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Abstract

Despite the availability of numerous automatic accessibility test-

ing solutions, web accessibility issues persist on many websites.

Moreover, there is a lack of systematic evaluations of the e�cacy of

current accessibility testing tools. To address this gap, we present

the �rst mutation analysis framework, called Ma11y, designed to

assess web accessibility testing tools. Ma11y includes 25 mutation

operators that intentionally violate various accessibility principles

and an automated oracle to determine whether a mutant is detected

by a testing tool. Evaluation on real-world websites demonstrates

the practical applicability of the mutation operators and the frame-

work’s capacity to assess tool performance. Our results demonstrate

that the current tools cannot identify nearly 50% of the accessibility

bugs injected by our framework, thus underscoring the need for the

development of more e�ective accessibility testing tools. Finally,

the framework’s accuracy and performance attest to its potential

for seamless and automated application in practical settings.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; •Human-centered computing→ Accessibility design

and evaluation methods.
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1 Introduction

In today’s world, websites play a crucial role in facilitating our

daily routines, from commuting to staying connected to managing
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our �nances [59]. With the ever-increasing usage of websites, it is

imperative that developers prioritize accessibility to cater to the

needs of everyone, including the 15% of the population with dis-

abilities [60]. However, recent research reveals that a signi�cant

portion of websites are plagued with accessibility issues [57], in-

cluding low-contrast text making it di�cult for people with low

vision to perceive the text. Additionally, nearly 60% of the analyzed

websites lack alternative text for their images, which hinders indi-

viduals with visual impairments from understanding the content

and context conveyed by the images.

Several studies have investigated the reasons behind such preva-

lence of accessibility issues and have identi�ed developers’ lack

of awareness of website accessibility guidelines and lack of reli-

able, automated tools as some of the primary reasons [2, 3, 25]. In

fact, manual testing is still the most reliable way to ensure website

accessibility; however, it can be expensive to hire individuals and

have them thoroughly examine each feature of the website while

checking for adherence to all accessibility guidelines. Moreover,

human evaluators are prone to making mistakes, and it is challeng-

ing to ensure comprehensive coverage of all features and various

usage scenarios. While engaging individuals with disabilities in

accessibility testing is valuable, it has similar limitations and may

not always be possible due to a lack of access to individuals with

disabilities. As a result, many developers opt for automatic testing

to evaluate accessibility [15, 48].

However, automatic testing for accessibility has limitations. One

limitation is incomplete coverage [48], as these tools may not ad-

dress all accessibility guidelines. In addition, these tools have di�er-

ent degrees of accuracy and tend to produce inconsistent reports

[26], requiring manual checks to verify the testing results. Further-

more, there is a lack of systematic evaluation methods for assessing

the automatic testing tool’s e�ectiveness. Existing e�orts on eval-

uation of web accessibility testing tools, such as the Accessibility

Tools Audit [5, 22], utilize manually constructed benchmarks that

typically consist of overly simplistic test cases, often containing

only a single or a few HTML tags. Such benchmarks do not capture

the intricacy and diversity of real-world web applications, leading

to a signi�cant overestimation of the tools’ abilities to identify ac-

cessibility issues across complex and dynamic web environments.

This poses a challenge for software developers in selecting the most

suitable tool for their speci�c needs. A systematic evaluation of the

tools would not only bene�t developers in making informed deci-

sions but also highlight the shortcomings of the tools and provide

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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insights on how to improve them. In this paper, we aim to �ll this

gap.

We leverage mutation analysis to create an accessibility muta-

tion framework, called Ma11y, aimed at evaluating web accessibil-

ity testing tools. Our mutation operators are crafted based on the

Web Content Accessibility Guidelines (WCAG) version 2.1, with a

speci�c focus on the success criteria and their corresponding fail-

ures [53]. These success criteria set the standards for accessible web

content, and the associated failures are designed to reliably indicate

non-compliance with these criteria. By mapping our 25 accessibility

mutation operators to these failures, we guarantee that the injected

accessibility issues are not only realistic but also accurately re�ect

the types of de�ciencies that are likely to be encountered in actual

web environments. Notably, Ma11y injects these operators into

the �nal HTML DOM that loads in the browser. This design elimi-

nates the need for the website’s source code [62] while enabling the

framework to seamlessly adapt to the dynamic nature of modern

websites (dynamically added or removed elements and attributes

within the program code), ensuring accurate generation of mutants.

Additionally, our framework incorporates a fully automatic oracle

for assessing a testing tool’s ability to kill mutants (i.e., detect the

presence of inaccessibility defects) by analyzing its output.

We investigate several key research questions to assess the e�ec-

tiveness of our proposed accessibility mutation framework. Firstly,

we aim to evaluate the quality of the 25 de�ned accessibility muta-

tion operators and their contribution to each accessibility princi-

ple. Secondly, we assess the framework’s ability to generate non-

equivalent mutants and the accuracy of our oracle in successfully

detecting mutants that are killed. Thirdly, we compare the perfor-

mance of multiple web accessibility testing tools in their ability

to detect various accessibility defects, and identify their strengths

and weaknesses. Additionally, we explore potential approaches to

improve the accuracy of these tools in identifying and address-

ing accessibility defects. These research questions aim to help us

gain insights into the e�ectiveness of our approach and existing

accessibility testing tools.

We evaluated Ma11y on 24 websites across di�erent categories,

along with 6 web accessibility testing tools. The results revealed the

high applicability of the designed operators across diverse websites,

while also demonstrating Ma11y’s e�ectiveness in mitigating the

generation of equivalent mutants. Additionally, the �ndings reveal

that each tool exhibits distinct strengths and weaknesses. However,

as a collective observation, these tools prove ine�ective in detecting

nearly 50% of the injected bugs, highlighting their limitations.

Overall, this article contributes the following:

• A set of 25 accessibility mutation operators derived from

WCAG 2.1 failures.

• The �rst open-source, publicly available mutation analysis

framework for web accessibility [45].

• Experimental results demonstrating the e�cacy of the frame-

work and the designed operators.

• An evaluation of existing tools, providing insights into their

capability to identify real-world accessibility issues.

The remainder of this paper is organized as follows. Section 2

provides an overview of our mutation analysis framework, followed

by the details of the fault model used in the design of our mutants

in Section 3, and the implementation details in Section 4. Section

5 presents our evaluation of the framework. The paper concludes

with an overview of the related work in Section 7, and a summary

of our contributions in Section 8.

2 Framework Overview

Ma11y’s overview, depicted in Figure 1, consists of three main

components. The �rst component is the Mutant Generator, which

applies 25 mutation operators derived from the defect model based

on WCAG 2.1 accessibility guidelines [54] to the website under

test. We detail the mutation operators and their derivation pro-

cess in Section 3. The Mutant Generator also includes checks to

avoid generating equivalent mutants, discussed in detail in Section

4. The second component is the Tool Runner, which so far inte-

grates the implementation of 6 popular accessibility testing tools

through a uni�ed interface. Once mutants are generated, the Tool

Runner executes the accessibility testing tools on them. The �nal

component is the Oracle, which compares the reports generated

by each tool for both the original website and its corresponding

mutated websites. By analyzing these reports, the oracle determines

whether the accessibility issues were successfully identi�ed by the

tool. The framework generates a comprehensive report showcasing

each tool’s performance in detecting accessibility bugs, along with

valuable insights and a mutation score assessment.

Figure 1: Mutation Testing Framework Architecture

3 Mutation Operators

In this section, we outline our approach for designing our defect

model and subsequently deriving the mutation operators from them.

Additionally, we provide detailed explanations of several mutation

operators and delve into their implementation speci�cs in the sub-

sequent sections.

3.1 Defect Model and Derivation of Operators

We started by analyzing the web accessibility guidelines that serve

as a resource for making websites accessible to individuals with

disabilities. Our goal was to identify violations of these guidelines,

which represent accessibility bugs. We focused on the WCAG 2.1

guideline [53] among various available accessibility guidelines [40,

47, 54, 58, 61] due to its comprehensiveness, and its clear, testable

success criteria. These criteria are crucial for evaluating web acces-

sibility comprehensively, and each criterion is linked to detailed

descriptions of failures. The failures illustrate how speci�c coding

errors can lead to success criteria violations, often accompanied by

practical examples. Such documentation of failures makes WCAG

2.1 an invaluable resource for identifying common web accessibility

issues leading to its extensive adoption in prior work [32, 43, 55].
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Table 1: List of proposed accessibility mutation operators

Principle Guideline Id Name Scope Det. Failure

Perceivable Text Alternatives/Time-based Media RID Replace Image with Div T Syn F3
CIA Change Image Alt Text A Sem F30
RIA Remove Image Alt Text A Syn F65

Adaptable RHP Replace Header with Paragraph T Both F2
ASB Add Space Between Characters C Sem F32
RAS Replace Anchor Text with Span T Syn F42
RHD Replace Table Headers with Table Data T Syn F91

Distinguishable CFC Change Foreground Color S Syn F24
RAD Remove Anchor Text Decorations S Both F73
CIF Change Input Font Size S Syn F80
CPF Change Paragraph Font Size S Syn F94
ROA Remove Outline from Anchor Text S Syn F78

Operable Enough Time MTB Make Text Blink S Syn F4
Navigable CPT Change Page Title C Sem F25

CTO Change Tab Index Order A Both F44
RAI Remove Anchor Text Identi�er S Syn F89

Keyboard Accessible CDP Change Device-Speci�c Pointer E Syn F54
Input Modalities CBL Change Button Label A Sem F96

Understandable Predictable RFA Remove Focus from Anchor Text S,E Syn F55
CCC Change Context on Click E Syn F22
CCB Change Context on Blur E Both F9
CCI Change Context on Input E Both F36
CCS Change Context on Selection E Both F37

Robust Compatible RIN Remove Input Names T,A Syn F68
MDI Make Duplicate Ids A Syn F77

WCAG provides a set of 13 guidelines aimed at improving the

accessibility of web content. The guidelines are organized into 4

principles: Perceivable, Operable, Understandable, and Robust [53].

Each one of these principles signi�es an essential aspect of web

accessibility and ensures that all users can discern and use the web-

site without facing any accessibility issues. Each guideline includes

testable success criteria that determine conformance to WCAG.

Meeting the success criteria is necessary to achieve WCAG compli-

ance. Signi�cantly, the failures associated with each success crite-

rion provide insightful descriptions that result in non-conformance.

These failures are instrumental in our development of mutation

operators, as they o�er a direct link to real-world scenarios where

web accessibility is compromised.

We utilized the failures to construct a defect model. We selected

25 failures from 13 WCAG 2.1 guidelines. We ensured that the

selected failures covered di�erent locations in an HTML DOM, re-

ferred to as “scope”. The scope of a failure can be categorized as

Attribute, Event handler, Tree (Element Tag), Style, or Content, as

de�ned in [62]. Some of these failures are syntactic, for example,

issues with the HTML tags and their attributes. Some are semantic,

requiring an understanding of the page’s content; for example: the

Change Image Alt Text (CIA) operator changes the alternative text

of an image to an unrelated text. And �nally, some are a combina-

tion of both semantic and syntactic. One of our selection criteria

entailed ensuring that selected failures do not involve the JavaScript

logic of a website. This criterion has been set because the accessi-

bility testing tools we used for evaluation analyze a web page after

JavaScript is loaded. Therefore, we focused only on accessibility

issues that arise after JavaScript loading. Failures that did not meet

the above-mentioned criteria were excluded from the list. It is worth

noting that three WCAG guidelines, named “Seizures and Physical

Reactions”, “Readable”, and “Input Assistance”, do not have de�ned

failures, and thus, we excluded them from the list.

We derived the mutation operators by analyzing the selected

failures. To illustrate this procedure, let us consider failure F3, cor-

responding to success criterion “SC 1.1.1: Non-text Content” [51].

F3 occurs when developers use CSS to include images instead of

using the HTML <img> tag. This creates an accessibility issue due

to the absence of “alternative text” which is necessary for proper

functioning of screen readers that are used by blind users. Our

analysis of this failure led to the creation of a mutation operator

called RID (Replace Image with Div). The RID operator replaces

an <img> tag with a <div> tag containing the background-image

CSS property. This mutation operator does not a�ect the image’s

visibility or functionality, but introduces an accessibility issue by

using CSS instead of the appropriate HTML tag.

In total, we designed 25 operators. The complete list of opera-

tors is provided in Table 1, where the �rst two columns indicate

the principle and guideline violated by each operator. Columns 3

and 4 display the identi�er and name of the operators, while the

�fth column denotes the scope of the operator in the HTML DOM,

i.e., the location where it applies. The sixth column speci�es the

detection analysis needed for this operator, which can be syntac-

tic, semantic, or both. Syntactic operators solely alter the syntax

without a�ecting the content, while semantic operators modify

the content (e.g., replace an informative alt text for an image with

random text). Some operators possess both semantic and syntactic

properties. The last column provides the WCAG failure number

from which the operator is derived. Due to space constraints, we

will discuss a subset of these operators in detail in the following

subsections. More information about all operators can be found on

the companion website [34, 45].

3.2 Mutation Operators for Perceivability

Perceivability, as the �rst accessibility principle in WCAG, under-

scores the need for information and user interface components to
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be presented in a perceptible manner. This principle encompasses

four guidelines: Text Alternatives, Time-based Media, Adaptable,

and Distinguishable [53]. In this section, we focus on mutation

operators derived from failures violating these guidelines, thereby

compromising the perceptibility of web content.

For the Text Alternatives and Time-based Media guidelines,

which are concerned with the presence of informative alterna-

tive text for non-text content, our mutation operators intentionally

modify the alternative text or remove it entirely. For instance, the

operator named Change Image Alt Text (CIA) alters the text al-

ternative of an image to a randomly generated non-informative

string.

The Adaptable guideline is concerned with content that can

be presented in di�erent ways without losing information. Our

mutation operators under this guideline modify elements while

maintaining their visual presentation, resulting in elements that

visually resemble the originals but lack the intended information

and structure for assistive technologies. For example, the Replace

Anchor Text with Span (RAS) operator shown in Figure 2 replaces

a hypertext link <a> tag with a <span> tag, replicating all the func-

tionality and styles of the original <a> tag but omitting essential

ARIA attributes. These attributes provide additional information to

assistive technologies for better navigation and interaction [14]. As

a result, the new <span> element remains unrecognized as a link

by screen readers.

1 <a href="/what -we -offer/secure -2. aspx">

2 Learn more

3 </a>

(a) Original Element

1 <span onclick="window.location.href='/what -we -offer/

secure -2.aspx ';" class="a-decoration"

2 >

3 Learn more

4 </span>

5 ...

6 <style >

7 .a-decoration {

8 text -decoration: underline; !important;

9 cursor: pointer; !important;

10 color: blue; !important;

11 }

12 </style >

(b) Mutated Element

Figure 2: Example of Adaptability Mutation Operators

The Distinguishable guidelines underscore the importance of

making elements on a page distinguishable through di�erent fore-

ground and background colors, font sizes, or text decorations. The

mutation operators designed for this guideline aim to modify these

style attributes and render elements inaccessible. For instance, Re-

move Anchor Text Decorations (RAD) removes any text decoration

from the <a> tag, relying solely on color di�erences to distinguish

the link. However, such reliance on color alone may lead to failures

for individuals who cannot perceive color di�erences.

3.3 Mutation Operators for Operability

Operability, a foundational principle of web accessibility, aims to

ensure that user interface components and navigation are easy to

operate. This principle is guided by �ve crucial guidelines from

WCAG: Keyboard Accessibility, Enough Time, Navigation, Seizures

and Physical Reactions, and Input Modalities [53]. In this section,

we present a set of mutation operators designed from failures that

violate these guidelines, with the exception of Seizures and Physical

Reactions, which lacks assigned failures.

The �rst guideline, Keyboard Accessibility, ensures that all web-

site functionalities can be accessed and operated via a keyboard. An

example of the operator designed to hinder keyboard accessibility is

Change Device-Speci�c Pointer (CDP), which mutates an element

with the onclick event handler and changes it to onmousedown.

This mutation replaces the original keyboard-accessible control

with a device-speci�c control, e�ectively making it unavailable to

keyboard users. Consequently, individuals who rely solely on key-

board navigation and interaction may �nd this control inaccessible.

The Enough Time guideline emphasizes allowing users su�cient

time to read and interact with content. The Make Text Blink (MTB)

operator, illustrated in Figure 3, continuously blinks a <span> text

without providing a mechanism to stop the blinking e�ect. This

mutation hampers the user’s reading experience, particularly for

those with cognitive or visual impairments, by causing distractions

and making it di�cult to consume content within the provided

time.

1 <span aria -hidden="false" class="input --wrap -label" data

-mutation -id="F4">

(a) Original Element

1 <span aria -hidden="false" class="input --wrap -label

blink_me" data -mutation -id="F4">

2 ...

3 <style >

4 .blink_me {

5 animation: blinker 1s linear infinite;

6 }

7 @keyframes blinker {

8 50% {

9 opacity: 0;

10 }

11 }

12 </style >

(b) Mutated Element

Figure 3: Example of Enough Time Mutation Operators

The Navigation guideline stresses the importance of smooth nav-

igation, content discovery, and clear indicators of the user’s location

within the interface. An operator violating navigation, Change Page

Title (CPT), alters the page title to a randomly generated string un-

related to the content, misleading users and disrupting their ability

to accurately determine their location within the interface. This

modi�cation may lead to confusion and hinder users from navi-

gating e�ectively through the website especially when attempting

to retrace their steps or understand the overall structure of the

content.
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The Input Modalities guideline encourages diverse input meth-

ods beyond the traditional keyboard, such as speech input, to en-

hance ways in which operations can be performed. The Change

Button Label (CBL) operator, aiming to violate this guideline, alters

the value of the aria-label attribute of a <button> element to a

text unrelated to the button’s visible label. This operator highlights

situations where speech input users face di�culties in reliably ac-

tivating controls due to mismatches between visible labels and

accessible names. Addressing such issues would improve the acces-

sibility of web interfaces for diverse user interaction modes.

3.4 Mutation Operators for Understandability

The principle of Understandability emphasizes the importance of

users being able to comprehend both the information presented

and the functionality of the user interface, without encountering

content or operations that exceed their understanding. This princi-

ple encompasses three guidelines: Readable, Predictable, and Input

Assistance, with only Predictable having assigned failures inWCAG

[53].

The Predictable guideline emphasizes the need for consistent

behavior on web pages, promoting a predictable and coherent user

experience. The mutation operators within this section are designed

to introduce unexpected changes to the page context, challenging

its predictability. For example, the Change Context on Click (CCC)

operator, as illustrated in Figure 4, unexpectedly opens a new win-

dow when a user clicks on a <span> element without any prior

indication or warning. Such behavior can disrupt the user’s focus

and distract them from their current reading or task, potentially

leading to confusion and di�culty in understanding the interface.

1 <span

2 class="-img _glyph"

3 >

4 Stack Overflow

5 </span>

(a) Original Element

1 <span

2 class="-img _glyph"

3 onclick="window.open('https :// example.com ')"

4 >

5 Stack Overflow

6 </span>

(b) Mutated Element

Figure 4: Example of Predictability Mutation Operators

3.5 Mutation Operators for Robustness

The Robust principle emphasizes the signi�cance of ensuring web

content’s reliable interpretation by various user agents, including

assistive technologies, and its continued accessibility as technolo-

gies evolve over time. This principle is supported by the Compatible

guideline [53], which plays a critical role in maximizing compatibil-

ity with present and future user agents and assistive technologies.

By adhering to this guideline, web developers can ensure that their

content remains accessible and functional across diverse platforms

and evolving technologies.

One example of an operator that violates the Compatible guide-

line is Remove Input Names (RIN). This operator removes all labels

and names associated with an <input> element within a <form>.

Consequently, users may encounter di�culties in identifying the

purpose of the form control, as the essential descriptive information

is stripped away. Such mutations can lead to compatibility issues

with assistive technologies, hindering users with disabilities from

accurately interpreting and interacting with the form.

1 <label for="query">Search the NIH Website </label >

2 <input autocomplete="off" id="query" name="query" type="

text">

(a) Original Element

1 <input autocomplete="off" id="query" name="query" type="

text">

(b) Mutated Element

Figure 5: Example of Compatibility Mutation Operators

4 Approach

In this section, we discuss the implementation details of the three

key components of the tool presented in this article.

4.1 Mutant Generator

The �rst component, called the Mutant Generator, is responsible for

implementing and applying the mutation operators to websites. To

achieve this, we utilize Puppeteer, a headless browser developed in

JavaScript [20]. The decision to adopt a browser-based approach for

implementing the operators was driven by several factors. Firstly,

websites are dynamic in nature, which means their elements can

change or be loaded at runtime, and attributes may be added or re-

moved. To handle such variations e�ectively and avoid generating

equivalent mutants (mutants that are equivalent to the original pro-

gram), a solution capable of handling runtime changes is essential.

Secondly, browsers provide the necessary tools to traverse and in-

spect a website’s DOM, allowing for e�cient search and evaluation

of candidate elements. This capability enhances the e�ectiveness

and accuracy of the mutation process.

While implementing mutation operators, we use Puppeteer to

load the HTML DOM of each website. Once the loading process

is complete, we assess each operator’s applicability within the

website’s context. Applicability checking serves several purposes.

Firstly, it veri�es the presence of the desired element on the page.

This ensures that the targeted element exists and can be manipu-

lated. Secondly, it checks if the element is visible and can be accessed

through the accessibility API. This is essential to ensure the opera-

tor’s changes are observable and interactable. Note that assistive

technologies (e.g., screen readers) rely on accessibility API for their

implementation. Lastly, the applicability check con�rms that the

targeted element does not already possess the accessibility issue

the operator aims to inject. This precautionary step is crucial to

avoid generating equivalent mutants that do not introduce new

accessibility issues.
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To assess element visibility and its ability to be interacted with

using accessibility API, Ma11y examines the properties of the ele-

ments shown in table 2, along with their respective values.

Table 2: Properties responsible for element’s visibility

Property Value

display != none
visibility != hidden
opacity != 0
role != presentation || != none

aria-hidden != true

The validation process for applying mutation operators in the

framework involves checking the absence of the intended acces-

sibility issue before execution. While straightforward for some

operators like RIN, which simply removes labels from inputs, other

operators are challenging. For example, validating ROA, which re-

moves outlines from <a> tags during keyboard navigation, requires

simulating keyboard navigation using the accessibility API and

ensuring the target element receives a visible outline when focused,

i.e., ensuring that in fact it can be accessed using accessibility API

and that it does not already have an accessibility problem.

Similarly, operators like the CIA, altering the alternative text of

images with unrelated text, necessitate determining if the original

text was genuinely related to the image. To tackle this, we have

implemented a series of heuristics designed to �lter out text alter-

natives that may not be relevant to the image. These heuristics

are derived from WCAG failure [49, 50], speci�cally drawing from

failures 25 and 30, where certain alternative texts and page titles

were found to be uninformative and unsuitable for use. For instance,

we check that the original text does not contain speci�c patterns

or phrases that indicate it is uninformative. Some of these checks

are highlighted below:

• Trivial/template alt text: “ ”, “spacer”, “image”, “picture”

• Filename extensions in the alt text: “*.png”, “*.jpg”, “*.jpeg”

• Duplicate alt texts on a page

• Image URL as the only alt text

Before selecting an image for mutating its alt text, we verify that

the alt text does not contain the aforementioned patterns. It is worth

noting that these checks are primarily aimed at excluding alt texts

that might be uninformative. However, they do not a�rmatively

establish an alt text is informative, as achieving that would require

semantic analysis of both the alt text and the image, which falls

outside the scope of this paper.

The framework tags the targeted element with a “data-mutation-

id” attribute after verifying the operator’s applicability on the web-

site. The operator is then applied to the element, and the original

DOM and mutated DOM are saved in separate �les. Subsequently,

the websites, with all operators applied, are hosted on a server to

assess the e�ectiveness of web accessibility testing tools on these

mutated versions. Finally, to ensure the quality and accuracy of

the created mutants, two authors independently veri�ed each one,

complementing the automatic correctness checks of the mutants

and their implementation.

4.2 Tool Runner

After generating and hosting the mutants on the server, the Tool

Runner component takes over and executes the website accessibility

testing tools on these web pages. Ma11y is designed such that any

web accessibility testing tool can be integrated, so long that the

output of the tool can be transformed to a particular JSON format.

The current version of Tool Runner integrates six web accessibil-

ity testing tools, namely, A11yLite [1], Access Continuum [31], axe

[13], IBM Equal Access [24], QualWeb [39], andWAVE [56] as listed

in Table 3. The implementation process di�ers for each tool, as some

provide a RESTful API, while others are accessible through pack-

ages and programming libraries, necessitating integration through

the respective libraries.

Given the diversity in the development and design of these tools,

the output report format varies across them. To ensure consistency

in the reports and integration with the oracle, we developed a

transformation module that uni�es the output format of these tool

into the previously-mentioned JSON format. This format provides

detailed information about the accessibility issues identi�ed by

each tool, including the unique problem code (generated by each

tool), issue description, and pointers to each problematic HTML

element. Listing 1 is showing an example of the JSON format.

{
"code": "event_handler",
"description": "Device dependent event handler",
"pointer": "/HTML/BODY/DIV[3]/DIV/SPAN"

}

Listing 1: Uni�ed JSON format

The uni�ed JSON format reports accessibility issues using point-

ers like CSS selectors or XPaths, but since the Oracle component

(discussed further below) needs to match problems detected by

the tools to the mutated elements, access to the actual elements is

required. The Tool Runner component uses Puppeteer once again

to search the DOM based on the pointers provided by the tools. By

mapping each pointer to its corresponding element in the DOM and

verifying the presence of the "data-mutation-id" property, the Tool

Runner collects all accessibility issues associated with the mutated

elements for subsequent evaluation by the Oracle.

4.3 Oracle

The Oracle plays a crucial role in determining the e�ectiveness

of the web accessibility testing tools by assessing their ability to

identify (kill) the generated mutants. Upon receiving the uni�ed

tool reports for both the original and mutant websites from the Tool

Runner, the Oracle compares the two lists of accessibility errors

reported for these web pages. If the reported list for the mutant does

not contain any new errors, it indicates that the tool failed to detect

the mutant. Conversely, if a new error is present in the mutant list

and corresponds to an accessibility bug that was injected into the

website, the Oracle concludes that the tool successfully identi�ed

the problem, i.e., killed the mutant. Table 4 shows an example of

the outputs examined by the Oracle for ROA operator and the IBM

Equal Access tool.

105



Ma11y: A Mutation Framework for Web Accessibility Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: List of Tools implemented in Tool Runner

Tool Name Publisher License API Type Release Date

A11yLite [1] A11yWatch LLC Open Source Library Package 2020-Jan-29
Access Continuum [31] Level Access Free Software Library Package 2017-Oct-13
axe [13] Deque Systems, Inc. Open Source Library Package 2015-Jan-10
IBM Equal Access [24] IBM Accessibility Open Source Library Package 2020-May-18
QualWeb [39] Faculdade de Ciências da Universidade de Lisboa Open Source Library Package 2008-Jan-01
WAVE [56] WebAIM Commercial REST API 2014-Jan-01

Table 4: Example of the original and mutated issues

examined by Oracle

Original Element’s Issues [style_focus_visible]
Mutated Element’s Issues [style_focus_visible,

script_focus_blur_review]
New Issues [script_focus_blur_review]

Killed true

The Oracle component utilizes a mapping list that we devel-

oped between errors reported by tools and mutation operators. To

that end, we extensively utilized each tool’s documentation and

conducted multiple executions of each tool on sample web pages

with previously injected accessibility bugs. This process allowed

us to observe the errors generated by each tool in response to the

known accessibility issues present on web pages. Using this map-

ping list, the Oracle can determine whether a newly reported error

on a mutated web page is due to detection of an accessibility bug

injected by a speci�c mutation operator or not. When the reported

error identi�er matches a mutation operator that was applied to

the mutated page, the Oracle counts that as the tool was success-

fully able to detected the mutant. Conversely, if no match is found,

the Oracle concludes that the tool failed to detect the mutant. For

example, in Table 4, the new issue detected by IBM Equal Access

is script_focus_blur_review. Since the Oracle �nds a match for

this issue in the mapping list we created for the ROA operator, it

concludes that this mutant was successfully detected (killed) by the

IBM Equal Access tool.

To integrate a new tool, future researchers would need to provide

our framework with their API speci�cation and a mapping of error

identi�ers produced by the tool to mutation operators listed in

Table 1.

5 Evaluation

In this section, we present the experimental evaluation of our mu-

tation operators and framework, as well as the assessment of the

current state of web accessibility testing tools in detecting accessi-

bility bugs. We aim to address the following research questions:

RQ1. Operators: What is the quality of accessibility mutation

operators? What is the contribution of each operator to each acces-

sibility principle?

RQ2.Mutation Framework: How e�ective is Ma11y in generating

non-equivalent mutants? What is the accuracy of oracle?

RQ3. Accessibility Tools: How e�ective are web accessibility

testing tools in detecting accessibility issues?

RQ4. Performance: How long does it take for Ma11y to generate

and analyze the mutants?

Table 5: Statistics of the selected websites.

Statistics HTML Elements # of Mutants

Total 33,866 366
Average 1,411 15

Standard Deviation 1,189 2.84
Maximum 4,662 (shein.com) 20 (nih.gov)
Minimum 73 (google.com) 9 (craigslist.org)

5.1 Experimental Setup

5.1.1 SubjectWebsites: In order to select websites for testingMa11y

and web accessibility evaluation tools, we decided to compile a list

of the most popular websites. We made use of top visited websites

at the time of writing of this paper as tracked by Semrush [12].

Semrush hosts a list of the 20 most popular websites in 33 cate-

gories such as Banking, E-Commerce, Fashion, Finance, and others.

To ensure comprehensive representation of di�erent websites, we

created a selection strategy based on the following criteria. We

selected the most popular website worldwide from each of the 33

categories.

We then narrowed the list of websites to those that were in

English. We manually examined the downloaded version of the

websites to ensure that they closely resemble their online version

in appearance and functionality. We did this check since some

websites do not retain their styles when downloaded due to various

factors, such as the website’s server-side con�gurations, usage of

dynamically loaded resources, or content security policies. Two

researchers performed this task independently and arrived at a

list of websites selected for testing. Out of 33 categories, we were

able to select 24 unique, most visited websites. This is because in 4

cases there were the same website for di�erent categories and we

excluded 5 websites because they were equipped with detection

scripts that identi�ed when the site was accessed from any URL

other than its original hosting location. This behavior rendered

these websites unsuitable for our examination. The list of these

websites are mentioned in the companion website [34, 45]. Table

5 provides a summary of the selected websites in terms of HTML

elements.

5.1.2 Web Accessibility Testing Tools: We selected a set of 6 tools

from the W3C’s list of web accessibility evaluation tools [52]. There

are 167 tools on this website. We �ltered these tools on the basis of

following factors. The tool must support the latest version ofWCAG

(i.e., WCAG 2.1), be available in English language, and provide an

API to automate testing. This gave us a list of 14 tools. This list

is inclusive of the open source and only plugin variations of the

same tool. Some tools in this list have been deprecated and are
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no longer available. We decided to use the open source version of

the commercial tools that provide an alternative, and commercial

version of the tools that do not have any open source alternative. In

total, we ended up with 6 unique tools, which are also some of the

most widely used tools due to the nature of our selection criteria .

5.2 RQ1. Operators

The evaluation of the accessibility mutation operators focuses on

understanding their prevalence, applicability, impact on di�erent

accessibility principles, their distribution based on the semantic or

syntactic type, and their scope. To comprehensively assess these as-

pects, we conducted a mutation generation experiment on a diverse

set of 24 subject websites described in Section 5.1.

The results of our experiments are summarized in Table 6, show-

casing the applicability of the operators on each website. In total

Ma11y could create 366 mutants for the 24 websites, with an aver-

age of 15 mutants per website. This indicates the high applicability

of the de�ned operators for diverse web contexts.

Figure 6 illustrates the distribution of the created mutants based

on the accessibility principles they violate. Notably, approximately

half of the generated mutants pertain to the Perceivability principle,

while the other half are associated with the principles of Operability,

Understandability, and Robustness.
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Figure 6: Distribution of the number of mutants generated

per WCAG accessibility principles

Our �ndings reveal that 64% of the operators are associated with

syntactic changes, 17% with semantic changes, and the remaining

19% exhibit both syntactic and semantic attributes. This diversity of

operators enables a comprehensive evaluation of web accessibility

testing tools, allowing for the identi�cation of a wide range of

potential accessibility issues across di�erent dimensions.

Furthermore, we examined the distribution of mutants in terms

of the corresponding operators’ scope, which we de�ned in section

3. The analysis reveals that the mutants cover a diverse range of

scopes, with 18% of the mutants targeting Event Handlers, 31%

modifying the Style of elements, and 22% making alterations to

HTML Attributes, 16% making changes to HTML Tree and the

remaining 13% modify the Content. This comprehensive coverage

ensures a thorough assessment of web accessibility testing tools

across various scenarios and contexts.

5.3 RQ2. Mutation Framework

Despite our best e�ort to prevent the generation of equivalent

mutants as detailed in Section 4.1, there are scenarios in which

it is challenging to guarantee the absence of equivalent mutants.

The three mutation operators, namely CIA, CPT, and CBL, fall

under this category, where we cannot ensure complete avoidance

of equivalent mutants. CIA alters the alternative text of images, CPT

modi�es the page title to a non-informative title, and CBL changes

the button aria-label to a text unrelated to the button text. In Section

4.1, we brie�y discussed employing heuristics, such as checking

for template or trivial text or �lenames, to mitigate the creation

of equivalent mutants. To further assess the potential presence

of equivalent mutants, a manual analysis was conducted on the

three aforementioned operators and their corresponding mutants,

as outlined in Table 6. This analysis involved comparing the original

and mutated versions of the websites under these operators and

identifying cases that led to equivalent mutants.

Remarkably, out of a total of 44 cases in which mutants were gen-

erated using these three operators, only one case produced an equiv-

alent mutant. This outcome underscores the e�ectiveness of Ma11y

by minimizing the occurrence of equivalent mutants and enhances

its reliability for detecting genuine accessibility issues. Despite the

challenges posed by semantic analysis, the framework’s ability to

avoid equivalent mutants in the majority of cases demonstrates

its robustness and potential as a valuable tool in web accessibility

assessment.

In Section 4.3, we presented the approach utilized by the oracle

to determine whether a mutant is detected (killed). To ensure the

accuracy and reliability of our oracle, a comprehensive manual

analysis was performed on all 366 mutants, examining each tool’s

execution and cross-referencing with the mapping list previously

created, which linked mutation operators to the error codes gen-

erated by each tool. To validate the oracle’s classi�cation of killed

mutants, two authors independently scrutinized each decisionmade

by the oracle. For mutants marked as “killed”, the authors manu-

ally checked whether the tool indeed generated a new relevant

error, a�rming the oracle’s correctness. Conversely, if no such er-

ror was produced, it indicated a false positive. A similar approach

was adopted to identify false negatives.

During the manual analysis, we identi�ed 15 cases of false nega-

tives, resulting in an accuracy of approximately 96%. These false

negatives occurred due to the oracle’s reliance on error mapping be-

tween violated WCAG guidelines and the errors reported by acces-

sibility testing tools. In some cases, the mapping between violated

guidelines and the errors generated by the tools was not one-to-one.

Notably, for a single injected accessibility issue, certain tools may

produce di�erent error codes on di�erent pages. For example, the

“Remove Input Names” (RIN) operator triggered varied error codes

in the IBM Equal Access tool, such as input_label_exists or

input_label_visible, depending on the speci�c case. Similarly,

Access Continuum generated error codes 338 and 2440 for the same

injected bug in di�erent mutants. These inconsistencies led to de-

creased accuracy of our oracle. However, this is not a shortcoming

of our oracle, but rather a shortcoming of existing tools, because in

certain cases the existing tools do not produce a consistent output.

In essence, this is similar to the problem of running �aky tests [33]

for the conventional mutation testing. Due to the unpredictabil-

ity of �aky tests, mutants may or may not be killed, which could

a�ect the mutation kill score. Similarly, in certain situations exist-

ing accessibility testing tools are �aky, preventing our oracle from

properly tracking their mutation kill score.
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Ma11y exhibits strong capabilities in mitigating the generation

of equivalent mutants and the accuracy of our oracle in identify-

ing killed mutants provides a solid foundation for evaluating the

performance of web accessibility testing tools.

5.4 RQ3. Accessibility Tools

In this evaluation, we investigate the performance of various web

accessibility testing tools in detecting accessibility bugs within the

366 mutants generated Ma11y. The results are presented in Table 6,

which displays the total number of mutants killed by each tool for

each mutation operator.

The table presents an overview of the performance of various

web accessibility testing tools in detecting accessibility bugs across

the 366 mutants. On average, the tools detected 92 mutants, with

IBM Equal Access achieving the highest number of 190 mutants

killed and A11yWatch achieving the lowest with 52 mutants killed.

Despite these �gures, the mutation scores are disappointingly low

(≈50%). This indicates that these accessibility testing tools cannot

detect nearly 50% of the accessibility issues present in the websites.

Surprisingly, even WAVE, a widely used commercial tool, exhibits

a notably low mutation score of 25%.

Further analysis of the results revealed that two operators, MDI

(Make Duplicate IDs) and RIA (Remove Image Alt Text), were the

most easily detected by the tools. Almost all of the 41 mutants

generated for these operators were successfully detected. These

issues can often be identi�ed through simple DOM inspections,

making their detection relatively straightforward for the tools.

However, there are six operators for which none of the tools

were able to detect a single mutant. These problematic operators

include CPT (Change Page Title), CIA (Change Image Alt Text),

CCS (Change Context on Selection), MTB (Make Text Blink), CTO

(Change Tab Index Order), CCB (Change Context on Blur), and CPF

(Change Paragraph Font Size). Among these, �ve operators are of

the semantic or both syntactic and semantic types, highlighting

the tools’ limitations in semantic analysis of the website’s content

and their consequent failure to detect semantic accessibility bugs.

Notably, the MTB operator, which uses animation to add dynamic-

ity to text, cannot be detected by any of the tools, exposing their

limitations in identifying dynamic accessibility bugs. Additionally,

the CPF operator, a syntactic operator that changes the font-size of

the paragraph, surprisingly eludes detection by all the tools.

Figure 7 shows the detection distribution based on the syntac-

tic/semantic categorization of bugs. Out of 130 mutants categorized

as semantic or both, the tools successfully detected 35 of them,

amounting to only 26% detection rate. In contrast, the tools demon-

strated a relatively better performance in detecting syntactic bugs,

successfully identifying around 54% of them.

We also analyzed the results based on accessibility principles

(Perceivability, Understandability, Robustness, and Operability).

The tools exhibit satisfactory performance in detecting the op-

erators violating the Robustness principles. However, their perfor-

mance signi�cantly drops when it comes to detecting operators

violating the Operability principle, with WAVE exhibiting a de-

tection rate of 0%. IBM Equal Access performed well in detecting

mutants violating Perceivability and Understandability principles.
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Figure 7: Number of Mutants Killed by tools

A11yWatch showed e�ectiveness in detecting Operability viola-

tions, while Continuum excelled in identifying Robustness issues.

Based on these observations, it is evident that each tool excels

in detecting speci�c types of accessibility issues. As a result, we

hypothesize that combining these tools may yield a more e�ec-

tive approach to detection. To assess this, we analyzed the results

obtained from the combination of the tools, revealing a mutation

score of 60%, surpassing the performance of the best individual tool

by 8%. However, despite this improvement, the overall mutation

score remains relatively low, with 40% of the accessibility issues

remaining undetected. This indicates that while the combination

shows promise, further enhancements are necessary to achieve

more comprehensive and accurate accessibility testing.

Our study reveals a notable inconsistency in the e�ectiveness

of tools in detecting accessibility bugs across various websites. In

certain cases, a tool may identify a speci�c accessibility issue on

one website but fail to do so on another. These inconsistencies,

not previously highlighted in benchmark-based evaluations, chal-

lenge prior �ndings (e.g., [22]). For instance, while examining the

CBL operator, we noticed when altering the button aria-label to

unrelated text, IBM Equal Access and QualWeb could identify this

issue on capitalone.com but not on yahoo.com. This contrasts

with [21], where both tools were credited with detecting the bug.

These �ndings highlight the inadequacy of relying solely on basic

benchmark tests for a comprehensive evaluation of tools’ ability

to detect accessibility issues, since the design of a web page, how

content is loaded, and how adaptive UI is rendered may impact the

e�ectiveness of tools in detecting accessibility issues. Real-world

web environments are more complex than benchmarks suggest.

Our study, featuring intricate and realistic examples, o�ers a more

accurate portrayal of tools’ e�ectiveness in practical scenarios and

opens up the opportunity for further investigation.

5.5 RQ4. Performance

To assess the performance of Ma11y, we measured the time required

for generating mutants and analyzing the results produced by each

tool to determine the detection status of the mutants. The experi-

ments were conducted on a computer with a 1.4 GHz Intel Core i7

processor and 8 GB DDR3 RAM.

For evaluating the performance of the mutant generator compo-

nent, wemeasured the time needed for analyzing the code, checking

the applicability of the operator, and applying the operator. In Table
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Table 6: Summary of web accessibility testing tools
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Targeted Accessibility Principle P U P O P P P U U O P O O U P R U R P P O U P P O - -
Scope T E S C T A C E E S T A E E A T S A S S S E T S A - -
Syntactic/Semantic Bo Sy Sy Se Sy Se Se Bo Bo Sy Sy B Sy Sy Sy Sy Bo Sy Sy Sy Sy Bo Sy Sy Se - -
Total 17 23 19 24 17 17 20 7 1 24 24 20 5 24 17 2 15 24 20 5 12 6 1 19 3 366 -
Equivalent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -

IBM Equal Access Killed 0 19 11 0 17 0 15 4 0 0 23 0 0 24 17 2 0 24 20 0 11 0 1 0 2 190 52

QualWeb Killed 0 20 11 0 0 0 0 0 0 0 0 0 0 22 13 2 0 24 0 5 10 0 0 0 1 108 30

Wave Killed 10 23 16 0 0 0 0 0 0 0 0 0 0 0 16 1 0 24 0 0 0 0 0 0 0 90 25

Continuum Killed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1 0 24 0 0 11 0 1 0 0 53 14

A11yWatch Killed 0 0 0 0 0 0 0 0 0 0 0 0 5 0 11 2 0 24 0 0 9 0 0 0 1 52 14

Axe Killed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 2 2 24 0 0 12 0 0 0 0 56 15

Unique Killed 10 23 16 0 17 0 15 4 0 0 23 0 5 24 17 2 2 24 20 5 12 0 1 0 2 220 60

Table 7: Performance Metrics of Mutation Framework. (Total columns represent the sum of

the average time per mutant across all projects)

Statistics Mutant Generation Time (s) Mutant Analysis Time (s) Overall Time (s)
Total Per Mutant Total Per Mutant Total Per Mutant

Total 669.56 3.25 2,060.99 136.82 2,730.56 140.08
Average 27.90 0.14 85.87 5.70 113.77 5.84
Standard Deviation 24.19 0.25 200.80 11.98 219.14 12.09
Maximum 106.51 1.17 977.79 57.52 1,084.30 58.06

craiglist.com google.com craiglist.com craiglist.com craiglist.com craiglist.com
Minimum 5.86 0.02 0.73 0.10 7.56 0.12

live.com nih.gov* stackover�ow.com discord.com* live.com discord.com

* More than one website had the same maximum/minimum time.

7, we report the summary statistics due to space constraints. Com-

plete statistics for all 24 websites are available at [45]. As shown

in Table 7, the average time taken to create each mutant by the

generator was 0.14 seconds, with an average time of 27.90 seconds

to create all mutants for a subject website. This indicates that the

mutant generation process is swift and e�cient.

Regarding the tool runner component, the analysis time heavily

depends on the total number of errors and warnings generated

by the web accessibility tool, which, in turn, is in�uenced by the

size of the source code and the number of components rendered

in the HTML DOM. On average, the analysis time for each mutant

remains below 6 seconds, totaling an average of 86 seconds for all

mutants on a website. Furthermore, the average running time of

the tool for each mutant is 6 seconds, while the average analysis

time for each website is 144 seconds. These results demonstrate the

practicality and feasibility of using our tool in real-world scenarios.

6 Threats to Validity

We have strived to eliminate bias and the e�ects of random noise

in our study. However, it is possible that our mitigation strategies

may not have been e�ective.

Our fault model is based on WCAG 2.1 guidelines, which, while

comprehensive, are subject to updates and changes over time. It is

important to note that the WCAG 2.1 guidelines may not cover all

possible accessibility issues as it is not exhaustive. Possible errors in

the tools usedmay a�ect our �ndings. Tominimize this, we leverage

tools that have been extensively used and validated in the literature.

Moreover, we have extensively tested our implementation to ensure

that there are no defects in the implementation of our tool.

To minimize the potential threats to validity related to selection

of websites, we aimed to ensure maximum coverage of di�erent

types of websites. We selected the most popular websites from a

wide range of domains allowing us to increase the generalizability

of our �ndings.

7 Related Work

Web accessibility testing/evaluation:Web accessibility guide-

lines have been instrumental in aiding numerous studies and tools

to evaluate both web pages [1, 13, 24, 31, 39, 56] and mobile apps [7–

9, 16, 23, 28, 35, 36, 42]. Tools such as Siteimprove [44], Google Light-

house [19], and Tenon [27] were designed to assess web accessibility

based on these guidelines. AI-based approaches like AccessiBi [4],

Equally AI [17], and Applitools [10] have emerged for web page

accessibility evaluation. Studies have focused on detecting speci�c

accessibility issues, such as improving HTML tables’ accessibility

for individuals with visual impairments [55] or enhancing data

visualizations with interactive JavaScript plugins [43]. Others have

utilized assistive technologies to identify dynamic web accessibility

problems, such as detecting and localizing keyboard accessibility

failures in web applications using modeled keyboard navigation

�ow [11]. Despite having a plethora of accessibility testing tools,

a critical gap exists in the form of a uni�ed framework to assess

their e�ectiveness. Absence of such framework hinders e�ective

comparison and identi�cation of the best tools available. Our work
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addresses this gap by providing a framework that can be integrated

with new accessibility testing tools, enabling researchers to evaluate

their e�ectiveness accurately.

Web accessibility testing tools:Prior studies have compared web

accessibility testing tools. In these studies, manually constructed

HTML pages with intentional accessibility errors [46] or simpli-

�ed web pages, often containing only a single or a few HTML

tags [5, 22], are employed to assess the detection abilities of the

compared tools. Other research has focused on comparing tool fea-

tures, usability, and web page evaluation [18, 30], or on evaluating

tool performance on real-world websites with known accessibility

issues [6, 26, 29, 41, 48]. Additionally, there is research that man-

ually created HTML pages with accessibility bugs based on web

accessibility guidelines to assess web development frameworks like

Angular for accessibility warnings [32]. However, these methods

are not automated and require signi�cant manual e�ort to assess

new accessibility testing tools. In contrast, our work presents a

novel and systematic approach by automatically injecting various

accessibility bugs into existing web pages. By utilizing mutation

analysis, we rigorously evaluated the e�ectiveness of the tested

tools in detecting bugs, addressing the limitations of benchmark-

based and manual approaches. Our framework’s ability to simulate

real-world scenarios, including the complexity and dynamicity of

modern web applications, provides a more accurate and compre-

hensive assessment of tool performance.

Mutation testing for web: Various studies have delved into web

application mutation testing from di�erent perspectives. One no-

table study by Yandrapally and Mesbah [62] introduced MAEWU, a

web GUI mutation framework that evaluates UI test quality by ap-

plying mutation operators to the �nal DOM of the website. Nishiura

et al. [38] focused on client-side JavaScript mutation operators

speci�cally designed for DOM manipulation in web applications.

Another research [37] developed mutation operators tailored to

JavaScript in web applications, along with generic JavaScript oper-

ators. While these studies have made signi�cant contributions to

web application mutation testing, our work di�ers in its primary

focus on de�ning accessibility-aware mutation operators. We aim

to assess the capabilities of web accessibility testing tools in detect-

ing accessibility-related bugs introduced by these operators, which

no previous research has done.

8 Conclusion

This research introduced a novel accessibility mutation framework,

called Ma11y, with 25 operators derived from WCAG 2.1, covering

a wide range of accessibility guidelines and principles across di�er-

ent scopes and types of issues. The integration and evaluation of

6 popular web accessibility testing tools using Ma11y highlighted

their strengths and weaknesses. The study revealed that on average,

the tested tools detected less than 50% of the injected accessibility

issues, underscoring the need for further improvement in web ac-

cessibility testing tools. We also found that the tools mostly fail to

eliminate mutants that modify the semantic content of page ele-

ments or operators related to the dynamics of web pages. Therefore,

one future direction for accessibility tool designers could be to focus

on considering the dynamic nature of web pages and incorporate

semantic and contextual analysis into their tools.

Additionally, a key �nding from our study was the inconsistency

in the tools’ ability to detect accessibility issues across di�erent

websites. This highlights that a tool’s e�ectiveness can vary sig-

ni�cantly depending on the speci�c web context, challenging the

reliability of benchmark-based evaluations.

Our framework is designed in ways that can support integration

of various accessibility testing tools with minimal e�ort. We demon-

strated this through the integration of 6 popular web accessibility

testing tools. We believe its adoption by future researchers as a

common platform for comparing and contrasting web accessibil-

ity testing tools can signi�cantly foster progress and research in

this area. For our future work, we aim to expand the diversity of

mutation operators supported by Ma11y, which would increase its

coverage of accessibility issues that may occur in practice. Speci�-

cally, Ma11y currently does not include operators that can mutate

the JavaScript logic of a website. We believe expanding the frame-

work with such operators can further enhance its utility.

The research artifacts for this study are available publicly at the

companion website [34, 45].
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