepare for further data 

augmentation, we cropped the image patches with a certain margin. Based on each lesion contour, 

a rectangle ROI was generated (orange box), and the ROI was expanded to a square ROI (yellow 

box) which has the same center and a side length of 1.4 times of the longer side of the rectangle 

ROI. The image patch was cropped based on the square ROI. The side lengths of cropped T2 

SPACE image patches ranged from 17 pixels to 92 pixels with a mean of 35 pixels, and this T2 

pixel size was recorded and fed into the DTL based model as a separate feature as well. 
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Figure 4-1 Summary of the workflow. The input of the deep transfer learning model would be the 
image patches enclosing the lesion after pre-processing, and the out put would be the predicted 
probability that if a lesion is clinically significant. The label was based on the GS from whole-mount 
histopathology. 
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Each image patch was normalized to pixel intensity of 0 to 255 before fed into the DTL 

based model. The study population included both scans with and without the endorectal coil, and 

an additional image normalization of the T2 SPACE images was implemented for patients with 

the endorectal coil to account for high signal variation at the interface of coil and tissue. The image 

normalization of T2 SPACE was based on the maximum value within a rough contour of normal 

prostate tissue defined on each patient. For quantitative ADC images, we set an empirical intensity 

upper bound of 4000 to filter extreme values before normalization to maintain the distribution of 

ADC values within and among cases. One representative example with and without the endorectal 

coil is shown in Figure 4-2.  The T2 SPACE and ADC image patches were resized to 32 by 32 

pixel before fed into CNNs.  

4.2.4 DTL based Model 

The DTL based model structure is described in Figure 4-3. We utilized ResNet 88, a state-

of-the-art variant of CNN performing well on similar tasks 89. The ResNet model we utilized 

consists of 19 convolutional layers (blue) and 9 building blocks (dark green). To fuse the two 
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Figure	4-2	Example	of	how	the	image	patches	(yellow)	was	extracted	based	on	the	lesion	contours	
(red).	The	intensity	of	image	patches	after	pre-processing	became	more	consistent	between	cases	
with	and	without	endorectal	coils.	 
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ResNet models, features (fT2 and fADC) from the last average pooling layer (green) with two key 

features of T2 SPACE image patch size and the zone information of the lesion were concatenated. 

The two ResNet models were initialized with weights trained from CIFAR10 dataset 90, and the 

weights of the last convolutional layer of the two ResNet models together with the added fully 

connected layer were fine-tuned using back-propagation during the training process. In this study, 

we implemented the deep learning models using Caffe framework (University of California, AI 

Research, Berkeley CA) 91. 

4.2.5 Model Evaluation and Comparison 

We selected 169 lesions (83 clinically significant and 86 indolent) in 110 patients as 

training set and the remaining 47 lesions (22 clinically significant and 25 indolent) in 30 patients 

as testing set from 105 clinically significant and 111 indolent lesions. The training and testing set 

data splitting was based per patient so that all lesions from the same patient would be in either the 

training or testing set. The lesion distribution for training and testing data was summarized in  
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Figure 4-3 Deep transfer learning structure.  
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Table 4-1.  

 

 

Table 4-1 Summary for lesion distribution in training and testing data  

 

As described by Shin et al, proper data augmentation on the training data with large variety 

is crucial for applying deep learning algorithm in medical image domain 92. We applied the same 

random flipping, cropping and slightly shearing transformation to each T2 SPACE and ADC 

image pair to increase the variety of the training data and the robustness of the model. Random 

contrast adjustment was only applied to T2 SPACE images. An example of T2 SPACE and ADC 

images after data augmentation was shown in Figure 4-4. After data augmentation, 2574 clinically 

significant and 2580 indolent lesions were used as the input of the training process. The numbers 

of samples after data augmentation in both classes were almost equal so that the prediction bias 

during training introduced by class imbalance can be avoided. The DTL based model was trained 
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on the augmented training set and evaluated on the testing set. 

Additionally, DTL based models with T2 SPACE images (DTLT2) alone, ADC images 

(DTLADC) alone and combined T2 SPACE and ADC images (DTLT2+ADC) without added features 

were individually evaluated to determine the contribution of each component of the model. In 

DTLT2 and DTLADC model, one ResNet model trained on CIFAR10 was fined-tuned, and the input 

to the fully connected layer was fT2 or fADC only. Likewise, DTLT2+ADC model architecture was 

T2
SPACE

ADC

Original
Images

Images After 
Augmentation

Figure 4-4 Representative examples of the data augmentation. The left column shows the image 
patches before data augmentation, and the right column shows six examples of the image patches 
after data augmentation for T2 SPACE and ADC images 
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similar to DTL based model architecture with only fT2 and fADC concatenated and fed to the fully 

connected layer. DL model without transfer learning was implemented with the same architecture 

as DTL based model but trained from scratch with MSRA initialization 93. DL model was evaluated 

to illustrate the contribution of transfer learning. All these models were also trained on the 

augmented training set and evaluated on the testing set to validate our proposed DTL based model 

architecture. 

The PIRADS v2 score for each lesion was extracted from the final radiology report 

interpreted by a subspecialized radiology fellow and an experienced prostate subspecialized 

genitourinary radiologist. We compared the performance of our DTL based model and the 

performance of expert reader PIRADS v2 score > 4 in the task of distinguishing clinically 

significant PCa lesions from indolent lesions on the same testing set. With a threshold of 4, lesion 

with PIRADS v2 score smaller than 4 was considered indolent lesion whereas lesion with PIRADS 

v2 score larger than or equal to 4 was considered clinically significant lesion.  The PIRADS v2 

score served as an expert reader baseline to compare with results from our proposed DTL based 

model.  

4.2.6 Statistical Analysis 

The classification performance was quantitatively evaluated by accuracy, sensitivity, 

specificity and area under curve (AUC) of receiver operating characteristics (ROC) curve using 

47 testing lesions from 30 cases. ROC curves and precision-recall curves were also shown to give 

a more thorough description of the classification performance. The threshold to calculate accuracy, 

sensitivity and specificity was picked based on the best accuracy. Those analyses were performed 

on Matlab 2014a (MathWorks, Natick, MA). Bootstrapping with 2000 resamples was performed 

to estimate the 95% confidence interval (CI) for AUC and DeLong test was used to compare the 
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AUC of the DTL based model and other models as well as PIRADS v2 score. The AUC related 

analysis was implemented using pROC toolbox 94 in R package 95. 

4.3 Results 

4.3.1 DTL based Model Evaluation 

With GS from WMHP as the ground truth, the DTL based model achieved an accuracy of 

0.723 in distinguishing indolent from clinically significant PCa lesion. The corresponding 

sensitivity and specificity were 0.636 and 0.800 respectively. The AUC of the ROC curve was 

0.726 (CI [0.575, 0.876]). Representative examples of successful and failed predictions of the DTL 
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Figure 4-5 Representative cases for successful and failed prediction cases based on the DTL based 
model on clinically significant lesion (a and b) and indolent lesion (c and d). The corresponding GS 
from WMHP and PIRADS v2 score for each lesion are also shown under the images 
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based model are depicted in Figure 4-5. The false positive (Figure 4-5b) and false negative (Figure 

4-5d) examples were all from scans with the endorectal coil, and the T2 SPACE contrast after pre-

processing was suboptimal. Also, those examples illustrated how similar lesions appear on 3T mp-

MRI and showed challenges for both algorithms and human to properly score the lesions.  

4.3.2 DTL based Model Comparison with Other Models 

To properly evaluate the contribution from T2 SPACE images, ADC images and two added 

features to the classification performance, we trained and compared the models with each image 

separately (DTLT2 and DTLADC) and the model with two images combined (DTLT2+ADC). The 

experiments results are summarized in Table 4-2. The resulting ROC and precision-recall curve 

are shown in Figure 4-6. DTLT2 achieved the least accuracy of 0.617 among all the models, 

indicating currently T2 SPACE images provided less valuable information compare to ADC 

images regarding the classification task. DTLT2, DTLADC and DTLT2+ADC models all achieved a 

higher sensitivity of 0.773 compared to the DTL based model but with less specificity, which 

illustrated that the added zone information and T2 size features help to reduce false positive 

prediction, increasing the specificity. Overall, these experiment results validated the DTL based 

model structure design as DTLT2, DTLADC and DTLT2+ADC experiments generated less accurate 

prediction compared to DTL based model regarding accuracy and AUC. The p-values of DeLong 

Table 4-2 Performance summary on the testing set (n = 47) 
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test between DTL based model and DTLT2, DTLADC, DTLT2+ADC were 0.14, 0.30 and 0.74 

respectively. Although the difference was not statistically significant due to the limited size for 

testing, the general trend indicated the relative significance of each component.  

To evaluate the contribution of transfer learning, we also compared the DTL based model 

with the DL model without transfer learning using the same model structure with MSRA 

initialization. Our DTL based model achieved higher accuracy and AUC compared to non-transfer 

leaning DL (Table 4-2), which achieved an accuracy of 0.702 and AUC of 0.687 (p = 0.70).  This 

experiment showed that transfer learning helped to improve the testing accuracy with a limited 

training set. Additionally, both DL model and DTL based model provided predictions with higher 

specificity and lower sensitivity compared to DTLT2, DTLADC and DTLT2+ADC models, confirming 

the two added feature could reduce false positive prediction. The corresponding ROC and 

precision-recall curves are shown in Figure 4-6.  

4.3.3 DTL based Model Comparison with PIRADS v2 Score Expert Reader Performance 

In detection of clinically significant from indolent PCa, the accuracy of the expert 

radiologist assigned PIRADS v2 score > 4 was 0.708 with AUC of 0.765 in all lesions (both 

training and testing set), and was 0.660 with AUC of 0.711 (CI [0.575, 0.874]) in the testing set. 
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The performance with PIRADS v2 score > 4 is summarized in Table 4-2. DeLong test showed that 

the DTL based model generated comparable performance with PIR ADS v2 score (p = 0.89).  

The ROC and precision-recall curve comparison between the DTL based model and 

PIRADS v2 score are shown in Figure 4-7. With estimation favoring specificity (left side of the 

curve), the proposed DTL based model outperformed PIRADS v2 score expert radiologist 

Figure 4-6 Receiver operating characteristics curve (a) and precision recall curve (b) comparison 
between DTL, DTLT2, DTLADC, DTLT2+ADC and DL models on 47 testing lesions, validating the DTL 
based model architecture 

a) b)

a) b)

a)

b)
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interpretation. While with estimation favoring sensitivity (right side of the curve), the expert reader 

PIRADS v2 score outperformed proposed DTL based model. This observation is consistent with 

performance in Table 4-2, where the best sensitivity and specificity were 0.636 and 0.800 for DTL 

based model and 0.864 and 0.480 for PIRADS v2 score. The proposed DTL based model tends to 

reduce the over-diagnosis with higher specificity compared to PIRADS v2 score.  

Figure 4-7 Receiver operating characteristics curve (a) and precision recall curve (b) comparison 
between the proposed DTL based model and the expert reader PIRADS v2 score (n=47) 

a) b)
a)

b)
a) b)
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4.4 Discussion 

The DTL based model was developed and compared with the performance of a DL model 

without transfer learning and an expert radiologist detecting clinically significant PCa using the 

PIRADS v2 score to distinguish clinically significant from indolent PCa lesions using 3T mp-MRI 

with the highest available reference standard, histopathological grading on WMHP. Each discrete 

prostate lesion was first identified on 3T mp-MRI and contoured on OsiriX based on the 

appearance, and small image patches enclosing the lesion of T2 SPACE and ADC images were 

used as input to the DTL based model with labeling based on WMHP GS. The proposed DTL 

based model outperformed DL model without transfer learning and achieved comparable 

performance compared to PIRADS v2 score using single slice 2D image patches from T2W and 

ADC images on our 47 lesions testing data.  

One advantage of our method is that it does not rely on the detailed contour defined by the 

radiologists, because the information used to generate the image patch was mainly the location and 

a rough size of the lesion. We further improved the robustness of the model to lesion ROI definition 

by adding random cropping into the data augmentation. In this way, the potential inconsistency of 

ROI definition from either lesion detection algorithms or radiologists will have little influence on 

the model performance. 

A prior study has shown great potential to use DTL to distinguish clinically significant 

lesion89 using publicly available prostate MRI data. Here, we have chosen to use the ResNet trained 

on CIFAR10 data to minimize potential overfitting and added T2 size and zone information as 

additional features to the DTL based model to improve the overall classification performance. 

Also, our model implementation and evaluation were based on labeling information referenced by 

the WMHP and included more practical situations, such as cases with and without the endorectal 
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coil. 

Our study has compared the DTL based PCa classification to PIRADS v2 score. Although 

PIRADS v2 score was not originally designed for this task, studies have shown that lesions on 3T 

mp-MRI with higher PIRADS v2 score correlate with PCa lesions with higher GS on WMHP 96. 

We picked a threshold four, which achieved the best accuracy for PIRADS v2 score in the testing 

set. All prostate mp-MRI cases were interpreted by expert genitourinary radiologists who have 

more than 10 years of experience with approximately 500 prostate MRI cases per year. We believe 

the PIRADS v2 scores in the study would be close to the upper limit of the prostate MRI 

interpretation, a relatively good approximation of human performance.  

We distinguished clinically significant lesions from indolent lesions and false positive 

lesions rather than normal tissue, as shown in Figure 4-5.  The task is challenging because 

differences on MRI images between these lesions are sometimes not visually apparent. Although 

there is no universally accepted definition of the clinically significant lesion, we used one of the 

most common definitions, GS > 6 87, as our working definition of the clinically significant lesion 

to emphasize any differences between low- and intermediate/high-grade prostate lesions. We have 

also compared our proposed DTL based model with a traditional machine learning method as 

another baseline. We vectorized the pre-processed T2 SPACE and ADC images as the input and 

trained a random forest model 97 using the same training cohort before data augmentation. On the 

testing set, the random forest model provided a prediction with AUC of 0.66. This result confirmed 

the well-known challenges of not using detailed lesion contours and indicated that deep learning 

based methods can alleviate the requirements of handcrafted imaging features to achieve relatively 

satisfactory results. 

The proposed DTL based model has achieved comparable results compared to PIRADS v2 
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score, but there still exist potential improvements in the performance, as the model has not fully 

utilized the imaging information from 3T mp-MRI. For example, the current input was from single 

2D segmentation, and the feature extracted from 3D region of interest may provide a more 

comprehensive depiction of the tissue character. Also, we did not take DCE-MRI into 

consideration because DCE-MRI was not available for some of the cases. As the cases accumulate, 

we would only include cases with Ktrans maps and add Ktrans maps into our model. Another potential 

improvement is to apply registration between T2 SPACE and ADC images for each case so that 

the two images can be fed into the same model, reducing the model complexity and potential 

overfitting problem. 

 Our study has several limitations. One limitation of this study is the small sample size for 

testing because of the limited available labeled data. Even with the transfer learning, the model 

requires sufficient training data to produce a more generalized model, resulting in a limited testing 

set size. The evaluation on a larger testing cohort will be conducted in the future as we acquire 

more labeled data. With a larger testing set, a more statistically powerful evaluation of the DTL 

method can be made. Moreover, our current evaluation was performed on one random splitting 

cohort. Although it is commonly used in deep learning related papers due to computation 

limitation, it might give prediction with a certain bias. We included confidence interval of the AUC 

from bootstrapping resampling to give a more thorough evaluation. Another limitation of our study 

is that we included a manual segmentation of the prostate to assist the normalization for the cases 

with the endorectal coil (55 out of 140 cases were scanned with the endorectal coil). We also 

included contrast adjustment in data augmentation process to improve the robustness to T2 

contrast. Although this method was proved to achieve similar contrast for all T2 SPACE images, 

the manual segmentation of the prostate could be burdensome, and a more systematic way to find 
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the normalization threshold is preferable and still under investigation. In the evaluation of DTLT2 

and DTLADC, the features from T2 SPACE images contribute less than features from ADC in this 

classification task. This observation is consistent with radiologists’ experience, but the 

performance of DTLT2 can be improved with well-designed pre-processing. Another limitation is 

that the system requires the lesion detection as the input to define an image patch. Although a 

prostate lesion detection and classification system is possible by combining other lesion detection 

systems 98 with our classification system, it may be preferable to design one integrated system that 

could complete the pixel-level lesion detection and classification task together. 

4.5 Conclusion 

We implemented and evaluated a deep transfer learning (DTL) based model to differentiate 

between clinically significant (GS � 7) and indolent PCa lesions (GS < 6 and false positive) using 

3T mp-MRI with WMHP correlation. The proposed DTL based model outperformed the DL based 

model without transfer learning, confirming the contribution of transfer learning. The DTL based 

model performance generated comparable performance to the expert reader PIRADS v2 score (p 

= 0.89), showing great potential to augment PCa for non-experts. This model would need to be 

validated in much larger datasets to further evaluate its clinical utility. 

This work has been published as: 

Zhong X, Cao R, Shakeri S, Scalzo F, Lee Y, Enzmann DR, Wu HH, Raman SS, Sung K. 

Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. 

Abdom Radiol. 2018:1-10. https://doi.org/10.1007/s00261-018-1824-5 
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5 SUMMARY AND FUTURE 
STUDIES 

In summary, I have evaluated two different B1+ estimation techniques regarding the 

repeatability and reproducibility of the pre-contrast T1 estimation, and both B1+ corrected T1 maps 

showed higher consistency for each tissue among different scans. I have developed and evaluated 

an approximated analytical B1+ correction technique for quantitative DCE MRI that can be easily 

implanted in the clinical workflow. By combining both RR-VFA B1+ estimation method and 

approximated analytical B+ correction method, the B1+ compensation for quantitative DCE MRI 

is more clinically feasible and could potentially improve the consistency for quantitative DCE MRI 

biomarker. I have also developed and evaluated a deep transfer learning-based lesion classification 

system to distinguish clinically significant lesions from indolent lesions using mp-MRI, which 

could help to achieve a more consistent and accurate interpretation for mp-MRI together with 

PIRADS v2. Our proposed method achieved comparable performance to the PIRADS v2 score 

from experienced radiologists regrading accuracy and AUC.  

All these projects have the potential to improve clinical diagnosis of prostate cancer and 

are in transition to clinical application. With the evaluation of B1+ estimation techniques, the 

evaluated RR-VFA B1+ estimation technique has been integrated into our routine clinical scan 

protocol and will be used to compensate B1+ in quantitative DCE-MRI. With simplified B1+ 

correction method development, this method can be easily applied in clinic and is especially useful 

with closed-form post-processing software used. In UCLA radiology department there are more 
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than 1,500 prostate DCE-MRI cases per year using the commercial closed-form software 

(DynaCAD, In Vivo) for more than six years to generate quantitative parametric maps, the 

proposed approximated analytical B1+ correction provides a valuable alternative solution to 

perform feasible B1+ compensation. With the deep transfer learning based prostate cancer 

classification model developed and evaluated, it has the potential to provide a consistent tool to 

help radiologists identify false positive lesions and avoid overtreatment. This model needs to be 

further improved and evaluated before applied in clinic workflow. 

5.1.1 B1+ Estimation in Quantitative DCE MRI 

Repeatability and reproducibility are crucial for quantitative biomarker evaluation since 

quantitative biomarkers are supposed to give consistent results for the same tissue. As described 

in Chapter 2, I evaluated the repeatability and reproducibility of three T1 maps with or without B1+ 

correction on ten healthy volunteers on two 3T Siemens scanners. Further study is needed to 

expand the evaluation to more vendors such as GE and Phillips and more B1+ estimation techniques 

such as Bloch-Siegert. Also, based on the feasibility, we evaluated the B1+ estimation techniques 

using pre-contrast T1 on healthy volunteers. Although this indicates the potential benefit for 

quantitative DCE analysis, a more rigorous evaluation can be made in the future. For example, 

compared to healthy volunteers, patients tend to have higher BMI and might have slightly different 

B1+ property. In addition, pre-contrast T1 is only part of the quantification in quantitative DCE 

analysis. To further validate each B1+ estimation technique, experiments should be done to measure 

the repeatability and reproducibility for quantitative DCE MRI biomarkers on patients in the 

future.  
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5.1.2 B1+ Correction in quantitative DCE MRI 

Our proposed approximated analytical B1+ correction method was proved to simplify the 

B1+ correction process for quantitative DCE MRI in prostate. However, as described in Chapter 3, 

the error propagation analysis was based on the Tofts model and population-averaged AIF. I have 

done some experiments on extended Tofts model and patient-specific AIF (discussion in Chapter 

3), and further analysis is needed to get a thorough understanding for the error propagation for 

other popular models such as the dispersion model.  

5.1.3 Combination of B1+ Estimation and B1+ Correction for PCa Diagnosis 

With the RR-VFA B1+ estimation and approximated analytical B1+ estimation technique 

validated, the next step would be to integrate those two components into the clinical workflow, 

and test if there is any clinical benefit for B1+ compensation in quantitative DCE MRI. We have 

collected around 80 patient scans with RR-VFA B1+ maps, and I am working on the statistical 

analysis to test if there is any improvement for lesion delineation using B1+ corrected Ktrans and ve 

maps. The hypothesis is that by integrating B1+ compensation, Ktrans and ve would enable better 

separation between normal tissue and cancerous tissue as well as between clinically significant 

lesions and indolent lesions. 

5.1.4 Improvement for Deep Transfer Learning based PCa Classification  

 The deep transfer learning-based lesion classification model showed superior 

performance compared to alternative model structures and comparable performance to PIRADS 

v2 from experienced radiologists. Further study direction could be to explore the full potential of 

this technique by increasing the data size and improving pre-processing.  

Although the requirement for training data size was partly solved by introducing deep 
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transfer learning and data augmentation, they are still not as good as getting more training data 

from patients. For one thing, natural images and MRI images have many differences besides 

certain common properties. Moreover, the samples generated from data augmentation are less 

various and realistic compared to real data. Overall, the performance of the model is expected to 

increase with more training data. Furthermore, although I have provided the lesion statistics 

regarding if the lesion is scanned with endorectal coil, is index lesion or is in PZ in Table 4-1, 

because of our limited testing size, I didn’t evaluate the performance on separate lesion groups. 

With patient data accumulates, testing data can also be expanded to provide a more reliable and 

specific evaluation for each lesion type and lesion location. In summary, increasing the data size 

helps with both training and testing of the model.  

At the same time, as mentioned in Chapter 4, current pre-processing is not optimal. 

Specifically, the signal-inhomogeneity induced by the endorectal coil can be addressed by more 

automatic and consistent way. For example, Cao et al. utilized the signal intensity in bladder to 

normalize the T2 intensity. On the other hand, if we have enough training data for patients with 

and without endorectal coil, we could train two different models respectively. In summary, the 

performance of this lesion classification system can be improved in the future by increasing case 

number and improving pre-processing.  

Another limitation of the current lesion classification system is that it still requires the input 

of the lesion location and rough lesion size. It is more desirable to develop or integrate a lesion 

detection algorithm such as proposed by Tsehay et al.99 to generate the information so that the 

whole mp-MRI interpretation was automatic. The evaluation combining those two systems can be 

done in the future. Also, further assessment of how the system would improve the consistency and 

the accuracy of the diagnosis is to be studied. For instance, one could compare the inter-observer 
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and intra-observer variability and prediction accuracy with and without knowing the prediction 

results from the lesion classification system.  

5.1.5 Improvement for Lesion Classification in Prostate Cancer 

It is challenging to collect high-quality and large number of labeled data in the medical 

imaging domain, and I chose deep transfer learning to overcome this limitation. On the other hand, 

we have large number of unlabelled data available. For example, we have more mp-MRI data from 

screening scans, which can be used by the deep learning model to understand normal prostate 

tissue. Another future direction would be to combine supervised model with unsupervised model 

to fully utilize available data.  

Additionally, there is no universally accepted definition of clinically significant lesion, and 

I picked the definition of GS > 6 from whole-mount histopathology. This definition is commonly 

used and a Gleason grade of 4 has been shown to be related to less favorable patient outcome. In 

addition, Gleason Score from whole-mount histopathology was proved to be a more powerful 

indicator for patient outcome, so the current label is valuable for diagnosis. However, Gleason 

Score is also limited by inter-observer variability100 and alternative labels related to patient 

outcome can also be considered to train the model to aid diagnosis. For example, mutations in 

DNA-repair genes was proved to be related to metastatic prostate cancer101 and can be served as a 

great label for prostate cancer classification task.  

5.1.6 Combination of Quantitative DCE MRI and PCa Classification Model 

Another limitation of the current lesion classification systems is that quantitative DCE MRI 

was not included. This is mainly because the current clinical data contains inconsistent quantitative 

DCE MRI data for patients and has no B1+ compensation. It would be valuable to explore if adding 
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DCE MRI would improve the lesion classification performance and if adding B1+ compensation 

would further improve the classification performance. It is a great way to utilize mp-MRI 

information by combining both quantitative biomarkers and deep learning algorithms.  

5.1.7 Summary 

Having clinically applicable and reliable B1+ estimation and correction techniques for 

quantitative DCE MRI and deep transfer learning-based clinically significant lesion classification 

system improved the quantitative interpretation of mp-MRI. B1+ estimation and compensation 

improved the consistency of quantitative biomarkers while lesion classification systems utilized 

the mp-MRI images more consistently compared to qualitative image interpretation. Those 

techniques have the potential to provide better diagnosis and patients comfort.  



 

 79  

6 APPENDICES 

In VFA process, the fitting procedure is simplified to only two flip angles αxand αÉ. The 

measured signals with the two flip angles S1 and S2 are given as constant, namely S1 = S1’ and S2 

= S2’. Based on Equation 2-1, in actual situation, √Ä =
Ãá(xzÕ~áŒ )±Ä∞™†°
xzÕ~áŒ œ–±™†°

 for both signals S1 and S2.  

First, we want to find the relationship between corrected E10’ and uncorrected E10. The 

corrected E10’ can be expressed as a function of uncorrected E10 as follows: 

Equation	6-1	

 

trm =

k—
íâòà—

− kr
íâòàr

k—
èóòà—

− kr
èóòàr

=
(r − trm

¢ êëí“àr)íâò“à—íâòàr − (r − trm
¢ êëí“à—)íâò“àríâòà—

(r − trm
¢ êëí“àr)íâò“à—íâòàrêëíà— − (r − trm

¢ êëí“à—)íâò“àríâòà—êëíàr
 

 

 

Equation 6-1 is the analytical form of the linear regression using two flip angles. When 

using more than two flip angles, the fitting estimation will be the same using any two flip angles 

without noise since it is an over-determined problem. 

With the assumptions that flip	angles	�Ä	in rad are close to zero
 
(�Ä” ≈ 0) , based on 

Taylor Series, we could get that ‘’≈�Ä ≈ �Ä, ÷◊‘�Ä ≈ 1 − †°´

É
 for both flip angles αxand αÉ. By 

substitute those equations into Equation 6-1, we could get a simplified version of the relationship.  
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Equation	6-2	

 trm ≈ r −
r − trm′

r − trm
¢ + “—trm′

  

 

Then based on the assumption that ÿŸ
ÿ~

≈ 0 and Taylor Series ln(x) ≈ x − 1, it can be 

derived that wx© ≈ 1 − {|
{~á

 and wx©′ ≈ 1 − {|
{~á¢

. By substituting these equations into Equation 6-2, 

we could get the relationship between corrected T10’ and uncorrected T10 

Equation	6-3	

 érm ≈ (r − “—)é⁄ + “—érm′  

 

With a small TR (0.004s in our protocol) and k close to 1, the first term on the right side 

of Equation 6-3 is close to zero. The relationship can be further simplified as   

Equation	6-4	

 
érm′
érm

≈
r
“—  

 

 In the process of dynamic T1 quantification, based on	¤(≠)
¤á

= (xzÕ~(≠))(xzÕ~áœ–±£)
(xzÕ~á)(xzÕ~(≠)œ–±£)

 , T1(t) at 

each time point is calculated from T10 and the ratio between signal at baseline S0 and signal at the 

corresponding time point S(t). In this process, the ratios between signals are given as constant, as 

expressed in 
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Equation	6-5	

k′(è)
km¢

=
k(è)
km

 

After substituting Equation 2-1 into Equation 6-6 for all four signals and reformatting, we 

could get the following equation  

Equation	6-6	

 
[r − tr(è)][r − tr

¢ (è)êëí“ì]
[r − tr′(è)][r − tr(è)êëíì]

=
[r − trm][r − trm

¢ êëí“ì]
[r − trm′][r − trmêëíì]

  

 

Based on the similar assumptions of small flip angle å, we could get ‘’≈å ≈ å, ÷◊‘å ≈

1 − £´

É
. By substituting those equations and Equation 6-2 into Equation 6-7 we could prove that   

Equation	6-7	

 
[r − tr(è)][r − tr

¢ (è)êëí“ì]
[r − tr′(è)][r − tr(è)êëíì]

≈ r  

Then similarly, based on assumption of ÿŸ
ÿ~(≠)

≈ 0 and å ≈ 0, Equation 6-8 could be further 

simplified as      

Equation	6-8	

 tr(è) ≈ r −
r − tr′(è)

r − tr
¢ (è) + “—tr′(è)

  

We can find the similarity between Equation 6-8 and Equation 6-2. Correspondingly as 

shown in Equation 6-4, with assumptions of small TR and k2 close to 1, we could further simplify 

Equation 6-8 to the following Equation:  
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			Equation	6-9	

	
ér′(è)
ér(è)

≈
r
“— 

 

Now we got the relationship of corrected and uncorrected T1 values before and after 

contrast agent, and from the linearity of contrast agent shown in Equation 3-2, it could be easily 

derived that the relationship between corrected and uncorrected tissue contrast agent concentration 

Ct’(t) and Ct(t):  

Equation	6-10	

 
îè′(è)
îè(è)

≈ “—  

 

As the last step, according to Equation 3-3 of standard Tofts model102, with a fixed Cp(t) 

which is not influenced by B1+, ratio between uncorrected and corrected Ktrans is equal to the ratio 

of tissue contrast agent concentration.  

Equation	6-11	

¨≠ÆØ∞±′
¨≠ÆØ∞± =

§≠′(¶)
§≠(¶)

≈ üÉ 

As the integration following Ktrans in Tofts model is not related to B1+, namely ∆
º∫ª∑«¢
… ¢

=

∆º∫ª∑«

… 
,	the ratio between ve would be  

Equation	6-12	

≤≥′
≤≥

=
¨≠ÆØ∞±′
¨≠ÆØ∞± ≈ üÉ 
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In summary, based on three basic assumptions during the whole acquisition process: 1) 

small flip angle, 2) small TR and T1 ratio, 3) k is close to 1, under standard Tofts model and 

population-averaged AIF condition, relationships between corrected and uncorrected PK 

parameters can be simplified to ∆
º∫ª∑«¢

∆º∫ª∑« ≈ üÉ, … ¢
… 
≈ üÉ. 
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