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Perspective
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Abstract
Objectives: In 2016, the Department of Veterans Affairs (VA) and the Department of Energy (DOE) established an Interagency Agreement 
(IAA), the Million Veteran Program-Computational Health Analytics for Medical Precision to Improve Outcomes Now (MVP-CHAMPION) 
research collaboration.
Materials and Methods: Oversight fell under the VA Office of Research Development (VA ORD) and DOE headquarters. An Executive Commit
tee and 2 senior scientific liaisons work with VA and DOE leadership to optimize efforts in the service of shared scientific goals. The program 
supported centralized data management and genomic analysis including creation of a scalable approach to cataloging phenotypes. Cross-cutting 
methods including natural language processing, image processing, and reusable code were developed.
Results: The 79.6 million dollar collaboration has supported centralized data management and genomic analysis including a scalable approach to 
cataloging phenotypes and launched over 10 collaborative scientific projects in health conditions highly prevalent in veterans. A ground-breaking 
analysis on the Summit and Andes supercomputers at the Oak Ridge National Laboratory (ORNL) of the genetic underpinnings of over 2000 
health conditions across 44 million genetic variants which resulted in the identification of 38 270 independent genetic variants associating with 
one or more health traits. Of these, over 2000 identified associations were unique to non-European ancestry. Cross-cutting methods have 
advanced state-of-the-art artificial intelligence (AI) including large language natural language processing and a system biology study focused on 
opioid addiction awarded the 2018 Gordon Bell Prize for outstanding achievement in high-performance computing. The collaboration has com
pleted work in prostate cancer, suicide prevention, and cardiovascular disease, and cross-cutting data science. Predictive models developed in 
these projects are being tested for application in clinical management.
Discussion: Eight new projects were launched in 2023, taking advantage of the momentum generated by the previous collaboration. A major 
challenge has been limitations in the scope of appropriated funds at DOE which cannot currently be used for health research.
Conclusion: Extensive multidisciplinary interactions take time to establish and are essential to continued progress. New funding models for 
maintaining high-performance computing infrastructure at the ORNL and for supporting continued collaboration by joint VA-DOE research teams 
are needed.

Lay Summary
In 2016, the Department of Veterans Affairs (VA) and the Department of Energy (DOE) established an Interagency Agreement, the Million Vet
eran Program-Computational Health Analytics for Medical Precision to Improve Outcomes Now (MVP-CHAMPION) research collaboration. 
MVP-CHAMPION aimed to leverage DOE data scientists with expertise in machine learning and artificial intelligence (AI) and DOE world class 
supercomputer resources with the well-established clinical research infrastructure, the clinical and epidemiologic experts in VA, and the VA 
world class MVP genetic resource linked to a paperless, longitudinal, electronic health record encompassing over 25 million individuals. Two 
years were required to navigate regulatory, project management, and technical issues with complex interdependencies and to find a common 
language among the diverse investigator teams. Since then, the 79.6 million dollar program has been highly productive. MVP-CHAMPION has 
supported centralized data management and genomic analysis including a scalable approach to cataloging phenotypes. This supported a 
ground-breaking analysis of the genetic underpinnings of over 2000 health conditions across 44 million genetic variants and resulted in the 
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identification of 38 270 independent genetic variants associating with one or more health traits. Of these, over 2000 identified associations 
were unique to non-European ancestry. Cross-cutting methods have advanced state-of-the-art AI including large language natural language proc
essing and a system biology-based collaboration focused on opioid addiction which received the 2018 Gordon Bell Prize for outstanding achieve
ment in high-performance computing. The collaboration has completed work in prostate cancer, suicide prevention, and cardiovascular disease. 
Predictive models developed are being evaluated for clinical management. Eight new projects were launched in 2023. Funding models for main
taining high-performance computing infrastructure at the Oak Ridge National Laboratory and for supporting research projects by joint VA-DOE 
research teams are now needed.
Key words: Federal Agency Collaboration; Veterans Healthcare Administration; Department of Energy; supercomputing; electronic health records; Million 
Veteran Program; Precision Medicine. 

In 2016, the Department of Veterans Affairs (VA) and the 
Department of Energy (DOE) established an Interagency 
Agreement (IAA), the Million Veteran Program1-Computa
tional Health Analytics for Medical Precision to Improve 
Outcomes Now (MVP-CHAMPION) research collaboration. 
MVP-CHAMPION aimed to leverage the rich array of data 
scientists with expertise in machine learning and artificial 
intelligence (AI) and supercomputers at DOE with the VA’s 
well-established research infrastructure, the clinical and epi
demiological expertise, 20 years of paperless, longitudinal, 
electronic health record (EHR) data encompassing >25 mil
lion individuals, and genetic data available through MVP. By 
combining this vast array of clinical and genomic data (Fig
ure 1) with national computing capabilities (including the 
most powerful supercomputer in the Nation), the agencies 
hoped to push the frontiers of precision medicine and com
puting and to improve the lives of veterans and all Americans 
(Table 1).

The magnitude of the data available is world class. The VA 
has had a national, longitudinal paperless medical record sys
tem since the beginning of the 21st century encompassing 
over 25 million veterans. Compared to veterans who do not 
use the VA, the approximate 40% of US veterans who do are 
more likely to be older, to have a chronic health condition, to 
lack other health insurance, to be people of color, and to live 
reasonably close to a VA facility. While the overall propor
tion of women is small, the absolute number of women is 
large (1.7 million in 2022 alone).

Oversight fell under the VA Office of Research Develop
ment (VA ORD) and DOE headquarters. An Executive Com
mittee consisting of representatives of VA and the DOE 
meets semiannually to make recommendations to leadership 
on scientific direction and scope; strategic initiatives; goals 
and policy for infrastructure and science; subcommittees/ 
workgroups/cores; planning scientific meetings; and recom
mending metrics for monitoring success. Two senior scientific 
liaisons (A.C.J. and B.M.) work with VA and DOE scientific 
and clinical and administrative leadership to optimize efforts 
of each organization in the service of shared scientific goals.

Despite substantial infrastructure in place within both 
departments, 2 years were required to navigate regulatory, 
project management, and technical issues with complex inter
dependencies and to find a common language among the 
diverse investigator teams. Since then, the 79.6 million dollar 
collaboration has supported centralized data management 
and genomic analysis including a scalable approach to cata
loging phenotypes. A ground-breaking genome-wide Phe
WAS2 of over 2000 health conditions across 44 million 
genetic variants resulting in the identification of 38 270 inde
pendent genetic variants associating with one or more health 
traits. Of these, over 2000 identified associations were unique 
to non-European ancestory. Cross-cutting methods have 
advanced state-of-the-art AI including large language natural 

language processing and a system biology study focused on 
opioid addiction awarded the 2018 Gordon Bell Prize for 
outstanding achievement in high-performance computing. It 
supported development of a public-facing novel phenomics 
knowledgebase, the Centralized Interactive Phenomics 
Resource (CIPHER).3 The collaboration has completed work 
in prostate cancer,4–9 suicide prevention,10–14 cardiovascular 
disease,15 and cross-cutting data science.3,9,16–25 It contrib
uted to metastudies for suicide genetics22 and prostate can
cer.6 Also of note, cross-cutting groundwork facilitated a 
timely and strategic pivot to address the COVID-19 epi
demic.26 Eight new projects were launched in 2023.

Clinical domain achievements
Initially, MVP-CHAMPION consisted of 3 clinical domain 
studies focused on personalizing risk estimation based on 
clinical and germline genetic factors targeting high-priority 
conditions for veterans.

Clinical domain: suicide prevention
Use case
Suicide is a rare, catastrophic event and the impulse to com
mit it is often fleeting. We need to target limited clinical 
resources for prevention to those at risk when it is greatest.

Medical research accomplishments
To identify biological drivers of suicide and potential treat
ment targets, this group explored germline genetics of sui
cide20–22,27 including suicidal thoughts and behaviors,21

suicide ideation20 and suicide attempts.22,27 Risk was 
strongly associated with acute life events (housing instability, 
job insecurity, and reduced social connection) not systemati
cally captured in the EHR. Using data-driven natural lan
guage processing of clinical notes, they identified 9 pivotal 
life events.18,19 These events included housing instability, job 
instability, food insecurity, criminal justice or troubles with 
the law, social connections specific to isolation, and social 
connections specific to partner relationships, detoxification, 
military sexual trauma, and access to lethal means.

Implementation
The team is working closely with the VA Center for Innova
tion to Implementation to improve a predictive model of sui
cide and suicidal behavior already in use among veterans in 
the VA health care system (ReachVet).28,29 The new predic
tive models will include the 9 life events as well as social and 
environmental determinants of health such as altitude, rural
ity, temperature, air pollution (PM2.5), unemployment rates, 
gun ownership, and gun laws.
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Data science accomplishments
The team integrated methods of biostatistics and epidemiology 
with AI to improve the representation of mechanistic predic
tors, developing an ensemble transfer learning model to predict 
suicide.10 Subgroup analysis showed improved accuracy in 
identifying high-risk groups and generalizability of the model 
across time. Comparison of identified mechanistic drivers with 
literature found support for a broad range of predictors, 
including substance use disorder, mental health diagnoses and 
treatments, hypoxia, and vascular damage. The group also 
developed an unsupervised probabilistic model to capture non
linear relationships between variables over continuous time.12

Future work
This team was awarded a new CHAMPION project focused 
on implementing their findings in care.

Clinical domain: prostate cancer
Use case
While prostate cancer is a leading cause of cancer mortality,30

74% of those diagnosed have nonmetastatic disease with a 
low risk of cancer mortality31,32 leaving them subject to the 
immediate potential harms of treatment with a low probabil
ity of long-term benefit.

Medical research accomplishments
The team conducted studies of the germline genetics of pros
tate cancer6–9 and explored functional modules using learning 

representation of association networks,23 conducted multian
cestry genome-wide discovery,6 and developed and validated 
a multiancestry polygenic risk score (PRS) across diverse pop
ulations,7–9 which differentiated risk of aggressive prostate 
cancer among African ancestry populations.8 The team devel
oped and validated several algorithms for all-cause mortality 
based on conventional statistics,4 and comparing and combin
ing machine learning approaches (manuscript in preparation).

Clinical implementation
The PRS is now in use in a clinical trial (PRoGRESS, NCT 
05926102) and the team is working to determine whether the 
added discrimination of the machine learning or the greater 
transparency of the statistical algorithm are preferred for 
implementation. The statistical model (VACS-CCI)4 was 
posted on the MDCalc in May 2024 and within 3 months 
had been viewed >1000 times by >300 individuals.

Data sciences accomplishments
Algorithms predicting future events must account for the 
time elapsed between prediction and outcome. While there 
are standard statistical approaches for this, there is no stand
ard approach in machine learning. The team developed an 
approach using deep learning.5,16

Future work
The team is pursuing a grant focused on using machine learn
ing to incorporate multiparametric magnetic resonance 

Figure 1. Veterans health care system electronic health record data combined with Million Veteran Program genetic data.

Table 1. MVP-CHAMPION timeline.

2016-Business Associates Agreement to house VHA data at DOE signed by VHA, DOE Office of Science and NNSA
2016-Statement of Principals signed by Secretaries of VA and DOE

“to establish a joint program to advance the national goals outlined by The Precision Medicine Initiative, Cancer Moonshot, National Strategic 
Computing Initiative, Big Data Research and Development Imitative and Open Government Initiative to benefit Veteran health.” Agreement ref
erenced MVP specifically and announces MVP-CHAMPION research collaborative

2016-Interagency agreement between VHA and DOE ORNL signed funding MVP-CHAMPION for 5 years (June 2106-December 2020)
2017-(April) DOE-VA Blue Sky Meeting
2018-(January) DOE-VA Prostate Meeting
2019-(October) CHAMPION Exemplar Projects Funded
2019-Scientific liaisons appointed (Benjamin McMahon, Amy Justice)
2020-Mandate extended to COVID-19
2021-(March) VHA-DOE IAA renewed
2022-(August) End of funding for first 3 projects
2023-2028 New CHAMPION projects funded

Abbreviations: DOE, Department of Energy; IAA, Interagency Agreement; MVP-CHAMPION, Million Veteran Program-Computational Health Analytics 
for Medical Precision to Improve Outcomes Now; NNSA, National Nuclear Security Administration; ORNL, Oak Ridge National Laboratory; VHA, 
Veterans Healthcare Administration.
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imaging (mpMRI) to determine whether needle biopsy might 
be avoided in men with elevated prostate specific antigent 
(PSA) unlikely to experience metastatic prostate cancer in 
their lifetime.

Clinical domain: cardiovascular disease
Use case
The prognostic accuracy of current risk models for cardiovas
cular disease varies by demographic factors suggesting bias.

Medical research accomplishments
The group developed risk models incorporating traditional 
factors (eg, age, blood pressure, and smoking status) and 
evaluated whether adding PRSs improved performance.15

The primary discrimination factors in our PRS model were 
genetic variants significantly associated with CAD and 
stroke. The addition of CAD and stroke PRS improved the 
AUC in the stacked ensemble models from 0.7329 to 0.7549, 
underscoring the contribution of these genetic scores to over
all model performance. Discrimination gains were greater for 
younger compared to older adults. Overall, PRS only mod
estly improved discrimination. This may reflect current limi
tations in understanding how PRS translates into meaningful 
clinical predictions for CVD, especially across diverse popu
lations like that in the VA cohort. The application of PRS is 
complicated by the variability in genetic architecture among 
different ethnic groups. For instance, while CAD PRS showed 
a 12% difference in incidence between the highest and lowest 
percentiles overall, this was primarily driven by the European 
population. The lack of significant PRS impact in non- 
European groups highlights the limitations of current PRS 
methodologies in diverse populations. Additional research is 
necessary to refine PRS models and explore their potential in 
broader clinical applications.

Clinical implementation
As multiancestry genome-wide association studies (GWAS) 
expand, PRS derived from broader diversity may augment 
risk assessment but clinical application at this time was 
thought to be premature.

Data sciences accomplishments
Through the analysis of cardiovascular phenotypes, the 
group established computational pipelines that were lever
aged for the cross-cutting genome-wide PheWAS analysis.2

The “computational pipelines” involved the use of advanced 
ensemble learning techniques, including H2O’s (www.h2o. 
ai) Stacked Ensemble metalearner, which combines predic
tions from multiple machine learning models to improve 
overall accuracy. These pipelines were crucial in integrating 
genetic, clinical, and phenotypic data to develop robust pre
diction models. Additionally, we developed a workflow that 
performs standard GWAS quality control and generates PRS 
with PLINK, PRSice-2, LDpred-2, lassosum, PRS-CSx, and 
SBayesR. This workflow is configured to leverage the high- 
performance computational resources available in the Oak 
Ridge National Laboratory (ORNL) KDI cluster. The pipe
line is available on GitHub at https://github.com/markxiao/ 
PRS-dev.

Future work
Team members are exploring the utility of PRS derived using 
machine learning techniques for cardiovascular disease risk 
prediction.

Cross-cutting data sciences
Data management and genomic analysis leveraged efforts 
across projects including creation of a scalable approach to 
cataloging phenotypes for reuse. Natural language processing 
(NLP), image processing, and developing reusable code to 
implement predictive modeling at scale from study design to 
model characterization required experience before being gen
eralized across activities. The flagship accomplishment was a 
genome-wide PheWAS analysis.2

Cross-cutting data science: CIPHER
Use case
Development of phenotypes using EHR data is a resource- 
intensive process making the cataloging of phenotype algo
rithms for reuse critical. The VA-CIPHER and ORNL teams 
developed a scalable approach improving on existing pheno
type library metadata collection by capturing the context of 
the algorithm development, phenotyping method used, and 
approach to validation.3

Data science accomplishments
With ORNL’s expertise in computer science, data manage
ment, access, and retrieval, the CIPHER metadata standard 
and phenotype library has been implemented as a public 
knowledgebase platform in June 2023. The CIPHER website 
contains (1) a searchable knowledgebase of over 6000 pheno
type articles, (2) a web-based form allowing standardized col
lection of phenotype metadata, and (3) data visualization 
tools connected to the phenotype definition knowledgebase.

CIPHER knowledgebase is designed to capture complex 
phenotype algorithm development, methods used, and 
approaches to validation and application. The standard 
framework was built based on years of experience working 
with 20 years of national VA EHR data, together with sub
ject matter experts. We also used information from existing 
data libraries including PheKB, eMERGE, and others. Due to 
the quantity and complexity of EHR data, curation and 
annotation processes are time and resource intensive. Meth
ods involved in developing phenotype algorithms included 
rules-based, machine learning; unsupervised, machine learn
ing; supervised, machine learning; and semisupervised, 
among others. The knowledgebase captures the details of spe
cific methodologies used for each phenotype. The CIPHER 
platform has become part of the scalable solution to manag
ing, capturing, disseminating phenomics knowledge and ulti
mately expediting health data innovation in general. This is 
well described on the CIPHER website (https://phenomics.va. 
ornl.gov/web/cipher/about).

The CIPHER website supports integration with the larger 
phenomics community including large common data model 
communities and individual medical centers and health care 
systems. Knowledge network visualization tools are available 
on the website. These tools provide further insights on the 
understanding of the complex network of clinical data which 
allows users to visualize results as well as help users develop 
their phenotype. More information can be found on CIPHER 
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website under visualization tools (https://phenomics.va.ornl. 
gov/web/cipher/vistools).

Application
The phenotype library provides standard approaches to dif
ferentiating veterans with and without a specified health 
condition.

Future work
The CIPHER team continues to collect phenotypes and inte
grate additional analytic tools connected to the 
knowledgebase.

Cross-cutting data science: genome-wide 
association studies
Use case
Genomic profiles form a core data resource created by the 
MVP. All 3 projects benefited from imputation, analysis, and 
annotation pipelines.

Data science accomplishments
The flagship accomplishment was a genome-wide PheWAS 
analysis in which the team performed over 350 billion associ
ations creating the most comprehensive, diverse genetic archi
tecture of 2068 phenotypes in 635 969 individuals.2 Using 
multiple methods including fine-mapping, the team identified 
causal variants at 6318 signals across 613 traits. Nearly one- 
third (n¼186 927) of veteran participants were of non- 
European ancestry and 2069 of the associations identified 
were unique to populations of non-European ancestry. 
Among veterans with African ancestry, they identified 101 
traits that exhibited a prevalence at least twice as high as that 
observed among those of European ancestry. Methods devel
opment included standardized approaches that leveraged 
high-performance and parallel computing capabilities to per
form imputation, GWAS, and PRSs cited earlier.

Application
As mentioned within each exemplar, genomic associations 
were captured in all cases, and best practices were shared.

Cross-cutting data science: natural language 
processing
Use case
The unstructured notes in the EHR are rich in detail and vast. 
As of 2023, the Corporate Data Warehouse contains 4.3B 
clinical text recorded in TIUNotes for 14M patients (Figure 1). 
This corpus is projected to increase by 200 million documents 
per year, highlighting the need for high-performance, scalable 
tools for NLP. Recent studies have shown the value of includ
ing these notes in predictive models to improve their precision 
and recall and to advance precision medicine.33

Data science accomplishments
Large language models (LLMs) have shown impressive 
results in NLP tasks. They require enormous amounts of data 
for training and testing as well as computing power. Recent 
studies have shown significant improvement in NLP perform
ance when pretraining on a domain-specific corpus,34 which 
has given rise to several clinical LLM that are pretrained on 
clinical data. However, these clinical LLMs, growing from 
millions to billions of parameters, are smaller and show less 
aptitude than the more general, state-of-the-art LLMs 

growing from billions to trillions of parameters and pre
trained on tens of terabytes of text. The VA corpus of clinical 
text is of comparable size to that used to trained GPT-3. The 
NLP team is currently pretraining an LLM on 1.7 T tokens of 
VA data. It will be significantly larger than GatorTron, the 
biggest clinical LLM created so far35 (trained using clinical 
notes covering more than 2M patients). A model of this mag
nitude cannot be trained on KDI computational resources. 
This model is being trained on Frontier, the world’s first 
exascale supercomputer hosted at DOE’s Oak Ridge Leader
ship Computing Facility. Frontier features a scalable pro
tected infrastructure (SPI) that provides resources and 
protocols that enable this team to pretrain sensitive clinical 
notes on the supercomputer. Of note, to add extra layers of 
protection, the clinical notes were subject to PHI scrubbing, 
tokenization, and encryption before being copied to Frontier- 
SPI.

A major concern when dealing with EHR data in general is 
errors and missingness. There are misspelling errors (text and 
numeric values), redundant information resulting from fre
quent cutting and pasting, missingness of chronological data 
(eg, patients use different providers), templates which are not 
harmonized (different institutions implement different tem
plates), misaligned information (diagnoses not aligned with 
what is written in the text), administrative bias (eg, data 
aligned with patients’ needs in term of services instead of 
patients’ diagnosis), and health care utilization bias. Our 
approach follows that of the developers of general language 
models which use very noisy data sources (eg, publicly avail
able internet sources): we expect that a large enough language 
model will be able to recognize useful patterns despite the 
noise. In fact, we have seen that these LLMs can compress 
information in a manner that allows us to find common pat
terns inside the data.36 Additional work is needed to differen
tiate regions in the data that are useful from those that can be 
discarded without loss of information.

Application
As the field moves toward even larger clinical LLMs and inte
grating modalities such as medical imaging, genetics, and 
social and environmental determinants of health, there 
remain open questions about the capabilities of LLMs. The 
role of LLMs in deep phenotyping, determining the severity 
of conditions, reasons for discontinuation of treatment, 
nature of side effects, temporal relationships of medical 
events, and sentinel events associated with suicide remain to 
be determined. Most clinical LLM are evaluated on tasks that 
do not provide meaningful insights on their usefulness to 
health systems. Our endeavor entails development of bench
marks specific to our application, such as improved ability to 
predict medical outcomes.

Cross-cutting data science: image analyses
Use case
There are 202 million radiology reports in the VA. Direct 
analysis of images could enable retrospective studies to stand
ardize analyses, develop biomarkers, and automate incidental 
screening.

Data science accomplishments
In contrast to other EHR data discussed, image data are not 
centrally localized in VA. In a pilot study, we identified 10 
years of chest X-rays from the Boston VA and analyzed them 
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with the 121-layer DenseNet model, pretrained on ImageNet 
and fine-tuned on the MIMIC-CXR-JEPG dataset.17,37 We 
established that model training requirements and perform
ance depended on image resolution17 then assembled a data
set consisting of �200 000 chest X-rays from the Boston VA 
acquired during the past 14 years, linked these images to clin
ical records and radiology reports, annotated the VA radiol
ogy reports with the CheXpert NLP-based tool (https://dl. 
acm.org/doi/10.1609/aaai.v33i01.3301590), and finally ana
lyzed the images.

Application
The study shed light on the critical interplay between domain 
shift, demographic factors, and the efficacy of transfer learn
ing in chest X-ray classification. These experiences were 
shared at VA Image Summit meeting in August 2023. At that 
meeting, we identified an approach to deidentification and 
release of data which would include removal of burned in 
information. We also agreed to partner with Medical Imaging 
and Data Resource Center and National Artificial Intelli
gence Research Resource to share VA chest X-ray images. 
We are currently awaiting VA Central Institutional Review 
Board approval of the protocol.

Cross-cutting data science: reusable code for AI- 
based predictive modeling at scale
Use case
Reproducibility of clinical research has been a long-standing 
problem, one exacerbated by machine learning techniques.38

Data science accomplishments
A robust, auditable, and extensible workflow was created for 
analyzing VA data across 8 DOE labs and 6 VA medical cen
ters working on 3 medical application areas and a core activ
ity. Even with a robust and dedicated database server, pulling 
the roughly 1 billion blood pressure measurements from the 
VA EMRs required several days. When accounting for inpa
tient and outpatient diagnoses, treatments, procedures, dem
ographics, and surveys, 850 GB of data were organized in 53 
tables, from which complex cohorts and variables could be 
more easily defined and iteratively improved. Code was writ
ten in SQL for data access, python and Pytorch for the AI/ 
machine learning (ML) models, and R (often adapted from 
SAS programming commonly used in VA) and the data table 
package for logistic regression and transfer learning models, 
data wrangling and model assessment. The full set of code 
was released as supplementary material to our suicide predic
tion effort, including the transfer learning and model charac
terization methods.10 It was possible to rerun the entire 
calculation after changing any aspect of our nested retrospec
tive case-control and prospective study designs39 in about 6 
hours of clock time on 6 compute nodes, while the transfer 
learning step or model evaluation could be reproduced in 
under 2 minutes. Furthermore, the code was applied with 
minimal modification to predict cardiovascular disease and 
all-cause mortality.

Application
This code has been made available to other projects and we 
are actively working to package it into generalized functions 
in an R package.

Future directions
In 2023, new projects were funded focused on: screening for 
lung cancer, diabetes, sleep apnea, and suicide; comparing 
treatments for antipsychotic medication and metastatic can
cer; and identifying biological mechanisms for long covid and 
for heart failure. These will benefit from the insights gained 
and groundwork laid. However, funding beyond these proj
ects has yet to be identified. A major challenge in this inter
agency collaboration has been limitations in the scope of 
appropriated funds. DOE appropriation does not include 
authorization to fund medical research. New funding models 
for maintaining VA high-performance computing infrastruc
ture at the ORNL and for continuing support for research 
projects by joint VA-DOE research teams are needed.

Take home messages
Artificial intelligence techniques have huge potential to 
improve health,40–42 but are not yet in wide use in part due to 
concerns regarding generalizability and interpretability.40–43

High-dimensional statistical models are no more interpret
able than AI models. Because the choice of predictor variables 
is often more important than the analytic technique in deter
mining discrimination and calibration,44 the performance of 
complex models can often be reconstituted in more interpret
able models with appropriate simplification and 
transformations.16,32

Translating the collaboration’s aspirational goals to realize 
the potential of AI in improving health into reality required 
careful navigation of regulatory, project management, and 
technical issues with complex interdependencies. This work 
benefited enormously from existing MVP infrastructure yet 
required significant additional investment. The technical 
problem of training sophisticated AI/ML models while main
taining the robustness, generalizability, and transparency 
required for utilization in health care is challenging, and 
required synthesizing ideas from 2 distinct communities. The 
clinical epidemiology community focused on study design, 
careful outcome definition, and mapping onto specific clini
cal decision scenarios. The AI community is more focused on 
methods and algorithms. These communities literally pro
gram in different languages. R and SAS predominantly used 
by epidemiologists and Python by AI experts.

The collaboration with DOE provided critical benefits. 
The preexisting secure heterogeneous compute environment 
which allowed access to supercomputers. Both the NLP and 
genomic analysis were successfully scaled up to Summit and 
Frontier, two leadership class supercomputers colocalized at 
ORNL with KDI, using a well-established process. In addi
tion, scalable workflows enabled practical data science at 
scale.

The extensive multidisciplinary interactions present in the 
VA/DOE collaboration are essential to continued progress. 
The cross-fertilization of ideas enables creation of robust and 
reusable solutions. These collaborations take time to estab
lish and once in place, require continued support. It will be 
important to maintain established collaborations while incor
porating new investigators and projects. The workforce 
development must continue and the early career, multidisci
plinary talent given opportunities to grow within the VA- 
DOE community. Further, development of a set of “best 
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practices” for implementation of AI to health care will be 
essential to translate advances into practice and improve the 
lives of veterans.
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