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Adiabatic corrections to holographic

entanglement in thermofield doubles and

confining ground states

Donald Marolf and Jason Wien

Department of Physics, University of California, Santa Barbara, CA 93106, USA

E-mail: marolf@physics.ucsb.edu, jswien@physics.ucsb.edu

Abstract: We study entanglement in states of holographic CFTs defined by Euclidean

path integrals over geometries with slowly varying metrics. In particular, our CFT

spacetimes have S1 fibers whose size b varies along one direction (x) of an Rd−1 base.

Such examples respect an Rd−2 Euclidean symmetry. Treating the S1 direction as

time leads to a thermofield double state on a spacetime with adiabatically varying

redshift, while treating another direction as time leads to a confining ground state

with slowly varying confinement scale. In both contexts the entropy of slab-shaped

regions defined by |x − x0| ≤ L exhibits well-known phase transitions at length scales

L = Lcrit characterizing the CFT entanglements. For the thermofield double, the

numerical coefficients governing the effect of variations in b(x) on the transition are

surprisingly small and exhibit an interesting change of sign: gradients reduce Lcrit for

d ≤ 3 but increase Lcrit for d ≥ 4. This means that, while for general L > Lcrit they

significantly increase the mutual information of opposing slabs as one would expect,

for d ≥ 4 gradients cause a small decrease near the phase transition. In contrast, for

the confining ground states gradients always decrease Lcrit, with the effect becoming

more pronounced in higher dimensions.
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1 Introduction

Entanglement is a fundamental property of quantum systems. Studying this entangle-

ment can provide insights into the nature of quantum states, and in particular into the

scale of their correlations. In the holographic context, entanglement of the dual CFT is

of particular interest through its association with the Einstein-Rosen bridges of black

holes [1] and perhaps more generally [2–4] with the emergence of bulk spacetime.

Our goal here is to generalize the analysis of holographic entanglement away from

the commonly-considered highly symmetric systems. For d = 2 CFTs, much can be

done exactly using conformal transformations. This fact lies behind the recent analysis

[5] of the CFT states dual to asymptotically-AdS3 mutli-boundary vacuum wormholes.

In particular, it was understood there that such states admit a simple description at
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high temperatures where the state can be well-approximated by a thermofield dou-

ble (TFD) over most of the CFT spacetime, perhaps with adiabatic variations from

one point to another. While a full analysis comparable to [5] is difficult in higher di-

mensions, we show below that computations of entanglement in spatialy-varying holo-

graphic TFDs remains tractable in the adiabatic limit.

We also investigate how entanglement in ground states of (d− 1)-dimensional con-

fining theories is affected by slow variations of the confinement scale. The particular

class of confining theories we consider are those given by compactifying a d-dimensional

holographic CFT on an S1 as in [6]. Such CFT ground states are related to the above

thermofield doubles, as both are given by cutting open Euclidean path integrals over

geometries with S1 × Rd−1 topology. Roughly speaking, the thermofield double states

are given by cutting open the S1 factor, while ground states of confining theories are

given by cutting open a direction of the Rd−1. The particular path integrals considered

here will involve warped products of the S1 over Rd−1 in which the size b of the S1 varies

slowly. This gives in the first interpretation TFD states in spacetimes with spatially

varying redshift, and in the second ground states of confining theories in which the

confinement scale varies with position.

Since we are interested in holographic field theories, in all cases we will work directly

with the dual gravitational description. Our CFT path integrals are then interpreted

as integrals over all (d+ 1)-dimensional asymptotically locally Anti-de Sitter (AlAdS)

spacetimes with boundary geometries as above. Section 2 begins below by reviewing

the Euclidean bulk geometries recently constructed in [7] that are expected to describe

the dominant AlAdS saddle points. For simplicity, we allow b to vary only along one

Cartesian direction of the Rd−1 space. While such solutions can be constructed by

Wick rotating the standard fluid-gravity correspondence [8–10] in the presence of a

time-translation Killing field and an appropriate regularity condition at the bifurcation

surface, it is more natural to follow [7] and use the U(1) symmetry to develop a related

but different expansion based on standard Schwarzschild-like coordinates rather than

the ingoing Eddington-Finkelstein black hole coordinates of [8–10].

We then proceed to compute holographic entanglement. Section 3 pursues the

thermofield-double interpretation and computes the effect of varying b on the Ryu-

Takayanagi (RT) entropies of slabs of thickness 2L that preserve Rd−2 Euclidean sym-

metry on a surface fixed by a reflection of the S1. We include both the case of slabs

contained in a single copy of the CFT and that of pairs of diametrically opposed slabs

in each of the two CFTs. We thus also compute the effect of varying b on the mutual

information in opposing slabs and on the critical value Lcrit of L at which the mutual

information becomes non-zero. Section 4 then studies the effect on RT entropies for

analogous slabs with S1×Rd−3 symmetry on a surface fixed by reflecting one direction
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in the Rd−1. Here the interesting feature is the effect on the value Lcrit at which the

entangling surface changes topology from connected (S1× [0, 1]×Rd−3) to disconnected

(two copies of the (d− 1)-disk). Readers focused on the final results may wish to jump

to sections 3.3 and 4.3 where the phase transitions are discussed. We close with some

final discussion in section 5. The special case d = 2 is treated analytically in appendix

A, and we discuss some estimation of the numerical uncertainty in appendix B.

2 Preliminaries

We wish to describe holographic entanglement in CFT states defined by path integrals

over geometries with topology S1 × Rd−1 and metrics of the form

ds2
CFT = dx2 + δijdy

idyj + α2
db

2(x)dθ2 , (2.1)

where αd = 21−2/d

d
and i = 1, . . . , d−2. We take θ to have b-independent period 2π. The

relevant states are constructed by slicing open the path integral along a co-dimension

one surface that we identify as τ = 0 for some Euclidean time coordinate τ . To have

a good translation to Lorentz signature, we require a Z2 reflection symmetry τ → −τ .

One natural choice is to take τ = θ, in which case we in fact slice the path integral along

the pair of surfaces θ = 0, θ = π. The result is an entangled state on a pair of CFTs

which gives an adiabatic generalization of the well-known thermofield double state.

The exact time-translation symmetry means that the state is in thermal equilibrium

when viewed from the perspective of either CFT alone. However, after Wick rotation

to Lorentz signature the x-dependent metric factor gθθ means that the state lives in a

spacetime with x-dependent gravitational redshift. This equilibrium thus requires any

local notion of temperature (such as that defined by the inverse Euclidean period) to

be x-dependent as well. This interpretation is equally valid in the special case d = 2 in

which there are no y directions.

For d ≥ 3, there is a second interpretation given by choosing τ to be some y

direction (say, y1), so that our CFT lives on a spacetime with a compact spatial S1.

States of this theory are constructed by slicing the path integral along y1 = 0. For

small b one may Kaluza-Klein reduce on this S1. And as discussed in [6], one expects

the result to exhibit confinement with a scale set by b. So when b varies, one may think

of the result as a confining theory with a position-dependent confinement scale.

But with either interpretation, so long as b varies slowly reasoning analogous to

that of [6] implies the bulk path gravitational integral with boundary conditions given

by (2.1) to be dominated by a Euclidean solution to Einstein’s equation in which the

S1 factor pinches off in the bulk; i.e., there will be a Killing field ∂θ that generates a

U(1) isometry with a fixed-point set of topology Rd−1.
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When the function b(x) varies slowly, the construction of such solutions may be

organized in a derivative expansion. Here we write b = b(εx) for some small parameter

ε. The details of this expansion were recently described in [7], where it was argued that

for slowly-varying b(x) the solution should be well-approximated by the zero-order

ansatz

ds2 =
`2

z2

[
dz2 +

(
1 +

zd

bd

)4/d (
dx2 + δijdy

idyj
)

+ α2
db

2

(
1− zd

bd

)2(
1 +

zd

bd

) 4
d
−2

dθ2

]
,

(2.2)

where we take θ to have period 2π for all profiles b(x). For the case b = constant, the

ansatz (2.2) gives the metric on the Euclidean planar AdS-Schwarzschild black hole

(or, equivalently, on the Euclidean AdS soliton). The full metric is then taken to be of

the form

ds2 =
`2

z2

(
g

(0)
AB dx

AdxB + ε g
(1)
AB dx

AdxB + ε2 g
(2)
AB dx

AdxB + · · ·
)
, (2.3)

where the corrections g
(n)
AB are determined by solving Einstein’s equation with appropri-

ate boundary conditions at each order in an adiabatic expansion and xA = (z, x, yi, θ)

ranges over all bulk coordinates and similarly for xB. As shown in [7], the O(ε) correc-

tion g
(1)
AB vanishes and, writing gyiyj = gyyδij, the O(ε2) correction is of the form

g(2)
xx (z, x) = (b′(x))

2
g(b′)2

xx (z/b) + (b(x)b′′(x)) g(bb′′)
xx (z/b),

g(2)
yy (z, x) = (b′(x))

2
g(b′)2

yy (z/b) + (b(x)b′′(x)) g(bb′′)
yy (z/b),

g
(2)
θθ (z, x) = α2

d

[
(b(x) b′(x))

2
g

(bb′)2

θθ (z/b) + b(x)3 b′′(x) g
(b3b′′)
θθ (z/b)

]
. (2.4)

Here the notation makes explicit all dependence on b(x); there can be no further implicit

dependence hidden in form of the coefficient functions g
(b′)2
xx (z/b), etc. These coefficient

functions were evaluated numerically in [7] with boundary conditions that ensure that

the boundary metric remains (2.1) and that the spacetime remains regular at the fixed

point set of ∂θ (with the period of θ taken to be 2π independent of b(x)).

Below, we use the results of [7] to calculate O(ε2) corrections to the holographic

entanglement entropy. We also make use of two further results from [7]. The first is

that, for d > 2, in the adiabatic expansion the Fefferman-Graham representation of our

metrics takes the form

ds2
z�b =

`2

z2

[
dz2 + α2

d

(
b2 + ε2

b b′′

d− 1
z2

)
dθ2 +

(
1 + ε2

b′′

b(d− 1)
z2

)
dx2

+

(
1− ε2 b′′

b(d− 2)(d− 1)
z2

)
dyidyi +O(zd, ε4)

]
. (2.5)
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The special case d = 2 is treated in appendix A. The second is that near the fixed point

set of ∂θ the metric takes the form

ds2 = gRR|R=0

(
dR2 +R2dθ2

)
+ gXX |R=0dX

2 + gY Y |R=0

d−2∑
i=1

dY idY i +O(R2), (2.6)

with gRR|R=0, gXX |R=0, gY Y |R=0 functions of X alone, in terms of coordinates X,R that

satisfy

z = (1−R)b− ε2 1

3
16−1/db

(
b′

2
+

2

α2
dd

2
∂2
zg

(2)
θθ

∣∣∣
z=b

)
+O(ε3)

x = X + ε 16−1/d b b′
(
R +

1

2
R2 − 1

6
(d− 2)R3

)
+O(ε3, R4). (2.7)

The key point of (2.6) is that it ensures the desired regularity at R = 0 (where ∂θ = 0).

In terms of the Fefferman - Graham coordinates this set is described by z = b̃ where

b̃ = b− ε2

2
b2 ∂zg

(2)
θθ

∣∣∣
z=b

. (2.8)

This is the black hole horizon for the adiabatic thermofield double interpretation and

the IR floor for the confining one.

3 Adiabatic Thermofield Doubles

We begin with the adiabatic thermal field double (ATFD) states defined by slicing our

CFT path integral along the surfaces θ = 0, θ = π fixed by the reflection symmetry

θ → −θ. It is convenient to denote the union of these two surfaces by CCFT . A

slight generalization of the Ryu-Takayangi proposal [11, 12] then states that the von

Neumann entropy of the CFT in some region RCFT ⊂ CCFT can be computed as

follows. First, find the dominant saddle for the corresponding bulk path integral. One

expects it to be invariant under a corresponding reflection, and that this reflection

leaves fixed a co-dimension one surface that we may call Cbulk. Now find the minimal-

area surface Σ within Cbulk that i) intersects the asymptotically AdS boundary on a

set corresponding to the boundary ∂RCFT of RCFT and ii) is homologous to RCFT

within Cbulk [13, 14]. Since the Lewkowycz-Maldacena argument [15] for the Ryu-

Takayanagi proposal applies equally well to this generalization, we shall use it freely

below1. We also note that the above prescription is equivalent to using the the covariant

1See [16] for a discussion of the homology constraint in the context of the Lewkowycz-Maldacena

argument.
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Hubeny-Rangamani-Takayanagi conjecture [17] in the Wick-rotated Lorentz-signature

solution2.

For simplicity, we consider slab-shaped regions RCFT defined by conditions of the

form |x − x0| ≤ L, perhaps also restricted to one of the two boundaries (θ = 0 or

θ = π). The symmetries then reduce the problem of finding the minimal surface to

studying curves in the z, x plane, with the area being proportional to the volume of

the y directions. For purposes of displaying a finite result we take the y coordinates

to range over a torus of finite volume V . Since we are interested in the decompactified

limit, we will always assume each cycle of the y-torus to have length much larger than

both b and L. In particular, we assume that the dominant bulk saddle will continue to

be given by (2.2).

A technical issue is that the area nevertheless remains infinite due to the divergence

of the metric (2.2) at z = 0. As usual, we must renormalize this quantity in order to

present finite results. Thus we define

Aren = lim
z0→0

(
Abare(z0) +

∑
∂Σ

Act(z0)

)
, (3.1)

where Abare(z0) is the area of the part of the surface with z > z0 and where there is

one counter-term contribution Act(z0) for each boundary of the minimal surface Σ.

The general theory of such divergences is explained in [19], which shows that when

the bulk is described by pure Einstein-Hilbert gravity (with no additional matter fields)

one may use counter-terms determined by the boundary metric alone3, though these

generally involve both the induced geometry on ∂Σ, the extrinsic curvature of ∂Σ

[21, 22], and even derivatives of such extrinsic curvatures [23] in high enough dimensions.

See also [24] for a recent discussion of such counter-terms and their relation to [15].

To find a useful explicit form for our Act(z0) , we first write the area functional as

Abare = V `d−1

∫
λ

Abaredλ (3.2)

with

Abare = g
1
2

(d−2)
yy

(
z′(λ)2

z(λ)2
+ x′(λ)2gxx

)1/2

(3.3)

2We thank Veronika Hubeny for pointing out that this follows from the maximin construction of

[18]. Since the RT surface is minimal on the Cauchy surface Cbulk, its area can be no larger than

that of the maximin surface. But the time-reversal symmetry means that the RT surface is also an

extremal surface in the full spacetime. It can therefore have area no smaller than the maximin surface,

as the latter agrees with the area of the smallest extremal surface.
3Interestingly, this is not true in general; see [20].
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for any parameter λ along the associated curve in the z, x plane.

Near z = 0 it is useful to set λ = z and assume an adiabatic expansion of the form

x(λ) = x(0)(λ) + ε x(1)(λ) + · · · . (3.4)

The behavior of x(0) near z = 0 is determined by the minimal surface equation of

motion at order ε0. This may be written

0 =
(
(d+ 1)zd − (d− 1)bd

)
x(0)′(z)− (d− 1)

(
bd − zd

) (
1 + zd/bd

)4/d (
x(0)′(z)

)3

+ z
(
bd + zd

)
x(0)′′(z). (3.5)

Equation (3.5) admits a power series solution of the form

x(0)(z) = c0 + cdz
d + c2dz

2d + · · · (3.6)

Indeed, the result takes the form (3.6) in any metric having the same non-zero coeffi-

cients in its Fefferman-Graham expansion. Since g
(1)
AB = 0, at order ε the ansatz (2.2)

continues to give the full metric. Noting that the endpoint conditions x(z = 0) = x0±L
are independent of ε then also gives

x(1)(z) = c̃dz
d +O(zd+1). (3.7)

So near z = 0 the area density (3.3) becomes

Abare =
1

zd−1
+

1

2

ε2

zd−1
(d− 2)g(2)

yy +O(z0, ε3), (3.8)

as any factors x(0)′(z) or x(1)(z) are of order zd and give corrections that vanish as

z → 0.

Combining the Fefferman-Graham expansion of the second order metric correction

(2.5) with the results above we find

Abare =
1

zd−1
− ε2

2(d− 1)

b′′

b

1

zd−3
+O(z0, ε3), (3.9)

so we may choose

Act = V `d−1
[
− 1

(d−2)
1

zd−2
0

+ ε2 1
2 (d−1)(d−4)

b′′

b
1

zd−4
0

]
d 6= 2, 4 (3.10)

There are no explicit O(ε) counter-terms since g
(1)
AB = 0. One may check that this

choice of counterterms precisely implements the covariant counterterm prescription of

[24] to O(ε2). Following this prescription, the counterterms in d = 4 will include a
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logarithmic as well as a constant piece, and in d = 2 we only have the logarithmic

piece. These terms are given by

Act = V `3
[
−1

2
1
z20
− ε2 1

6
b′′

b
log(z0/`) + ε2 1

12
b′′

b

]
, d = 4

Act = ` log(z0/`) , d = 2

(3.11)

where no factor of V appears in d = 2 because there are no y-directions.

For d = 3, the second counter-term in (3.11) vanishes; we nevertheless find that

including it in the manner explained below improves the convergence of our numerics.

In practice, we find it convenient to renormalize in the following way. Let Act =

− ∂z0Act|z0=z. Then we can write

Act =

∫ zmax

z0

Act dz + Act|z0=zmax
(3.12)

for any zmax. In particular, we can take zmax to be the maximal value of z on our bulk

extremal surface. The renormalized area (3.1) can then be written

Aren = lim
z0→0

∫ zmax

z0

(
V `d−1Abare +

∑
∂Σ

Act

)
dz +

∑
∂Σ

Act|z0=zmax
,

=

∫ zmax

0

(
V `d−1Abare +

∑
∂Σ

Act

)
dz +

∑
∂Σ

Act|z0=zmax
. (3.13)

The integral in the second line now converges, and is more stable to compute numeri-

cally. The price we pay is having to add the constant term involving zmax. For d = 3, we

find that including the second (vanishing!) counter-term in (3.11) in this way improves

our numerical convergence. This appears to be due to the fact that we perform these

integrals by changing variables to integrate over x instead of z, and that the above

renormalization removes an (integrable) singularity in the integrand that arises from

the associated factor of z′(x).

We are now ready to compute the entropies of our slabs |x − x0| ≤ L. For slabs

contained in a single boundary, we know on general grounds that the minimal surface

will remain close to the conformal boundary when L� b while for L� b it will track

the horizon closely over almost all of the interval |x− x0| ≤ L. The transition between

these behaviors is smooth. But if we take our slab to contain the regions |x− x0| ≤ L

on both the θ = 0 and θ = π boundaries one finds a well-known phase transition

[17, 25–27] when passing from the regime L � b0 to the regime L � b. In the former

case, the minimal surface consists of two copies of that found in the single-boundary
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case. In the latter case the minimal surface again has two connected components, but

each component then stretches from θ = 0 to θ = π while remaining localized near

x = x0 ± L. This is the only context in which the minimal surface reaches or passes

through the fixed point set of ∂θ. In each case we find the general solution numerically

below and compare it with analytic approximations for L� b and b(ε b′)−1 � L� b.

We also provide results for the case L � b(ε b′)−1 � b. The effect on the phase

transition itself is analyzed in section 3.3.

3.1 Entropy on a single boundary

We begin with connected slab-shaped regions RCFT of width 2L lying in a single

boundary. For generic values of the parameters, numerical calculations are required to

find the extremal surface. But certain limiting behaviors can be studied analytically.

We treat these cases first, and then compare the results with numerical studies of the

general case. In the rest of this section, we set x0 = 0 without loss of generality.

3.1.1 Analytically tractable limits

Our first special case will be the large L limit, as the fact that the minimal surface

closely tracks the horizon in this regime makes it particularly easy to study. To leading

order in L, the renormalized area is just the horizon area in the region |x| ≤ L. Using

the induced metric on the horizon found in [7] gives

S = V `d−1

4G

∫ L
−L dx

[
22−2/d

bd−1 + ε2 21−6/d

bd−1

(
(d− 2) g

(2)
yy

∣∣∣
z=b

+ g
(2)
xx

∣∣∣
z=b

+ b′2
)

+O(ε4)
]

+ . . . , (3.14)

where the . . . represent terms that do not grow with L when b remains bounded.

For L larger than or comparable to b/(ε b′), nothing more can be said without

choosing an explicit function b(εx). But in the regime b/(ε b′)� L� b we may define

b0 = b(0), b′0 = ∂xb|x=0, and b′′0 = ∂2
xb|x=0 and use the expansion

b = b0 + ε x b′0 +
1

2
ε2 x2 b′′0 +O(ε3) (3.15)

to simplify (3.14). Writing Aren = A
(0)
ren + ε2A

(2)
ren + . . . , we find

A(0)
ren

∣∣
L�b0

∼ 23−2/dV `
d−1

bd−1
0

L, A(2)
ren

∣∣
L�b0

∼ 1

3
22− 2

d (d− 1)
V `d−1

bd+1
0

(
d b′0

2 − b0b
′′
0

)
L3,

(3.16)

where ∼ indicates that we have found only the leading behavior for L � b0. Here we

were able to obtain an analytic expression at order ε2 because the L3 term comes only
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from the O(ε2) term in (3.15) and thus can involve the metric only at order ε0 as given

by (2.2).

For L � b0 the minimal surfaces will be confined to z � b0, so we can estimate

their area by truncating the Fefferman - Graham expansion (2.5) for the metric to some

order in z. The Fefferman - Graham expansion for d = 2 has a non-trivial contribution

from the boundary stress tensor at order z2, so we treat this case separately in appendix

A.

Consulting the expansion (2.5), we see that to zeroth order in the adiabatic expan-

sion we have Poincaré AdSd+1. So for d > 2 we find

A(0)
ren = −2π

d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

V `d−1

Ld−2
+O(L2). (3.17)

This leading term reproduces the standard result for slabs in Poincaré AdSd+1 as derived

in [11].

Since dθ = 0 on the surface of time reflection symmetry, the truncated induced

metric (2.5) depends on b only at order ε2 and there can be no O(ε) correction to the

minimal surface or its area. And the fact that the zero-order surface is minimal means

that there is no correction at order O(ε2) from the second-order displacement of the

surface within the zeroth-order spacetime. Thus the only O(ε2) contribution comes

from evaluating the change in the area along the zeroth-order minimal surface that

comes from including the O(ε2) parts of (2.5). This correction can be computed from

the integral representation of the hypergeometric function found in equation (15.6.3)

of [28] and yields

A(2)
ren =

π
d
2
−2

2F1

(
1
2
,− d−4

2(d−1)
; d+2

2(d−1)
; 1
)

3(d− 4)

(
Γ
(

d
2d−2

)
Γ
(

1
2d−2

))d−4
b′′0
b0

V `d−1

Ld−4
+O(L4) , (3.18)

for d > 2, d 6= 4 and

A(2)
ren =

[
1

18

(
5 + log

[
π3 Γ

(
2
3

)6

4 Γ
(

1
6

)6

])
− 1

3
logL

]
b′′0
b0

V `3 +O(L4) for d = 4 .

(3.19)

3.1.2 Numerics and comparisons

We now consider general values of L � 1/(ε b′). This allows us to again use (3.15) so

that the results can depend only on the parameters b0, b
′
0, and b′′0. For d 6= 2, 4 we write

Aren =
V `d−1

bd−2
0

A(L/b0), (3.20)
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where the function form of A(L/b0) is determined only by dimensionless combinations

of b and its derivatives. For d = 2 and d = 4 it is useful to subtract the logarithmic

dependence on ` coming from the regularization scheme (3.11) and write

Aren = `A(L/b0) + ` log(b0/`) , d = 2

Aren =
V `3

b2
0

A(L/b0)− ε2 V `3 1

6

b′′0
b0

log(b0/`) . d = 4 . (3.21)

We may then use the adiabatic expansion to write

A(L/b0) = A(0)(L/b0) + εA(1)(L/b0) + ε2 A(2)(L/b0) +O(ε3) . (3.22)

Now, the correction A(1)(L/b0) would have to be proportional to the first-order adiabatic

parameter b′0/b0. But the sign of this parameter changes under x → −x whereas the

area must be invariant. So there can be no correction at this order. We thus consider

only the second order corrections, which must be linear in the two dimensionless second-

order adiabatic parameters (b′0)2 and b0 b
′′
0; i.e., we have

A(2)(L/b0) = (b′0)2A(b′)2(L/b0) + b0 b
′′
0A

(bb′′)(L/b0), (3.23)

with A(b′2),A(bb′′) having no further dependence on b(x).

Even at order ε0 we require numerics to solve for the surface that extremizes the

area (3.3). We use the Newton-Raphson method outlined in [29]. Figure 1 shows the

solution for z(0)(x/L)/b0 with 2 ≤ d ≤ 7 and various interval sizes. Results for the

zeroth order area are shown in figure 2.

Computing the second order change in area (3.23) requires only knowledge of the

surface to O(ε). This is because the order-zero surface is minimal, so changes in the

area computed with with zeroth order metric are quadratic in changes of the sur-

face. The first order equation of motion is complicated, but is straightforward to work

out and can be solved numerically by the same techniques as at order ε0. Results

for z(1)(x/L)/(b0 b
′
0) are shown in figure 3 for various dimensions and interval sizes.

The second order correction to the area then follows by summing the following three

contributions: the above-mentioned quadratic change in the area computed using the

zeroth-order metric due to the shift in the minimal surface at O(ε), the change in the

area of the zeroth-order minimal surface due to the inclusion of O(ε2) terms in the met-

ric, and a cross-term linear in both the O(ε) shift of the surface and the O(ε) correction

– 11 –
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(c) L = 5 b0

Figure 1: Numerical solutions for z(0)(x/L)/b0 for slabs of width 2L on a single bound-

ary with 2 ≤ d ≤ 7. As L increases from (a) to (c), the entangling surface quickly

approaches the horizon as expected.

to the metric. In terms of the densitized area Aren, this correction takes the form

A(2)
ren =

1

2

∫
dx

(∂2A(0)
ren

∂z2
− d

dx

(
∂2A(0)

ren

∂z ∂z′

))∣∣∣∣∣
z(0)(x)

(
z(1)(x)

)2
+
∂2A(0)

ren

∂z′2

∣∣∣∣∣
z(0)(x)

(
z(1)′(x)

)2


+

∫
dx

(∂A(1)
ren

∂z
− d

dx

(
∂A(1)

ren

∂z′

))∣∣∣∣∣
z(0)(x)

z(1)(x)


+

∫
dx A(2)

ren

∣∣
z(0)(x)

, (3.24)

where each line corresponds to one of the above three contributions described above.

Numerical results are shown in figure 4.

As a check on our numerics, we now compare with the analytic expressions of

section (3.1.1). We first consider the case b/(ε b′)� L� b0. At order ε0 we numerically
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Figure 2: The rescaled zeroth order area A(0)(L/b0) for slabs of width 2L on a single

boundary with 2 ≤ d ≤ 7. The curves interpolate between a power law proportional

to −(b0/L)d−2 for L � b0 and linear growth for L � b0 where the entangling surface

tracks the horizon closely. For d = 2 the small L/b0 behavior is logarithmic.

compute b0 A
(0)/L for large L/b0, while at order ε2 we compute b3

0 A
(2)/L3. Results are

tabulated in figure 5 which shows agreement with (3.16).

Turning now to the case L � b0, we have verified that the coefficient of A(2)

proportional to b′0
2 vanishes quadratically as L � b0, and we may also numerically

compute the b0 b
′′
0 contribution to limL→0 L

d−4A(2). Our results are tabulated in figure

6 and shown to agree with the analytic results (3.18) and (3.19).

3.2 Entropy for pairs of diametrically opposed slabs

We now consider the entropy of a pair of corresponding slabs on opposing boundaries.

Both slabs are defined by |x − x0| ≤ L, but one lies at θ = 0 while the the other

lies at θ = π. Without loss of generality we again set x0 = 0 in this section. As in

[25, 27], for L � b the minimal surface will be simply two copies of the one found in

section 3.1, so that the mutual information between these two slabs vanishes. But for

L� b the minimal surface represents a different phase, again having two disconnected

pieces but now with each localized near x = ±L. Here the slabs share non-zero mutual

information I. In this phase the entropy is independent of L and depends only on the

local behavior of b(x) near x = ±L. Note that the contribution from each surface is

just the entropy one would compute for a pair of half-spaces, both defined by x > L (or

x < −L) but on opposite boundaries. For simplicity we thus focus on this ‘half-TFD’

entropy below. All quantities associated with the half-TFD problem will be marked

with hats (̂) to distinguish them from the corresponding quantities of section 3.1.

As before, computing the area to order ε2 requires only knowledge of the entangling

– 13 –
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(c) L = 5 b0

Figure 3: Numerical solutions for z(1)(x/L)/(b0 b
′
0) for slabs of width 2L on a single

boundary with 2 ≤ d ≤ 7. Away from the end points, increasing L causes z(1)(x/L)

to approach the first order correction to the horizon location. Since g
(1)
AB vanishes

identically, this correction comes only from expanding b = b0 + b′0x + . . . within the

zeroth order ansatz. This correction is thus linear in x, given in this approximation by

z
(1)
H (x) = b′0 x.

surface to first order. It thus suffices to write

x̂(z) = x̂(0)(z) + ε x̂(1)(z) + · · · , (3.25)

At zeroth order the entangling surface relevant to this half-TFD problem lies at precisely

x̂(0)(z) = ±L and extends from one boundary to the other, passing through to the

horizon. The total area at this order may be computed analytically and we find

Â(0)
ren =V `d−1 21−4/d

bd−2

(
d− 4

d− 2

)(
2− 161/d

2F1

[
2

d
− 1,

4

d
;

2

d
;−1

])
. (3.26)

At first order we proceed numerically, with x̂(1)(z) satisfying the first order equation
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(b)

Figure 4: Plots of (a) A(b′20 )(L/b0) and (b) A(b0b′′0 )(L/b0) for slabs of width 2L on a

single boundary with 2 ≤ d ≤ 7.

d b0 A
(0)/L Pred. b3

0 A
(b′0

2)/L3 Pred. −b3
0 A

(b0b′′0 )/L3 Pred.

2 4.000 4.000 1.33 1.33 0.667 0.667

3 5.04 5.04 5.04 5.04 1.68 1.68

4 5.66 5.66 11.3 11.3 2.83 2.83

5 6.06 6.06 20.2 20.2 4.04 4.04

6 6.35 6.35 31.7 31.7 5.29 5.29

7 6.56 6.56 45.9 45.9 6.56 6.56

Figure 5: Comparison of the numerically computed L � b0 scaling of A(L/b0) (left

colums) from figure 4 with the predictions (Pred., right columns) from (3.16) for 2 ≤
d ≤ 7. The numerical precision is at least three significant figures, estimated by

comparing results for 100 and 150 lattice points and for fitting intervals L/b0 ∈ [40, 50]

and L/b0 ∈ [50, 60]

d Ld−2 A(0) Pred. Ld−4 A(b0b′′0 ) Pred.

3 −0.718 −0.718 −0.729 −0.729

4 −0.0802 −0.0802 −0.334 logL −0.333 logL

5 −0.00864± 0.00001 −0.00865 0.0897± 0.0020 0.0916

6 −0.000821± 0.000002 −0.000822 0.00850± 0.00039 0.00885

7 −0.0000684± 0.0000002 −0.0000685 0.000834± 0.000041 0.000871

Figure 6: Comparison of the numerically computed L � b0 scaling of A(L/b0) (left

colums) from figure 4 with the predictions (Pred., right columns) of (3.18), (3.19) for

3 ≤ d ≤ 7. The numerical precision (estimated as in figure 5) is shown when it falls

below three significant figures.
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of motion

0 =
(
bd + zd

) (
bd + zd

)4/d
∂2
z x̂

(1) +
1

z

(
(d+ 1)zd − (d− 1)bd

) (
zd + bd

)4/d
∂zx̂

(1) + 2b4(d− 2)b′zd.

(3.27)

We simplify the analysis by using the symmetry that relates our two boundaries. We

thus compute the area for a surface extending from one boundary to the horizon and

multiply by 2. The boundary conditions are that x̂ = ±L at z = 0 and that dx̂
dR

= 0 at

the horizon R = 0, where R is the regular coordinate associated with (2.6). But since

it is convenient to work in terms of the original z coordinate, we note that to order ε

this is equivalent to imposing the boundary condition

x̂′(z)|z=b = − ε

16
b b′ . (3.28)

We solve numerically for the minimal surface in the region z ∈ [0, b] and simply ap-

proximate x̂(z) by x̂ = ±L in the order ε2-sized region z ∈ [b, b̃]. Numerical solutions

for x̂(1)(z/b) are shown in figure 7 for 2 ≤ d ≤ 7.

z / b

-0.25

-0.2

-0.15

-0.1

-0.05

1
b b'
x(1)(z/b)

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

Figure 7: Numerical solutions x̂(1)(z/b)
bb′

for the half-TFD problem with 2 ≤ d ≤ 7, with

bb′ evaluated at x = ±L. In the large d limit, one may show analytically that this

function vanishes everywhere except at the horizon.

The second order area correction now has an additional contribution due to the

O(ε2) shift in the endpoint of the minimal surface. This contribution can be computed

analytically and the full second order shift is given by

Â(2)
ren = Ã(2)

ren + ε2 V `d−1 2
2d−8

d

d3bd−3

(
2 d

(
2F1

[
1,−2

d
;

2

d
;−1

]
− 3

)
−

2
√
π Γ
(

2
d

)
Γ
(

1
2

+ 2
d

) ) ∂zg
(2)
tt

∣∣∣
z=b

(3.29)
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where Ã
(2)
ren includes the area of only the part of the surface with z ≤ b. Note that

(3.29) depends on L only through evaluating b (and its derivatives) at x = ±L. We

compute (3.29) numerically. Results are displayed in figure 8 in terms of dimensionless

coefficients defined by

Â(2)
ren =

V `d−1

bd−2
Â(2) , with Â(2) = b′

2
Â(b′2) + b b′′Â(bb′′) , d 6= 2, 4. (3.30)

Here b, b′, b′′ are evaluated at x = ±L. For d = 2, 4 we use analogous notation but with

logarithmic subtractions as in (3.21).

d Â(b′2) Â(b b′′)

2 0.00 0.00

3 0.531 -0.294

4 0.571 0.0716

5 0.815 -0.142

6 1.28 -0.562

7 1.93 -0.845

Figure 8: The coefficients Â(b′2) and Â(b b′′) for the half-TFD problem for 2 ≤ d ≤ 7.

The numerical precision is estimated by comparing results for 100 and 150 lattice points,

giving better than one part in 10−10.

3.3 Phase transition

We now analyze the transition between the I = 0 and I > 0 phases for a pair for

|x − x0| ≤ L slabs on opposite boundaries. In particular, we compute the effect of

inhomogeneities on the critical length Lcrit.

For this purpose, we should compare twice the area of the entangling surface for a

slab |x| ≤ L on a single boundary with that of the sum of the surfaces for the half-TFD

problems at x = ±L. The phase transition will occur when L is of order b, so at small

ε we have L� b/(εb′) and we may expand b(±L) in (3.30) in a Taylor series. At order

ε0, the surfaces at x = ±L have equal area, so we can determine the zeroth order value

of Lcrit by comparing (twice) the numerical value of (3.26) for b = b0 with (twice what

is shown in) figure 2. Results are displayed in figure 9.

As discussed in section 3.1, the first order correction to the area of the connected

surface vanishes. For the disconnected surfaces, we have a first order correction from

expanding (3.30). But this correction is proportional to x b′0, so the corresponding

contributions cancel between the surfaces at x = ±L; there can be no change in Lcrit

at first order.
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At second order, we can write Lcrit = L
(0)
crit + ε2L

(2)
crit and solve

2Aren(Lcrit) = Âren|x=Lc + Âren|x=−Lc . (3.31)

Here it is useful to note that Taylor expanding Âren|x=±Lc and then performing our

adiabatic expansion gives

Âren|x=Lc + Âren|x=−Lc = 2Âren|x=0 + L2
crit∂

2
xÂren|x=0 + . . .

= 2Â(0)
ren|x=0 + ε2

(
2Â(2)

ren|x=0 +
(
L

(0)
crit

)2 [
(b′0)2∂2

b Â
(0)
ren|x=0 + b′′0∂bÂ

(0)
ren|x=0

])
+O(ε4). (3.32)

Solving (3.31) to order ε2 then gives

L
(2)
crit =

(
L
(0)
crit

)2

2

(
(b′0)2∂2

b Â
(0)
ren|x=0 + b′′0∂bÂ

(0)
ren|x=0

)
+ Â

(2)
ren|x=0 − A(2)(L

(0)
crit)

∂LA
(0)
ren(L/b0)

∣∣∣
L
(0)
crit

. (3.33)

Figure 9 displays numerical results for 2 ≤ d ≤ 7 in terms of the coefficients defined by

L
(2)
crit/b0 = b′0

2
L(b′0

2) + b0b
′′
0 L

(b0b′′0 ) . (3.34)

In addition, figure 10 shows result for the mutual information between the slabs using

d L
(0)
crit/b0 L(b′0

2) L(b0b′′0 )

2 0.441 −0.0285 0.0143

3 0.832 −0.00532± 0.00027 0.00111± 0.00012

4 0.314 0.0132± 0.0004 0.00417± 0.00021

5 0.197 0.00305± 0.00048 −0.00983± 0.00024

6 0.155 0.00300± 0.00057 −0.0104± 0.0002

7 0.133 0.00405± 0.00090 −0.00912± 0.00032

8 0.119 0.00872± 0.0015 −0.00834± 0.00045

Figure 9: The coefficients governing Lcrit to second order. The numerical precision

is shown when it falls below three figures when estimated as described in appendix B.

The numerical result for d = 2 (shown) agrees with analytic predictions from appendix

A.

the notation

Î =
V `d−1

bd−2
0

Î(L/b0) ,

Î(L/b0) = Î(0)(L/b0) + ε2
(
b′0

2 Î(b
′
0
2)(L/b0) + b0b

′′
0 Î

(b0b′′0 )(L/b0)
)
. (3.35)
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Figure 10: The coefficients of I(L/b0) for 2 ≤ d ≤ 7 to second order. The mutual

information vanishes for L < Lcrit.

We find to second order that Î has an interesting dependence on dimension. First

although Î(b
′
0
2) is positive for most L > Lcrit, for d ≥ 4 it becomes slightly negative

near Lcrit. As a result, a non-zero b′0 causes Lcrit to increase for d ≥ 4 and decrease for

d = 2, 3. The effect of second derivatives depends on dimension as well: a positive b′′0
increases Lcrit for 2 ≤ d ≤ 4 but decreases Lcrit for 5 ≤ d ≤ 7. For d = 2 the above

behavior is derived analytically in appendix A; it would be interesting to develop an

analytic understanding of the higher dimensional results as well. Due to the many

interesting features in this data, we take extra care to understand the convergence of

our numerics in appendix B.

4 States of Confining Theories

We now turn to the second interpretation in which our path integral computes the

ground state of a confining gauge theories on the surface y1 = 0. This necessarily

restricts our discussion to d ≥ 3.
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We again consider slabs |x − x0| ≤ L. As in section 3.2, there are two possible

phases for the minimal surface. For L� b the minimal surface is connected and does

not reach R = 0. But there is also another local extremum of the area given by a

disconnected surface that consists of two disks, each localized near x − x0 = ±L. At

small L the disconnected surface has larger area, though increasing L leads to a phase

transition at which the disconnected surface becomes minimal. Interestingly, at still

larger values of L the connected extremum becomes singular and ceases to exist. The

two phases are shown in figure 11 and will be studied in sections 4.1 and 4.2 below.

The general feature that the entanglement becomes independent of L at large L is

to be expected in confining theories, as they have finite correlation lengths. But the

sharp phase transition seen here is a feature of large N [30, 31].

(a) (b)

Figure 11: Possible topologies for the extremal surfaces for a strip on the boundary.

As shown in (a), for thinner strips the connected surface has minimal area. For thicker

strips, the disconnected surface consisting of two disks shown in (b) has minimal area.

Below, we find it useful to write

Abare = 2π Ṽ `d−1

∫
Abare dλ for

Abare = g(d−3)/2
yy g

1/2
θθ

(
z′(λ)2

z(λ)2
+ x′(λ)2 gxx

)1/2

, (4.1)

where Ṽ is the volume of a (d − 3) torus that we use to regularize the y2, . . . , yd−2

directions. To compute the entropy, we must as usual find the minimal surface to O(ε).
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We will also need the explicit counterterms that renormalizing the area functional to

second order. The computations are analogous to those in section 3, though now the

minimal surface equations lead to the asymptotic expansion

x(z) = xB +
ε b′

2 (d− 2)
z2 + cd z

d +O(zd+1, ε2) , (4.2)

where xB is the point of intersection with the boundary. Inserting (4.2) into (4.1) gives

Abare =
αd b

zd−1
− ε2 αd(d− 3)

2(d− 2)2

b′2

b

1

zd−3
+ ε2

αdb
′′

2(d− 1)(d− 2)

1

zd−3
+O(z0), (4.3)

so for d > 4 we may take

Act = 2πṼ αd `
d−1

[
− 1

(d− 2)

b

zd−2
+ ε2

(d− 3)

2(d− 2)2(d− 4)

b′2

b

1

zd−4
− ε2 b′′

2(d− 1)(d− 2)(d− 4)

1

zd−4

]
.

(4.4)

In lower dimensions we have

Act = 2π αdṼ `
3

[
−1

2

b

z2
+ ε2

(
b′′

12
− 1

8

b′2

b

)
log(z/`) + ε2

(
− b
′′

24
+

1

8

b′2

b

)]
d = 4

Act = −2π αd `
2 b

z
d = 3 , (4.5)

where the counterterms again match the covariant prescription of [24], whose details

we have again used to fix the z-independent terms for d = 4. We can now compute

the area of the minimal surface for the regimes L� b and L� b and study the phase

transition between connected and disconnected topologies. Additionally, without loss

of generality we set x0 = 0 for the rest of this section.

4.1 Narrow slabs

We begin with the regime L � b, where the entropy will be given by the connected

surface [30, 31]. The computations proceed much as in section 3.1, though we are no

longer able to obtain analytic results for the second order area in the large and small L

limits. Indeed, this phase fails to exist at sufficiently large L, while for the small L limit

the first order correction z(1)(x) must be computed numerically even in the approximate

geometry (2.5). However, the expansion (2.5) does require the leading small L behavior

of A
(2)
ren to be of order L4−d. As a test of our numerics, we compare below the coefficient

of L4−d computed using the full metric against that computed using the truncated

metric (2.5). At zeroth order we can compare against an analytic prediction, as at
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this order (2.5) is just Poincaré AdSd+1 and θ acts just like a y-coordinate with period

2παdb. As a result, the area is given by (3.17) with V = 2παd b Ṽ .

As in section 3.1, we consider the case L � b/(ε b′) so to order ε2 the inhomo-

geneities are described by b0, b′0, and b′′0. We state our numerical results for the con-

nected area in terms of the dimensionless function Ac(L/b0) defined for d 6= 4 by

Aren =
2πṼ `d−1

bd−3
0

Ac(L/b0) . (4.6)

where the subscript c will denote quantities associated with the connected entangling

surface. For d = 4 it is useful to explicitly remove the log(`) dependence introduced by

our regularization scheme. We therefore write

Aren =
2πṼ `3

b0

Ac(L/b0) + ε2 2παdṼ `
3

(
b′′0
12
− 1

8

b′0
2

b0

)
log(`/b0) . (4.7)

As before, we use the adiabatic expansion to write

Ac(L/b0) = Ac
(0)(L/b0) + εAc

(1)(L/b0) + ε2 Ac
(2)(L/b0) +O(ε3)

with Ac
(2)(L/b0) = (b′0)2A

(b′0
2)

c (L/b0) + b0 b
′′
0A

(b0 b′′0 )
c (L/b0) , (4.8)

where symmetry under x → −x again requires the first order correction to vanish.

Numerical results are displayed in figure 12.

As a check on our numerics, we extract limL→0 L
d−2A

(0)
ren and limL→0 L

d−4A
(2)
ren and

compare in figure 13 with the same coefficients as determined by approximating the

metric to O(z2) in the Fefferman - Graham expansion (2.5).

4.2 Wide slabs

For L � b, the entangling surface is given by two disconnected disks each localized

near x = ±L. As in section 3.2, the entropy depends on L only through the local

behavior of b(x) near x = ±L. Furthermore, the contribution from each surface is just

the entropy one would compute for the corresponding half-space x > L or x < −L. For

simplicity we thus focus below on this notion of ‘half space entropy’ and choose RCFT

to be the region x > ±L. Note that our geometry ends at z = b̃, with the extremal

surface obeying the boundary condition of regularity (3.28).

The detailed computations are much as in section 3.2, so we simply display the re-

sults. The area of the disconnected surface can be written in terms of the dimensionless

functions described in (4.6) and (4.8) after replacing Ac(L/b0) with Ad. We compute

the zeroth order coefficients analytically, but the second order coefficients require nu-

merics. Half-space entropy results for 3 ≤ d ≤ 7 are tabulated in figure 14 using our

by-now standard notation.
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(a)

0.075 0.1 0.125 0.15
L/b0

2

4

Ac
b0'2(L/b0)

0.075 0.1 0.125 0.15
L/b0

-0.2

-0.1

0.1

Ac(b0 b0'')(L/b0)

3

4

5

6

7

(b)

Figure 12: Numerical results for A
(0)
c (L/b0), A

(b′0
2)

c (L/b0), and A
(b0b′′0 )
c (L/b0) for 3 ≤

d ≤ 7.

4.3 Phase transition

Finally, we turn to the effect of adiabatic variations on the critical value Lcrit at which

the dominant phase becomes disconnected. As in section 3.3, we do so by comparing

the area of the connected surface (figure 12) with the area of the disconnected surface

evaluated at x = ±L (figure 14). Since the phase transition occurs at L� b/(εb′), we

again expand b(x) in a Taylor’s series to compute Ad. The second-order coefficients of

of Lcrit are again given by (3.33) with the replacements 2Aren → Ac, Âren → Ad. We

determine Lcrit numerically to second order, and display these results in figure 15 using

the notation of (3.34).

5 Discussion

In the above work, we computed the leading (second order) effects of inhomogeneities

on the holographic entropy of slab-shaped regions defined by |x− x0| ≤ L. We studied

thermofield-double states on spacetimes where the redshift changes slowly with position,

and the ground states of certain confining theories with corresponding slow changes
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d limL→0 L
d−2Ac

(0) Pred.

3 −0.301 −0.301

4 −0.0283 −0.0283

5 −0.00262 −0.00262

6 −0.000218 −0.000217

7 −0.0000161 −0.0000160

(a)

d limL→0 L
d−4∂(b′0)2Ac

(2) Approx. limL→0 L
d−4∂b0 b′′0Ac

(2) Approx.

3 −0.186± 0.003 −0.186± 0.003 0.740± 0.003 0.740± 0.003

4 −0.0828± 0.0006 −0.0828± 0.0006 0.516± 0.0008 0.516± 0.0008

5 0.0678± 0.0044 0.0678± 0.0044 −0.00948± 0.00004 −0.00949± 0.00004

6 0.0189± 0.0027 0.0189± 0.0027 −(5.70± 0.08)× 10−4 −(5.70± 0.08)× 10−4

7 0.00400± 0.00077 0.00400± 0.00077 −(3.49± 0.12)× 10−5 −(3.49± 0.12)× 10−5

(b)

Figure 13: Comparison of the numerically computed L � b0 scaling of A(L/b0) for

3 ≤ d ≤ 7 from figure 12 (left columns) with that determined by truncating (2.5)

at order z2 (right columns, with “Pred.” and “Approx.” referring to analytic and

numerical results respectively). The numerical precision is shown when it falls below

three significant figures, estimated by comparing results for 100 and 150 lattice points

and for fitting different ranges of L depending on the dimension.

d Ad
(0) Ad

(b′2) Ad
(b b′′)

3 −0.667 −0.0882 0.0882

4 −0.354 −0.0424 0.0283

5 −0.232 −0.0875 0.0437

6 −0.167 −0.135 0.0540

7 −0.126 −0.158 0.0527

Figure 14: The coefficients Ad
(0), Ad

(b′2), and Ad
(b b′′). The numerical precision is

around six significant figures, estimated by comparing results for 100 and 150 lattice

points.

in the confinement scale. In each case, we studied the effect on the length scale Lcrit
associated with a Ryu-Takayanagi phase transition. Most of our results were numerical,

though the special case d = 2 (AdS3) was treated analytically in appendix A. In higher

dimensions, some analytic results were also available in special limits and were used to
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d L
(0)
crit/b0 L(b′0

2) L(b0b′′0 )

3 0.249 −0.0475± 0.0002 0.0116± 0.0002

4 0.217 −0.0694 0.287

5 0.191 −0.107± 0.004 0.0233

6 0.170 −0.167± 0.017 0.0194

7 0.152 −0.237± 0.036 0.0157

Figure 15: Numerical values of Lcrit/b0 and the coefficients L(b′0
2) and L(b0b′′0 ) from

(3.33) for the RT phase transition for slabs |x| ≤ L in our confined ground state with

3 ≤ d ≤ 7. The numerical precision is shown when it falls below three figures, estimated

by comparing results for 100 and 150 lattice points.

check our numerics.

For the thermofield double, Lcrit is a measure of the non-locality of entanglements

between opposite CFTs. The second-order coefficients (figure 9) governing the response

of Lcrit to inhomogeneities turn out to be numerical small. Some insight as to why is

provided by the analytic d = 2 treatment of appendix A, which shows these coefficients

to be proportional to (Lcrit/b)
3. So the small values of Lcrit/b lead to even smaller

coefficients L(b′0
2), L(b0b′′0 ).

The coefficients shown in figure 9 display highly non-trivial structure with respect

to the dimension d. For d ≤ 3, gradients decrease Lcrit, while they increase Lcrit for

d ≥ 4. This remains true whether one studies the local response to b′0 or the average

change over all x. The former is precisely the sign of L(b′0
2) in figure 9. But averaging

L
(2)
crit over x allows one to use either periodic boundary conditions or b → constant

as x → ±∞ to integrate b2b′′ by parts, giving a positive-definite quantity multiplied

by (L(b′0
2) − 2L(b0b′′0 )). It turns out that both change sign between d = 3 and d = 4.

Interestingly, it is the large d behavior that corresponds to the naive expectation that

that the response is given by averaging b(x) over a scale |x−x0| . b, as such averaging

would decrease Lcrit near a maximum of b(x) and thus require L(b0b′′0 ) < 0. This is the

opposite sign to that found analytically for d = 2 in appendix A.

One also notes that the coefficients L(b0b′′0 ) are not monotonic with d, but appear to

have a local minimum near d = 6. In contrast, L(b′0
2) appears to be monotonic in d but

is also highly non-uniform. In particular, while most cases exhibit a clear increase in

value with d, the coefficients for d = 5 and d = 6 are remarkably close. The in-depth

analysis of numerical convergence in appendix B appear to confirm that these features

are real and are not just numerical artifacts. It would be useful to have an analytic

understanding of these dimension-dependent features; the large d limit may be worth
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particular study.

In contrast, the response of our confining ground states is both larger and more

uniform in d; figure 15 shows no changes of signs. It is nevertheless interesting that

gradients – either local or averaged – always decrease Lcrit. This is naturally under-

stood as a corresponding decrease in the length scale characterizing confinement. But

comparing our results with [7] challenges this interpretation. For d ≤ 5, [7] found

that the gradients decrease the tension of flux tubes aligned in their direction, while

the increase of tension one would expect from a decrease in the confinement length

scale occurred only for d ≥ 6. Furthermore, for d > 3 it found that gradients always

raised the negative energy of the confining ground state – a result naturally associated

with a larger confinement length scale. The main conclusion appears to be that con-

finement is not generally characterized by a single scale, but that changes in different

confinement-related phenomenon under small perturbations are often uncorrelated. It

would be interesting to develop more analytic understanding of such effects, and also

to determine to what extent our results apply to other systems with spatially-varying

confinement scale such as those that might be constructed in a condensed matter lab-

oratory.
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A Adiabatic Thermofield Doubles in 1+1 Dimensions

Holographic 1+1 CFTs have asymptotically AdS3 bulk duals. Due to the lack of local

gravitational degrees of freedom in 2+1 dimensions, all complete asymptotically locally

AdS spacetimes are diffeomorphic to global AdS3 (or to a quotient thereof). This fact

greatly simplifies the associated minimal surfaces, allowing us to compute properties

of adiabatic thermofield-double analytically for d = 2. We do so here in an attempt to

gain insight into our numerical results, and also as a check on our numerics.

For d = 2, the zeroth order ansatz (2.2) becomes simply

ds2 =
1

z2

[
dz2 + b2

(
1− z2

b2

)2

dθ2 +

(
1 +

z2

b2

)2

dx2

]
. (A.1)
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As shown in appendix A of [7], the second order corrections are

g
(2)
θθ =

z2 (b2 − z2) b′2

2 b2

g(2)
xx =

z2 (b2 + z2)
(
2 b b′′ − b′2

)
2b4

. (A.2)

Using (2.8), this places the horizon at

zH = b+ ε2
1

8
b b′

2
+O(ε4). (A.3)

We can now compute various entropies. Taking RCFT to be the half space x > 0 in

the union of the two CFTs, the equation of motion for the first order correction x(1)(z)

to the entangling surface reduces to

0 =
(
b2 − 3z2

)
∂zx

(1)(z)− z
(
b2 + z2

)
∂2
zx

(1)(z), (A.4)

and the boundary conditions become

x(1)(0) = 0

x(1)(b) = −1

4
b b′ . (A.5)

The solution is given by

x(1)(z) = − b b′ z2

2 (b2 + z2)
. (A.6)

Comparing (A.6) to our numerics for d = 2 gives agreement to one part in 1016.

Turning now to the renormalized entropy, using (A.3) we find that the second order

contribution coming from integrating the zeroth order surface over the region z ∈ [b, zH ]

precisely cancels the second order contribution associated with the first-order shift of

extremal surface within the zeroth order background. As these were the only possible

contributions to this order, in agreement with our numerics we find that the full second

order contribution vanishes exactly.

We may also analytically compute the entropy of a strip (analogous to our slabs

in higher dimensions). We take the strip to be thin compared to the adiabatic scale

(L� b/εb′). Solving the equations of motion gives

z(0)(x) = b0

√√√√cosh 2L
b0
− cosh 2x

b0

cosh 2x
b0

+ cosh 2L
b0

z(1)(x) = b′0

(
−2 (b2

0 − 2x2 + 2L2) sinh 2x
b0

cosh 2L
b0

+ 2b0x cosh 4L
b0

+ b0

(
b0 sinh 4x

b0
− 2x cosh 4x

b0

))
4
√

cosh 2L
b0
− cosh 2x

b0

(
cosh 2x

b0
+ cosh 2L

b0

)
3/2

.

(A.7)
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The numerically derived surfaces agree with the above to one part in 1014 to zeroth

order and one part in 107 to first order. Computing the entanglement entropy gives

A(0)
ren = 2 log sinh

2L

b0

A(2)
ren =

(
−L

2

b2
0

+
4

3

L3

b3
0

coth
2L

b0

)
b′0

2
+

(
L2

b2
0

− 2

3

L3

b3
0

coth
2L

b0

)
b′′0. (A.8)

Comparing this result to our d = 2 numerics shows discrepancies only at the level of

one part in 104 level for the coefficient of b′0
2 and one part in 1015 for the coefficient of

b′′0.

With these expressions for the area, we can compute the location of the phase

transition between vanishing and non-vanishing mutual information to second order.

To zeroth order, for the half space entangling surface we have Â(0) = 0 so from (A.8)

Â
(0)
ren = A

(0)
ren gives

L
(0)
crit =

b0

2
sinh−1(1) . (A.9)

At first order it is manifest that A
(1)
ren = 0. In contrast, keeping in mind the renormal-

ization prescription (3.21), the area of the entangling surface for half space x < L does

have a first order correction. But it is canceled by the corresponding correction to the

entangling surface for x > −L, so the O(ε) correction L
(1)
crit to Lcrit vanishes.

However, at second order we find

Â(2)
ren = − `

2

L2

b2
0

b′0
2

+
`

2

L2

b0

b′′0 . (A.10)

Comparing with (A.8) and using (3.33) yields

L
(2)
crit = − b0

48
sinh−1(1)3(2b′0

2 − b0b
′′
0) . (A.11)

This result agrees with the results in figure 9 to one part in 104.

As a final check on our d = 2 results we can solve for the diffeomorphism taking

g
(0)
µν with constant b0 to g̃

(0)
µν := g

(0)
µν + ε2 g

(2)
µν . Working near x = 0, we find that the

correct diffeomorphism beomes

z̃ = z + ε z
x b′0
b0

+ ε2 z
(2x2 (b2

0 + z2) (b′0
2 + b0 b

′′
0)− z2 b2

0 b
′
0

2)

4b2
0 (b2

0 + z2)
+O(ε3)

x̃ = x+ ε
b′0 (b2

0(x2 − z2) + x2z2)

2b0 (b2
0 + z2)

+ ε2
x (b2

0 (x2 − 3z2) + x2z2) (b′0
2 + b0b

′′
0)

6b2
0 (b2

0 + z2)
+O(ε3),

(A.12)
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which indeed takes the entangling surfaces of global AdS3 to (A.7) as desired. One may

also check that (A.12) maps the phase transition for b(x) = constant (given by (A.9))

to the value specified by (A.11).

B Estimation of Numerical Uncertainty

We have used two distinct methods to estimate the numerical uncertainty of our results.

First, for the majority of the tables we merely make a rough estimate by computing

a particular coefficient using a variety numerical parameters. We then take the ap-

proximate error to be given by the standard deviation of this set. For example for

the L� b0 scaling of figure 5, we compare values calculated using 100 and 150 lattice

points and for fitting intervals L/b0 ∈ [40, 50] and L/b0 ∈ [50, 60]. The estimated error

is the standard deviation of this four point data set. The value displayed in the table

is the mean.

However, as noted in the main text, the values tabulated in figure 9 are rather less

uniform than one might expect. As a result, we now take extra care to analyze the

numerical results reported there. After investigating the possible sources of error by

varying the precision of different parts of the computation, we find the dominant error

(by far) to come from using a finite number N of lattice points in the interval [−L,L].

We now study how our results change with N .

We first compute Lcrit using N = [50, 300] lattice points in steps of 10. Next, we

approximate the function dLcrit

dN
by choosing an appropriate p so that the data

DN =
1

10
[Lcrit(N)− Lcrit(N + 10)]Np (B.1)

appears constant to the eye. See figure 16 for examples. We then compute the average

D̄ of DN over the data set and model our results by

dLcrit(N)

dN
= D̄ Np . (B.2)

Given (B.2), we can compute ∆(N0) = Lcrit(N0) − Lcrit(∞). We have reported the

values ∆(N0) for N0 = 300 as the numerical uncertainties in figure 16. Though we do

not fully understand the particular values of p found in this way, we believe this to be a

conservative estimate of our errors (especially when DN clearly decreases). We display

D̄ as well as the determined value of p for 2 ≤ d ≤ 8 in figure 17.
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(c) d = 7, p = 13/8

Figure 16: Plots of DN as defined in (B.1) vs. N with d = 5, 6, 7 for the b′0
2 and b0b

′′
0

coefficients (triangles and disks respectively). We choose p so that the datasets are

either flat or slowly approaching zero.

d D̄(b′0
2) D̄(b0b′′0 ) p

2 0.00301 1.94× 10−8 2.75

3 −0.0819 0.0365 2

4 −0.0224 0.0116 1.75

5 −0.0256 0.0130 1.75

6 −0.0309 0.0131 1.75

7 −0.0199 0.00710 1.625

8 −0.0128 0.00391 1.5

Figure 17: We display the estimated values of D̄ for each of the coefficients b′0
2 and

b0b
′′
0 and p for 2 ≤ d ≤ 8.
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