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Abstract

The prevalence of mild cognitive impairment increases with age and is further exacerbated 

by chronic kidney disease (CKD). CKD is associated with (1) mild cognitive impairment, 

(2) impaired endothelial function, (3) impaired blood-brain barrier, (4) increased cerebral 

microhemorrhage burden, (5) increased cerebral blood flow (CBF), (6) impaired cerebral 

autoregulation, (7) impaired cerebrovascular reactivity, and (8) increased arterial stiffness. We 

report preliminary findings from our group that demonstrate altered cerebrovascular reactivity in 

a mouse model of CKD-associated vascular calcification. The CBF of CKD mice increased more 

quickly in response to hypercapnia (p < 0.05) but then decreased prematurely during hypercapnia 

challenge (p < 0.05). Together, these results indicate that altered kidney function can lead to 

alterations in the cerebral microvasculature, and hence brain health.
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Introduction

Mild cognitive impairment affects 6.7–25.2% of individuals over the age range of 60 to 84 

years old.1 The prevalence of mild cognitive impairment increases with age and is further 

exacerbated by chronic kidney disease (CKD).2–4 A study of over one million subjects 

revealed that there is an eightfold increase in the incidence rate of dementia in patients with 

end-stage kidney disease.5

A current overarching hypothesis is that abnormal cerebral blood flow (CBF) is a precursor 

to cognitive impairment.6 A study of 1730 adults revealed that low CBF velocity in the 

middle cerebral artery, measured with transcranial Doppler, was a risk factor for cognitive 

decline and atrophy in the hippocampus and amygdala.7 In the Rotterdam Study which 

excluded end-stage kidney disease patients, analysis of over 2500 participants demonstrated 

that lower kidney function was independently associated with lower cerebral blood flow 

measured by MRI8 Interestingly, a higher CBF has been observed in patients with end-stage 

kidney disease.9,10 This elevated CBF is associated with a lower hemoglobin content. In 

pediatric patients, regions of increased CBF have been observed, but the bulk regional CBF 

is not significantly different.11

Here, we discuss recent journal articles that describe associations between CKD and the 

cerebral microvasculature. We then report on preliminary findings that demonstrate that 

cerebrovascular reactivity is altered in a mouse model of CKD. Together, these results 

indicate that altered kidney function can lead to alterations in the cerebral microvasculature, 

and hence brain health.

Associations betweeen CKD and cerebral microvasculature

With CKD, the clearance of uremic toxins is reduced, which in turn can lead to global 

vascular dysfunction.4 Multiple serum biomarkers of endothelial dysfunction, including 

sVCAM–1 and thrombomodulin, are elevated in patients with stage 5 CKD.12 Also, CKD is 

associated with increased blood-brain barrier (BBB) permeability.

Using IgG as a marker of increased BBB permeability,13 Lau et al.14 observed a tenfold 

increase in IgG immunostaining in mice with CKD. They also observed an increased 

cerebral microhemorrhage burden with CKD. Specifically, they observed a twofold increase 

in CMH burden and a fourfold increase in the area of each CMH in mice with CKD.

Increased BBB permeability may be a consequence of impaired cerebral autoregulation 

associated with CKD. Castro et al.15 performed transcranial Doppler measurements of blood 

flow in the middle cerebral artery of 46 subjects with ischemic stroke. Frequency and 

coherence analysis of the Doppler waveforms enable assessment of cerebral autoregulation. 

Their analyses indicate an increased degree of impaired cerebral autoregulation with 

increased CKD severity. Impaired autoregulation can lead to an increased pressure across the 

capillary bed, which can result in capillary damage and increased BBB permeability.16
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Pilot preclinical study on CBF in CKD model

Cerebrovascular reactivity is altered in people with a history of stroke or individual suffering 

from dementia.17–21 Individuals in early stages of Alzheimer’s disease have impaired 

cerebrovascular reactivity compared to those with normal cognitive function.22 Using laser 

speckle imaging (LSI) measurements of CBF, Shin et al.23 demonstrated that hyperemia 

associated with hypercapnia was attenuated in aged wild-type mice, and further attenuated 

in Tg2576 mice with cerebral amyloid angiopathy. Using two-photon excited fluorescence 

microscopy, Han et al.24 demonstrated decreased cerebrovascular reactivity in Tg2576 mice 

with considerable vascular amyloid deposition, and this decreased reactivity was associated 

with a hypercontractile vascular state. Also using LSI, Saito et al.25 measured a decrease in 

cerebrovascular reactivity in Tg-SwDI mice, and demonstrated near-complete restoration of 

reactivity in Tg-SwDI mice treated with taxifolin.

To investigate the effects of CKD on cerebral blood flow, we utilized the DBA/2J mouse 

strain, which is well-known to develop bone/mineral abnormalities including elevated 

parathyroid hormone, arterial calcification and high-turnover bone disease when subjected 

to CKD and high-phosphate feeding.26,27 Female DBA/2J mice were fed a diet containing 

0.2% adenine for 18 days to incur tubulointerstitial nephritis, followed by high-phosphate 

diet for 4 weeks to induce arterial calcification. Mice were exposed to a second period 

of adenine diet for one week in the middle of the 4-week high-phosphate course, to 

maintain CKD.27,28 In accordance with a protocol approved by the Animal Use Committee 

at University of California, Irvine, each mouse was anesthetized with isoflurane (1.5–2.0%, 

balance room air) and placed in a stereotactic frame. A midline incision in the scalp was 

made to enable visualization of brain regions between lambda and bregma. The exposed 

skull was hydrated with saline and a glass cover slip placed on top to maintain skull 

hydration and hence transparency. We used a custombuilt LSI device to measure blood 

flow dynamics in response to a hypercapnia protocol we previously used in a preclinical 

study of Alzheimer’s disease.29 We collected images during (1) normoxia for three min, (2) 

hypercapnia (mixture of 5% CO2 and 95% room air) for five min, and (3) normoxia for five 

min.

We used standard LSI processing techniques30 to convert each raw speckle image to a 

speckle flow index (SFI) of blood flow, using a simplified speckle imaging equation.31 For 

each subject, a ROI was identified and analyzed from each image in the acquired sequence. 

We then calculated the mean SFI of the ROI from each image and extracted the following 

key parameters: (1) peak increase in CBF during hypercapnia (ΔBFmax), (2) time required 

for CBF to increase from baseline to 50% of ΔBFmax (trise), and (3) time required for CBF to 

decrease from ΔBFmax back to 50% of ΔBFmax (tfall).

No difference in the maximum increase in CBF was found [Fig. 1A,B (left)]. In contrast, 

the characteristic time trise required for the CBF to increase was shorter for the CKD mice 

[Fig. 1B (middle)]. Moreover, the characteristic time tfall was shorter for the CKD mice [Fig. 

1B (right)]. Together, these results suggest that cerebrovascular dysfunction is triggered by 

kidney damage induced by uremic vascular calcification.
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Arterial medial calcification is associated with CKD, resulting in part from calcium and 

phosphorous release from bone, elastin degradation, and loss of endogenous inhibitors of 

calcification including klotho and fetuin-A.32,33 Transcranial Doppler measurements have 

revealed an inverse association between degree of cerebral artery stenosis and stiffness, 

and CKD.34,35 Our data demonstrated abnormal cerebrovascular reactivity that is suggestive 

of increased cerebrovascular stenosis and/or stiffness. Taken together, there is growing 

evidence that CKD cerebrovascular disease alters CBF and vascular function, and may 

contribute to cognitive impairment.

In summary, results from the literature, combined with our preliminary findings, collectively 

indicate that CKD leads to impaired cerebrovascular structure and function. In particular, 

we document that CKD is associated with (1) mild cognitive impairment, (2) impaired 

endothelial function, (3) impaired blood-brain barrier, (4) increased CMH burden, (5) 

increased CBF, (6) impaired cerebral autoregulation, and (7) impaired cerebrovascular 

reactivity that may be due to increased arterial stenosis and/or stiffness. Additional research 

is required to study the effects of CKD on structure and function of the neurovascular unit 

and on cognition.
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Fig. 1. 
Differences in cerebral vascular reactivity between wild-type (“Normal”) and mice with 
uremic vascular calcification (“CKD”, chronic kidney disease). (A) Representative time 
traces of CBF changes in normal and CKD mice. (B) Although the maximum increase in 
CBF was similar for normal and CKD mice (left graph, Mann-Whitney test, p = 0.69), the 
CBF of CKD mice increased more quickly in response to hypercapnia (middle graph, p < 

0.05) but then decreased prematurely during hypercapnia challenge (right graph, p < 0.05). 
Dashed lines indicate period of hypercapnia.
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