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ABSTRACT
Classification of modulation of Wi-Fi 6 and 5G downlink (DL) user
data signals for spectrum sensing is studied. First, the orthogo-
nal frequency division multiplexing (OFDM) symbol duration and
cyclic prefix (CP) length are estimated based on the cyclic autocor-
relation function (CAF). We propose a feature extraction algorithm
characterizing the modulation of OFDM signals based on the esti-
mated parameters. The algorithm includes removing the effects of
a synchronization error and converting the obtained feature into a
2D histogram of phase and amplitude. This histogram is input to a
convolutional neural network (CNN)-based classifier. Our system
works without knowledge of a carrier frequency, Wi-Fi preamble,
or resource allocation of 5G physical channels. We evaluate the
classifier’s performance with data with various protocol-compliant
configurations. Our classifier achieves at least 98% accuracy when
SNR is above the value required for data transmission.

CCS CONCEPTS
• Networks→ Cognitive radios; • Computing methodologies
→ Neural networks.
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1 INTRODUCTION
The growth of wireless communication technologies has neces-
sitated efficient usage of the radio spectrum, a challenge that is
being addressed with cognitive radio. A critical component of cog-
nitive radio is intelligent spectrum sensing, which allows for a
more precise characterization of spectrum usage and aids in better
decision-making for spectrum allocation. Spectrum sensing en-
compasses signal detection [7], predicting future spectrum [27],
and identifying modulation schemes. In this study, we focus on
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the classification of modulations of practical orthogonal frequency
division multiplexing (OFDM) signals. This also enables applica-
tions such as channel quality estimation between a transmitter (TX)
and a receiver (RX) for a spectrum sensor and wireless network
troubleshooting.

OFDM has become essential in modern wireless communica-
tion systems, such as Wi-Fi 6 and 5G. In these systems, message
bits are converted to digital symbols using modulation schemes
such as quadrature phase shift keying (QPSK) and transmitted via
data subcarriers. In OFDM, the multiple symbols are stacked in
subcarriers within the frequency domain, so each OFDM time sam-
ple contains only a fraction of the information on the multiple
frequency domain symbols. As a result, the modulation classifiers
designed for single-carrier signals [19] cannot be applied directly
to OFDM signals. Therefore, a precise modulation classification of
Wi-Fi 6 and 5G signals requires additional processing beyond using
raw time-domain samples as inputs.

A spectrum sensor must handle OFDM signals with diverse con-
figurations without prior information, in contrast to user equipment
connected to a wireless network. In Wi-Fi 6 and 5G systems, infor-
mation about the user data transmission, including the modulation,
is provided to the RX. However, since a spectrum sensor does not
have prior knowledge of the type of signals it detects, it cannot
deploy a protocol-specific procedure to obtain information about
user data transmission. The parameters shaping OFDM signals,
fast Fourier transform (FFT) size to generate inverse fast Fourier
transform (IFFT) sequence, and cyclic prefix (CP) length, might
be different even among OFDM signals with the same modulation
scheme. Moreover, the carrier frequency configurations in 5G be-
come increasingly diverse and data transmission might occupy
only a part of channel bandwidth. As a result, estimation of these
carrier frequency configurations is becoming increasingly difficult
using transmission bandwidth and center frequency alone. Thus,
a modulation classifier for spectrum sensing should estimate the
modulation scheme using only the observed user data transmission
without knowledge of carrier frequency.

We present a system to classify the modulation of the signals in
Wi-Fi 6 [14] and 5G [2] for a spectrum sensing system. Without
knowledge of the transmitter (TX) carrier frequency, Wi-Fi pream-
ble, or 5G control information, our system deploys only the basic
OFDM structure, IFFT sequence, and CP. The system includes the
estimation of OFDM parameters: CP length and subcarrier spacing
(SCS), which is directly related to the FFT size of the IFFT sequence.
We focus on identifying modulation schemes used in the payload of
Wi-Fi 6 signals and the physical downlink shared channel (PDSCH)
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of 5G signals. Signals studied in this paper are single-input single-
output (SISO). For 5G, they are in the frequency range 1 (FR1),
whose frequency band is below 7.125 GHz.

For IFFT sequence and CP length estimation, the cyclic auto-
correlation function (CAF) is deployed. The capability of CAF de-
tecting repeated sequences as well as repetition periods enables
the estimation of those parameters. We observe that symbol-level
synchronization is not perfect if autocorrelation using CP is utilized
only. Our preprocessing removes the effect of the synchronization
error by using phase differences between phases of two adjacent
OFDM symbols. Themodulation classifier forWi-Fi 6 and 5G signals
should recognize high-order modulations such as 256 quadrature
amplitude modulation (QAM) and 1024QAM since these state-of-
the-art protocols include those schemes. We change the feature
format to a histogram representing the distribution of the features
so that the classifier can effectively capture high-order modulations
characteristics.

Related work on modulation classification: Many papers
address modulation classification for wireless communication sig-
nals [4, 9, 11, 12, 16, 19, 23, 24, 28]. The works in [4, 9, 11, 12, 24, 28]
study modulation classification of OFDM signals and achieve at
least 78% accuracy at 20 dB SNR for an AWGN channel. It is as-
sumed that the inputs start from the first sample of OFDM symbol
duration [4, 11, 12, 28], which is only possible by detecting Wi-Fi
preamble or 5G synchronization signals properly. To apply this idea
to a spectrum sensor, the sensor should follow protocol-specific
procedures.

There are papers on OFDM modulation classification without
the symbol-level synchronization assumption [9, 16, 23, 24] and
the algorithms [9, 16, 24] are evaluated with hardware-generated
data. However, their algorithms [9, 16, 24] are not evaluated with
high-order modulations such as 256QAM or 1024QAM, as used in
Wi-Fi 6. Moreover, since their classifier structures [9, 24] is designed
to recognize a fixed set of modulations, the overall structure needs
redesign to identify a new modulation scheme. The work [23] pro-
poses the system to estimate SCS of OFDM signals and modulation
of single-carrier signals jointly. Nonetheless, it does not estimate
the modulation of OFDM signals. The neural network-based mod-
ulation classifier [19] studies how environmental change affects
classification performance for only the single-carrier signals, not
OFDM signals.

Related work on sniffing OFDM signals: For spectrum sens-
ing, modulation might be identified by sniffing control data used
to notify RX. The work [5, 6, 10, 17] tried to overhear Long Term
Evolution (LTE) signals. LTEye [17] and OWL [5] decodes PHY DL
control channel (PDCCH) data for LTE network monitoring. LTES-
niffer [10] decode sniffed both user and control data using PDCCH
decoder FALCON [6]. FALCON overcomes the limitation of LTEye
and OWL, which require more than 97% decoding accuracy. In LTE,
a starting symbol of PDCCH in a slot is always the first symbol
in a slot and it is different from 5G, where the PDCCH starting
symbol in a slot can be any symbol in a slot and its information is
notified with radio resource control (RRC) signals. Accordingly, it is
not straightforward to generalize LTE PDCCH sniffer to 5G. Eaves-
dropping PDCCH data of 5G signals [21] can deal with the signal
with diverse 5G configurations, but is vulnerable to configuration
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Figure 1: (a) System model to capture DL Wi-Fi 6 and 5G
signals and (b) Signal detection scenario.

changes since it takes a few minutes to learn a new PDCCH con-
figuration. The authors of [18] study sniffing Wi-Fi probe request
packets, which is for mobile devices to broadcast the existence of
themselves. They build a hardware model for a sniffer and test
with real Wi-Fi probe request packets. However, the probe request
packets are simpler than those for user data communication thus
not straightforward to deploy this system for our target signal.

To summarize, the main contributions of the paper are:

• OFDM parameter estimation for up-to-date protocols:
We have applied the OFDM parameter estimation method
with CAF [25] to Wi-Fi 6 and 5G signals to estimate SCS and
CP length.

• Feature extraction without symbol-level synchroniza-
tion: Only with estimated values of SCS and CP length,
our system builds the features characterizing modulation of
OFDM signals. The proposed feature extraction algorithm
is designed to be resilient to symbol-level synchronization
errors caused by using CP only.

• Modulation classification without control information:
For spectrum sensing, control information might not be ac-
cessible. We show that the proposed classification system
robustly works with diverse configurations with the evalua-
tion of hardware-generated data without knowledge of the
information.

2 SYSTEM OBJECTIVE
We aim to build a modulation classifier using in-phase and quadra-
ture (IQ) samples of SISOWi-Fi 6 and FR1 5GDL signal for spectrum
sensing. The system scenario is described in Fig. 1a. There is a Wi-
Fi 6 or 5G TX transmitting its signal to an RX. The spectrum sensor
continuously senses the spectrum by generating IQ samples with
sampling rate 𝑓S and transfers those samples to a signal detection
algorithm. Using IQ samples captured by a receiver antenna, the
signal detection algorithm detects the duration and frequency band
where the OFDM signal is located and extracts IQ samples cor-
responding to the detected OFDM signal, described as the blue
rectangle in Fig. 1b. We assume the accurate signal detection of
Wi-Fi 6 or 5G signals and a single modulation scheme is used for
data communication in one detected OFDM signal.

The IQ samples from the spectrum sensor sampled with rate 𝑓S
are resampled to 𝑓RX, 20 MHz. We only consider Wi-Fi 6 signals
with 20 MHz channel bandwidth and 5G signals with a PDSCH
bandwidth from 15 to 20 MHz. Thus, 20 MHz sampling rate can let
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Table 1: Variable definitions

Variable Definition (unit)

𝑓TX TX sampling rate (Hz)
𝑓RX Sampling rate of a system input sequence (Hz)

Δ𝑓SCS Subcarrier spacing (Hz)
𝑇IFFT IFFT sequence duration (s)
𝑁FFT FFT size used to generate IFFT sequence
𝑇CP CP duration (s)

𝑁CP
Number of time samples

in CP for one OFDM symbol

𝑦 [𝑛] Received time-domain sequence after
resampling to 20 MHz

𝑦′ [𝑛] 5G time-domain sequence after
resampling to 30.72 MHz

𝑦𝑖 [𝑛] Received time-domain IFFT sequence
for the 𝑖th OFDM symbol

𝑌 𝑖 [𝑘] Received symbol in subcarrier 𝑘
for the 𝑖th OFDM symbol

(S × S) Number of bins of a classifier input

Resource ElementTime

Freq.

⋯

OFDM 
symbol

SubcarrierResource block

Figure 2: Example 5G resource grid.
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Figure 3: 5G subframe structure.

the resampled IQ sequence encompass the OFDM signal in our sce-
nario. Extending the analysis to different transmission bandwidth
ranges is straightforward. These resampled IQ samples, denoted
by 𝑦 [𝑛], are taken as inputs of the feature extraction algorithm, as
elaborated in Sec. 3 in detail.

2.1 Wi-Fi 6 PHY layer
Wi-Fi 6 supports the high-efficiency (HE) transmission format as
well as earlier formats, such as non-high throughput (non-HT),
high throughput (HT), and very high throughput (VHT) formats.
Table 2 summarizes the parameters that configure the payload of
the Wi-Fi frame for each Wi-Fi format. In HE format, the number
of subcarriers is increased because the subcarrier spacing (SCS,
denoted as Δ𝑓SCS) is one-fourth of that of the previous transmission
formats. Over time, the Wi-Fi standard has evolved and several
options for the CP duration are available.

2.2 5G DL PHY layer
The 5G downlink (DL) resource structure and its associated termi-
nology is illustrated in Fig. 2. A resource element (RE) represents
the smallest unit which carries data, encompassing a single OFDM
symbol in the time domain and a single subcarrier in the frequency
domain. A resource block (RB) is the smallest radio resource that
can be allocated and refers to one OFDM symbol in the time domain
and 12 subcarriers in the frequency domain.

Figure 3 shows the 5G subframe structure in the time domain.
An OFDM symbol in 5G is comprised of both a CP and an inverse
fast Fourier transform (IFFT) sequence. The number of symbols
within a single slot (𝑁 slot

sym) varies in accordance with the CP length.
There are a normal and an extended CP option in the transmission
format. When a normal CP is used then 𝑁 slot

sym = 14, otherwise
𝑁 slot
sym = 12. The SCS, the distance between two adjacent subcarries

in OFDM systems, denoted by 𝜇, determines the number of slots
within a single subframe, 𝑁 subfr,𝜇

slot . There are five SCS options in
5G, but we consider only three cases, namely 15, 30, 60 kHz, which
are available in FR1. These SCS values correspond to 𝜇 = 0, 1, 2,
respectively, and the number of slots in a subframe for each SCS is
computed as 𝑁 subfr,𝜇

slot = 2𝜇 .
The structural parameters which define the 5G frame are listed

in Table 3. The length of an IFFT sequence, 𝑇IFFT, is:

𝑇IFFT = 𝑁FFT/𝑓TX = 1/Δ𝑓SCS . (1)

There is a one-to-one correspondence between 𝑇IFFT and Δ𝑓SCS (1).
Under the normal CP option, CP is longer than that in other symbols,
every 0.5 ms, or equivalently, 7 ·2𝜇 OFDM symbols in OFDM symbol
unit, called long CP. There is no long CP in the extended CP option,
so 𝑇CP is uniform. The transmission rate of 5G signals is a power
of 2 times 15 kHz and 30.72 MHz is an example of 5G transmission
rate. 𝑁FFT and 𝑁CP values are arranged when 𝑓TX is 30.72 MHz, the
value used in our evaluation.

In addition to PDSCH, there exist other physical (PHY) channels
that but serve specific functions although not carrying user data.
For instance, PDCCH conveys downlink control information (DCI),
which contains information required to decode PDSCH data such
as modulation and coding scheme (MCS). Each of these channels
utilizes predefined single-type modulation, see Table 4.

Compared to Wi-Fi, which has a predefined configuration of
data, pilot, and null subcarriers, 5G resource configuration for PHY
channels is flexible. Instead, the 5G system has a network dedicated
to exchanging information on how data packets are forwarded,
called the control plane, in addition to the network for data trans-
mission, called the user plane. An example of data transferred over
the control plane is RRC signals. Information on the starting OFDM
symbol of PDCCH and channel state information-reference signal
(CSI-RS) is notified to an RX with RRC signals via control plane [2].

3 PROPOSED ALGORITHM
High-level procedures to build features characterizing the modula-
tions of Wi-Fi 6 and 5G signals are illustrated in Fig. 4 and explained
in Sec. 3.1 and 3.2. The output of this flowchart is taken as an input
to the neural network model, described in Sec. 3.3.
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Table 2: Parameters for different formats of Wi-Fi

Non-HT format HT format VHT format HE format

Channel bandwidth 20 MHz {20, 40} MHz {20, 40, 80, 160} MHz {20, 40, 80, 160} MHz
𝑇IFFT 3.2 𝜇s 3.2 𝜇s 3.2 𝜇s 12.8 𝜇s
𝑇CP 0.8 𝜇s {0.4, 0.8} 𝜇s {0.4, 0.8} 𝜇s {0.8, 1.6, 3.2} 𝜇ss

Modulations BPSK, QPSK,
16QAM, 64QAM

BPSK, QPSK,
16QAM, 64QAM

BPSK, QPSK, 16QAM,
64QAM, 256QAM

BPSK, QPSK, 16QAM,
64QAM, 256QAM, 1024QAM

Table 3: 5G frame structure parameters

{SCS (kHz), CP option} {60, Normal} {60, Extended} {30, Normal} {15, Normal}

𝑇IFFT 16.17 𝜇s 16.67 𝜇s 33.33 𝜇s 66.67 𝜇s
{Short, long} 𝑇CP {1.17, 1.69} 𝜇s {4.17,−} 𝜇s {2.34, 2.86} 𝜇s {4.69, 5.21} 𝜇s

Long CP period (in symbol) 28 - 14 7
𝑁FFT when 𝑓TX = 30.72 MHz 512 512 1024 2048

{Short, long} 𝑁CP when 𝑓TX = 30.72 MHz {36, 52} 128 {72, 88} {144, 160}

Table 4: Modulations used for 5G physical channels

Physical channel PDSCH PSS/SSS PDCCH CSI-RS PBCH PDSCH-PTRS PDSCH-PTRS

Modulation QPSK, 16QAM, 64QAM, 256QAM BPSK QPSK QPSK QPSK QPSK QPSK

OFDM 
parameter 
estimation
• Δ𝑓!"!
• 𝑇"#

IQ sequence 
sampled with 
𝑓$% = 20 MHz

Preprocessing
• Resampling to 

30.72 MHz (5G)
• Find first index of 

symbol (approx.)
• Find symbol index 

inside a slot (5G)
• CFO correction

Feature extraction
• Amplitude and 

phase difference
• Convert feature 

sequence into 
histogram

Figure 4: Flow chart of proposed feature extraction algo-
rithm.

3.1 OFDM parameter estimation
Prior to building the features which characterize modulation, it is
necessary to estimate two essential OFDM parameters of OFDM
signals, SCS and CP length. To estimate these parameters, we use
CAF, a Fourier-series cofficient of autocorrelation function.

R𝑦𝑦 (𝛼, 𝜏) =
∞∑︁

𝑛=−∞
R𝑦𝑦 (𝑛, 𝜏)e− 𝑗2𝜋𝛼𝑛 . (2)

CAF is used to extract a repeated pattern presented in wireless
signals [8, 13, 25]. A variant of the CAF estimator presented in [25]
is deployed here,

R̂𝑦𝑦 (𝛼, ℓ) =
1
N

N−1∑︁
𝑛=0

{
𝑙−1∑︁
𝑖=0

𝑦 (𝑛 + 𝑖)𝑦∗ (𝑛 + 𝑖 + ℓ)
}
e− 𝑗2𝜋𝛼𝑛 . (3)

One sample of our estimator is computed as the autocorrelation
with delay ℓ . It differs from the estimator in [25], where only two
samples are used to compute one estimator sample. This modifica-
tion aims to make peaks more distinct. We set 𝑙 = 8 corresponding
to the shortest CP length.

CP in OFDM symbols causes a sequence to be repeated at both
ends of each symbol. The distance between starting indices of the
two repeated sequences located at both ends of an OFDM symbol
is 𝑇IFFT or 𝑁FFT (𝑓RX/𝑓TX) = 𝑓RX/Δ𝑓SCS, depending on whether it
is in time units or time sample units, respectively. This repetition
makes the CAF estimator at 𝛼 = 0 have a peak at ℓ = 𝑓RX/Δ𝑓SCS.
𝑇CP is also estimated with the CAF estimator, R̂𝑦𝑦 (𝛼, 𝑓RX/Δ𝑓SCS).
Since

∑𝑙−1
𝑖=0 𝑦 (𝑛 + 𝑖)𝑦∗ (𝑛 + 𝑖 + 𝜏) in Eq. (3) has peaks with the period

of 𝑓RX · (𝑇CP + 1/Δ𝑓SCS), it is expected of R̂𝑦𝑦 (𝛼, 𝑓RX/Δ𝑓SCS) to
have a large amplitude at 𝛼 = 1/{𝑓RX · (𝑇CP + 1/Δ𝑓SCS)}.

In our scenario, there are five candidates for ℓ values, ℓ𝐶 =

{64, 256, 333, 667, 1333}, each of which corresponds to an IFFT se-
quence length for a given SCS at 𝑓RX = 20 MHz. IFFT sequence
length is estimated as:

𝑇IFFT = ℓ′/𝑓RX s.t. ℓ′ = argmax
ℓ∈ℓ𝐶

���R̂𝑦𝑦 (0, ℓ)
��� (4)

When the estimated 𝑇IFFT corresponds to that of Wi-Fi 6 or 60 kHz
SCS NR, where multiple CP options are available, CP length is
further estimated as:

𝑇CP =
1
𝑓RX

(
1
𝛼 ′

− ℓ′
)

s.t. 𝛼 ′ = argmax
𝛼∈𝜶 ℓ ′

𝐶

���R̂𝑦𝑦 (𝛼, ℓ′)
��� (5)

where 𝜶 ℓ ′
𝐶
denotes a set of possible values of 𝛼 = 1/{ℓ′+(𝑓RX ·𝑇CP)},

given ℓ′.

3.2 Feature extraction
The motivation behind our proposed feature extraction lies in the
observation that when a sampled time-domain sequence is con-
tained within a single OFDM symbol, the Fast Fourier Transform
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(FFT) of that sequence yields the original symbols with a phase drift
that scales linearly with subcarrier index 𝑘 and synchronization
error Δ𝑛, as shown in

𝑌 𝑖
Δ𝑛 [𝑘] ≜ F

(
𝑦𝑖 [𝑛 − Δ𝑛]

)
=

𝑁FFT−1∑︁
𝑛=0

𝑦𝑖 [𝑛 − Δ𝑛]e− 𝑗2𝜋𝑛𝑘/𝑁FFT

= 𝑌 𝑖 [𝑘]e− 𝑗2𝜋Δ𝑛𝑘/𝑁FFT .

(6)

In order to build a feature characterizing modulation based on
this property, two objectives must be achieved: first, sampling a
sequence that is fully contained within an OFDM symbol, and
second, removing the phase drift caused by synchronization errors.

Utilizing the knowledge of 𝑁CP and 𝑁FFT, the CP position is
determined through autocorrelation analysis,

𝑅𝑦𝑦 (𝑛, 𝑁FFT) =
1

𝑁CP

𝑁CP−1∑︁
𝑖=0

𝑦 [𝑛 + 𝑖]𝑦∗ [𝑛 + 𝑖 + 𝑁FFT] . (7)

The position of CP is indicated by the peaks in |𝑅𝑦𝑦 (𝑛, 𝑁 ) |. To
locate a peak, we search for a sample whose amplitude is larger than
both of its neighboring samples while ensuring that the minimum
distance between two adjacent peaks is 90% of the OFDM symbol
duration (i.e., 288-time sample indices for HE format with 3.2 𝜇𝑠

CP), to avoid selecting undesired local peaks. We compute their
remainders divided by the sample number of the OFDM symbol
duration (𝑁CP + 𝑁FFT) over multiple OFDM symbols. The median
of those remainders is determined as the first index of the OFDM
symbol, denoted as 𝑝 . Noise and varying amplitudes of time samples
can introduce small errors in the estimated CP position. To reliably
sample the sequences contained in a single OFDM symbol, we
deploy the sequence {𝑦 [𝑝 + 𝑁CP/2], 𝑦 [𝑝 + 𝑁CP/2 + 1], · · · , 𝑦 [𝑝 +
𝑁CP/2 + 𝑁 − 1]}. This sequence is entirely within a single OFDM
symbol unless the estimation error of 𝑝 is larger than 𝑁CP/2.

We demonstrate that 𝑌 𝑖
Δ𝑛 [𝑘] exhibits a phase drift modeled by

e− 𝑗2𝜋Δ𝑛𝑘/𝑁 , while maintaining its amplitude 𝑌 𝑖 [𝑘] (6). We remove
this phase drift due to synchronization errors by computing the
phase differences between successive symbols in the same subcar-
rier 𝑘 as:

Δ∠𝑌 𝑖
Δ𝑛 [𝑘] ≜ ∠𝑌

𝑖+1
Δ𝑛 [𝑘] − ∠𝑌 𝑖

Δ𝑛 [𝑘]

= ∠
{
𝑌 𝑖+1 [𝑘]e− 𝑗2𝜋Δ𝑛𝑘/𝑁

}
− ∠

{
𝑌 𝑖 [𝑘]e− 𝑗2𝜋Δ𝑛𝑘/𝑁

}
= ∠𝑌 𝑖+1 [𝑘] − ∠𝑌 𝑖 [𝑘] .

(8)

Despite the lack of knowledge about Δ𝑛, sequences with constant
Δ𝑛 can be obtained by adjusting the interval between the starting
indices of two sampled sequences to be one OFDM symbol. The fea-
ture used to identify themodulation type is𝑌 𝑖

𝑓
[𝑘] ≜ |𝑌 𝑖

Δ𝑛 [𝑘] |e
𝑗Δ∠𝑌 𝑖

Δ𝑛 [𝑘 ] .
The null subcarrier symbols is eliminated by discarding symbols
with the 𝑁null smallest amplitudes.

In protocol-compliant reception, the Wi-Fi preamble and 5G
PDSCH-phase tracking reference signal (PDSCH-DMRS) are de-
ployed for CFO estimation. However, since they are not accessible
to a spectrum sensor, the CP in each OFDM symbol is used for CFO
estimation, i.e.,

∠

(
𝑦 (𝑝 + 𝑁FFT + 𝑖)

𝑦 (𝑝 + 𝑖)

)
= 2𝜋Δ𝑓𝑐/Δ𝑓SCS, (9)

where 𝑦 (𝑝 + 𝑖) is in CP. We use 𝑖 ∈ {⌊𝑁CP/4⌋, · · · , ⌈3𝑁CP/4⌉} so
that the sequence 𝑦 (𝑝 + 𝑖) are entirely within CP unless estimation
error of 𝑝 is larger than 𝑁CP/4. If the absolute value of the CFO
is larger than Δ𝑓SCS/2, CFO cannot be accurately estimated due to
aliasing. It is discussed in Sec. 3.2.1 in detail.

3.2.1 Additional procedures for 5G signal. To build a modulation
feature for 5G, 5G characteristics distinct from those of Wi-Fi, in-
cluding a different transmission rate, long CP, and flexible usage
of subcarriers, should be considered. First, the transmission rate
of 5G signals is not 𝑓RX = 20 MHz, but is the form of a power of 2
times 15 kHz. Hence, if the signal is classified as 5G, we resample
the sequence to 30.72 MHz = 2048 · 15 kHz, the smallest sampling
frequency above 20 MHz. 𝑁FFT and 𝑁CP with 30.72 MHz sampling
rate for each Δ𝑓SCS are arranged in the last two rows in Table 3.

In the case of the normal CP option, there is a long CP every
0.5 ms, which is slightly longer than that of other OFDM symbols.
Long CP breaks the assumption of the uniform OFDM symbol
durations, which is required by the method to find the first indices
of OFDM symbols and to build𝑌 𝑖

𝑓
[𝑘]. Specifically in building𝑌 𝑖

𝑓
[𝑘],

maintaining the fixed interval does not guarantee the constant Δ𝑛
over multiple OFDM symbols. Therefore, long CP also should be
located when finding the first index of the OFDM symbol.

Algorithm 1: Finding first index of long CP
Data: (𝑦′ [𝑛] of length (3 ms + 3 OFDM symbols)), 𝜇
Result: firstIndexLongCP= 𝑞+symLongCP · (𝑁FFT+𝑁CP)

1 𝑚 = 7 · 2𝜇 , 𝑁FFT = 512 · 22−𝜇 , 𝑁CP = 18 · 22−𝜇 , 𝑖 = 0;
2 while 𝑖 ≤ 5 do
3 𝑦′

𝑖
[𝑛] = {𝑦′ [(30.72 ·106) · (0.5 ·10−3) · 𝑖], · · · , 𝑦′ [(30.72 ·
106) · (0.5 · 10−3) · (𝑖 + 1) + 3 · (𝑁FFT + 𝑁CP)]};

4 Find peaks {𝑝′
𝑖0, · · · , 𝑝

′
𝑖 (𝑚+1) } with 𝑦

′
𝑖
[𝑛] using

autocorrelation |𝑅𝑦′
𝑖
𝑦′
𝑖
(𝑛, 𝑁FFT) | and peak locating

function explained in Sec. 3.2;
5 𝑝𝑖 𝑗 = mod(𝑝′

𝑖 𝑗
, 𝑁FFT + 𝑁CP), 𝑖 = 𝑖 + 1;

6 end
7 Δ𝑝 𝑗 = Mean({𝑝0( 𝑗+1) − 𝑝0( 𝑗−1) , · · · , 𝑝5( 𝑗+1) − 𝑝5( 𝑗−1) });
8 {Δ𝑝𝑘0 , · · · ,Δ𝑝𝑘𝑚−1 } = sortDescending({Δ𝑝 𝑗 });
9 symLongCP = argmax𝑘𝑞 Var({𝑝0𝑘𝑞 , · · · , 𝑝5𝑘𝑞 }) where

𝑞 ∈ {0, 1};

10 𝑞𝑖 𝑗 =

{
𝑝𝑖 𝑗 if 𝑗 ≤ symLongCP
𝑝𝑖 𝑗 − 16 otherwise

𝑞 𝑗 = Median(Mean({𝑞0𝑗 , · · ·𝑞5𝑗 })) where
𝑗 ∈ {0, 1, · · · ,𝑚 − 1} − {symLongCP};

Algorithm 1 explains the detailed steps to estimate the first in-
dex of OFDM symbol with long CP. 𝑦′

𝑖
[𝑛] in line 3 is a sequence

cropped to be as long as (0.5 ms + 3 OFDM symbols). In line 4, we
find𝑚 + 2 peaks from 𝑦′

𝑖
[𝑛] using autocorrelation |𝑅𝑦′

𝑖
𝑦′
𝑖
(𝑛, 𝑁FFT) |,

where𝑚 denotes the number of OFDM symbols in 0.5 ms given
𝜇. The difference between the remainders of two peaks separated
by two OFDM symbols divided by OFDM symbol duration, Δ𝑝 𝑗 ,
is computed as the average of 𝑝𝑖 ( 𝑗+1) − 𝑝𝑖 ( 𝑗−1) over 𝑖 . We expect
that Δ𝑝 𝑗 is the largest when 𝑝 𝑗 corresponds to long CP. For a more
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reliable estimation of a long CP, we add one additional criterion. In
line 8, we choose the two candidates 𝑘0 and 𝑘1 that give Δ𝑝𝑘𝑖 the
two largest values. We select 𝑘𝑞 where the samples {𝑝0𝑘𝑞 , · · · 𝑝5𝑘𝑞 }
has the larger variance between two candidates of 𝑘𝑞 . This is be-
cause we expect that {𝑝0𝑗 , · · · , 𝑝5𝑗 } has the largest variance if 𝑝𝑖 𝑗
corresponds to long CP since long CP makes |𝑅𝑦′

𝑖
𝑦′
𝑖
(𝑛, 𝑁FFT) | a

plateau with certain width, not one sharp peak caused by non-long
CP. Using estimated firstIndexLongCP, we put an additional 16
samples delay at the OFDM symbol with long CP while extracting
the feature 𝑌 𝑖

𝑓
[𝑘] to maintain uniform Δ𝑛. The number of 16 sam-

ples comes from the difference between long CP and non-long CP
with 30.72 MHz sampling rate.

In contrast toWi-Fi 6 signals, some subcarriers might not be used
for transmission in the midst of transmission. If no transmission is
made in 𝑌 𝑖 [𝑘] or 𝑌 𝑖+1 [𝑘], their phases are random, and Δ∠𝑌 𝑖

Δ𝑛 [𝑘]
cannot be represented as the phase difference. Therefore, we set
the threshold for the amplitude, denoted as 𝛽 , to check whether
the PE is being used for transmission. Only when the amplitudes
of both subcarrier symbols in adjacent OFDM symbols are higher
than the threshold, this feature is used.

The discrepancy between the center frequency of TX and that
of received IQ samples of 5G signals might be much larger than for
Wi-Fi. This is because payload in Wi-Fi covers the entire channel
bandwidth unless OFDMA is used. In contrast, PDSCH in 5G might
use only the part of channel bandwidth so the center frequency of
PDSCH might be different from that used for transmission. Thus,
the discrepancy is solely from hardware imperfection in Wi-Fi. For
a Wi-Fi link operating at 𝑓𝑐 = 5GHz and a frequency tolerance
of 1 ppm for commercial-off-the-shelf temperature-compensated
crystal oscillators [20] on both sides of theWi-Fi link, theworst-case
CFO is Δ𝑓𝑐 = 2𝑓𝑐 ·10−6 = 10 kHz. However, in 5G, CFO can escalate
to an MHz scale if we consider the center frequency of transmission
bandwidth to be carrier frequency. If the method presented earlier
in this subsection is employed, the difference could result in an
inaccurate estimation of CFO due to aliasing. Even in absence of
noise, it is only possible to measure Δ𝑓𝑐 accurately up to Δ𝑓SCS/2,
since Δ𝑓𝑐 + 𝑗 ·Δ𝑓SCS cannot be distinguished from each other, where
𝑗 ∈ Z. The provided algorithm makes the corrected CFO a multiple
of Δ𝑓SCS, not a zero.

However, the CFO correction algorithm is still deployed for fea-
ture extraction. This is because even though this method cannot find
the exact CFO, it can recover the orthogonality among subcarriers.
The CFO effect in our feature can be represented as:

𝑌 𝑖
Δ𝑛 [𝑘] =

𝑁FFT−1∑︁
𝑛=0

𝑦 [𝑛 − Δ𝑛]e− 𝑗2𝜋𝑛 (Δ𝑓𝑐/𝑓TX+𝑘/𝑁FFT )

= 𝑌 𝑖 [𝑘 + 𝑁FFTΔ𝑓𝑐/𝑓TX] e− 𝑗2𝜋Δ𝑛 (𝑘/𝑁FFT+Δ𝑓𝑐/𝑓TX )

𝑌 𝑖+1
Δ𝑛 [𝑘] = 𝑌 𝑖+1 [𝑘 + 𝑁FFTΔ𝑓𝑐/𝑓TX] ×

e− 𝑗2𝜋 (Δ𝑛𝑘/𝑁FFT+(Δ𝑛+(𝑁FFT+𝑁CP )Δ𝑓𝑐/𝑓TX )

⇒ Δ∠𝑌 𝑖
Δ𝑛 [𝑘] = ∠𝑌

𝑖+1 [𝑘 + Δ𝑓𝑐/Δ𝑓SCS] − ∠𝑌 𝑖 [𝑘 + Δ𝑓𝑐/Δ𝑓SCS]
− 2𝜋Δ𝑓𝑐 (1/Δ𝑓SCS +𝑇CP) .

(10)
To maintain orthogonality of ∠𝑌 𝑖

Δ𝑛 [𝑘] across 𝑘 , Δ𝑓𝑐/Δ𝑓SCS should
be an integer. We have demonstrated that after the CFO correction
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Figure 5: Flow chart of proposed classifier system.
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Figure 6: CNN-based modulation classifier structure.

Table 5: DL model parameters

Batch size 32
Learning rate 5 · 10−5

Epochs 200
Loss Cross-entropy

using CP, the CFO value can be expressed as 𝑗 · Δ𝑓SCS, which
renders Δ𝑓𝑐/Δ𝑓SCS to be an integer. Consequently, the phase of
our feature becomes the sum of a phase difference of originally
transmitted symbols and a phase caused by CFO. Since Δ∠𝑌 𝑖

Δ𝑛 [𝑘]
in (10) contains 𝑇CP term, the CFO effect on Δ∠𝑌 𝑖

Δ𝑛 [𝑘] is different
when OFDM symbol 𝑖 − 1 is an OFDM symbol with long CP. To
make the CFO effect uniform in the feature,Δ∠𝑌 𝑖

Δ𝑛 [𝑘] where OFDM
symbol 𝑖 − 1 is not used for building the feature.

The features may contain the effect of other PHY channels which
use modulations other than those used by PDSCH. It is impossible
to perfectly filter out the effect because information about which
REs were used for which PHY channels is not accessible. However,
since the modulations of other PHY channels are either BPSK or
QPSK, the constellation diagram of the features is only affected by
PDSCH modulation. Thus, the distribution of phase differences is
still an intrinsic characteristic of PDSCH modulation.

3.3 Input of neural network classifier
The obtained feature 𝑌 𝑖

𝑓
[𝑘] goes through two preprocessing steps

to become input to the classifier. 1) instead of Δ∠𝑌 𝑖
Δ𝑛 [𝑘], Δ∠𝑌

𝑖
Δ𝑛 [𝑘]

modulo 𝜋/2 is used as a phase of 𝑌 𝑖
𝑓
[𝑘]. A constellation diagram of



Blind Modulation Classification of Wi-Fi 6 and 5G signals for Spectrum Sensing MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

(a) (b)

Figure 7: Measured 16QAM features at SNR= 25dB with 5G
data: (a) Scatterplot of𝑌 𝑖

𝑓
[𝑘] and (b) Corresponding histogram

of |𝑌 𝑖
𝑓
[𝑘] |/|𝑌 𝑖

𝑓
[𝑘] |p99 and (Δ∠𝑌 𝑖

Δ𝑛 [𝑘] mod 𝜋/2)/2𝜋 .

every target modulation and corresponding features 𝑌 𝑖
𝑓
[𝑘] without

noise are symmetric with 𝜋/2. Thus, Δ∠𝑌 𝑖
Δ𝑛 [𝑘] modulo 𝜋/2 is used

as a phase of our feature to characterize a modulation. For Wi-
Fi 6 signals, BPSK cannot be distinguished from QPSK if Δ∠𝑌 𝑖

Δ𝑛 [𝑘]
modulo 𝜋/2 is used. Thus, an additional classifier with the original
phase as an input is used to distinguish BPSK and QPSK from the
high-order QAM modulations, see Fig. 5. 2) A 2D histogram of
the normalized amplitude of the features |𝑌 𝑖

𝑓
[𝑘] |/|𝑌 𝑖

𝑓
[𝑘] |p99, where

|𝑌 𝑖
𝑓
[𝑘] |p99 denotes 99% percentile of |𝑌 𝑖

𝑓
[𝑘] | in a single data, and

the phases ∠𝑌 𝑖
𝑓
[𝑘]/2𝜋 , as an input for the classifier. Each bin in the

histogram is normalized by dividing it by the number of features in
a single data. To remove outliers, 𝑌 𝑖

𝑓
[𝑘] whose amplitude is larger

than |𝑌 𝑖
𝑓
[𝑘] |p99 was not included in the histogram.

The overall structure and the parameter of the classifier with
the histogram as input are summarized in Fig. 5 and Table 5. The
neural network structure used for each classifier is described in
Fig. 6. To identify BPSK and QPSK, S = S𝑃 , and the third Maxpool
layer is not used.

Figure 7a shows a scatterplot of the IQ data of 𝑌 𝑖
𝑓
[𝑘] and Fig. 7b

the corresponding 2D histogram for 5G 16QAMdatawithΔ∠𝑌 𝑖
Δ𝑛 [𝑘]

modulo 𝜋/2. ∠𝑌 𝑖
𝑓
[𝑘] on the red and black dashed lines are the

noise-free phase differences between two 16QAM symbols. Blue
dashed lines are from the phase differences between BPSK or QPSK
symbols of the PHY channel other than PDSCH. The noise-free
phase difference values are (odd integer) ·𝜋/4 and shifted further by
CFO. The red, blue, and black dashed lines in Fig. 7a correspond to
the red, blue, and black dashed lines in Fig. 7b, respectively. Fig. 7a
and Fig. 7b show that symbols are densely located at the points in
the dashed lines, which is consistent with our expectations.

An advantage of using a histogram is that they are invariant to
the length of 𝑌 𝑖

𝑓
[𝑘]. This enables a neural network with a fixed

structure to handle signals of any duration. This property is useful
when dealing with 5G features where the number of samples of
𝑌 𝑖
𝑓
[𝑘] is unknown due to unused resources. Moreover, in a his-

togram input, the effect of CFO estimation error caused by aliasing

Table 6: Data generation parameters

SNR [5, 40] dB in steps of 5 dB
Carrier frequency 2.4 GHz (Wi-Fi 6), 2.6 GHz (5G)
The number of
{train, test} data

{800, 200} per each
(𝑇IFFT,𝑇CP,modulation) case

{S𝑃 ,S𝑄 } {15, 50}
Time duration
of each data 400 𝜇s (Wi-Fi 6), 3.5 ms (5G)

(10) is a movement along y-axis of the histogram as far as orthogo-
nality of ∠𝑌 𝑖

Δ𝑛 [𝑘] across 𝑘 holds. The neural network can be trained
to identify histogram movements along y-axis as a single class.

4 EVALUATION
4.1 Evaluation environments
4.1.1 Data collection. The proposed classifier is evaluated with
synthetic data generated from AWGN channel simulations with the
details in Table 6. MATLAB R2023a WLAN and 5G toolbox [22] are
deployed to generate the synthetic AWGN dataset. Wi-Fi HT [15]
and HE format [14] are used to generate data with𝑇IFFT = 3.2 𝜇s and
12.8 𝜇s inWi-Fi 6. For 5G data, every SCS option in FR1, 𝜇 ∈ {0, 1, 2},
is tested. All PHY channels listed in Table 4 are included in every
5G data item.

To evaluate whether the performance of the proposed system
remains invariant across varying 5G PHY channel configurations,
the parameters for allocating REs to PHY channels are set for each
data type. For example in PDCCH, symbol duration, aggregation
level, and starting symbol number are randomly selected. PHY
broadcast channel (PBCH), primary synchronization signal (PSS),
and secondary synchronization signal (SSS) are included only when
𝜇 ∈ {0, 1} since they are not available for 𝜇 = 2. The other 5G PHY
channel parameters are from FR1 test models in [1, 3].

4.1.2 Building classifier input. First, to avoid using the Wi-Fi pre-
amble, we remove the first 2000 samples from each data. If the
estimated 𝑇IFFT corresponds to those of Wi-Fi 6, an IQ sequence
whose length corresponds to 40+2 or 10+2 OFDM symbols is de-
ployed to build the feature, 𝑌 𝑖

𝑓
[𝑘], starting with a random sample.

We need an additional OFDM symbol due to the unknown starting
index of an OFDM symbol sequence, 𝑝 ∈ [0, 𝑁FFT − 1]. Further-
more, one more extra OFDM symbol is required to evaluate phase
differences between those of the last OFDM symbol and the next
one. 𝑁null is set to 8 and 32 for Wi-Fi HT and HE, respectively. If
the estimated 𝑇IFFT refers to 5G, 𝑦′ [𝑛] of length (3 ms + 3 OFDM
symbols) is used to estimate 𝑝 and firstIndexLongCP. For 5G,
the sequence of 14 OFDM symbols is utilized. We also evaluate
the case using 𝑌 𝑖

𝑓
[𝑘] values as an input to assess how much the

histogram input contributes to the performance. In this case, one
data input consists of 2240 samples for Wi-Fi 6 or 7900 samples for
5G. The average number of feature elements in a single piece of
5G histogram data is 7858. We use fixed-duration data for a fair
comparison, but the classifier can take the variable length data as
input as the obtained feature is processed to a histogram using the
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Table 7: SNR required for data communication with each
modulation

Modulation BPSK QPSK 16QAM
SNR for Wi-Fi 6 (dB) 5 10 16

SNR for 5G (dB) - 15 18

Modulation 64QAM 256QAM 1024QAM
SNR for Wi-Fi 6 (dB) 22 30 35

SNR for 5G (dB) 21 27 -

algorithms in Sec. 3.3. For both cases of input formats, an input with
both phases of ∠𝑌 𝑖

Δ𝑛 [𝑘] modulo 𝜋/2 and ∠𝑌 𝑖
Δ𝑛 [𝑘] are evaluated.

4.2 Evaluation results
Results in Fig. 8 are obtained with synthetic AWGN channel data.
Fig. 8a shows estimation accuracy of theOFDMparameters {𝑇CP,𝑇IFFT}.
Normal CP and Extended CP in the legend refer to the shortest and
longest option for 𝑇CP, respectively, given Δ𝑓SCS. Medium CP of
Wi-Fi HE refers to 1.6 𝜇s 𝑇CP. In every case, accuracy is over 99%.
In Fig. 8b, the estimation accuracy of correctly finding the starting
index of an OFDM symbol is shown for the method in Sec. 3.2.
Correctly finding means that the starting index time is within 𝜖

tolerance of the true time. In Fig. 8b, we note that the estimation
accuracy for identifying the starting index of an OFDM symbol falls
below 60% for both Wi-Fi 6 formats and 5G. When the tolerance is
relaxed to 𝑁CP/4 time samples, the reported estimation accuracy
increases to 99%.

The accuracy of estimating an OFDM symbol with long CP is
shown in Fig. 8c. Aside from Δ𝑓SCS = 60 kHz, the performance is
over 90% even at low SNR of 5 dB. Accuracy at Δ𝑓SCS = 60 kHz
is low because the duration of an OFDM symbol with long CP is
larger than the others. The large number of symbols that the peak
detection function needs to detect also negatively affects the peak
detection performance. At Δ𝑓SCS = 60 kHz, there are 30 peaks that
should be identified in line 4 of Algorithm 1, which is considerably
larger than the 9 or 16 peaks at Δ𝑓SCS = 15 kHz and Δ𝑓SCS = 30 kHz.

Figure 9 shows modulation classification accuracy with AWGN
channel data. The proposed algorithm with a histogram input with
the phases Δ∠𝑌 𝑖

Δ𝑛 [𝑘] modulo 𝜋/2 outperforms in all considered
cases, except forWi-Fi 6 at 5 dB SNR. The performance gap between
using the histogram as classifier input as opposed to using the fea-
ture value input increases in Wi-Fi HE and even more so in 5G. This
is because the histogram input helps the classifier to discriminate
the detailed symbol constellation of high-order modulations.

In Table 8, the accuracy of each modulation format is shown
when the SNR satisfies the minimum requirement for standard-
compliant data communication. We deploy error vector magnitude
(EVM) levels required for data communication with each modu-
lation for Wi-Fi 6 and 5G documentations [1, 14]. Required SNR
values are calculated using the relation between EVM and SNR
presented in [26]. SNR values required for the smallest coding rate
are chosen for each modulation and chosen values are arranged in
Table 7. For every modulation with both Wi-Fi 6 formats and 5G,
accuracy is at least 98%.

Table 8: Accuracy when SNR is over the minimum require-
ments for standard-compliant data communication

Modulation BPSK QPSK 16QAM
Wi-Fi HT 100% 100% 100%
Wi-Fi HE 100% 100% 100%

5G - 99% 100%

Modulation 64QAM 256QAM 1024QAM
Wi-Fi HT 100% - -
Wi-Fi HE 100% 100% 98%

5G 100% 100% -

5 CONCLUSION
Modulation classification of Wi-Fi 6 and 5G signals for spectrum
sensing is studied. Our system deploys CAF to estimate SCS and
CP length and achieve 99% accuracy. Without control information,
our proposed preprocessing algorithm extracts features characteriz-
ing modulation schemes insensitive to synchronization errors. The
preprocessing stage also estimates the CP position and the symbol
with long CP of 5G signals. The form of the features is converted
to be more suitable as inputs for the CNN-based classifier, which
contributes to performance improvement in identifying high-order
modulation. With data under various protocol configurations, our
system identifies modulations of OFDM signals with 98% classifica-
tion accuracy when SNR is higher than the value required for data
transmission given a modulation. We are planning to extend this
study to multiple-input multiple-output (MIMO) and orthogonal
frequency division multiple access (OFDMA) scenario, to make
more general transmission cases covered.
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Figure 8: OFDM parameter estimation results: (a) Accuracy for estimating 𝑇IFFT and 𝑇CP, (b) Accuracy for choosing the first
index of CP with acceptable error 𝜖, and (c) Accuracy for finding an OFDM symbol with long CP of 5G signals.
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Figure 9: Classification accuracy for modulations vs. SNR: (a) Wi-Fi HT, (b) Wi-Fi HE, (c) 5G.

and Privacy in Wireless and Mobile Networks (WiSec). Guildford, UK, 43—-48.
https://doi.org/10.1145/3558482.3590196

[11] Sheng Hong, Yu Wang, Yuwen Pan, Hao Gu, Miao Liu, Jie Yang, and Guan
Gui. 2020. Convolutional neural network aided signal modulation recognition
in OFDM systems. In Proc. IEEE VTC. 1–5. https://doi.org/10.1109/VTC2020-
Spring48590.2020.9128455

[12] Sheng Hong, Yibin Zhang, Yu Wang, Hao Gu, Guan Gui, and Hikmet Sari. 2019.
Deep learning-based signal modulation identification in OFDM systems. IEEE
Access 7 (Aug. 2019), 114631–114638. https://doi.org/10.1109/ACCESS.2021.
3102223

[13] Steven Siying Hong and Sachin Rajsekhar Katti. 2011. DOF: A local wireless
information plane. In Proc. ACM SIGCOMM. 230–241. https://doi.org/10.1145/
2018436.2018463

[14] IEEE 802.11ax. 2021. Part 11: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications amendment 1: enhancements for high-
efficiency WLAN.

[15] IEEE 802.11n. 2009. Part 11: Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications amendment 5: enhancements for higher
throughput.

[16] Anand Kumar, Keerthi Kumar Srinivas, and Sudhan Majhi. 2023. Automatic
Modulation Classification for Adaptive OFDM Systems Using Convolutional
Neural Networks with Residual Learning. IEEE Access 11 (Jun. 2023), 61013–
61024. https://doi.org/10.1109/ACCESS.2023.3286939

[17] Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. 2014. LTE radio
analytics made easy and accessible. Proc. ACM SIGCOMM 44, 4 (Aug. 2014),
211–222. https://doi.org/10.1145/2740070.2626320

[18] Yan Li, Johan Barthelemy, Shuai Sun, Pascal Perez, and Bill Moran. 2020. A case
study of WiFi sniffing performance evaluation. IEEE Access 8 (2020), 129224–
129235. https://doi.org/10.1109/ACCESS.2020.3008533

[19] Dancheng Liu, Kazim Ergun, and Tajana Šimunić Rosing. 2023. Towards a Robust
and Efficient Classifier for Real World Radio Signal Modulation Classification. In
Proc. IEEE ICASSP. 1–5. https://doi.org/10.1109/ICASSP49357.2023.10094907

[20] Golledge Electronics Ltd. 2023. GTXO-203T | 1.8V∼3.6V SM TCXO | Golledge.
Retrieved 06.21.2023 from https://www.golledge.com/products/gtxo-203t-ultra-
miniature-tight-stability-tcxo/c-26/p-287/

[21] Norbert Ludant, Pieter Robyns, and Guevara Noubir. 2023. From 5G Sniffing to
Harvesting Leakages of Privacy-Preserving Messengers. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,
1919–1934. https://doi.org/10.1109/SP46215.2023.00110

[22] MathWorks. 2023. MATLAB Products. Retrieved 06.21.2023 from https://www.
mathworks.com/products.html/

[23] Myung Chul Park and Dong Seog Han. 2021. Deep learning-based automatic
modulation classification with blind OFDM parameter estimation. IEEE Access 9
(2021), 108305–108317. https://doi.org/10.1109/ACCESS.2021.3102223

[24] Amit Kumar Pathy, Anand Kumar, Rahul Gupta, Sushant Kumar, and Sudhan
Majhi. 2021. Design and implementation of blind modulation classification for
asynchronous MIMO-OFDM system. IEEE Trans. Instrum. Meas. 70 (Sept. 2021),
1–11. https://doi.org/10.1109/TIM.2021.3109737

[25] Anjana Punchihewa, Vijay K Bhargava, and Charles Despins. 2011. Blind estima-
tion of OFDM parameters in cognitive radio networks. IEEE Trans. Wireless Com-
mun. 10, 3 (Mar. 2011), 733–738. https://doi.org/10.1109/TWC.2010.010411.100276

[26] Rishad Ahmed Shafik, Md Shahriar Rahman, and AHM Razibul Islam. 2006. On
the extended relationships among EVM, BER and SNR as performance metrics.
In Proc. IEEE ICECE. 408–411. https://doi.org/10.1109/ICECE.2006.355657

[27] Ling Yu, Jin Chen, and Guoru Ding. 2017. Spectrum prediction via long short
term memory. In Proc. IEEE ICCC. 643–647.

[28] Zufan Zhang, Hao Luo, Chun Wang, Chenquan Gan, and Yong Xiang. 2020. Au-
tomatic modulation classification using CNN-LSTM based dual-stream structure.
IEEE Trans. Veh. Technol. 69, 11 (Nov. 2020), 13521–13531.

https://doi.org/10.1145/3558482.3590196
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128455
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128455
https://doi.org/10.1109/ACCESS.2021.3102223
https://doi.org/10.1109/ACCESS.2021.3102223
https://doi.org/10.1145/2018436.2018463
https://doi.org/10.1145/2018436.2018463
https://doi.org/10.1109/ACCESS.2023.3286939
https://doi.org/10.1145/2740070.2626320
https://doi.org/10.1109/ACCESS.2020.3008533
https://doi.org/10.1109/ICASSP49357.2023.10094907
https://www.golledge.com/products/gtxo-203t-ultra-miniature-tight-stability-tcxo/c-26/p-287/
https://www.golledge.com/products/gtxo-203t-ultra-miniature-tight-stability-tcxo/c-26/p-287/
https://doi.org/10.1109/SP46215.2023.00110
https://www.mathworks.com/products.html/
https://www.mathworks.com/products.html/
https://doi.org/10.1109/ACCESS.2021.3102223
https://doi.org/10.1109/TIM.2021.3109737
https://doi.org/10.1109/TWC.2010.010411.100276
https://doi.org/10.1109/ICECE.2006.355657

	Abstract
	1 Introduction
	2 System Objective
	2.1 Wi-Fi 6 PHY layer
	2.2 5G DL PHY layer

	3 Proposed Algorithm
	3.1 OFDM parameter estimation
	3.2 Feature extraction
	3.3 Input of neural network classifier

	4 Evaluation
	4.1 Evaluation environments
	4.2 Evaluation results

	5 Conclusion
	References



