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ARTICLE

Inference and analysis of cell-cell communication
using CellChat
Suoqin Jin 1,2, Christian F. Guerrero-Juarez 1,2,3,4, Lihua Zhang1,2, Ivan Chang5,6, Raul Ramos2,3,4,

Chen-Hsiang Kuan3,4,7,8, Peggy Myung 9,10, Maksim V. Plikus 2,3,4✉ & Qing Nie 1,2,3✉

Understanding global communications among cells requires accurate representation of cell-

cell signaling links and effective systems-level analyses of those links. We construct a

database of interactions among ligands, receptors and their cofactors that accurately

represent known heteromeric molecular complexes. We then develop CellChat, a tool that is

able to quantitatively infer and analyze intercellular communication networks from single-cell

RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for

cells and how those cells and signals coordinate for functions using network analysis and

pattern recognition approaches. Through manifold learning and quantitative contrasts, Cell-

Chat classifies signaling pathways and delineates conserved and context-specific pathways

across different datasets. Applying CellChat to mouse and human skin datasets shows its

ability to extract complex signaling patterns. Our versatile and easy-to-use toolkit CellChat

and a web-based Explorer (http://www.cellchat.org/) will help discover novel intercellular

communications and build cell-cell communication atlases in diverse tissues.
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S ignaling crosstalk via soluble and membrane-bound factors
is critical for informing diverse cellular decisions, including
decisions to activate cell cycle or programmed cell death,

undergo migration or differentiate along the lineage1–3. Single-cell
RNA-sequencing (scRNA-seq) technologies have led to discovery
of cellular heterogeneity and differentiation trajectories at unpre-
cedented resolution level4,5. While most current scRNA-seq data
analysis approaches allow detailed cataloging of cell types and
prediction of cellular differentiation trajectories, they have limited
capability in probing underlying intercellular communications
that often drive heterogeneity and cell state transitions. Yet,
scRNA-seq data inherently contains gene expression information
that could be used to infer such intercellular communications6,7.

Several methods have been recently developed to infer cell–cell
communication from scRNA-seq data8–14, such as Single-
CellSignalR9, iTALK10, and NicheNet13. However, these and other
similar methods usually use only one ligand/one receptor gene
pairs, often neglecting that many receptors function as multi-
subunit complexes. For example, soluble ligands from the TGFβ
pathway signal via heteromeric complexes of type I and type II
receptors15. More recently, to address this limitation, CellPho-
neDB v2.0 has been developed, which predicts enriched signaling
interactions between two cell populations by considering the
minimum average expression of the members of the heteromeric
complex16. However, it does so without considering other
important signaling cofactors, including soluble agonists, antago-
nist, as well as stimulatory and inhibitory membrane-bound co-
receptors. Other limitations of current databases or tools include
the lack of: (a) systematically curated classification of ligand-
receptor pairs into functionally related signaling pathways; (b)
intuitive visualization of both autocrine and paracrine signaling
interactions; (c) systems approaches for analyzing complex
cell–cell communication; and (d) capability of accessing signaling
crosstalk for continuous cell state trajectories given the fact that
biological variability between cells can be discrete or continuous.

Here we develop CellChat, an open source R package (https://
github.com/sqjin/CellChat) to infer, visualize and analyze inter-
cellular communications from scRNA-seq data. First,
we manually curate a comprehensive signaling molecule interaction
database that takes into account the known structural composition
of ligand-receptor interactions, such as multimeric ligand-receptor
complexes, soluble agonists and antagonists, as well as stimulatory
and inhibitory membrane-bound co-receptors. Next, CellChat
infers cell-state specific signaling communications within a given
scRNA-seq data using mass action models, along with differential
expression analysis and statistical tests on cell groups, which can be
both discrete states or continuous states along the pseudotime cell
trajectory. CellChat also provides several visualization outputs to
facilitate intuitive user-guided data interpretation. CellChat can
quantitatively characterize and compare the inferred intercellular
communications through social network analysis tool17, pattern
recognition methods18,19 and manifold learning approaches20. Such
analyses enable identification of the specific signaling roles played
by each cell population, as well as generalizable rules of intercellular
communications within complex tissues. We showcase CellChat’s
overall capabilities by applying it to both our own and publicly
deposited mouse skin scRNA-seq datasets from embryonic devel-
opment and adult wound healing stages, as well as human skin
scRNA-seq dataset from a diseased state. A systematic comparison
with several existing tools for cell–cell communication is also
presented.

Results
Overview of CellChat. CellChat requires gene expression data
from cells as the user input and models the probability of cell–cell

communication by integrating gene expression with prior
knowledge of the interactions between signaling ligands, receptors
and their cofactors (Fig. 1a). To establish intercellular commu-
nications, CellChat can operate in label-based and label-free
modes (Fig. 1b). In its label-based mode, CellChat requires user-
assigned cell labels as the input. In its label-free mode, CellChat
requires user input in form of a low-dimensional representation
of the data, such as principal component analysis or diffusion
map. For the latter, CellChat automatically groups cells by
building a shared neighbor graph based on the cell–cell distance
in the low-dimensional space or the pseudotemporal trajectory
space (see “Methods” section). Upon receiving input data, Cell-
Chat models intercellular communications via the following three
modules:

Cross-referencing ligand-receptor interaction database. The
accuracy of the assigned roles for the signaling molecules and
their interactions is crucial for predicting biologically meaningful
intercellular communications. We manually curated a literature-
supported signaling molecule interaction database, called Cell-
ChatDB, which takes into account the known composition of
ligand-receptor complexes, including complexes with multimeric
ligands and receptors, as well as several cofactors: soluble
agonists, antagonists, co-stimulatory and co-inhibitory mem-
brane-bound receptors (Fig. 1a, Supplementary Fig. 1a, Supple-
mentary Note 1). CellChatDB incorporates signaling molecule
interaction information from the KEGG Pathway database21, a
collection of manually drawn signaling pathway maps assembled
by expert curators based on existing literature. It also includes
information from recent experimental studies. CellChatDB
contains 2,021 validated molecular interactions, including 60%
of paracrine/autocrine signaling interactions, 21% of extracellular
matrix (ECM)-receptor interactions and 19% of cell–cell contact
interactions. 48% of the interactions involve heteromeric
molecular complexes and 25% of the interactions are curated
by us from recent literature (Fig. 1a). Furthermore, each
interaction is manually classified into one of the 229 functionally
related signaling pathways based on the literature.

Inference and visualization of intercellular communications.
To predict significant communications, CellChat identifies
differentially over-expressed ligands and receptors for each cell
group (Fig. 1b; also see “Methods” section). To quantify
communications between two cell groups mediated by these
signaling genes, CellChat associates each interaction with a
probability value. The latter is modeled by the law of mass action
based on the average expression values of a ligand by one cell
group and that of a receptor by another cell group, as well as their
cofactors (see “Methods” scetion). Significant interactions are
identified on the basis of a statistical test that randomly permutes
the group labels of cells and then recalculates the interaction
probability (Fig. 1c, see “Methods” section). An intercellular
communication network is a weighted directed graph composed
of significant connections between interacting cell groups.
CellChat also provides an informative and intuitive visualization
method, called hierarchical plot, to highlight autocrine and
paracrine signaling communications between cell groups of
interest. This hierarchical plot provides an overview of inferred
intercellular communication network for each signaling pathway
or ligand-receptor pair, consisting of two components: the left
portion shows autocrine and paracrine signaling to certain cell
groups of interest, and the right portion shows autocrine and
paracrine signaling to the remaining cell groups in the dataset. In
addition, CellChat implements several other visualization ways,
including circle plot and bubble plot (Fig. 1d, see “Methods”
section).

Quantitative analysis of intercellular communications. To
facilitate the interpretation of the complex intercellular
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communication networks, CellChat quantitatively measures net-
works through methods abstracted from graph theory, pattern
recognition and manifold learning (see “Methods” section).
CellChat performs a variety of analyses in an unsupervised
manner (Fig. 1e). First, it can determine major signaling sources
and targets, as well as mediators and influencers within a given
signaling network using centrality measures from network
analysis, such as out-degree, in-degree, betweenness, and
information metrics (see “Methods” section). Second, it can
predict key incoming and outgoing signals for specific cell types,
as well as coordinated responses among different cell types by
leveraging pattern recognition approaches. Outgoing patterns
reveal how the sender cells (i.e., cells as signal source) coordinate
with each other, as well as how they coordinate with certain
signaling pathways to drive communication. Incoming patterns
show how the target cells (i.e., cells as signal receivers) coordinate
with each other, as well as how they coordinate with certain
signaling pathways to respond to incoming signals. Third, it can

group signaling pathways by defining similarity measures and
performing manifold learning from both functional and topolo-
gical perspectives. Fourth, it can delineate conserved and context-
specific signaling pathways by joint manifold learning of multiple
networks across datasets. Overall, these functionalities allow
CellChat to deconvolute complex intercellular communications in
an easily interpretable way and predict biologically meaningful
discoveries from scRNA-seq data.

CellChat identifies communication patterns and predicts
functions for poorly studied pathways. We showcase CellChat
functionalities by applying it to several recently published mouse
skin scRNA-seq datasets from embryonic development22 and
adult wound healing stages23. Choice of skin was determined by
our prior expertise on the aspects of skin morphogenesis and
regeneration, its complex cellular make-up and the fact that the
role of many signaling pathways in skin is well-established, which
enables meaningful literature-based interpretation of a portion of
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Fig. 1 Overview of CellChat. a Overview of the ligand-receptor interaction database. CellChatDB takes into account known composition of the ligand-
receptor complexes, including complexes with multimeric ligands and receptors, as well as several cofactor types: soluble agonists, antagonists,
co-stimulatory and co-inhibitory membrane-bound receptors. CellChatDB contains 2021 validated interactions, including 60% of secreting interactions. In
addition, 48% of the interactions involve heteromeric molecular complexes. b CellChat either requires user assigned cell labels as input or automatically
groups cells based on the low-dimensional data representation supplied as input. c CellChat models the communication probability and identifies
significant communications. d CellChat offers several visualization outputs for different analytical tasks. Different colors in the hierarchy plot and circle plot
represent different cell groups. Colors in the bubble plot are proportional to the communication probability, where dark and yellow colors correspond to the
smallest and largest values. e CellChat quantitatively measures networks through approaches from graph theory, pattern recognition and manifold learning,
to better facilitate the interpretation of intercellular communication networks and the identification of design principles. In addition to analyzing individual
dataset, CellChat also delineates signaling changes across different contexts, such as different developmental stages and biological conditions.
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CellChat predictions. First, we ran CellChat analysis on scRNA-
seq dataset for day 12 mouse skin wound tissue23. This dataset
contains 21,898 cells, which cluster into 25 cell groups, including
nine fibroblast (FIB), five myeloid (MYL) and six endothelial
(ENDO) groups, as well as several other cell types such as T cells
(TC), B cells (BC), dendritic cells (DC), and lymphatic endothelial
cells (LYME) (Supplementary Fig. 2a–h; see “Methods” section).

CellChat detected 60 significant ligand-receptor pairs among
the 25 cell groups, which were further categorized into
25 signaling pathways, including TGFβ, non-canonical WNT
(ncWNT), TNF, SPP1, PTN, PDGF, CXCL, CCL, and MIF
pathways. Network centrality analysis of the inferred TGFβ
signaling network identified that several myeloid cell populations
are the most prominent sources for TGFβ ligands acting onto
fibroblasts (Fig. 2a, b). Of note one myeloid population MYL-A is
also the dominant mediator, suggesting its role as a gatekeeper of
cell–cell communication. These findings are consistent with the
known critical role played by myeloid cells in initiating
inflammation during skin wound healing and driving activation
of skin-resident fibroblasts via TGFβ signaling24–29. Importantly,
CellChat also predicted that certain endothelial cell populations,
as well as several fibroblast populations, both known sources of
TGFβ ligands, significantly contribute to myeloid-dominated
TGFβ signal production in the wound. This reveals that TGFβ
signaling network in skin wounds is complex and highly
redundant with multiple ligand sources targeting large portion
of wound fibroblasts. Interestingly, CellChat shows that the
majority of TGFβ interactions among wound cells are paracrine,
with only one fibroblast and one myeloid population demonstrat-
ing significant autocrine signaling (Fig. 2b). Notably, among all
known ligand-receptor pairs, wound TGFβ signaling is domi-
nated by Tgfb1 ligand and its multimeric Tgfbr1/Tgfbr2 receptor
(Fig. 2c). In contrast with TGFβ, CellChat analysis of inferred
ncWNT signaling network revealed its very distinct, non-
redundant structure with only one ligand (Wnt5a) and only
one population of fibroblasts (FIB-D) driving largely fibroblast-
to-fibroblast, fibroblast-to-endothelial and to a lesser extent
fibroblast-to-myeloid signaling (Fig. 2d–f). FIB-D cells highly
expressed Crabp1 and were enriched for cell cycle genes
(Supplementary Fig. 2d), which likely represent an actively
cycling subset of Crabp1-positive cells in upper wound
dermis23,30. Network centrality analysis confirmed that FIB-D is
a prominent influencer controlling the communications (Fig. 2e).
Importantly, elevated expression of WNT5A in fibroblasts and its
role in scarring has recently been reported31–34.

In addition to exploring detailed communications for indivi-
dual pathways, an important question is how multiple cell groups
and signaling pathways coordinate to function. To address this
question, CellChat employs a pattern recognition method based
on non-negative matrix factorization to identify the global
communication patterns, as well as the key signals in different
cell groups (see “Methods” section). The output of this analysis is
a set of the so-called communication patterns that connect cell
groups with signaling pathways either in the context of outgoing
signaling (i.e., treating cells as senders) or incoming signaling (i.e.,
treating cells as receivers). Application of this analysis uncovered
five patterns for outgoing signaling (Fig. 2g) and five patterns for
incoming signaling (Fig. 2h). This output, for example, reveals
that a large portion of outgoing fibroblast signaling is character-
ized by pattern #4, which represents multiple pathways, including
but not limited to ncWNT, SPP1, MK, and PROS (Fig. 2g). All of
the outgoing myeloid cell signaling is characterized by pattern #2,
representing such pathways as TGFβ, TNF, CSF, IL1, and
RANKL. On the other hand, the communication patterns of
target cells (Fig. 2h) shows that incoming fibroblast signaling is
dominated by two patterns #1 and #3, which include signaling

pathways such as TGFβ and ncWNT, as well as PDGF, TNF, MK,
and PTN among others. Majority of incoming myeloid cell
signaling is characterized by the pattern #4, driven by CSF and
CXCL pathways. Notably, both incoming and outgoing signaling
by Schwann cells share the same pattern #1 with wound
fibroblasts (Fig. 2g-h). These results show that: (1) two distinct
cell types in the same tissue can rely on largely overlapping
signaling networks; and that (2) certain cell types, such as
fibroblasts, simultaneously activate multiple signaling patterns
and pathways, while other cell types, such as myeloid cells or B
cells, rely on fewer and more homogeneous communication
patterns. Moreover, cross-referencing outgoing and incoming
signaling patterns also provides a quick insight into the autocrine-
acting vs. paracrine-acting pathways for a given cell type. For
example, major autocrine-acting pathways between wound
fibroblasts are MK, SEMA3, PROS, and ncWNT, and major
paracrine-acting myeloid-to-fibroblasts pathways are TGFβ and
TNF (Fig. 2g-h).

Further, CellChat is able to quantify the similarity between all
significant signaling pathways and then group them based on
their cellular communication network similarity. Grouping can be
done either based on functional or structural similarity (see
“Methods” section). Application of functional similarity grouping
identified four groups of pathways (Fig. 2i). Group #1 is
dominated by inflammatory pathways (e.g., TGFβ, TNF, IL,
CCL) and largely represents paracrine signaling from myeloid
and endothelial cells to fibroblasts. Group #2, which includes
ncWNT, EGF, GAS, and PROS pathways, largely represents
autocrine signaling between wound fibroblasts. Group #3, which
includes CXCL and APELIN pathways, represents signaling from
endothelial cells, while group #4, which includes MK, PTN, and
SPP1 pathways, represents promiscuous signaling (i.e., signaling
with high connectivity) and is dominated by signals from certain
fibroblast populations and myeloid cells. By identifying poorly
studied pathways that group together with other pathways, whose
role is well known, this CellChat analysis can predict putative
functions of the former. Different from grouping on the basis of
functional similarity, which heavily weighs in similarity between
sender and receiver cell groups, grouping based on structural
similarity is primarily driven by the similarity of signaling
network topology (Fig. 2j; see “Methods” section). Structural
similarity grouping also identified four groups of signaling
pathways (Fig. 2k). Group #1 represents pathways that have very
few senders and numerous receivers, such as ncWNT; group #2
represents pathways with numerous senders and receivers, such
as TGFβ and PTN; group #3 represents pathways with numerous
senders and few receivers, such as CCL and IL1; and group #4
represents pathways with few senders and few receivers, such as
PROS, IL2, and CXCL. Thus, grouping based on structural
similarity reveals general mode of how sender and receiver cells
utilize a given signaling pathway. Collectively, CellChat can
identify key features of intercellular communications within a
given scRNA-seq dataset and predict putative functions for
poorly understood signaling pathways.

CellChat reveals continuous cell lineage-associated signaling
events. In addition to discrete cell states, our framework can be
applied to continuous cell states along the pseudotemporal tra-
jectory (see “Methods” section). We demonstrate this utility using
scRNA-seq data on embryonic day E14.5 mouse skin22, when
both dermal and epidermal cell lineages undergo rapid specifi-
cation and give rise to new cell types within the developing hair
follicles22,35,36. First, we inferred pseudotemporal trajectories for
dermal and epidermal embryonic skin cells using the diffusion
map approach (Fig. 3a-b; Supplementary Fig. 3a–d; see
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“Methods” section). Dermal cell trajectory, which on one end
contains Sox2-high hair follicle dermal condensate (DC) cells, was
divided into seven groups, that include five fibroblast states (FIB-
A, FIB-B, FIB-C, FIB-D, FIB-E) and two DC states (DC-A and
DC-B). A linear sequence of these trajectory groups recapitulates
sequential stages of embryonic skin fibroblast lineage specification
process (Fig. 3a). Embryonic epidermal cell trajectory starts from

basal epidermal cells and progresses either toward Edar-high
epithelial placode cells or toward Krt1-high and Lor-high supra-
basal epidermal cells. Collectively, epidermal lineage specification
events are represented by two basal, one placode and three
suprabasal trajectory groups (Fig. 3b).

We applied CellChat to study dermal-epidermal communica-
tion along these sequential cell lineage states. 88 significant
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ligand-receptor interactions within 22 signaling pathways were
predicted, including WNT, ncWNT, TGFβ, PDGF, NGF, FGF,
and SEMA3. Previous studies showed that activation of canonical
WNT signaling is required for DC cell specification in the
embryonic skin22,36–40. Indeed, CellChat-inferred canonical
WNT signaling network indicates that epidermal cells are the
primary ligand source, which acts both in autocrine manner
between epidermal cell populations, as well as in paracrine way
from epidermal to dermal cells (Fig. 3c). Notably, two WNT
ligand-receptor pairs, namely Wnt6–Fzd10/Lrp6 and Wnt6–Fzd2/
Lrp6 were the dominant contributors to this communication
network (Fig. 3d and Supplementary Fig. 4a), which is consistent
with the previous report that Wnt6 is the highest expressed
canonical WNT ligand in embryonic mouse skin41. Signaling
communication network for ncWNT pathway differs substan-
tially from that of canonical WNT pathway. Late stage fibroblast
state FIB-E was the primary ncWNT source, signaling both in
autocrine and paracrine manner (Fig. 3e) with Wnt5a–Fzd2 and
Wnt5–Fzd10 ligand-receptor pairs driving the signaling (Fig. 3f
and Supplementary Fig. 4b–c). These results suggest distinct roles
for canonical WNT and ncWNT pathways in skin morphogen-
esis. In another example, we analyzed the FGF signaling network
(Supplementary Fig. 4d–h) and found it to be similar to the
ncWNT signaling network, with the additional epithelial
placode-derived Fgf20 signaling (Supplementary Fig. 4e and h).
This is consistent with the known role of placode-derived
FGF20 signaling in hair follicle morphogenesis22,42,43. In another
distinct example of TGFβ pathway, epithelial placode cells and to
a lesser extent early DC-A cells were the driving sources of TGFβ
ligands to dermal cells (Supplementary Fig. 4i–k). These findings
are consistent with the known role for TGFβ signaling in early
hair follicle morphogenesis44,45.

We then ran CellChat pattern recognition module to uncover
the key sequential signaling events along the process of skin
morphogenesis. To predict the sequential signaling events, we
combined the communication pattern analysis with the inferred
pseudotemporal cell events. The dermal and epidermal trajectory
analysis potentially revealed the pseudotemporal order of
different cell types, and the communication pattern analysis
identified strong signals that were sent or received by certain cell
types. At the outgoing end of signaling, we predicted that FGF
and GALECTIN signals are first secreted by FIB-A cells (Fig. 3g).
FIB-B and FIB-C cells then coordinate production of GAS
signaling. Next, FIB-D, and FIB-E fibroblasts along with
suprabasal epidermal cells coordinate secretion of numerous
ligands for pathways such as ncWNT, EGF, IGF, CXCL, and
SEMA3; while DC-A and epithelial placode cells jointly secrete

ligands for TGFβ pathway. At the same time, basal epidermal cells
dominantly drive WNT, PDGF, NGF, and VISFATIN signaling
pathways. On the other hand, at the incoming end of signaling,
fibroblasts are driven by patterns #1 and #2 involving pathways
such as FGF, PDGF, SEMA3, TGFβ, IGF, and GALECTIN
(Fig. 3h). DC and epithelial placode cells are driven by the pattern
#4, which includes HH and CXCL signaling; basal epidermal cells
are dominated by pattern #3 pathways—WNT, ncWNT, and
EGF; while suprabasal epidermal cells are the primary target for
GRN (granulin) signaling within pattern #5. Together, CellChat
analysis faithfully recovers many signaling events with well-
established roles in embryonic skin and hair follicle morphogen-
esis and systematically predicts a number of additional signaling
patterns along dermal and epidermal cell lineage trajectories.

CellChat predicts key signaling events between spatially colo-
calized cell populations. To further demonstrate the predictive
nature of CellChat, we studied signaling communication between
E14.5 dermal condensate (DC) and epithelial placode cells, since
these cells spatially colocalize and actively signal to each other
during the initial stages of embryonic hair follicle formation
(Fig. 4a). Three DC states—pre-DC, DC1, and DC2, and one
placode state were identified (Supplementary Fig. 3e–f; see
“Methods” section). CellChat analysis on these four cell states
identified placode cells as the dominant communication “hub”,
which secretes and receives signals via 44 and 19 ligand-receptor
pairs, respectively (Fig. 4b). Prominent bidirectional forward and
reverse signals were identified for DC states, suggesting that the
cell state transition along pre-DC-DC1-DC2 cell lineage trajectory
is highly regulated. Specifically, FGF pathway exhibited abundant
signaling interactions among all four states with FGF ligands being
dominantly secreted by pre-DC and DC2 states (Fig. 4c). Fgf10
was the major ligand contributing to dermal FGF signaling
(Supplementary Fig. 5a), which is the known DC signature gene36.
Epithelial placode cells distinctly secreted Fgf20 both in autocrine
and in paracrine manner to all three DC states (Supplementary
Fig. 5a), which is consistent with the known role of placode-
derived FGF20 signaling in hair follicle morphogenesis22,42,43. For
another major signaling pathway in early hair follicle morpho-
genesis—canonical WNT, epithelial placode cells were the major
source of ligands (Fig. 4c), prominently expressing primarily
autocrine Wnt3 and Wnt6. CellChat also predicted that this
dominant epithelial autocrine WNT signaling was supplemented
by a minor DC-derived Wnt9a paracrine signaling (Supplemen-
tary Fig. 5b-d). In contrast with canonical WNT, the inferred
ncWNT signaling network revealed that DC cells express only one
ligand, Wnt5a, that drives paracrine DC-to-placode and autocrine

Fig. 2 CellChat analysis of the communications between skin cells during wound repair. a Hierarchical plot shows the inferred intercellular
communication network for TGFβ signaling. This plot consists of two parts: Left and right portions highlight the autocrine and paracrine signaling to
fibroblast states and to other non-fibroblast skin cell states, respectively. Solid and open circles represent source and target, respectively. Circle sizes are
proportional to the number of cells in each cell group and edge width represents the communication probability. Edge colors are consistent with the
signaling source. FIB-A – I: nine fibroblast cell groups; MYL-A – E: five myeloid cell groups; ENDO-A – F: six endothelial cell groups; TC: T cell; BC: B cell;
SCH: Schwan cell; DC: Dendritic cell, LYME: Lymphatic endothelial cell; (b) Heatmap shows the relative importance of each cell group based on the
computed four network centrality measures of TGFβ signaling network. c Relative contribution of each ligand-receptor pair to the overall communication
network of TGFβ signaling pathway, which is the ratio of the total communication probability of the inferred network of each ligand-receptor pair to that of
TGFβ signaling pathway. d The inferred ncWNT signaling network. e Relative contribution of each ncWNT ligand-receptor pair. f The computed network
centrality measures of ncWNT signaling. g The inferred outgoing communication patterns of secreting cells, which shows the correspondence between the
inferred latent patterns and cell groups, as well as signaling pathways. The thickness of the flow indicates the contribution of the cell group or signaling
pathway to each latent pattern. h The inferred incoming communication patterns of target cells. i Projecting signaling pathways onto a two-dimensional
manifold according to their functional similarity. Each dot represents the communication network of one signaling pathway. Dot size is proportional to the
overall communication probability. Different colors represent different groups of signaling pathways. j Two different similarity measures are used to
quantify the similarity among the inferred networks. Examples showing the functional similarity with similar major sources/targets, and structural similarity
with similar network topology. k Projecting signaling pathways onto a two-dimensional manifold according to their structural similarity.
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DC-to-DC signaling (Supplementary Fig. 5e). This result implies
distinct roles for canonical WNT and ncWNT pathways in hair
follicle morphogenesis.

By systematically investigating the predicted placode-to-DC
signals, we found 21 ligand-receptor pairs implicating WNT,
TGFβ, SEMA3, PTN, PDGF, MK, and FGF signaling pathways in
the process of DC specification (Fig. 4d). Pattern recognition
analysis further revealed that pre-DC and DC2 states jointly
coordinate outgoing signals for ncWNT, FGF, IGF, EDN, and
SEMA3 pathways (pattern #1 in Fig. 4e). DC1 dominantly drives

PROS signaling (pattern #3), while epithelial placode cells drive
outgoing WNT, TGFβ, PDGF, MK, PTN, and PTH signaling
(pattern #2, Supplementary Fig. 5f). At the incoming end of
signaling, pre-DC cells respond to SEMA3 and PTH signaling
(pattern #3 in Fig. 4f); DC1 and DC2 cells respond to TGFβ,
PDGF, EDN, and PROS signaling (pattern #1) and epithelial
placode cells respond to WNT, ncWNT, IGF, MK, and PTN
signaling (pattern #2, Supplementary Fig. 5f).

CellChat revealed that at E14.5, DC cells respond to autocrine
PROS signaling (Fig. 4g). Pros1 is the ligand for the pathway,
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which signals via the receptor tyrosine kinase Axl. Signaling via
Axl has been implicated in conferring cells with migratory
properties in different biological context, including EMT-
mediated cancer invasion46–48, and directional migration has
been recently shown to be crucial for normal dermal condensate
formation upon hair follicle morphogenesis42. We examined
CellChat’s prediction of active PROS signaling in DC cells by
RNAscope technique for Edn3 as DC marker, Axl and Thy1
(Cd90) as a marker of cell migration49,50 and EMT process51. As
expected from scRNA-seq, Axl expression was co-localized with
Edn3 and Thy1 expression, which was concentrated in DC with
significantly lower levels elsewhere (Fig. 4h). This RNAscope
result is consistent with the possibility of autocrine PROS
signaling in DC, likely driven via Pros1-Axl signaling.

During early hair follicle formation at E14.5, melanoblasts
(melanocyte precursor cells) migrate into the hair placode from
the dermis and then become differentiated toward melanocytes.
However, the mechanisms of melanocyte migration into placode
remain incompletely understood52. Therefore, we further studied
the cell–cell communication among placodes, DC cells and
melanocyte cells (including three melanocyte subpopulations:
MELA-A, MELA-B, and MELA-C; see “Methods” section and
Supplementary Fig. 3g). CellChat revealed that melanocytes
strongly respond to DC cells via previously unrecognized EDN
signaling (Fig. 4i). Edn3 is a ligand of the EDN pathway, which
regulates melanocyte migration53. Therefore, CellChat prediction
suggests DC cells induce early directed migration of melanocytes. To
experimentally examine this prediction, we used the RNAscope
technique to spatially map expression of Dct, which marks late-stage
melanocyte precursors, Edn3 ligand and its receptor Ednrb in E14.5
embryonic mouse skin. As expected, Dct+ melanocytes (i.e., MELA-
C subpopulation) localize in and around epithelial placode. They also
express Ednrb. In turn, Edn3 is specifically enriched in DC cells
(preDC, DC1, and DC2 subpopulations), while Ednrb is also
enriched in a portion of DC cells (likely DC2 subpopulation).
Scattered Ednrb+/Edn3neg/Dctneg cells inside dermal condensate are
likely undifferentiated melanoblasts (i.e., MELA-A/B subpopulations)
(Fig. 4j). This spatial Edn3, Ednrb, Dct co-expression pattern is highly
consistent with the scRNA-seq data (Fig. 4i). Thus, our RNAscope
result confirms the CellChat prediction of Edn3-Ednrb signaling from
DC cells to melanocytes, implying the roles for DC cells in inducing
early-stage directed migration of melanocytes into placodes. It also
shows potential autocrine Edn3-Ednrb signaling within the dermal
condensate.

Joint learning of time-course scRNA-seq data to uncover
dynamic communication patterns. Next, we demonstrate how
CellChat can be applied to studying temporal changes of inter-
cellular communications in the same tissue (Fig. 5a). For this

purpose, we performed combined analysis on two embryonic
mouse skin scRNA-seq datasets from days E13.5 and E14.522.
Unsupervised clustering of E13.5 and E14.5 datasets identified
11 skin cell populations at E13.5 and E14.5 and additional two
populations (i.e., dermal DC and pericytes) specific to E14.5
(Supplementary Fig. 3a–d; see “Methods” section).

We inferred intercellular communications for the above two
datasets separately, and then analyzed them together via joint
manifold learning and classification of the inferred communica-
tion networks based on their functional similarity. The functional
similarity analysis requires the same cell population composition
between two datasets. Thus, for such analysis we used only 11
common cell populations between E13.5 and E14.5 datasets. As
the result, the signaling pathways associated with inferred
networks from both datasets were mapped onto a shared two-
dimensional manifold and clustered into groups. We identified
four pathway groups (Fig. 5b-c). Groups #1 and #3 were
dominated by growth factor pathways such as PDGF, NGF,
FGF, EGF, and ANGPTL, while groups #2 and #5 dominantly
contained inflammation-related pathways such as CCL, IL2, IL4,
OSM, LIFR, and VISFATIN. As expected, the majority of the
same signaling pathways from E13.5 and E14.5 were grouped
together such as CCL, CSF, ANGPTL, PDGF, VEGF, ncWNT,
and MK, suggesting that these pathways are essential for skin
morphogenesis at both time points and likely do not critically
regulate new developmental events at E14.5, such as hair follicle
morphogenesis or dermal maturation. However, WNT and KIT
signaling were classified into different groups, consistent with
profound and multi-faceted role of WNT signaling in skin
morphogenesis22,54. By computing the Euclidean distance
between any pair of the shared signaling pathways in the shared
two-dimensional manifold, we observed a large distance for WNT
and KIT and to a lesser extent for RANKL, IL2, FGF,
GALECTIN, EGF, TGFβ, and NGF pathways (Fig. 5d, Supple-
mentary Fig. 6a-d). We specifically examined how WNT
communications change over one day of skin development
(Fig. 5e-j, Supplementary Data 2). At both embryonic time points,
basal epidermal cells were the dominant source of WNT ligands,
with further minor contribution from fibroblasts. Yet, compared
to E13.5, when only basal epidermal cells were the WNT targets,
at E14.5 fibroblasts gained WNT responsiveness. Further,
melanocytes emerged as the new minor source of WNT signaling,
helping to drive an overall increase in WNT communication
network complexity. Collectively, the joint manifold learning
enables the identification of signaling pathways that undergo
embryonic stage-dependent change.

Next, we compared the information flow for each signaling
pathway between E13.5 and E14.5 time points. The information
flow for a given signaling pathway is defined by the sum of

Fig. 3 Application of CellChat to continuous cell states along pseudotemporal trajectories during embryonic skin development. a Left: Diffusion map
projecting dermal skin cells onto the low-dimensional space and showing the dermal differentiation from fibroblasts to DC (dermal condensate) cells. Cells
are grouped based on their location in this space. Right: Density plot showing the distribution of expression for selected marker genes in each cell group/
population. b Diffusion map showing the epidermal trajectory and associated density plot for selected marker genes. c Hierarchical plot showing dermal
and epidermal interactions via canonical WNT signaling. Left and right portions show the autocrine and paracrine signaling to dermal trajectory and
epidermal trajectory, respectively. Circle sizes are proportional to the number of cells in each cell group and edge width represents the communication
probability. d Violin plot showing the expression distribution of signaling genes involved in the inferred WNT signaling network. e The dermal and
epidermal interactions via ncWNT signaling. f The expression distribution of signaling genes involved in the inferred ncWNT signaling network. g The
outgoing signaling patterns of secreting cells visualized by alluvial plot, which shows the correspondence between the inferred latent patterns and cell
groups, as well as signaling pathways. The thickness of the flow indicates the contribution of the cell group or signaling pathway to each latent pattern. The
height of each pattern is proportional to the number of its associated cell groups or signaling pathways. Outgoing patterns reveal how the sender cells
coordinate with each other, as well as how they coordinate with certain signaling pathways to drive communication. h Incoming signaling patterns of target
cells. Incoming patterns show how the target cells coordinate with each other, as well as how they coordinate with certain signaling pathways to respond to
incoming signaling.
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communication probability among all pairs of cell groups in the
inferred network. We found that some pathways, including
ANGPTL, APELIN, CSF, FGF, RANKL, and TGFβ maintain
similar flow between the time points (black in Fig. 5k). We
interpret that these pathways are equally important in the
developing skin at both time points. In contrast, other pathways
prominently change their information flow at E14.5 as compared

to E13.5: (i) turn off (NT, TWEAK), (ii) decrease (such as PTN,
MK), (iii) turn on (TNF), or (iv) increase (such as WNT,
GALECTIN, KIT, IGF, VEGF).

Moreover, we studied the detailed changes in the outgoing
signaling across all significant pathways using pattern recognition
analysis (Fig. 5l; see “Methods” section). We found that skin
fibroblasts change their major and minor outgoing communication
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patterns between E13.5 and E14.5. At E13.5, early fibroblast state
FIB-A dominates the outgoing signaling. Over one day period, the
minor signaling of late fibroblast states FIB-B and FIB-P become
major and includes ANGPTL, IGF, VEGF, KIT, SEMA3 pathways
(Supplementary Fig. 6a-h). This suggests the balancing changes in
the levels and patterns of ligand expression. On the other hand,
endothelial cells (ENDO), melanocytes (MELA) and skin-resident
myeloid cells (MYL) maintain their outgoing signaling patterns.
Complex outgoing signaling dynamics were observed in the
epidermis. Basal epidermal cells at E14.5 maintain secreted
signaling patterns for NGF, PDGF, VISFATIN, and WNT, yet
turn off signaling including for KIT and Neurotrophin (NT), and
turn on signaling including for VEGF, PTN and LIFR. On the other
hand, spinous epidermal cells prominently redesign their outgoing
signaling. They turn off or decrease four pathways, such as PDGF
(Supplementary Fig. 6e and 6g), turn on SEMA3 pathway, and
maintain three pathways—IGF, MK, and PTN (Supplementary
Fig. 6f and 6h). Prominent change in spinous cell signaling is
consistent with known epidermal stratification event that occurs in
mice at the transition between E13.5 and E14.555,56. Taken together,
CellChat analysis on joint scRNA-seq datasets enables multifaceted
assessment of intercellular communication patterns across biologi-
cal times, such as embryonic developmental time scale.

Joint learning of conserved and context-specific communica-
tion patterns between distinct scRNA-seq datasets. We also
used CellChat to compare cell–cell communication patterns
between two scRNA-seq datasets, one from embryonic day
E13.5 skin22 and another from adult day 12 wound skin23 (Fig. 6a).
While representing the same tissue (skin) from the same species
(mouse) and containing some of the same principal cell types, such
as fibroblasts, these two datasets are from vastly distinct biological
contexts— embryonic morphogenesis vs. wound-induced repair. As
such, this case study presents an opportunity to discover signaling
logic and signal conservation principles. First, we performed joint
manifold learning and classification of the inferred communication
networks based on their topological similarity (functional similarity
cannot be performed because of the vastly different cell type
composition). We identified four signaling pathway groups
(Fig. 6b–c). Intriguingly, none of the groups are unique to a given
dataset, suggesting that the entire spectrum of communications is
represented in both skin states. There are, however, dataset-specific
enrichments, especially in groups #1 and # 4, which are dominated
by signaling networks of the embryonic skin (8 out of 14 and 6 out
of 9, respectively). The other two groups #2 and #3 are nearly
equally contributed by the communication networks and contain
several overlapping pathways from both skin states. By computing

the Euclidean distance between any pair of the shared signaling
pathways in the shared two-dimensions space, we observed a large
distance for signaling pathways like IGF, PDGF, CSF, PROS, and
CCL (Supplementary Fig. 7a-b), suggesting that these pathways
exhibit significantly different communication network architectures.
However, other signaling pathways show relatively small distances,
including ANGPTL, RANKL, TGFb, SEMA3, IL2, PTN, ncWNT,
MK, EGF, APELN, and EDN (Supplementary Fig. 7c), which are
also grouped together (Fig. 6c–d). This suggests similar commu-
nication network architectures for these overlapping pathways in
both skin states. Closer look at the MK (Midkine) pathway
(Fig. 6e–f) shows its high signaling redundancy (i.e., multiple sig-
naling sources) and high target promiscuity (i. e. all cell groups can
function as MK targets). The latter finding suggests that certain
pathways have highly conserved signaling architecture (i.e., high
degree of redundancy) which is largely independent of the specific
cellular composition of the tissue.

We also compared the information flow (i.e., the overall
communication probability) across the two skin datasets. Intrigu-
ingly, 19 out of 34 pathways are highly active, albeit at different
levels, both in embryonic skin and in adult skin wounds (Fig. 6g).
These likely represent core signaling pathways necessary for skin
function independent of the specific point in the biological time
scale (i.e., embryonic vs. adult). Nine pathways are active only in
embryonic skin. These include such important pathways for skin
morphogenesis as FGF37,43,57–60 and WNT22,36–40. Four pathways
are specifically active in wounded skin, including known regulators
of wound-induced skin repair SPP1 (osteopontin)61–63, MIF
(macrophage migration inhibitory factor)64–66 and IL167–69. Taken
together, this CellChat approach allows system-level classification
and discovery of signaling communication network architecture
principles.

Joint learning of normal and diseased human skin to discover
major signaling changes in response to disease. As CellChatDB
also includes curated ligand-receptor interactions of human, we
next employed CellChat to detect the signaling changes between
so-called lesional (diseased) and nonlesional (normal) skin from
patients with atopic dermatitis (AD) using recently published
human skin scRNA-seq dataset70 (Fig. 7a). The original study
revealed that lesional skin was enriched for chemokine signals
(including CCL19) from inflammatory fibroblasts to inflamma-
tory immune cells, including dendritic cells (DC) and T cells
(TC). This was validated using immunofluorescence staining70.
Therefore, we used CellChat to study the intercellular commu-
nication among fibroblasts (four subpopulations: APOE+ FIB,
FBN1+ FIB, COL11A+ FIB, and Inflam.FIB), DCs (four

Fig. 4 Application of CellChat to communications between spatially colocalized cell populations. a Spatial diagram of placode, pre-DC, DC1 and DC2
cells during hair follicle (HF) development at E14.5. DC: dermal condensate. b Number of significant ligand-receptor pairs between any pair of two cell
populations. The edge width is proportional to the indicated number of ligand-receptor pairs. c The inferred FGF and WNT signaling networks. Circle sizes
are proportional to the number of cells in each cell group and edge width represents the communication probability. d All the significant ligand-receptor
pairs that contribute to the signaling sending from placode to three DC states. The dot color and size represent the calculated communication probability
and p-values. p-values are computed from one-sided permutation test. e The outgoing communication patterns of secreting cells, which shows the
correspondence between the inferred latent patterns and cell groups, as well as signaling pathways. f Incoming communication patterns of target cells.
g The inferred Pros1-Axl signaling network, as well as the scRNA-seq expression distribution of the Pros1 ligand, the Axl receptor and cell migration marker
Thy1. The edge width represents the communication probability. h RNAscope data (n =4 independent experiments) showing spatial distribution of Edn3
(red), Axl (green), and Thy1 (white) transcripts in early-stage developing hair follicle from E14.5 embryonic mouse skin. Epithelial placode and dermal
condensate (DC) are annotated and outlined with dashed lines. Solid white curved arrows in the bottom-right panel mark CellChat-predicted Pros1-Axl
signaling within skin space. DAPI (teal) stains nuclei. Scale bar: 50 μm. i The inferred Edn3-Ednrb signaling network, as well as the scRNA-seq expression
distribution of the melanocyte marker Dct, Edn3 ligand and its receptor Ednrb. DC: dermal condensate; MELA: melanocytes; (j) RNAscope data (n= 4
independent experiments) showing spatial distribution of Dct (green), Edn3 (red), and Ednrb (white) transcripts in early-stage developing hair follicle from
E14.5 embryonic mouse skin. Arrowheads mark possible melanocyte populations. Solid white curved arrows in the top-right panel mark CellChat-predicted
Edn3-Ednrb signaling within skin space. DAPI (teal) stains nuclei. Scale bar: 50 μm.
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subpopulations: cDC1, cDC2, LC, and Inflam.DC), and TCs (four
subpopulations: TC, Inflam.TC, CD40LG+ TC and NKT) (Sup-
plementary Fig. 8a–e, see “Methods” section).

We inferred intercellular communication networks for the
nonlesional (NL) and lesional (LS) skin separately, and then
jointly mapped them onto a shared two-dimensional manifold
and clustered them into groups based on their functional

similarity. We identified four pathway groups (Fig. 7b). Almost
all the same signaling pathways from NL and LS were grouped
together such as VEGF, GAS, LIGHT, CD40, and MIF, suggesting
that these pathways are essential for both nonlesional and lesional
skin and likely do not critically contribute to disease pathogenesis.
By comparing the overall communication probability between
nonlesional and lesional skin, we found that 11 out of 16 signaling
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pathways were highly active in lesional skin, including 9 pathways
involved in inflammatory and immune response, such as CXCL,
LIGHT, GLAECTIN, COMPLEMENT, MIF, CSF, IL4, CCL, and
TNF (Fig. 7c). Four pathways were specifically active in lesional
skin, including known inflammatory signals CSF, IL4, CCL, and
TNF, suggesting that these pathways might critically contribute to
disease progression. Specific to CCL signaling, CellChat identified
ligand-receptor pair CCL19-CCR7 as the most significant
signaling, contributing to the communication from Inflam.FIB
to Inflam.DC (Fig. 7d–f). This is in agreement with a reported
experimental finding70. Ligand MIF and its multi-subunit
receptor CD74/CD44 were found to act as major signaling from
Inflam.FIB to Inflam.TC in lesional skin compared to nonlesional
skin (Fig. 7d and Supplementary Fig. 9a–c). Ligand CXCL12 and
its receptor CXCR4 were also found to be highly active in lesional
skin, in particular, for the signaling from Inflam.FIB to cDC2 and
Inflam.DC (Fig. 7d and Supplementary Fig. 9a–c). Together,
CellChat’s joint analysis using an example of human lesional and
nonlesional skin enables the discovery of major signaling changes
that might drive disease pathogenesis.

Comparison with other cell–cell communication inference
tools. We compared CellChat with three other tools for inferring
intercellular communications—SingleCellSignalR9, iTALK10, and
CellPhoneDB16 using the same four mouse skin datasets analyzed
by CellChat (see “Methods” section). Currently existing tools,
such as SingleCellSignalR and iTALK, typically use only one
ligand/one receptor gene pairs, largely neglecting the effect of
multiple receptors. We computed the percentage of false positive
interactions caused by the above fact. False positive interactions
are defined as the interactions with multi-subunits that are par-
tially identified by these tools (see “Methods” section). We found
that the average rate of false positive interactions identified by
SingleCellSignalR and iTALK was 10.6% and 14.3%, respectively
(Supplementary Fig. 10), suggesting the importance of accurate
representation of known ligand-receptor interactions. Of note,
failed detection of interactions with multi-subunits might be also
caused by low expression of multi-subunits of the receptors that
are not captured using scRNA-seq.

We also compared the performance of CellChat with
CellPhoneDB, which considers multi-subunit ligand–receptor
complexes. We reasoned that any given method can be regarded
as more accurate if its predictions more significantly overlap with
the predictions of more than one other method. We found that
CellChat predictions had more overlapping interactions with both
SingleCellSignalR and iTALK predictions across all four scRNA-
seq datasets (Supplementary Fig. 11a). CellChat and CellPhoneDB

shared ~50% predicted interactions (Supplementary Fig. 11a). To
assess the sensitivity of inferred communications to the input data,
we used subsampling of 90, 80, or 70% of the total number of cells
in each dataset, and then computed the true positive rate (TPR),
false positive rate (FPR), and accuracy (ACC) by comparing
subsampled datasets with the original dataset. CellChat produced
a slightly higher TPR, lower FPR and higher ACC in comparison
with CellPhoneDB (Supplementary Fig. 11b). Both CellChat and
CellPhoneDB were relatively robust to subsampling, which is
likely because both methods infer cell–cell communication based
on cell clusters. Such robustness in terms of subsampling is very
useful when analyzing the rapidly growing volume of scRNA-seq
data.

Next, we compared cell–cell communication networks inferred
by CellChat, CellPhoneDB, iTALK, and SingleCellSignalR using
an example of four spatially colocalized cell populations in E14.5
embryonic mouse skin (Fig. 4). We compared the inferred
significant ligand-receptor (L-R) pairs for any two cell sub-
populations between CellChat and other methods. Here we only
retained the top 10% of L-R pairs (the most significant) inferred
by iTALK and SingleCellSignalR to ensure the comparable
number of L-R pairs with that by CellChat. The average numbers
of L-R pairs between two cell subpopulations inferred by the
above four methods were 12, 37, 14, and 12, respectively
(Supplementary Table 1). We found that CellChat shared more
L-R pairs with CellPhoneDB than with iTALK, likely due to the
fact that both CellChat and CellPhoneDB consider multi-subunit
complexes and determine the significant L-R pairs using a
statistical approach. SingleCellSignalR shared very few L-R pairs
with the other three methods, suggesting a potentially different
logic for quantifying and ranking L-R interactions. Moreover, the
majority of shared L-R pairs between CellChat and CellPhoneDB
were independently ranked as top pairs by CellPhoneDB
(Supplementary Data 1). This result suggests that although
CellChat infers fewer L-R pairs than CellPhoneDB, it captures the
strongest (and likely the most significant) L-R interactions.

We also systematically evaluated different methods based on
the assumption that spatially adjacent cell types should have
stronger cell–cell communication than spatially distant cells. We
have studied cell–cell communication for four spatially coloca-
lized cell populations in E14.5 embryonic mouse skin, including
Placodes, pre-DC, DC1, and DC2 (Fig. 4). We now added seven
cell types that are likely not spatially adjacent to the above four
cell populations–FIB (fibroblasts), MELA (melanocytes), Spinous
(spinous epithelial cells), MYL (myeloid cells), Immune (other
immune cells), ENDO (endothelial cells) and Muscle. We then
computed the number of inferred interactions, as well as the sum

Fig. 5 Comparison analysis of epidermal-dermal communications between different skin developmental stages. a Schematic illustration of cellular
composition of embryonic skin at E13.5 and E14.5. Different cell populations are color-coded to match colors in panel e and h. FIB-A: fibroblast type A; FIB-
B: fibroblast type B; FIB-P: proliferative fibroblasts. MYL: myeloid cell; ENDO: endothelial cell; MELA: melanocytes; b Jointly projecting and clustering
signaling pathways from E13.5 and E14.5 into a shared two-dimensional manifold according to their functional similarity. Circle and square symbols
represent the signaling networks from E13.5 and E14.5 respectively. Each dot or square represents the communication network of one signaling pathway.
Dot or square size is proportional to the total communication probability. Different colors represent different groups of signaling pathways. c Magnified
view of each pathway group. d The overlapping signaling pathways between E13.5 and E14.5 were ranked based on their pairwise Euclidean distance in the
shared two-dimensional manifold. e The inferred WNT signaling network at E13.5. Left and right portions show the autocrine and paracrine signaling to
dermis and epidermis, respectively. Circle sizes are proportional to the number of cells in each cell group and edge width represents the communication
probability. f Relative contribution of each ligand-receptor pair to the overall WNT signaling network at E13.5. g Expression distribution of WNT signaling
genes at E13.5. h The inferred WNT signaling network at E14.5. i Relative contribution of each ligand-receptor pair at E14.5. j The expression distribution of
WNT signaling genes at E14.5. k All significant signaling pathways were ranked based on their differences of overall information flow within the inferred
networks between E13.5 and E14.5. The top signaling pathways colored red are more enriched in E13.5, the middle ones colored black are equally enriched
in E13.5 and E14.5, and the bottom ones colored green are more enriched in E14.5. l The dot plot showing the comparison of outgoing signaling patterns of
secreting cells between E13.5 and E14.5. The dot size is proportional to the contribution score computed from pattern recognition analysis. Higher
contribution score implies the signaling pathway is more enriched in the corresponding cell group.
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of interaction probabilities or scores between each cell type and
the four spatially colocalized cell populations. We found that
CellChat consistently captures stronger interactions in spatially
adjacent cells than distant cells both in terms of the number of
interactions and the interaction probabilities (Supplementary
Fig. 12a-b). CellPhoneDB also performed well at discriminating
spatially-adjacent from distant cells. iTALK failed to capture

stronger interactions in spatially adjacent cells as compared to
spatially distant cells for FIB, MELA, MYL, and ENDO.
SingleCellSignalR also failed for FIB and ENDO. By considering
all seven cell types together, we found that both CellChat and
CellPhoneDB can significantly distinguish spatially adjacent from
distant cells, whereas iTALK and SingleCellSignalR predicted
stronger interactions in spatially adjacent cells than distant cells
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Fig. 6 Joint identification of conserved and context-specific communication patterns between two skin states. a Schematic illustration of cellular
composition of skin during embryonic morphogenesis at E13.5 and during adult wound-induced repair at day 12. Different cell populations are color-coded to
match colors in panel e and f, respectively. b Jointly projecting and clustering signaling pathways from E13.5 and wound onto shared two-dimensional manifold
according to their structural similarity of the inferred networks. Circle and square symbols represent the signaling networks from E13.5 and wound
respectively. Each circle or square represents the communication network of one signaling pathway. Circle or square size is proportional to the total
communication probability of that signaling network. Different colors represent different groups of signaling pathways. c Magnified view of each pathway
group. d The overlapping signaling pathways between E13.5 and wound were ranked based on their pairwise Euclidean distance in the shared two-dimensional
manifold. Larger distance implies larger difference. e–f Hierarchical plot showing the inferred intercellular communication network of MK signaling pathway at
E13.5 and wound, respectively. Circle sizes are proportional to the number of cells in each cell group and edge width represents the communication probability.
g All the significant signaling pathways were ranked based on their differences of overall information flow within the inferred networks between E13.5 and
wound. The overall information flow of a signaling network is calculated by summarizing all the communication probabilities in that network. The top signaling
pathways colored by red are more enriched in E13.5, and the bottom ones colored by green were more enriched in the wound.
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with no statistically significant differences (Supplementary
Fig. 12c). Since CellPhoneDB infers more interactions than
CellChat, we tested whether the top interactions predicted by
CellPhoneDB can also distinguish spatially adjacent from distant
cells. For the top 10%, top 20% and top 30% interactions
predicted by CellPhoneDB, the difference between spatially
adjacent and distant cells was not as significant as with CellChat
(Supplementary Fig. 13a-b), suggesting that CellChat performed
better at capturing stronger interactions. Together, our analyses
show that although CellChat produces fewer interactions, it
performs well at predicting stronger interactions.

The unique characteristics and capabilities of CellChat and its
comparison with other relevant tools are summarized in
Supplementary Table 2. First, CellChatDB database incorporates

not only multi-subunit structure of ligand-receptor complexes but
also soluble and membrane-bound stimulatory and inhibitory
cofactors, leading to a more comprehensive database than those
used by other tools. We also quantitatively showed the differences
and the strengths of CellChatDB in comparison to other existing
analogous databases, including CellTalkDB71, CellPhoneDB16,
iTALK10, SingleCellSignalR9, Ramilowski201572, NicheNet13, and
ICELLNET73. Compared to the above databases, CellChatDB
provides an important resource for the community to study
biologically meaningful cell–cell communication (Supplementary
Fig. 1b and Supplementary Note 1). Second, CellChat allows users
to input a low-dimensional representation of the data, a
particularly useful function when analyzing continuous states
along pseudotime trajectories. Third, CellChat can extract higher

Fig. 7 Identification of major signaling changes in diseased human skin. a Schematic illustration of scRNA-seq on cells from nonlesional (NL, normal) and
lesional (LS, diseased) human skin from patients with atopic dermatitis. b Jointly projecting and clustering signaling pathways from NL and LS skin onto
shared two-dimensional manifold according to functional similarity of the inferred networks. Circle and square symbols represent the signaling networks
from NL and LS respectively. Each dot or square represents the communication network of one signaling pathway. Dot or square size is proportional to the
communication probability. Different colors represent different groups of signaling pathways. c Significant signaling pathways were ranked based on
differences in the overall information flow within the inferred networks between NL and LS skin. The overall information flow of a signaling network is
calculated by summarizing all communication probabilities in that network. The top signaling pathways colored red are enriched in NL skin, and these
colored green were enriched in the LS skin. d Comparison of the significant ligand-receptor pairs between NL and LS skin, which contribute to the signaling
from Inflam.FIB (i.e., inflammatory fibroblasts) to dendritic cells (DC) and T cells (TC) including cDC1, cDC2, LS, Inflam.DC, TC, Inflam.TC, CD40LG+ TC,
and NKT subpopulations. The highlighted CCL19-CCR7 signaling was previously validated using immunofluorescence staining. Dot color reflects
communication probabilities and dot size represents computed p-values. Empty space means the communication probability is zero. p-values are
computed from one-sided permutation test. e Expression distribution of ligand CCL19 and its receptor CCR7 in NL (red) and LS (green) skin. f Hierarchical
plot showing inferred intercellular communication network of CCL19-CCR7 signaling in LS skin. Left and right portions show autocrine and paracrine
signaling to fibroblast and immune cells, respectively. Circle sizes are proportional to the number of cells in each cell group and edge width represents the
communication probability. Note that CellChat predicted no significant CCL19-CCR7 signaling in NL skin. FIB: fibroblasts; Inflam.FIB: inflammatory
fibroblasts; cDC: conventional dendritic cell; Inflam.DC: inflammatory dendritic cell; LC: Langerhans cell; TC: T cell; Inflam.TC: inflammatory T cell; NKT:
natural killer T cell.
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order information from the inferred communications for
identification of major signaling sources, targets and essential
mediators, as well as the prediction of coordinated responses
among different cell types. Fourth, CellChat can group signaling
pathways based on similarity of their communication patterns to
identify signaling pathways with similar architectures, and
possibly functions. Finally, CellChat can uncover conserved vs.
context-specific communication patterns through manifold
learning of multiple communication networks simultaneously.

Discussion
In this work we report a database of signaling ligand-receptor
interactions that considers the multimeric structure of ligand-
receptor complexes and additional effects on the core interaction by
soluble and membrane-bound stimulatory and inhibitory cofactors.
The ligand-receptor pairs are also classified into functionally related
signaling pathways via systematic manual curation based on peer-
reviewed literature. Comprehensive recapitulation of known mole-
cular interactions is essential for developing biologically meaningful
understanding of intercellular communications from scRNA-seq
data. For example, signaling via BMP, IL, Interferon, TGFβ path-
ways requires the presence of more than one membrane-bound
receptor subunits. Further, many pathways, such as BMP and
WNT, are prominently modulated by their cofactors, both positively
and negatively. To our knowledge, CellChatDB is the first manually
curated signaling interaction database in mouse that considers
multimeric structure. Although users can map human genes to their
mouse orthologues using available tools such as biomaRt74, some
molecular interactions are found in mouse but not in human and
vice-versa and these are typically lost during such mapping. Cell-
ChatDB additionally provides the signaling interactions in human
by first automatically mapping to human orthologues and then
manually adding the interactions specific to human.

Integration of all known molecular interactions when studying
intercellular communication requires new modeling frameworks.
To this end, we derived a mass action-based model for quantifying
the communication probability between a given ligand and its
cognate receptor. We modeled the signaling communication
probability between two cell groups by considering the proportion
of cells in each group across all sequenced cells. This is important
because abundant cell populations tend to send collectively
stronger signals than the rare cell populations. With the increasing
number of datasets on unsorted single-cell transcriptomes in the
Human Cell Atlas, tools with such consideration will be poten-
tially in high demand. For the users who are interested in ana-
lyzing sorting-enriched single cells, we provide an option of
removing the potential artifact of population size when inferring
cell–cell communication. In addition, CellChat estimates the level
of ligands by the geometric mean of the subunits. Due to the low
amounts of mRNA in individual cells, dropout events often occur
in scRNA-seq data75, leading to possible zero expression of sub-
units. However, dropouts are unlikely to affect strong signals
predicted by CellChat because dropouts commonly happen for
genes with low expression75,76.

CellChat R package is a versatile and easy-to-use toolkit for
inferring, analyzing and visualizing cell–cell communication from
any given scRNA-seq data. It provides several graphical outputs
to facilitate different post-analysis tasks. Of particular note is our
customized hierarchical plot that provides an intuitive way to
visualize oftentimes complex details of signaling by a given
pathway, including: (i) clear view of source and target cell
populations, (ii) easy-to-identified directionality and probability
of signaling, and (iii) paracrine vs. autocrine signaling links. We
demonstrated CellChat’s diverse functionalities by applying it to
finding continuous cell lineage-associated signaling events,

communications between spatially colocalized cell populations,
temporal changes in time-course scRNA-seq data, and conserved
and context-specific communications between datasets from
distinct biological contexts.

A user-friendly web-based CellChat Explorer (http://www.
cellchat.org/) was also built, which contains two major compo-
nents: (a) Ligand-Receptor Interaction Explorer, which allows
easy exploration of our ligand-receptor interaction database
CellChatDB, and (b) Cell–Cell Communication Atlas Explorer,
which allows easy exploration of the cell–cell communication. For
any given scRNA-seq dataset that has been processed by our
CellChat R-package, we can host the predicted results on our
server, allowing easy exploration and comparison of cell–cell
communication. While at present the Cell–Cell Communication
Atlas only hosts the skin scRNA-seq datasets analyzed in this
study, we envision its rapid growth to become a community-
driven web portal for cell–cell communication in a broad range of
tissues at single-cell resolution.

The successful performance of CellChat lies in utilizing a mass
action-based model to integrate all known molecular interactions,
including the core interaction between ligands and receptors with
multi-subunit structure, and additional modulation by cofactors.
While ligand-receptor interactions and law-of-mass-action hap-
pen at the protein level, mRNA levels are commonly used to
approximate the protein level. A higher level of molecular details
(e.g., protein levels in individual cells) could further improve the
modeling accuracy of CellChat and related tools. Due to the
technical difficulties of capturing single-cell proteomic informa-
tion at present time, a comprehensive modeling of ligand-
receptor interactions remains challenging. Determining a set of
biologically meaningful parameters in the mass action model
remains challenging, particularly when considering that different
pairs of ligands and receptors often have different dissociation
constants (i.e., the parameter Kh in Hill function) and different
degree of cooperativity (i.e., the parameter n in Hill function).
Although these parameters lack explicit biological connections in
our current model, the Hill function can be considered as a
nonlinear approximation of the ligand-receptor interactions. By
computing the Jaccard similarity between the interactions infer-
red using different choices of the parameters Kh and n, we
noticed that the inferred ligand-receptor interactions by CellChat
are relatively robust to those parameters within certain ranges for
all four tested datasets (Supplementary Fig. 14).

CellChat communication pattern analysis can uncover coordi-
nated responses among different cell types. Different cell types may
simultaneously activate the same cell type-independent signaling
patterns or different cell type-specific signaling patterns. Different
numbers of patterns provide different resolutions when recovering
coordinated responses (Supplementary Note 2; Supplementary
Fig. 15). This analysis can potentially help to derive general cell–cell
communication principles.

Cell clustering is a pre-requisite for cell–cell communication
analysis with CellChat and other tools, such as CellPhoneDB,
iTALK and SingleCellSignalR. While different number of cell
clusters may naturally affect the inferred ligand-receptor inter-
actions, with a fixed cluster number the clustering results using
different methods or parameters will unlikely have major impact
on the inferred ligand-receptor interactions. This is because our
cell–cell communication is inferred at the cluster level, only
depending on estimation of the average gene expression in each
cell cluster. We demonstrated these two points using an example
of E14.5 mouse embryonic skin dataset with four spatially colo-
calized cell subpopulations (Supplementary Note 2; Supplemen-
tary Fig. 16). In general, cell clustering needs to be carried out
carefully in order to capture biologically meaningful cell popu-
lations before cell–cell communication analysis.
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The number of inferred ligand-receptor pairs clearly depends on
the method for calculating the average gene expression per cell
group. Here we systematically explored the inferred ligand-receptor
pairs using different methods by calculating the average gene
expression per cell group, including mean (i.e., simply calculating
the average gene expression), 5% truncated mean (i.e., calculating
the average gene expression by discarding 5% from each end of the
data), 10% truncated mean, trimean (i.e., the method used in
CellChat) and median. For the four studied datasets, there are about
15% more dropped ligand-receptor pairs when calculating the
average gene expression using trimean compared to the 10%
truncated mean (Supplementary Fig. 17). Compared to other
cell–cell communication tools, such as CellPhoneDB, which uses a
10% truncated mean, CellChat produces fewer ligand-receptor
interactions. However, as seen in our comparison study on spatially
adjacent subpopulations (Supplementary Fig. 13a, b), CellChat
performs well at predicting stronger interactions.

Although we found CellChat’s predictions can recapitulate
known biology to a substantial degree, systematic evaluation of
predicted cell–cell communication networks is challenging due to
the lack of ground truth7. Here we employed three strategies to
compare the performance of different computational methods.
First, we reason that a more accurate method will have a larger
proportion of overlapped predictions with other methods. How-
ever, such assumption has the following two limitations: (1)
Similar methods tend to generate similar results regardless of
accuracy; and (2) Different ligand-receptor databases used in each
method could contribute to the variety of predicted interactions.
Second, we comprehensively compared the inferred interactions
for any two cell subpopulations on a specific dataset. We found
that the shared interactions between CellChat and other methods
were independently ranked as top pairs by other methods
including CellPhoneDB. Third, we reason that spatially adjacent
cell types should have stronger cell–cell communication than
spatially distant cells. CellChat performs better in distinguishing
spatially adjacent from distant cells both in terms of the number of
interactions and the interaction strengths. Together, our analyses
show that although CellChat produces fewer interactions than
other methods, it performs well at predicting stronger interactions,
which is helpful for narrowing down on interactions for further
experimental validations. Other types of single-cell data such as
proteomics77 and spatial transcriptomics78 when available are also
helpful and important to benchmark and optimize these cell–cell
communication methods in future studies.

Recent advances in spatially resolved transcriptomic techniques
offer an opportunity to explore spatial organization of cells in
tissues78. The integration of spatial information with scRNA-seq
data will likely offer new insights into cellular crosstalk79,80. The
present version of CellChat provides an easy-to-use tool for
intercellular communication analysis on conventional, non-
spatially resolved scRNA-seq data. While it remains to be tes-
ted, we believe it can be relatively easily adjusted, such as via
introduction of spatial constrains on cell–cell signaling, to build
intercellular communication networks on spatially resolved
transcriptomic datasets. As single-cell multi-omics data is
becoming more common81,82, we anticipate that methods like
CellChat, which are able to perform system-level analyses, will
serve as useful hypothesis-generating tools whose predictive
power will extend beyond the ability to classify cell populations
and establish their lineage relationships, which currently dom-
inate single-cell genomics studies.

Methods
Database construction for ligand-receptor interactions. To construct a database
of ligand-receptor interactions that comprehensively represents the current state of
knowledge, we manually reviewed other publicly available signaling pathway

databases, as well as peer-reviewed literature and developed CellChatDB. Cell-
ChatDB is a database of literature-supported ligand-receptor interactions in both
mouse and human. The majority of ligand–receptor interactions in CellChatDB
were manually curated on the basis of KEGG (Kyoto Encyclopedia of Genes and
Genomes) signaling pathway database (https://www.genome.jp/kegg/pathway.html).
Additional signaling molecular interactions were gathered from recent peer-
reviewed experimental studies. We took into account not only the structural
composition of ligand-receptor interactions, that often involve multimeric receptors,
but also cofactor molecules, including soluble agonists and antagonists, as well as
co-stimulatory and co-inhibitory membrane-bound receptors that can prominently
modulate ligand-receptor mediated signaling events. The detailed steps for how
CellChatDB was built and how to update CellChatDB by adding user-defined
ligand-receptor pairs were provided in Supplementary Note 1. To further analyze
cell–cell communication in a more biologically meaningful way, we grouped all of
the interactions into 229 signaling pathway families, such as WNT, ncWNT, TGFβ,
BMP, Nodal, Activin, EGF, NRG, TGFα, FGF, PDGF, VEGF, IGF, chemokine and
cytokine signaling pathways (CCL, CXCL, CX3C, XC, IL, IFN), Notch and TNF.
The supportive evidences for each signaling interaction is included within the
database.

Inference of intercellular communications. a) Identification of differentially
expressed signaling genes. To infer the cell state-specific communications, we first
identified differentially expressed signaling genes across all cell groups within a
given scRNA-seq dataset, using the Wilcoxon rank sum test with the significance
level of 0.05.

b) Calculation of ensemble average expression. To account for the noise effects,
we calculated the ensemble average expression of signaling genes in a given cell
group using a statistically robust mean method:

EM ¼ 1
2
Q2 þ

1
4

Q1 þ Q3ð Þ ð1Þ

where Q1, Q2, and Q3 is the first, second and third quartile of the expression levels
of a signaling gene in a cell group.

c) Calculation of intercellular communication probability. We modeled ligand-
receptor mediated signaling interactions using the law of mass action. Since the
physical process of ligand-receptor binding involves protein-protein interactions,
we used a random walk based network propagation technique83,84 to project the
gene expression profiles onto a high-confidence experimentally validated protein-
protein network from STRINGdb83,85. Based on the projected ligand and receptor
profiles, the communication probability Pi,j from cell groups i to j for a particular
ligand-receptor pair k was modeled by:
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Here Li and Rj represent the expression level of ligand L and receptor R in cell
group i and cell group j, respectively. The expression level of ligand L with m1
subunits (i.e., Li;1; � � � ; Li;m1) was approximated by their geometric mean, implying
that the zero expression of any subunit leads to an inactive ligand. Similarly, we
computed the expression level of receptor R with m2 subunits. In addition, co-
stimulatory and co-inhibitory membrane-bound receptors are capable of
modulating signaling via the control of receptor activation86. For the ligand-
receptor pair with multiple co-stimulatory receptors, we computed the average
expression of these co-stimulatory receptors (denoted by RA) and then used a
linear function to model the positive modulation of the receptor expression. For
each ligand-receptor pair with multiple co-inhibitory receptors, we modeled them
using the same approach. A Hill function was used to model the interactions
between L and R with a parameter Kh whose default value was set to be 0.5 as the
input data has a normalized range from 0 to 1. The extracellular agonists and
antagonists from both sender and receiver cells are able to directly or indirectly
modulate the ligand-receptor interaction86. For the ligand-receptor pair with
multiple soluble agonists, we computed the average expression of these agonists
(denoted by AG) and then used a Hill function to model the positive modulation of
the ligand-receptor interaction. For the ligand-receptor pair with multiple soluble
antagonists, we modeled them using the same approach. The effect of cell
proportion in each cell group was also included in the probability calculation when
analyzing unsorted single-cell transcriptomes, where ni and nj are the numbers of
cells in cell groups i and j, respectively, and n is the total number of cells in a given
dataset. Together, the communication probabilities among all pairs of cell groups
across all pairs of ligand-receptor were represented by a three-dimensional array
P (K × K ×N), where K is the number of cell groups and N is the number of ligand-
receptor pairs or signaling pathways. The communication probability of a signaling
pathway was computed by summarizing the probabilities of its associated ligand-
receptor pairs. It should be noted that we did not perform normalization along the
second dimension of P such that

P
j
Pk
i;j ¼ 1 because the normalized data are not
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suitable for comparing the communication probability between different cell
groups across multiple signaling pathways. The communication probability here
only represents the interaction strength and is not exactly a probability.

d) Identification of statistically significant intercellular communications. The
significant interactions between two cell groups are identified using a permutation
test by randomly permuting the group labels of cells, and then recalculating the
communication probability Pi,j between cell group i and cell group j through a pair
of ligand L and receptor R. The p-value of each Pi,j is computed by:

p-value ¼
#mjPðmÞ

i;j ≤Pi;j;m ¼ 1; 2; � � � ;M
n o

M
ð3Þ

where the probability Pi,j(m) is the communication probability for the m-th
permutation. M is the total number of permutations (M= 100 by default). The
interactions with p-value <0.05 are considered significant.

Discovery of dominant senders, receivers, mediators, and influencers in the
intercellular communication networks. To allow ready identification of major
signaling sources, targets, essential mediators and key influencers, as well as other
high-order information in intercellular communications, the centrality metrics
from graph theory, previously used for social network analysis, were adopted17.
Specifically, we used measures in weighted-directed networks, including out-
degree, in-degree, flow betweenesss and information centrality, to respectively
identify dominant senders, receivers, mediators and influencers for the intercellular
communications. In a weighted-directed network with the weights as the computed
communication probabilities, the out-degree, computed as the sum of commu-
nication probabilities of the outgoing signaling from a cell group, and the in-
degree, computed as the sum of the communication probabilities of the incoming
signaling to a cell group, can be used to identify the dominant cell senders
and receivers of signaling networks, respectively. Flow betweenness score87

measures a group of cells’ capability as gatekeeper to control communication
flow between any two cell groups. Information centrality score provides a hybrid
measure, for example by combining closeness and eigenvector, for information
flow within a signaling network, and a higher value indicates greater control on the
information flow87. Other popular centrality metrics, such as hub, authority,
EigenCentrality and PageRank88, can be also used to identify highly influential cell
groups in the intercellular communications. The flow betweenness and information
centrality are calculated by the package sna87. Other measures are computed by the
package igraph (https://igraph.org/).

Identification of major signals for specific cell groups and global commu-
nication patterns. To identify key signals and latent communication patterns
among all signaling pathways, CellChat uses an unsupervised learning method
non-negative matrix factorization that has been successfully applied in pattern
recognition18,19,82,89. First, the latent patterns were found for sending cells by
summarizing the communication probability array P (three-dimensional) along the
second dimension to obtain a two-dimensional matrix Pj. A non-negative matrix
factorization was then carried out via:

minW;H>0 Pj �WH
��� ���; ð4Þ

where the two low-dimensional matrices W and H are the cell loading and sig-
naling loading matrices with sizes K × R and R ×N, respectively. Each of the R
columns in W and the corresponding rows in H is considered as a communication
pattern. Wir is the loading values of cell group i in pattern r, representing the
contributions of cell group i in pattern r. Hrk represents the contributions of ligand-
receptor pair or signaling pathway k in pattern r. As the number of patterns
increases, there might be redundant patterns, making it difficult to interpret the
communication patterns. We chose five patterns as the initial default because the
number of cell groups and significant signaling pathways are relatively small. In
addition, we inferred the number of patterns based on two metrics that have been
implemented in the NMF R package, including Cophenetic and Silhouette90. Both
metrics measure the stability for a particular number of patterns based on a
hierarchical clustering of the consensus matrix. For a range of the number of
patterns, a suitable number of patterns is the one at which Cophenetic and Sil-
houette values begin to drop suddenly.

In sum, the matrix W represents the R latent patterns of cell groups, indicating
how these cell groups coordinate to send signals; the matrix H represents the R
latent patterns of ligand-receptor pairs or signaling pathways, indicating how these
ligand-receptor pairs or signaling pathways work together to send signals; the
connection of W with H predicts the key signals sent from certain cell groups.
Similarly, we summarized the communication probability array P along the first
dimension to infer the key signals received by certain cell groups, as well as their
latent patterns. Together, outgoing patterns reveal how the sender cells (i.e., cells as
signal sources) coordinate with each other, as well as how they coordinate with
certain signaling pathways to drive communication. Incoming patterns show how
the target cells (i.e., cells as signal receivers) coordinate with each other, as well as
how they coordinate with certain signaling pathways to respond to incoming
signals.

To intuitively show the associations of latent patterns with cell groups and ligand-
receptor pairs or signaling pathways, we used alluvial plots implemented in the

ggalluvial package (https://cran.r-project.org/web/packages/ggalluvial/index.html). We
first normalized each row of W and each column of H to be [0,1], and then set the
elements in W and H to be zero if they are less than 0.5. Such thresholding allows to
uncover the most enriched cell groups and signaling pathways associated with each
inferred pattern, that is, each cell group or signaling pathway is associated with only
one inferred pattern. These thresholded matrices W and H are used as inputs for
creating alluvial plots. To directly relate cell groups with their enriched signaling
pathways, we set the elements inW and H to be zero if they are less than 1/R where R
is the number of latent patterns. By using a less strict threshold, more enriched
signaling pathways associated each cell group might be obtained. Using a contribution
score of each cell group to each signaling pathway computed by multiplyingW by H,
we constructed a dot plot in which the dot size is proportion to the contribution score
to show association between cell group and their enriched signaling pathways.

Quantification of similarity among intercellular communication networks. Two
different similarity measures were used to quantify the similarity among inter-
cellular communication networks. A functional similarity S was calculated based on
the overlap of communications via the Jaccard similarity defined by:

S ¼ E Gð Þ \ E G0ð Þ
E Gð Þ∪ E G0ð Þ � E Gð Þ \ E G0ð Þ ; ð5Þ

where G and G’ are two signaling networks and E(G) is the set of communications
in signaling network G. High degree of functional similarity indicates major sen-
ders and receivers are similar, and it can be interpreted as the two signaling
pathways or two ligand-receptor pairs exhibit similar and/or redundant roles.

A structural similarity was used to compare their signaling network structure,
without considering the similarity of senders and receivers, using a previously
developed measure for structural topological differences91. The dissimilarity
measure between signaling networks G and G’ with the number of cell groups being
N and M, respectively, is calculated by:

D G; G0ð Þ ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSDðuG; uG0Þ=log2

p
þ w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NND Gð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NND G0ð Þ

p��� ���
þw3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSDðPαG; PαG0Þ=log2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSDðPαGc ; PαGc0 Þ=log2

p� � ð6Þ

where Gc indicates the complement of G, and JSD is the Jensen–Shannon
divergence and NND is defined as:

NND Gð Þ ¼ JSD P1; ¼ ;PNð Þ
log d þ 1ð Þ ð7Þ

with JSD P1; ¼ ; PNð Þ ¼ 1
N

PN
i;j
piðjÞlogðpiðjÞuj

Þ and uj ¼ ðPN
i¼1

piðjÞÞ=N being the

Jensen–Shannon divergence and the average of the N distributions, respectively.
Pi ¼ pi jð Þf g is the distance distribution in each cell group i, where pi(j) is the
fraction of cell groups connected to cell group i at distance j. d is the signaling
network’s diameter. JSDðuG; uG0Þ measures the difference between the signaling
networks’ averaged cell group-distance distributions, uG and uG0 , and
JSDðPαG; PαG0Þ measures the difference between the α-centrality values of the
signaling networks. w1, w2, and w3 are the weights of each term with w1+ w2+ w3

= 1. Similar to a previous study91, we selected w1= 0.45, w2= 0.45, and w3= 0.1.
The structural similarity S was computed by one minus dissimilarity measure D.

Manifold and classification learning of intercellular communication networks.
The manifold learning of the inferred intercellular communication networks
consists of three steps. First, we built a shared nearest neighbor (SNN) similarity
network Gs of all signaling pathways, which was constructed by calculating the k-
nearest signaling pathways of each signaling pathway using the calculated func-
tional or structural similarity matrix S of intercellular communication networks.
The fraction of shared nearest signaling pathways between a given signaling
pathway and its neighbors was used as weights of the SNN network. The number of
nearest neighbors k was chosen as the square root of the total number of signaling
pathways. Second, we smoothed the similarity matrix S using Gs × S. This smooth
process provides a better representation of the similarity between signaling path-
ways to allow filtering of the weak similarity (potentially noise-induced) and
enhancing the strong similarity82. Finally, we performed uniform manifold
approximation and projection (UMAP)92 on the smoothed similarity matrix. To
better visualize the similarity of intercellular communication networks, we used the
first two dimensions of the learned manifold, where each dot in this two-
dimensional space represents an individual signaling pathway or ligand-
receptor pair.

Moreover, to group the signaling pathways based on their similarity of
intercellular communication networks in an unsupervised manner, we performed
k-means clustering of the first two components of the learned manifold. The
number of signaling groups was determined according to the eigenvalue spectrum
by analyzing the Laplacian matrix derived from a consensus matrix5,12. First, we
performed k-means clustering multiple times for different values of k (e.g., 2–10).
Second, we constructed a consensus matrix representing the probability of two
signaling pathways being in the same group across multiple values of k. We then
pruned the consensus matrix by setting the elements to be zero if they are less than
0.3 to ensure better robustness to noise. Third, we estimated the number of
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signaling groups by computing the eigenvalues of the associated Laplacian matrix
of the constructed consensus matrix. More generally, the number of signaling
groups is usually determined by the first or second largest eigenvalue gap (i.e., the
difference between consecutive eigenvalues) based on the spectral graph theory93.

Classification of cells into groups. CellChat provides built-in functions to classify
cells into groups. Briefly, a SNN graph of all cells is first constructed via the
calculation of the k-nearest neighbors (20 by default) for each cell based on the
low-dimensional representation space (e.g., via principle component analysis and
diffusion map analysis) of the scRNA-seq data. The low-dimensional representa-
tion space can be either provided by user or computed by CellChat. Next, cells are
clustered into groups by applying the Louvain community detection algorithm94 to
the constructed SNN graph. The number of cell groups is determined either by
user-input resolution parameter in the Louvain algorithm or by an eigenvalue
spectrum by analyzing the Laplacian matrix derived from multiple runs of Louvain
algorithm with different resolution parameters.

Single-cell RNA-seq datasets, data preprocessing, and analysis. Mouse skin
wound dataset. We used our recently published scRNA-seq dataset from mouse
skin wounds23. This dataset included 21,819 cells and was generated via 10X
Genomics platform (GEO accession code: GSE113854). Briefly, scRNA-seq was
performed on unsorted cells isolated from mouse skin wound dermis from day 12
post-wounding. Unsupervised clustering identified fibroblasts (FIB, ~65%),
immune cell populations, including myeloid cells (MYL, 15%), T lymphocytes
(TCELL, 4%), B lymphocytes (BCELL, 3%), dendritic cells (DC, 1%), endothelial
cells (ENDO, 9%), lymphatic endothelial cells (LYME, 1%), Schwann cells (SCH,
1%) and red blood cells (RBC, 1%). For the intercellular communication analysis,
we excluded red blood cells and used the remaining 21,557 cells. The digital data
matrices were normalized by a global method, in which the expression value of
each gene was divided by the total expression in each cell and multiplied by a scale
factor (10,000 by default). These values were then log-transformed with a pseu-
docount of 1. Normalized data were used for all the analyses. To investigate the
heterogeneity of intercellular communications among different cell subpopulations,
we performed subclustering analysis on the cell types, whose abundance in the
dataset was greater than 5% using the Louvain community detection method. The
number of cell groups was determined by the eigengap approach.

Embryonic mouse skin dataset. Recently published embryonic mouse skin
datasets22 were downloaded from GEO (accession codes: GSM3453535,
GSM3453536, GSM3453537, and GSM3453538) and included two Embryonic day
E13.5 biological replicates and two Embryonic day E14.5 biological replicates.
These samples contain unsorted whole-skin cells captured via 10X Genomics
platform. For both E13.5 and E14.5 scRNA-seq datasets, we removed the cells with
the amount of UMI count less than 2500 and greater than 50000, as well as the cells
with the number of genes less than 1000 and the fraction of mitochondrial counts
greater than 20%. 12,951 cells at E13.5 and 12,197 cells at E14.5 were used for
downstream analyses. First, we performed clustering analysis of cells from E13.5
and E14.5 using the Louvain community detection method, respectively. The
values of the resolution parameter in the Louvain community detection method
were explored to produce the major cell populations in embryonic skin22,95. Thus,
11 and 13 cell populations were identified at E13.5 and E14.5, respectively
(Supplementary Fig. 3a–d). The cell populations were annotated based on the
known markers22,95. Compared to E13.5, there were two specific populations at
E14.5, including dermal condensate (DC) cells and pericytes. Second, we
performed subclustering analysis of DC cells, basal cells and melanocytes at E14.5,
respectively. This analysis identified three DC states including pre-DC, DC1, and
DC2, three basal state including basal, proliferative basal and placode cells, and
three melanocyte subpopulations including MELA-A, MELA-B, and MELA-C
(Supplementary Fig. 3e-g). Third, we performed pseudotime analysis on epidermal
and dermal cells at E14.5 using diffusion map, respectively.

Human disease skin dataset. The processed transcriptomic data of 17,349 cells
from four lesional and four non-lesional human skin samples (patient ID: S1, S2,
S3, S5, S7, S11, S14, and S15) from patients with atopic dermatitis was downloaded
from GEO database under accession code GSE14742470. We performed the
integration analysis of these eight samples using Seurat V3 package based on the
tutorial from https://satijalab.org/seurat/v3.2/immune_alignment.html.
Unsupervised clustering analysis segregated these combined cells into 10 broad cell
types (Supplementary Fig. 8a-b), including fibroblasts (FIB), dendritic cells (DC),
and T cells (TC). The original study highlighted the cell–cell communication
among fibroblasts, dendritic cells and T cells70. Therefore, following the analysis
from the original study70, we performed the second-level clustering analysis of FIB,
DC, and TC. FIB was clustered into five subgroups with distinct markers, including
APOE high FIB (APOE+ FIB), FBN1+ FIB, COL11A+ FIB, Inflam.FIB
(inflammatory FIB expressing chemokines such as CCL19) and a small T cell group
expressing CD3D (Supplementary Fig. 8c). This contaminated TC population was
removed for further analysis. DC was also separated into five subgroups, including
cDC1 (type A DC), cDC2 (type B DC), LC (Langerhans cells), Inflam.DC
(inflammatory DC) and other immune cells that does not express DC markers such
as CD1A and CD1C (Supplementary Fig. 8d). This contaminated immune cell
group was also removed for further analysis. TC was clustered into four subgroups,
including TC, Inflam.TC (inflammatory TC), CD40LG+ TC and NKT (NK

T cells) (Supplementary Fig. 8e). Together, CellChat was applied to 7563 cells from
lesional and nonlesional skin involved in twelve cell groups, including APOE+
FIB, FBN1+ FIB, COL11A+ FIB, Inflam.FIB, cDC1, cDC2, LC, Inflam.DC, TC,
Inflam.TC, CD40LG+ TC, and NKT.

Method comparisons. We compare the performance of CellChat with three other
tools, including SingleCellSignalR9, iTALK10, and CellPhoneDB16 . We compare
our database CellChatDB with other existing analogous databases, including
CellTalkDB71, CellPhoneDB16, iTALK10, SingleCellSignalR9, Ramilowski201572,
NicheNet13 and ICELLNET73. SingleCellSignalR scores a given ligand-receptor
interaction between two cell populations using a regularized product score
approach based on average expression levels of a ligand and its receptor and an ad
hoc approach for estimating an appropriate score threshold. iTALK identifies
differentially expressed ligands and receptors among different cell populations and
accounts for the matched ligand-receptor pairs as significant interactions. Cell-
PhoneDB v2.0 predicts enriched signaling interactions between two cell popula-
tions by considering the minimum average expression of the members of the
heteromeric complex and performing empirical shuffling to calculate which
ligand–receptor pairs display significant cell-state specificity. The detailed
description of how these methods were performed is available in Supplementary
Note 3.

Both CellChat and CellPhoneDB, but not SingleCellSignalR, and iTALK,
consider multi-subunit structure of ligands and receptors to represent heteromeric
complexes accurately. To evaluate the effect of neglecting multi-subunit structure
of ligands and receptors, we compute false positive rates for the tools that use only
one ligand and one receptor gene pairs. The false positive interactions are defined
by the interactions with multi-subunits that are partially identified by iTALK and
SingleCellSignalR. The ground truth of the interactions with multi-subunits is
based on our curated CellChatDB database. For example, for Tgfb1 ligand and its
heteromeric receptor Tgfbr1/Tgfbr2 curated in CellChatDB, if the method only
identifies one of the two pairs (Tgfb1–Tgfbr1 and Tgfb1–Tgfbr2), then we consider
this prediction as one false positive interaction.

We performed subsampling of scRNA-seq datasets using a ‘geometric
sketching’ approach, which maintains the transcriptomic heterogeneity within a
dataset with a smaller subset of cells96. We evaluated the robustness of inferred
interactions from subsampled datasets using three measures, including TPR, FPR,
and ACC, which were defined in Supplementary Note 3. Note that such
subsampling analysis was used to evaluate the consistency rather than accuracy.

RNAscope in situ assay. Frozen E14.5 mouse skin tissue sections were used for
RNA in situ hybridization using RNAscope® kit v2 (323100, Advanced Cell
Diagnostics). The following mouse probes from Advanced Cell Diagnostics were
used: Dct probe (460461-C2), Edn3 (505841), Ednrb (473801-C3), Axl (450931-
C2), Thy1 (430661-C3). We have complied with all relevant ethical regulations for
animal testing and research. All animal experiments have been approved by the
International Animal Care and Use Committee (IACUC) of the University of
California, Irvine.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
CellChatDB is included in the CellChat repository (https://github.com/sqjin/CellChat).
KEGG pathway database is available at https://www.genome.jp/kegg/pathway.html. The
datasets analyzed in this study are available from the Gene Expression Omnibus (GEO)
repository under the following accession numbers: GSE113854, GSE122043 (including
four samples GSM3453535, GSM3453536, GSM3453537, GSM3453538;) and
GSE147424.

Code availability
CellChat is publicly available as an R package. Source codes, as well as tutorials have been
deposited at the GitHub repository (https://github.com/sqjin/CellChat). The web-based
CellChat Explorer, including Ligand-Receptor Interaction Explorer for exploring the ligand-
receptor interaction database and Cell–Cell Communication Atlas Explorer for exploring
the intercellular communications in tissues, is available at http://www.cellchat.org/.
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