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Abstract 
We describe a model for the coding of speech sounds into a 
high dimensional space. This code is obtained by computing 
the similarity between speech sounds and stored syllable-
sized templates. We show that this code yields a better linear 
separation of phonemes than the standard MFCC code. 
Additional experiments show that the code is tuned to a 
particular language, and is able to use temporal cues for the 
purpose of phoneme recognition. Optimal templates seem to 
correspond to chunks of speech of around 120ms containing 
transitions between phonemes or syllables. 

Keywords: Early language acquisition, modeling, phonemes 

Introduction 
Infants spontaneously learn their ambient language at an 

amazing speed. During their first year of life, they construct 
abstract perceptual categories corresponding to the 
phonemes of their language. They lose the ability to 
distinguish fine phonetic variants that belong to the same 
phoneme category, and enhance their ability to distinguish 
between category contrasts (see a review in Kuhl, 2000). 
This is done without any supervision from the parents, 
before a substantial recognition lexicon has been built (12-
month-olds are believed to recognize about 100 words), and 
before they can articulate correctly the phoneme categories 
they recognize. How do infants achieve this? One possibility 
is that they perform some kind of unsupervised statistical 
clustering of the ambient speech signals. Maye, Werker and 
Gerken (2002) showed that 6-month-old infants perform 
such computations, using artificial languages with either a 
monomodal statistical distribution or a bimodal distribution 
of phonetic cues. 

Only a limited number of studies have addressed the 
computational mechanisms that could underlie such 
acquisitions. Guenther & Gjaja (1996) showed that Self-
Organizing Maps have the potential to construct phoneme 
categories in an unsupervised fashion (see also Valhabba et 
al., 2007; Gauthier, Shi & Xu, 2007). Valhabba et al (2007) 
implemented an incremental version of Expectation 
Maximization on a Gaussian Mixture model, and showed 
that both the number of vowels and their statistical 
distributions can be inferred from the signal in an 
unsupervised fashion. 

These studies, however, did not use raw speech signals, 
but rather a small number of parameters extracted by hand: 
e.g., the frequency of the first and second formants, vowel 
duration, etc. (Valhabba et al 2007). This presupposes that 
infants are equipped with fairly speech-specific perceptual 
abilities and, crucially, that they know how to segment the 
continuous stream into discrete segments like consonants, or 
vowels. This latter assumption is problematic given that 
such segmentation is not universal, but depends on the 
phonology of the language (Dupoux et al, 1999).  

Varadarajan et al. (2008) is one of the few published 
paper that attempted to learn phonemes from raw speech. 
Using an optimized version of Successive State Splitting 
(SSS, Takami & Sagayama, 1992), they grew in an 
unsupervised fashion a large network of Hidden Markov 
Model (HMM) states. These states were shown to encode 
speech sounds with no loss of information compared to 
supervized HMMs, but there were two problems. First, the 
states of the HMM network did not correspond to 
phonemes, but rather to subphonemic units of the size of 
acoustic events (e.g. burst, closure, transition, etc). This is 
the oversegmentation problem. Second, even combining 
states into sequences did not yield phonemes, but rather, 
context dependant variants (contextual allophones). This is 
the contextual variability problem. Here, we address the 
first problem, the second problem being address in other 
work (Peperkamp et al, 2006; Martin et al. submitted; 
Boruta et al. 2011).  

The oversegmentation problem of SSS, although 
disappointing, is not entirely surprising. State-of-the art 
supervised HMMs have the same problem: segments are 
typically modeled using three states, not a single state. The 
reason is that HMMs represent speech as local spectral 
feature vectors (e.g. Mel-Frequency Cepstral Coeficients –
MFCC, computed over a 15-20ms window), whereas 
phonemes are realized as a complex articulatory trajectory 
spanning between 50 and  150ms, sometimes involving a 
sequence of events (constriction, release, changes in the 
source, etc.). Since HMMs are modeling speech sounds 
through Gaussians distributions (which are local), the only 
way to model phonemes accurately is to segment them into 
subparts. This problem is not limited to MFCC features, but 
would also apply to any local feature, like for instance
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Figure 1. Outline of the High Dimensional Template Matching model. It is composed of an instance-based bank of reference 
templates, and has two processing modes: during early language experience (dotted lines), the templates are segmented out of 
the speech stream, during subsequent development and in adults, the signal is matched to the bank of templates (solid lines).
 
wavelet type functions (Smith & Lewicki, 2006), or features 
derived from auditory models (Chi et al, 2005).  

To solve the oversegmentation problem, we propose to 
explore the feasibility of replacing low dimensional, low-
level features with high dimensional, holistic or coarse 
grained features. We review some existing proposals.  

Holistic/templatic features 
Research into the human visual system has revealed that the 
brain analyzes shapes and objects in a series of hierarchical 
stages in which stimulus features of increasing complexity 
and size are extracted. Ullman et al. (2002) argued that the 
maximally informative features for the purpose of object 
classification are not local features, but rather features of 
intermediate complexity, that correspond to fragments of 
images or objects. The brain would store such fragments 
which form a high dimensional code adapted to a particular 
domain of object perception. Along a similar line, Edelman 
(1996) proposed that the brain represents a shape through its 
similarity to a number of reference shapes, that are stored as 
patterns of elementary features. Familiar and novel objects 
are then represented as points in a shape space computed 
from  similarities to a set of reference objects.  
Such proposals are only starting to be applied to speech. 
Liquid State Machines (Maas et al, 2002), or Echo State 
Systems (Jaeger, 2002) use recurrent networks or dynamic 
systems to recode a time-varying low dimensional signal 
into a high dimensional one which incorporates information 
spanning the recent past of the system. Such codes are  more 
robust to noise than low-level featural approaches 
(Skowronski & Harris, 2007), however it is unclear how to 
optimize such representations. Coath & Denham (2005), 
proposed a model storing templates consisting of 100ms-
200ms speech sounds, which are used as convolution filters. 
They argue that the high dimensional code obtained is more 
robust to variation due to time compression and speaker 
variation than classical features. Dupoux (2004) has 
proposed a similar approach based on the psycholinguistics 
of human infants, whereby processing is based on the 

segmenting and storing of syllable-sized templates, which 
are the basis for discovering the smaller and more abstract 
phonemes, which can in turn be used to recover the even 
more abstract linguistic features. In this paper, we explore a 
quantitative assessment of this last approach. 

The algorithm 
The idea of using examples from the problem set as the 
basis for representing further examples is at the core of 
Support Vector Machine models (Cortes & Vapnik, 1995). 
The present proposal is inspired by the idea that large units 
like syllables are natural perceptual units for infants and 
adults. For instance, Bertoncini & Mehler (1981) showed 
that neonates can count the number of syllables in a speech 
stream, before they have learned the phonemes of their 
language. The proposal is that, during their first year of life, 
infants build a large base of syllable-like templates, and at a 
later stage, compute the similarity between the incoming 
signal and the stored templates. The High Dimensional 
Template Matching model (HD-TMatch) presented in 
Figure 1 assumes that all sounds (templates and signal) are 
first coded in terms of low level features (Step 0). During 
the early acquisition phase, (Step 1), the model segments out 
chunk of speech of a given size and stores them as templates 
in an instance-based memory system. After the templates 
become fixed, speech sounds are matched to the templates 
(Step 2), and a similarity between each template and the 
signal is computed (Step 3). This model translates a time 
varying trajectory in acoustic space into a point in similarity 
space. As such, it has the potential to solve part of the 
oversegmentation problem since it matches whole 
trajectories instead of just a slice of time. It also has the 
potential to address convergence towards the native sounds 
since the stored templates belong to the native language. 
Note that the model is not committed to templates being 
exactly aligned to linguistically defined syllables; they could 
as well correspond to diphones, triphones, or acoustic 
chunks of syllable size. 
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- Step 0: Coding. The input was coded in terms of a frame 
every 5 ms consisting of 13 MFCC coefficients (Mermel-
stein, 1976) computed on overlapping 15 ms windows. 
- Step 1. Templates Segmentation. The template base can 
vary according to three independent parameters: (a) number 
of templates. To be effective, templates have to be numerous 
enough to cover the range of possible sound combinations 
in the language. However, too many templates may hamper 
learning. (b) template duration: a template has to be long 
enough to contain significant dynamic properties, but not 
too long, otherwise the number of templates required for 
total language coverage explodes. (c) template boundaries: 
Templates can either be temporally aligned to structural 
properties of speech (syllable boundaries, peak of vowel 
nucleus, etc), or randomly segmented. Even though these 3 
variables may interact, in the present study, we manipulate 
one while keeping the other two constant in artificial 
languages. 
- Step 2. Template Matching. In the model, each template is 
matched to the signal in a parallel and independent way, as 
if each template were as an autonomous recognizer, looping 
through the signal in the attempt to recognizing itself. We 
use Dynamic Time Warping (DTW)  (Myers and Rabiner, 
1981) to find the optimal alignment of the template and the 
signal, hence obtaining a warping function for each 
template. Multiple passes through the templates are allowed 
if the signal is long enough.  
- Step 3. Similarity. The warping function is used to extract 
two different types of signal: spectral similarity, and 
temporal distortion. Spectral similarity is based on the 
readout of the Euclidian distance between the MFCC 
coefficients of the signal and the aligned template for each 
frame (see Appendix). Temporal distortion is based on the 
local slope of the warping function: any deviation from a 
slope of 1 in the warping function is giving a cost in the 
temporal distortion between the template and signal. The 
output representation for a bank of N templates is hence a 
set of 2N time series, sampled every 5 ms.  

Methodology 
The aim of this paper is to compare the efficiency of 

templatic features compared to low-level ones for the 
purpose of phoneme classification. We assessed this using a 
linear separation test: a perceptron was trained on a set of 
labeled examples using the RPROP algorithm (Riedmiller, 
and Braun, 1993), and the performance of the classification 
was measured both on the training set and on a novel 
generalization set. Training and recognition of the phonetic 
categories was computed frame by frame using human 
labels, and the error rate was the percentage of misclassified 
frames over the training or generalization sets. This 
performance was compared to the results obtained with two 
baseline low-level featural codes. One is the raw MFCC (13 
dimensions) used as input to the model. The second baseline 
is MFCC + Delta2 code, which corresponds to MFCC 
coefficients plus their first and second order derivatives (39 
dimensions). This is a useful comparison since time 

derivatives of the MFCC coefficients are a standard way to 
improve on local featural codes to capture some of the 
dynamic properties of speech. 

The algorithms were tested on two pseudo-languages, 
which we constructed with carefully balanced phoneme and 
syllable sets. Utterances of each pseudo-language were 
recorded by a male talker in a quiet and non reverberating 
environment, digitized, and converted into MFCC coef-
ficients. All stimuli were hand labeled for the purpose of 
performing the linear separation test. The stimuli were then 
distributed into three sets. The first set was used to generate 
the templates, the second one for training the perceptron and 
a third one for generalization. Each test was performed 10 
times, with a different random assignment of sets, in order 
to derive standard deviations for the error rates. 

The Monosyllabic language contained 6 vowels /a e i u o 
y / and 6 consonants /R m s p t k/. These phonemes were 
combined to create 36 Consonant-Vowels (CV) syllables. 
The syllables were pronounced in isolation (as if they were 
monosyllabic words). Each syllable was recorded 54 times. 
The template set contained between 4 and 12 exemplars of 
each syllables, the training set contained 34 exemplars and 
the generalization set contained 8 exemplars. 

The Polysyllabic language contained trisyllabic CVCV-
CV words, composed of 8 phonemes /R ∫ d m e a i u/. These 
phonemes are arranged following the same CV structure 
than in the previous sets. The set was built in such a way 
that all the phonemes consonants or vowels were produced 
the same number of times, in every position. The template 
set contained 12 exemplars of each syllables (192 
templates), the training set contained 34 exemplars and the 
generalization set contained 8 exemplars. 

Results 

Assessing the templatic code 
We used the monosyllabic language for these experiments. 
The linear classification performance of MFCC and 
MFCC+Delta2 are used as baseline (Figure 2a). As seen in 
Figure 2b, template features using whole syllables as 
templates yields systematically better phoneme 
classification performance than the baselines. This shows 
that templatic features are both more informative than the 
MFCCs on which it is based, and outperform the MFCC 
time derivatives. Increasing the number of templates from 4 
per syllable types to 12 per syllable types improves slightly 
the performance, but as the overall dimensionality grows 
from 144 to 432 dimensions, one can start to see evidence of 
over-fitting (i.e. a growing gap between training and 
generalization). Adding time distortion coding increases 
more the performance than adding more templates, 
suggesting that the temporal distortion adds a new and 
useful type of information. This is interesting, because 
temporal alignment parameters are typically thrown away in 
classical speech recognition systems (more on this below). 
In Figure 2c, we show that the gain in performance obtained 
by template coding is not due to high dimensionality alone. 
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Figure 2. Percent error in a phoneme classification test using linear separation, for the training and the generalization sets, as 
a function of type of input code, using the Monosyllabic Language. Bars show one standard deviation over and above the 
mean. a. Baseline scores for the MFCC (12 dimensions) and MFCC+Delta2 (39 dimensions) codes. b. Scores for templatic 
codes. We used as templates 4 exemplars of each of the 36 syllable types (left) or 12 exemplars (right). The ‘-time’ bars show 
the scores with spectral similarity only and the ‘+time’ shows the score where time distortion has been added. c. Scores for 
compressed templatic codes. We projected a code using 8*36 templates (spectral+temporal) onto the first 39 principal 
components (left). We quantizated the spectral similarity of a code with 12*36 templates onto a binary code (0 or 1) (right). 
 

Indeed, projecting the code obtained with 8 templates per 
syllable type (plus time distortion) onto the first 39 PCA 
dimensions still yields better performance than 
MFCC+Delta 2 despite the fact that the number of 
dimensions is the same. Finally, we quantized each 
dimension onto a binary code by using a threshold set at one 
standard deviation above the mean (the means and standard 
deviations are computed across the dimensions, for each 
time frame separately). This was done for a code using 12 
templates per syllable, and the result was undistinguishable 
from that obtained using non quantized version, suggesting 
that the high dimension templatic code is intrinsically a 
(sparse) binary code. 

Language specificity 
How well does the template code capture language-

specific properties? If this code was only increasing 
performance because of its high dimensionality, the 
particular set of templates used should be irrelevant. Here, 
we split the monosyllabic language into two disjoint 
sublanguages. The “easy” sublanguage used the maximally 
distinct consonants /R m s/ and vowels /a e i/. The “hard” 

sublanguage used the minimally distinct consonants /p t k/ 
and vowels /o u y/. Each sublanguage had only 9 syllable 
types. We used as a template set the syllables from one 
sublanguage, and tested either on new exemplars of the 
same language (appropriate templates) or exemplars from 
the other language (inappropriate templates). As shown in 
Table 1, using the inappropriate language for the template 
set yields a large drop in performance, and this both for the 
easy and hard sublanguage. An ANOVA ran across 10 
simulations on the log probability of error for the 
generalization set showed a significant effect of 
sublanguage (F(1,36)=537, p<.0001), and appropriateness 
(F(1,36)=410, p<.0001), but no interaction between these 
two factors (p>.05). Appropriate templates were better than 
the MFCC+delta2 baseline (F(1,36)=266; p<.001), and 
inappropriate templates were worse score than baseline 
(F(1,36)=41, p<.0001). In brief, template features are 
optimally tuned to the language from which they are 
extracted; they are very good for the segments that belong to 
that language, and poor for ‘foreign’ segments. This 
mimicks the tuning process to native sounds which take 
place during early language acquisition (Kuhl, 2000). 

 
Table 1. Percent error in phoneme classification (and standard error across simulations) in two sublanguages, easy and hard, 
as a function of the code used to represent the signals: the language-independent MFCC+Delta 2 code, and the templatic 
codes based on the appropriate or inappropriate sublanguage. 

Code Easy Language Hard Language 
Baseline Training General. Training General. 
MFCC + Delta 2 8.1% (0.3) 8.9% (0.7) 11.8% (0.3) 12.9% (0.7) 

     

Appropriate Templates 4.8% (0.2) 5.2% (0.5) 8.2% (0.5) 10.2% (0.7) 
Inappropriate Templates 8.0% (0.2) 9.4% (1.0) 14.0% (0.7) 16.6% (1.0) 
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Figure 4. Effect of the size of the template on phoneme classification using a linear separation test. The 

language used was the Polysyllabic Language. The number of templates is fixed in all simulations. 
 

Temporal cues and vowel duration 
We found above that temporal distortion was useful even 

in an artificial language in which duration cues a priori 
carries little linguistic information. The usefulness of 
temporal distortion should be even more apparent in a 
language where such cues are used, like in Japanese, where 
vowel length is contrastive. We introduced a contrast in 
vowel duration in  the “easy” sublanguage. It had 6 vowels 
/a e i a: e: i:/, the latter three being obtained by doubling the 
duration of the vowels in the original recording using pitch 
synchronous resynthesis. The results are shown in Table 2; 
evidently, template codes, especially with time distortion 
fare better than the MFCC controls. 

 

Table 2. Percent error in phoneme classification (and 
standard error across simulations) in a language using 
contrastive vowel duration. The score is given for the 
training and generalization sets, and for a specific short 
versus long vowel contrast (generalization only). 

Code Training Gener. 
MFCC 32.3% (0.3) 32.5% (0.9) 
MFCC + Delta 2 26.0% (0.4) 26.1% (0.8) 
   
8*36  – time 20.3% (0.3) 23.9% (0.8) 
8*36 + time 11.9% (0.2) 15.1% (0.7) 

Size and nature of the templates 
What is the optimal size of the templates? We used the 
polysyllabic language and tested structurally defined tem-
plates, syllables, phonemes and antiphonemes, segmented 
using human labels. Antiphonemes were defined as the final 
50% part of one phoneme followed by the initial 50% part 
of the next. As shown in figure 4, syllabic templates yielded 
the best performance, but somewhat counter-intuitively, 
antiphonemes were better than phonemes. Second, we tested 

randomly segmented templates of a fixed duration. We 
found that randomly segmented templates can do almost as 
well as syllables, as long as they have a duration of around 
120ms. This duration corresponds to a unit whose size is 
intermediate between syllables and phonemes. These two 
findings are compatible with the hypothesis that templates 
are optimal when they capture the transition parts between 
phonemes. The 120ms is also compatible with the optimal 
unit found by Coath and Denham (2005). 

Conclusion 
We have found that coding the speech signal in a high 

dimensional space of template similarity yields a significant 
improvement over standard MFCC features, even when 
temporal derivatives are used. In addition, time distortion 
derived from the DWT alignment process adds useful 
information over and above spectral similarity. This is 
especially true when the language makes use of contrastive 
durational cues. We found that the improvement of the 
templatic code is limited to the particular language used to 
make up the template sets. Templates of one language are ill 
suited to classify phonemes belonging to a different 
language. Finally, optimal templates seem to correspond to 
units around 100-200ms, containing at least the transitions 
between two adjacent phonemes.  

Of course, all of these conclusions are limited by the 
experimental approach we used, which is to test our system 
on miniature languages, with restricted phoneme and 
syllable inventories. It remains to be shown whether such 
coding and conclusions scale up to real-sized languages,  
more coarticulated inputs such as spontaneous speech, and 
psychologically realistic learning procedures, such as 
incremental unsupervised clustering. Another point worth 
mentioning is that, because of the multiple DTWs, the 
complexity of the algorithm is in o(n.l²), where n is the 
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number of templates, and l is the utterance length. More 
work remains to be done to optimize this algorithm. 
Moreover, the usability of the code is limited by tractability 
issues regarding clustering algorithms in high dimensions. 
Potentially useful is the fact that templatic features can be 
reduced to binary vectors at little or no cost.  

Overall, this supports the interest of coarse graine features 
for modeling speech perception (Coath & Denham, 2005; 
Skowronski & Harris, 2007), but more research is needed to 
add biological constraints to such models and derive new 
predictions for early language acquisition. 
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Appendix 
A given stimulus S is aligned to a template T using DTW, 

and the two time axes are related through the warping 
function warp(t). We can read out DS,T(t), the Euclidian 
distance between the signal and warped template: 

 
where si(t)and ti(t) are the MFCC coefficients of S and T at 
time t, respectively. We then define Sim(t), a time-
dependant measure of template similarity:  

 
where α is a constant used to avoid infinite values for a 
distance of zero (α =10-3.). Finally, we define a time-
dependant measure of temporal distortion: 

 
where warp’(t) is the smoothed slope of the warping 
function at time t, computed with a regression on 5 adjacent 
frames, and truncated to fit the interval [10-3, 10+3]. 
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