
UCLA
UCLA Previously Published Works

Title
ORBITS OF NEAR-EARTH ASTEROID TRIPLES 2001 SN263 AND 1994 CC: PROPERTIES, 
ORIGIN, AND EVOLUTION

Permalink
https://escholarship.org/uc/item/6wh9w89v

Journal
The Astronomical Journal, 141(5)

ISSN
0004-6256

Authors
Fang, Julia
Margot, Jean-Luc
Brozovic, Marina
et al.

Publication Date
2011-05-01

DOI
10.1088/0004-6256/141/5/154
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wh9w89v
https://escholarship.org/uc/item/6wh9w89v#author
https://escholarship.org
http://www.cdlib.org/


Accepted to Astronomical Journal
Preprint typeset using LATEX style emulateapj v. 11/10/09

ORBITS OF NEAR-EARTH ASTEROID TRIPLES 2001 SN263 AND 1994 CC:
PROPERTIES, ORIGIN, AND EVOLUTION

Julia Fang1, Jean-Luc Margot1,2, Marina Brozovic3, Michael C. Nolan4,
Lance A. M. Benner3, Patrick A. Taylor4

Accepted to Astronomical Journal

ABSTRACT

Three-body model fits to Arecibo and Goldstone radar data reveal the nature of two near-Earth
asteroid triples. Triple-asteroid system 2001 SN263 is characterized by a primary of ∼1013 kg, an inner
satellite ∼1% as massive orbiting at ∼3 primary radii in ∼0.7 days, and an outer satellite ∼2.5% as
massive orbiting at ∼13 primary radii in ∼6.2 days. 1994 CC is a smaller system with a primary
of mass ∼2.6 ×1011 kg and two satellites ∼2% and .1% as massive orbiting at distances of ∼5.5
and ∼19.5 primary radii. Their orbital periods are ∼1.2 and ∼8.4 days. Examination of resonant
arguments shows that the satellites are not currently in a mean-motion resonance. Precession of the
apses and nodes are detected in both systems (2001 SN263 inner body: d$/dt ∼1.1 deg/day, 1994 CC
inner body: d$/dt ∼ -0.2 deg/day), which is in agreement with analytical predictions of the secular
evolution due to mutually interacting orbits and primary oblateness. Nonzero mutual inclinations
between the orbital planes of the satellites provide the best fits to the data in both systems (2001
SN263: ∼14 degrees, 1994 CC: ∼16 degrees). Our best-fit orbits are consistent with nearly circular
motion, except for 1994 CC’s outer satellite which has an eccentric orbit of e ∼ 0.19. We examine
several processes that can generate the observed eccentricity and inclinations, including the Kozai
and evection resonances, past mean-motion resonance crossings, and close encounters with terrestrial
planets. In particular, we find that close planetary encounters can easily excite the eccentricities and
mutual inclinations of the satellites’ orbits to the currently observed values.
Subject headings: minor planets, asteroids: general – minor planets, asteroids: individual (2001 SN263,

1994 CC)

1. INTRODUCTION

The existence and prevalence (∼16%) of binary aster-
oids in the near-Earth population (Margot et al. 2002;
Pravec et al. 2006) naturally lead to the search and
study of multiple-asteroid systems (Merline et al. 2002;
Noll et al. 2008). Triple systems are known to ex-
ist in the outer Solar System, the main belt, and the
near-Earth population. Among the trans-neptunian ob-
jects (TNOs), there are currently two well-established
triples, 1999 TC36 (Margot et al. 2005; Benecchi et al.
2010) and Haumea (Brown et al. 2006), and one known
quadruple, Pluto/Charon (Weaver et al. 2006). In the
main belt population, four triples are known to exist:
87 Sylvia, 45 Eugenia, 216 Kleopatra, and 3749 Balam
(Marchis et al. 2005; Marchis et al. 2007; Marchis et
al. 2008a; Marchis et al. 2008b). There are currently
only two well-established asteroid triples in the near-
Earth population, 2001 SN263 (Nolan et al. 2008a) and
1994 CC (Brozovic et al. 2009), both of which are the
focus of this study. There is also another possible triple,
near-Earth asteroid 2002 CE26, that may have a tertiary
component but the limited observational span of this ob-
ject prevented an undisputable detection (Shepard et al.
2006).
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(153591) 2001 SN263 has been unambiguously identi-
fied as a triple-asteroid system, and its orbit around the
Sun is eccentric at 0.48 with a semi-major axis of 1.99
AU and inclined 6.7 degrees with respect to the ecliptic.
It is an Amor asteroid with a pericenter distance of 1.04
AU. The system is composed of three components: a cen-
tral body (equivalent radius ∼ 1.3 km) and two orbiting
satellites. In this paper, we use the following terminology
for triple systems: the central body (most massive com-
ponent) is called Alpha, the second most massive body
is termed Beta, and the least massive body is named
Gamma (Figure 1). In the case of 2001 SN263, Beta
is the outer satellite and Gamma is the inner satellite.
The other near-Earth triple is (136617) 1994 CC with
a primary of equivalent radius R ∼ 315 m, where the
opposite is true; Beta is the inner body and Gamma is
the outer body. Its heliocentric orbit has a semi-major
axis of 1.64 AU and is also eccentric (0.42) and inclined
(4.7 degrees) with respect to the ecliptic. 1994 CC is an
Apollo asteroid with a pericenter distance of 0.95 AU.

In this work, we present dynamical solutions for both
triple systems, 2001 SN263 and 1994 CC, where we de-
rived the orbits, masses, and Alpha’s J2 gravitational
harmonic using N-body integrations. We utilize range
and Doppler data from Arecibo and Goldstone, and these
observations as well as our methods are described in Sec-
tion 2. In Section 3, we present our best orbital solu-
tions and their uncertainties. We also include discussion
regarding the satellite masses and the primary’s oblate-
ness (described by J2), and the observed precession of
the apses and nodes are compared to analytical predic-
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tions. Section 4 describes the origin and evolution of
the orbital configurations, including Kozai and evection
resonant interactions, as well as the effects of planetary
encounters.

Previous studies of multiple TNO systems include the
analytic theory of Lee & Peale (2006) for Pluto, where
they treated Nix and Hydra as test particles. Tholen et
al. (2008) used four-body orbit solutions to constrain
the masses of Nix and Hydra; they did not find evidence
of mean-motion resonances in the system. Ragozzine
& Brown (2009) determined the orbits and masses of
Haumea’s satellites using astrometry from Hubble Space
Telescope and the W. M. Keck Telescope. They used
a three-body model and found that their data was not
sufficient to constrain the oblateness, described by J2,
of the non-spherical central body. Their orbital solu-
tions yielded a large eccentricity (∼0.249) of the inner,
fainter satellite, Namaka, and a mutual inclination with
the outer satellite, Hi’iaka, of ∼13.41 degrees. They pos-
tulated that the excited state of the system could be
conceptually explained by the satellites’ tidal evolution
through mean-motion resonances. In the main belt, Win-
ter et al. (2009) studied the orbital stability of the satel-
lites in the Sylvia triple system and Marchis et al. (2010)
presented a dynamical solution of Eugenia and its two
satellites.

2. OBSERVATIONS AND METHODS

To arrive at three-body orbit solutions for 2001 SN263
and 1994 CC, we used radar observations from Arecibo
and Goldstone. Specifically, these observables include
the range and Doppler separations between Alpha and
Beta (or Gamma) at multiple epochs. Range-Doppler
separations were measured as the center of mass (COM)
differences between Beta (or Gamma) and Alpha. For
2001 SN263, we modeled the shapes of the components
(Hudson 1993; Magri et al. 2007) and differenced the
COM estimates. For 1994 CC, the COMs were estimated
visually, using the center of the trailing edge of the echo
as an estimate of the COM location, and taking range
smear into account when necessary. Measurement un-
certainties were based on the image resolution. Our fits
with reduced chi-square less than unity (see Section 3)
indicate that uncertainties were assigned conservatively.
For 2001 SN263, we used Arecibo observations taken over
a span of approximately 14 days from the Modified Ju-
lian Date (MJD = JD - 2400000.5) 54508.06138 to MJD
54522.12406 when the triple made a close approach with
Earth at 0.066 AU (∼1550 R⊕). Range uncertainties are
75-150 meters and Doppler uncertainties are about 0.6
Hz at the nominal 2380 MHz frequency of the Arecibo
radar (in this work, all Doppler observations and uncer-
tainties are reported relative to this reference frequency).
For 1994 CC, our observations were taken from both
Arecibo and Goldstone planetary radars and spanned a
total interval of almost 7 days from MJD 54994.69293 to
MJD 55001.53906 during a close approach with Earth at
0.017 AU (∼400 R⊕). The range uncertainties were 30-40
meters for Goldstone data and 25-75 meters for Arecibo
data, and the Doppler uncertainties were 0.15-0.20 Hz
for Goldstone data and 0.20-0.40 Hz for Arecibo data.
In total, for 2001 SN263 we obtained 128 ranges and 128
Doppler measurements for each satellite, and for 1994
CC we had 112 ranges and 112 Doppler measurements

Beta

Gamma

Gamma

Beta

Fig. 1.— 2001 SN263 and 1994 CC: Best-fit orbit dia-
grams of the inner and outer satellites, projected onto
Alpha’s equatorial plane. In both diagrams, we show the
actual trajectories from numerical integrations, and the
relative sizes of the bodies (estimated from radar images)
are shown to scale. All bodies are located at their po-
sitions at MJD 54509 (for 2001 SN263) and MJD 54994
(for 1994 CC) with Alpha centered on the origin. The
slightly irregular shape of the orbit of 1994 CC’s outer
body is real and due to mutual perturbations in the sys-
tem.

for Beta and 78 ranges and 78 Doppler measurements for
Gamma. Observations are available upon request.

Using these observations, the orbits, masses, and J2
values of 2001 SN263 and 1994 CC were obtained us-
ing a model that includes the mutual gravitational in-
teractions of all three bodies. To calculate the orbital
evolution of the triples’ components to fit to observa-
tions, we used a general Bulirsch-Stoer algorithm from
an N-body integrator package called MERCURY, version
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TABLE 1
Orbit Model Constraints

2001 SN263 1994 CC

Central Mass (kg) 1010 - none 1010 - none

Beta (kg) 109 - none 107 - none

Gamma (kg) 107 - none 106 - none

a (km) 0 - none 0 - none

e 0 - 0.9 0 - 0.9

J2 0 - 0.25 0 - 0.25

These are a priori constraints that put limits
on fitted parameters, so that a parameter can be
bounded on the lower and/or upper side dur-
ing the fitting process. The lower bounds on
the masses were obtained by using size estimates
from radar images and unit density, then divid-
ing by a conservative factor of ∼100. In this ta-
ble, ‘none’ means that no limit was set and the
parameter was allowed to float without limits in
that direction.

6.2 (Chambers 1999). The Bulirsch-Stoer algorithm, al-
though slow, was chosen for its computational accuracy.
For our long-term integrations to test for stability, we
used a fast hybrid symplectic/Bulirsch-Stoer algorithm,
also part of the MERCURY package. Since the satellites
for both systems are deep in the potential wells of their
respective central bodies, we ignored perturbations from
the Sun and planets during the orbit-fitting process. The
Hill radius rHill of the central body (2001 SN263: ∼345
km, 1994 CC: ∼86 km), defined as the spherical region
where the central body’s gravity dominates the attrac-
tion of its satellites compared to the Sun, is much larger
than the outer satellite’s semi-major axis a (2001 SN263:
∼16.6 km, 1994 CC: ∼6.1 km) in both systems. For 2001
SN263, ainner/rHill is 0.011 and aouter/rHill is 0.048. In
the case of 1994 CC, ainner/rHill is 0.020 and aouter/rHill

is 0.071. The assumption that we can ignore effects from
external bodies breaks down during the long-term evolu-
tion of these triples and during close planetary encoun-
ters, which we address in Section 4.

2.1. Short-Term Integrations: Orbit Fitting

Solving for the orbits, masses, and J2 of the triple sys-
tems is a highly non-linear least-squares problem that
requires 16 parameters, which we fitted simultaneously.
This included two sets of six osculating orbital elements
(semi-major axis, eccentricity, inclination, argument of
pericenter, longitude of the ascending node, and mean
anomaly at epoch), three masses, and a J2 for the central
body. To solve this minimization problem, we attempted
to search for a global minimum using the Levenberg-
Marquardt algorithm mpfit (Markwardt 2008), written
in IDL. We ran mpfit with thousands of initial condi-
tions to search for the best-fitting parameters.

For both systems, we constrained some parameters
with upper and lower bounds (Table 1), and all oth-
ers were allowed to float without restraint. The initial
guesses for orbital parameters and masses were guided
by hundreds of two-body Keplerian solutions, but sub-
stantially augmented from these to explore wide regions
of parameter space including “outlier” cases to be sure
we covered all of the possibilities. Tables 2 and 3 show
the ranges of starting guesses for our minimization rou-

TABLE 2
2001 SN263: Range of Initial Conditions

Alpha Maximum Stepsize

Mass (1010 kg) 850 - 980 .20

J2 0.0001 - 0.09 .0.03

Gamma (Inner) Maximum Stepsize

Mass (1010 kg) 1 - 20 .6

a (km) 3.5 - 6.0 .2.2

e 0 - 0.4 .0.3

Beta (Outer) Maximum Stepsize

Mass (1010 kg) 7 - 100 .38

a (km) 16 - 24 .6.8

e 0 - 0.4 .0.3

Ranges of initial conditions with the maximum stepsize,
defined as the largest interval between two consecutive
initial values. Most stepsizes were significantly smaller
than those listed. All angles were examined over their
full range with typical stepsizes of 5-10 degrees.

tine as well as the maximum stepsize intervals between
trial values. Typical stepsizes were significantly smaller
than the maximum values listed. For the starting J2
value of the central body, we adopted current estimates
of axial ratios from shape modeling efforts (Nolan et al.,
in prep., Brozovic et al., in prep.) and a uniform density
assumption. This resulted in initial J2 values of 0.016 for
2001 SN263 and 0.013 for 1994 CC.

The non-spherical nature of the central body (Alpha)
introduces additional non-Keplerian effects. The distri-
bution of mass within Alpha can be represented by the
Jn terms in its gravitational potential (Murray & Der-
mott 1999), where the largest contribution is due to the
lowest-order gravitational moment, the quadrupole term
J2 (there is no n=1 term since the origin of coordinates
is Alpha’s center of mass). J2 is a good approxima-
tion for describing the oblateness of primary bodies with
substantial axial symmetry and as a result, we ignored
higher-order terms. As we will see, even J2 is not well-
constrained, so there was no need to go to higher-order
terms. It is related to three moments of inertia, A, B,
and C, of the central body (Murray & Dermott 1999):

J2 =
C − 1

2
(A+B)

MR2
≈ C −A

MR2
(1)

where M is the total mass and R is Alpha’s equatorial ra-
dius. J2 is an observable quantity because the oblateness
of a body modifies the gravitational field experienced by
orbiting satellites; in our case, the orbits of Beta and
Gamma precessed through space as a consequence of Al-
pha’s J2.

In most cases, we aligned Alpha’s pole direction with
the normal to Beta’s orbital plane, consistent with the
generally accepted formation process by spin-up and
mass shedding (Margot et al. 2002; Pravec et al. 2006;
Walsh et al. 2008). To be thorough, we also searched for
situations where Alpha’s pole might not be aligned with
Beta’s orbit normal by surveying a comprehensive range
of right ascension (RA) and declination (DEC) values for
Alpha’s pole orientation. We also performed numerical
integrations where we set the value of J2 to fixed values
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TABLE 3
1994 CC: Range of Initial Conditions

Alpha Maximum Stepsize

Mass (1010 kg) 10 - 75 .25

J2 0.0001 - 0.09 .0.03

Beta (Inner) Maximum Stepsize

Mass (1010 kg) 0.05 - 3 .1

a (km) 0.5 - 4 .2

e 0 - 0.6 .0.5

Gamma (Outer) Maximum Stepsize

Mass (1010 kg) 0.0008 - 0.5 .0.3

a (km) 3 - 15 .5

e 0 - 0.7 .0.5

Ranges of initial conditions with the maximum stepsize,
defined as the largest interval between two consecutive
initial values. Most stepsizes were significantly smaller
than those listed. All angles were examined over their
full range with typical stepsizes of 5-10 degrees.

(i.e. 0.005, 0.010, 0.015) such that it was no longer a
floating parameter, which reduced the number of param-
eters to 15. In the particular case of 1994 CC, we also
iterated through a list of pole orientations for Alpha sug-
gested by the shape modeling process (Brozovic et al., in
prep.). With these poles, we explored another vast grid
of starting parameters. This resulted in thousands of ad-
ditional fits; however, the vast majority of them yielded
poor fits or converged to unlikely J2 values.

Using the MERCURY integrator, we chose a timestep in-
terval (∼1500 seconds for 2001 SN263 and ∼4000 seconds
for 1994 CC) such that the maximum interpolation error
(calculated by comparing interpolated values with those
from an integration with one-second timesteps) was at
least an order of magnitude less than the smallest obser-
vation uncertainty. Cubic spline interpolation was per-
formed to compute state vectors of the satellites at the
exact observation epochs to enable comparison with ob-
servational data. For both triple systems, these timesteps
were small enough to resolve at least 1/25 of the inner
body’s orbit. Using the integrator, we were able to ob-
tain the positions and velocities of the satellites with re-
spect to the central body, Alpha, as a function of time.
We used line-of-sight vector orientations from the JPL
HORIZONS system to project these positions and veloc-
ities and to calculate the range and Doppler separations
at every observation epoch for each satellite. Compari-
son between observed and computed range and Doppler
values then yielded a measure of the goodness-of-fit ac-
cording to

χ2 =
∑
i

(Oi − Ci)2

σ2
i

(2)

where χ2 is the chi-square obtained by summing over i
comparisons: O and C are the observed and computed
values and σ is the observation uncertainty.

Solutions with Gamma more massive than Beta were
eliminated because they are inconsistent with radar size
estimates. In our list of best fits, for 2001 SN263 our
lowest reduced chi-square was ∼0.093 with 496 degrees
of freedom (DOF), and in the case of 1994 CC, our lowest
reduced chi-square was ∼0.27 with 364 degrees of free-

dom. The likely cause of a reduced chi-square less than
1 is the overestimation of observation uncertainties. We
considered only those solutions within a 1-σ increase in
the lowest reduced chi-square value (Press et al. 1992):

χ2
ν,1σ = χ2

ν,min + χ2
ν,min ∗

√
2 ∗DOF

DOF
(3)

where χ2
ν,1σ represents the chi-square value calculated

from a 1-σ increase of the minimum chi-square value
χ2
ν,min. This resulted in χ2

ν,1σ ∼ 0.1 for 2001 SN263 and

χ2
ν,1σ ∼ 0.29 for 1994 CC. Such criteria further narrowed

our list of fits, but contained solutions that were near-
duplicates. For ease of presentation we marked and re-
moved nearly duplicate fits that met both of the follow-
ing conservative criteria: differences in masses (Alpha,
Beta, and Gamma) were less than 2% and differences in
orbital orientations were less than 5 degrees. The other
orbital elements were relatively consistent, and we did
not incorporate them into the filter.

2.2. Long-Term Integrations: Stability

To further discriminate between our remaining least-
squares solutions and to study stability, we looked at
their orbital evolution over time through long-term in-
tegrations. Only orbital solutions that were stable over
the course of longer-term numerical integrations were re-
garded as satisfactory solutions. Since the dynamical
lifetimes of these asteroids are ∼10 Myrs (Gladman et al.
1997), we ran extensive stability tests (∼5 Myrs) for our
remaining orbital fits. This resulted in a subset of likely
solutions that met our constraints. The timestep inter-
val was chosen such that we could resolve at least 1/20
of the inner body’s orbit for both triple systems, which is
small enough to capture the dynamics of the system. In
these long-term integrations, we incorporated collisions
and ejections using a hybrid symplectic/Bulirsch-Stoer
algorithm.

To include collisions, it was necessary to specify phys-
ical sizes for all components. For Alpha, we used their
known radii: for 2001 SN263, R ∼ 1.3 km (Nolan et al.
2008b) and for 1994 CC, R ∼ 315 m (Brozovic et al.
2010). For Beta and Gamma we used our mass solutions
and scaled from Alpha assuming identical bulk densities.

Ejections were defined as events where the satellite was
no longer within 1 Hill radius of Alpha. The Hill radius
equation for Alpha is the following:

rHill = a�

(
MAlpha

3M�

)1/3

(4)

where MAlpha and M� represent the masses of Alpha and
the Sun, respectively, and a� is Alpha’s semi-major axis
with respect to the Sun.

2.3. Precession Rates

Non-Keplerian effects potentially provide powerful
constraints on component masses. We measured the
precession rates of our best-fit solutions and compared
them to analytical expressions of the precession due to an
oblate primary and secular perturbations. For primary
oblateness described by J2, the analytical expressions are
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(Murray & Dermott 1999):

dω

dt
≈ 3

2

nJ2
(1− e2)2

(
R

a

)2(
5

2
cos2 I − 1

2

)
(5)

dΩ

dt
≈ −3

2
nJ2

(
R

a

)2
cos I

(1− e2)2
(6)

where ω and Ω represent the argument of pericenter and
the longitude of the ascending node, respectively. The
precession rate for the longitude of pericenter is simply
the sum of the rates for the argument of pericenter and
longitude of the ascending node. The other variables are
defined as follows: n is the mean motion of the satellite,
J2 is the unitless quantity describing the oblateness of
the central body, e is the eccentricity, R is the radius
of the central body in the same units as the satellite’s
semi-major axis a, and I is the orbital inclination with
respect to Alpha’s equator.

We also calculated the analytical precession rates due
to secular perturbations. Over long timescales and in
the absence of any mean-motion resonances or additional
perturbations, the secular equations adequately describe
the evolution of orbital elements. The secular equations
can be obtained by examining the solution to Lagrange’s
equations corresponding to the secular part (terms that
do not depend on the mean longitudes of either body) of
the disturbing function, which describes a body’s gravi-
tational perturbations by other bodies (Murray & Der-
mott 1999). The secular equations can be written with
convenient variables:

hj = ej sin($j) pj = Ij sin(Ωj) (7)

kj = ej cos($j) qj = Ij cos(Ωj) (8)

where h, k, p, and q are new variables as defined above,
e is the eccentricity, $ is the longitude of pericenter, I is
the inclination with respect to Alpha’s equator, Ω is the
longitude of the ascending node, and j denotes the body
being perturbed. Their solutions are of the following
form:

hj =

2∑
i=1

eji sin(git+ βi) pj =

2∑
i=1

Iji sin(fit+ γi) (9)

kj =

2∑
i=1

eji cos(git+βi) qj =

2∑
i=1

Iji cos(fit+γi) (10)

where i denotes the eigenmodes, gi and fi represent the
eigenfrequencies, and βi and γi are the phases (Murray
& Dermott 1999). From these secular solutions, we were
able to calculate e(t), $(t), I(t), and Ω(t) to find the an-
alytical precession rates corresponding to secular theory.

Our measurements of the precession rates used our
best-fit solutions to the observations. We numerically
integrated these solutions to detect the evolution of the
argument of pericenter, longitude of ascending node, and
longitude of pericenter for both satellites in each system.
Due to fast, short-term fluctuations in the orbital ele-
ments as a function of time, it was necessary to perform
linear regressions to obtain estimates of the rates over

typical timescales of 100s of days. In the case of 2001
SN263 Beta, we looked at longer timescales of thousands
of days due to its relatively slow precession. Since the
rates also changed over time, we computed them near
the epoch at which we solved for the orbits. By measur-
ing the numerical rates at which these orbital elements
precess, we were able to compare them with those calcu-
lated from analytical methods above, which included J2
and secular contributions.

2.4. Resonances

We searched for mean-motion resonances between Beta
and Gamma in both systems. To do this, we first looked
for integer values (-150 to +150) of j1 and j2 where
the following resonant argument varied “slowly” (<100
deg/day):

φ ≈ j1n2 + j2n1 (11)

where n1 and n2 denote the mean motions of the inner
and outer bodies, respectively. For values of j1 and j2
that met our first criterion, we searched through integer
values (-30 to +30) of j3, j4, j5, and j6 for which there
was libration of the general resonant argument (Murray
& Dermott 1999):

φ = j1λ2 + j2λ1 + j3$2 + j4$1 + j5Ω2 + j6Ω1 (12)

where λ is the mean longitude, $ is the longitude of
pericenter, and Ω is the longitude of the ascending node.
The d’Alembert relation:

6∑
i=1

ji = 0 (13)

describes how the integer values of ji (1 ≤ i ≤ 6) are re-
lated. Lastly, we repeated the second criterion for differ-
ent permutations of the satellites’ mean longitudes rep-
resenting the highest and lowest possible values that cap-
tured the full range of uncertainties on mean motions.

3. ORBIT-FITTING RESULTS

In this section, we describe the best-fit orbital solu-
tions that passed the constraints described in Table 1
and Section 2. Our initial fits resulted in 174 and 901
possible solutions within a 1-σ increase in the lowest re-
duced chi-square value for 2001 SN263 and 1994 CC,
respectively. Of these, 53 and 582 were eliminated by
the mass bounds, J2 constraints, and duplicate filtering.
After further eliminating solutions that did not meet our
long-term integration criterion, we were left with a list of
stable solutions for both systems (2001 SN263: 113 fits,
1994 CC: 262 fits), which were used for post-orbit-fitting
determinations of orbital parameter uncertainties. The
majority of our unstable fits reached instability quickly–
typically within 1000 years for both systems.

A significant fraction (2001 SN263: ∼25%; 1994 CC:
∼45%) of our fits resulted in a retrograde orbit of either
Beta or Gamma (orbital direction opposite to Alpha’s
spin direction). This occurred because we were able to
fit the data with a wide range of spin axis orientations for
Alpha even though the orbital orientations of Beta and
Gamma were fairly well determined. While it is more
likely that the orbits of Beta and Gamma are prograde
with respect to Alpha, some of our retrograde solutions
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are stable over ∼Myrs (in the case of no external per-
turber) and at this point we cannot rule them out.

Diagrams showing the best-fit orbits of the satel-
lites in 2001 SN263 and 1994 CC projected onto Al-
pha’s equatorial plane are shown in Figure 1. The
best-fit models match the data well (Figures 2 and 5),
where the residuals shown are defined as (observation -
model)/uncertainty. For both triples, the total angular
momentum budget (orbital and spin) is dominated by Al-
pha’s spin angular momentum. For 2001 SN263, Alpha
contributes 77%, Gamma (inner body) contributes 4%,
and Beta (outer body) contributes 19% of the total an-
gular momentum. For 1994 CC, Alpha contributes 85%,
Beta (inner body) contributes 12%, and Gamma (outer
body) contributes 3% of the total angular momentum. In
both systems, ∼97% of the angular momentum is con-
tained in the spin of Alpha and the orbit of Beta, which
justifies a posteriori our decision to align Beta’s orbit
with Alpha’s equatorial plane, consistent with a spin-up
formation process.

54508 54510 54512 54514 54516 54518 54520 54522
Time (MJD)

-1

0

1

2

3

R
an

ge
 R

es
id

ua
ls

Inner Body (Gamma)
Outer Body (Beta)

54508 54510 54512 54514 54516 54518 54520 54522
Time (MJD)

-1

0

1

2

3

D
op

pl
er

 R
es

id
ua

ls

Inner Body (Gamma)
Outer Body (Beta)

Fig. 2.— 2001 SN263 Best-Fit Solution: Range and
Doppler Residuals. The second Doppler residual at MJD
54508.0708 is a clear outlier. We obtained similar solu-
tions whether we included this data point or not. We also
note that there seems to be an apparent sinusoidal signa-
ture in the residuals for 2001 SN263, which may indicate
that our model is not capturing the full dynamics of the
system. Other good orbital solutions with plausible mass
ratios and J2 values also produce similar residuals.

TABLE 4
2001 SN263: Best-Fit Parameters and Formal 1-σ

Errors

Gamma (inner) Beta (outer)

Mass (1010 kg) 9.773 ± 3.273 24.039 ± 7.531

a (km) 3.804 ± 0.002 16.633 ± 0.163

e 0.016 ± 0.002 0.015 ± 0.009

i (deg) 165.045 ± 12.409 157.486 ± 1.819

ω (deg) 292.435 ± 53.481 131.249 ± 21.918

Ω (deg) 198.689 ± 61.292 161.144 ± 13.055

M (deg) 248.816 ± 11.509 212.658 ± 10.691

P (days) 0.686 ± 0.00159 6.225 ± 0.0953

Alpha (central body)

Mass (1010 kg) 917.466 ± 2.235

J2 0.013 ± 0.008

Pole Solution (deg) RA: 71.144 ± 13.055

DEC: -67.486 ± 1.819

The masses are listed in 1010 kg, a is the semi-major axis,
e is the eccentricity, i is the inclination, ω is the argument of
pericenter, Ω is the longitude of the ascending node, M is the
mean anomaly at epoch, and P is the period. These orbital
elements are valid at MJD 54509 in the equatorial frame of
J2000. Alpha’s pole solution is given in right ascension (RA)
and declination (DEC). This table lists formal 1-σ statistical
errors; see text for adopted 1-σ uncertainties.

3.1. 2001 SN263

The best-fit parameters (Table 4) are valid at the epoch
MJD 54509.0, where the reduced chi-square for this or-
bital solution is χ2

ν = 0.099 (DOF = 496). While a size-
able fraction of our orbital fits had a lower chi-square,
the adopted solution described in this section and Table
4 has the most plausible combination of Beta/Gamma
mass ratio and J2 value (lower chi-square solutions with a
Beta/Gamma mass ratio less than 2 or a J2 of 0 were not
considered based off of radar size and shape estimates).
For discussion regarding masses and J2, see Section 3.3.
The formal 1-σ errors listed in Table 4 certainly underes-
timate the actual errors; here we list plausible 1-σ uncer-
tainties alongside parameter values with guard digits by
examining the range of parameter values in our 113 ac-
ceptable fits. The mass of Alpha is 917.466+19

−5 ×1010 kg,

and the masses of Gamma and Beta are 9.773± 7× 1010

and 24.039+7
−17×1010 kg, respectively. Using preliminary

size estimates from radar images, we calculate a density
of ∼0.997 g/cm3 for Alpha. If we apply Alpha’s density
to the range of satellite masses that are within uncer-
tainties, their equivalent radii range from 188 - 342 m
for Gamma and 213 - 420 m for Beta.

The orbit of Gamma has a semi-major axis of
3.804+0.01

−0.02 km and an eccentricity of 0.016+0.005
−0 . The

orbit of Beta is also nearly circular with an eccentricity
of 0.015+0.022

−0.010 and a semi-major axis of 16.633+0.39
−0.38 km.

The orbital periods of Gamma and Beta are 0.686±0.01
and 6.225 ± 0.5 days, respectively. Assuming that Beta
orbits in Alpha’s equatorial plane, the mutual inclination
between the satellites’ orbital planes is ∼14 degrees. We
estimate orbit pole angular uncertainties of ∼10 degrees
for Beta and ∼15 degrees for Gamma. Alpha’s floating
J2 value converged to 0.013+0.050

−0.013.
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Fig. 3.— 2001 SN263: Reduced chi-square as a function of orbital parameters: mass, semi-major axis, and eccentricity.
The points plotted here include the statistically equivalent best-fit orbital solutions that passed the constraints listed
in Table 1 and Section 2. Our adopted value is shown as an open circle, and solutions with lower chi-squares were
ruled out on the basis of implausible J2 and Beta/Gamma mass ratios.
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TABLE 5
2001 SN263 Precession Rates

Gamma (inner) Beta (outer)

Analytical: Numerical Analytical: Numerical

Secular J2 Total Total Secular J2 Total Total

ω̇ (deg/day) 0.314 2.239 2.552 2.466 0.110 0.014 0.124 0.093

Ω̇ (deg/day) -0.167 -1.171 -1.338 -1.295 -0.081 -0.007 -0.087 -0.063

$̇ (deg/day) 0.146 1.068 1.214 1.120 0.030 0.007 0.037 0.030

This table includes the argument of pericenter rate ω̇, the longitude of the ascending node rate Ω̇, and the
longitude of pericenter rate $̇. For each satellite, the first 3 columns represent our analytical calculations and
the fourth column shows our measured numerical rates.

Fig. 4.— 2001 SN263: Reduced chi-square as a function of masses, mutual inclination, and J2. The points plotted here
include the statistically equivalent best-fit orbital solutions that passed the constraints listed in Table 1 and Section
2. Our adopted value is shown as an open circle, and solutions with lower chi-squares were ruled out on the basis of
implausible J2 and Beta/Gamma mass ratios.
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Fig. 5.— 1994 CC Best-Fit Solution: Range and Doppler
Residuals.

Plots showing our statistically equivalent (within 1-σ
level) best fits are shown in Figures 3 and 4. It is clear
from these plots that we can fit the data with a range of
parameters. For the set of orbital parameters and masses
listed in Table 4, we measured precession rates from nu-
merical integrations and calculated analytical precession
rates (Table 5) for each satellite, where the analytical
contributions consist of secular and J2 calculations. The
secular eigenfrequencies are g1 ∼ 0.138 deg/day (or pe-
riod of 7.2 years), g2 ∼ 0.024 deg/day (period of 41.9
years), f1 ∼ -0.161 deg/day (period of 6.1 years), and f2
∼ 0 deg/day. Overall, there is good agreement between
analytical estimates and the rates observed from numer-
ical integrations. Our analytical precession rates are
affected by uncertainties in orbital parameters, mainly
by those in semi-major axes. Although precession mea-
surements can potentially provide powerful constraints
on component masses and primary oblateness, the lim-
ited observational span prevents us from making stronger
conclusions.

3.2. 1994 CC

The best-fit parameters at MJD 54994.0 yield a re-
duced chi-square of 0.27 (Table 6) with DOF = 364.
While there are orbital fits with lower chi-squares, the
particular solution described in this section and Table
6 has the most plausible combination of Beta/Gamma
mass ratio and J2 value. See Section 3.3 for discussion
regarding masses and J2. As is the case for 2001 SN263,

TABLE 6
1994 CC: Best-Fit Parameters and Formal 1-σ

Errors

Beta (inner) Gamma (outer)

Mass (1010 kg) 0.580 ± 0.331 0.091 ± 1.644

a (km) 1.729 ± 0.008 6.130 ± 0.108

e 0.002 ± 0.015 0.192 ± 0.014

i (deg) 83.376 ± 11.158 71.709 ± 8.994

ω (deg) 130.980 ± 43.647 96.229 ± 5.017

Ω (deg) 59.209 ± 3.910 48.479 ± 4.741

M (deg) 233.699 ± 43.941 6.070 ± 6.187

P (days) 1.243 ± 0.0329 8.376 ± 0.404

Alpha (central body)

Mass (1010 kg) 25.935 ± 1.315

J2 0.014 ± 0.383

Pole Solution (deg) RA: -30.791 ± 3.910

DEC: 6.624 ± 11.158

The masses are listed in 1010 kg, a is the semi-major axis,
e is the eccentricity, i is the inclination, ω is the argument
of pericenter, Ω is the longitude of the ascending node, M
is the mean anomaly at epoch, and P is the period. These
orbital elements are valid at MJD 54994 in the equatorial
frame of J2000. Alpha’s pole solution is given in right as-
cension (RA) and declination (DEC). This table lists formal
1-σ statistical errors; see text for adopted 1-σ uncertainties.

some of the formal 1-σ errors in Table 6 are likely to
be underestimates of the actual uncertainties in the pa-
rameter values, and here we list our adopted 1-σ uncer-
tainties from examining our best-fit solutions along with
parameter values with guard digits. The mass of Alpha
is 25.935± 1× 1010 kg, Beta is 0.580+0.3

−0.5 × 1010 kg, and

Gamma is 0.0911+0.20
−0.09 × 1010 kg. We estimate a density

of ∼1.98 g/cm3 for Alpha, given its preliminary size esti-
mate from radar images. If we apply Alpha’s density to
the range of Beta and Gamma masses that are accept-
able (within uncertainties), we find that their equivalent
radii can range from 46 - 102 m for Beta and 11 - 71 m
for Gamma. Beta’s orbit is nearly circular at 0.002+0.009

−0.002
with a semi-major axis of 1.729± 0.02 km and Gamma’s
orbit has an eccentricity of 0.192+0.015

−0.022 and a semi-major

axis of 6.13+0.07
−0.12 km. The orbital periods of Beta and

Gamma are 1.243±0.1 and 8.376±0.5 days, respectively.
This fit converged to a J2 value of 0.014+0.050

−0.014, where Al-
pha’s pole was assumed to be aligned with Beta’s orbit
normal. From this orbital solution, we find a significant
mutual inclination of ∼16 degrees. We estimate angu-
lar uncertainties of ∼20 degrees for Beta’s orbit pole and
∼10 degrees for Gamma’s orbit pole.

We show our statistically equivalent (within 1-σ level)
best fits in Figures 6 and 7. For 1994 CC, we also com-
pared precession rates (Table 7) between our numerical
integrations and analytical calculations and find good
agreement for the outer body, Gamma. There is appre-
ciable disagreement for Beta, which will be discussed in
Section 3.4. The secular eigenfrequencies are g1 ∼ 0.016
deg/day (or period of 60.1 years), g2 ∼ 0.070 deg/day
(period of 14.1 years), f1 ∼ 0 deg/day, and f2 ∼ -0.086
deg/day (period of 11.4 years). As is the case for 2001
SN263, our estimates of precession rates are affected by
uncertainties in orbital parameters.
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Fig. 6.— 1994 CC: Reduced chi-square as a function of orbital parameters: mass, semi-major axis, and eccentricity.
The points plotted here include the statistically equivalent best-fit orbital solutions that passed the constraints listed
in Table 1 and Section 2. Our adopted value is shown as an open circle, and solutions with lower chi-squares were
ruled out on the basis of implausible J2 and Beta/Gamma mass ratios.
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TABLE 7
1994 CC Precession Rates

Beta (inner) Gamma (outer)

Analytical: Numerical Analytical: Numerical

Secular J2 Total Total Secular J2 Total Total

ω̇ (deg/day) -0.612 0.392 -0.219 -0.058 0.135 0.005 0.139 0.131

Ω̇ (deg/day) -0.043 -0.196 -0.239 -0.143 -0.068 -0.002 -0.070 -0.072

$̇ (deg/day) -0.655 0.196 -0.459 -0.202 0.067 0.002 0.069 0.061

This table includes the argument of pericenter rate ω̇, the longitude of the ascending node rate Ω̇, and the
longitude of pericenter rate $̇. For each satellite, the first 3 columns represent our analytical calculations and
the fourth column shows our measured numerical rates.

Fig. 7.— 1994 CC: Reduced chi-square as a function of masses, mutual inclination, and J2. The points plotted here
include the statistically equivalent best-fit orbital solutions that passed the constraints listed in Table 1 and Section
2. Our adopted value is shown as an open circle, and solutions with lower chi-squares were ruled out on the basis of
implausible J2 and Beta/Gamma mass ratios. There is structure seen in the J2 plot due to fits where we constrained
the J2 parameter to be fixed at certain values: 0.005, 0.010, 0.013, and 0.015.
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3.3. Masses and J2

In the case of 2001 SN263, we are limited in our abil-
ity to measure the masses of the satellites because the
majority of our low chi-square fits with reasonable mass
ratios (mBeta > mGamma) have a lower J2 coefficient (∼0)
than the expected value (∼0.016) from shape model es-
timates (Nolan et al., in prep.). Our fits with reasonable
mass ratios typically occurred in integrations where we
allowed J2 to float as a parameter in our least-squares
minimization routine, which usually resulted in a very
low and unlikely J2 value of 0. When we attempted to fix
J2 at a range of values, including our best estimate of J2
from shape model estimates, our low chi-square solutions
typically had implausible mass ratios where Gamma was
more massive than Beta. Since our best fit shown in Ta-
ble 4 has a reasonable value of J2, it is possible that our
mass for Beta is an underestimate of its true value. For
1994 CC, we also found orbital solutions where J2 was
driven to 0, but there was a greater fraction of fits with
both reasonable mass ratios and J2 values.

Nevertheless, in both systems we find a wide range of
J2 values (Figures 4 and 7) that produce orbital solutions
with low chi-square results. As a result, we cannot con-
strain J2 well with the current set of observations. One
possibility is that there is a degeneracy between satellite
mass (in particular, the outer satellite) and J2, as sus-
pected for Haumea by Ragozzine & Brown (2009). This
behavior can be explained by examining our precession
rates for the inner body. For 2001 SN263, we expect that
both the mass of the outer satellite and the J2 of the pri-
mary produce an advance of the inner body’s longitude
of pericenter (Table 5) and for 1994 CC, the effects of the
mass of the outer satellite and the J2 of the primary are
opposite (Table 7), which can happen at certain phases
of the secular evolution. It is difficult to apportion the
respective contributions of the two quantities, J2 and the
mass of the outer body, to the precessional effects of the
inner body. Further support for this idea comes from
a comparison of the outer body’s mass and J2 values
for the ensemble of our valid solutions. We find that the
two quantities are appreciably anti-correlated (r = -0.48)
for 2001 SN263, with the sum of the two contributions
matching the measured rates. In the case of 1994 CC,
a mild positive correlation was found between the outer
body’s mass and J2 (r = 0.19).

Studies on near-Earth binary 1999 KW4 by Ostro et
al. (2006) and Scheeres et al. (2006) have demonstrated
some of the complex dynamics that can result from in-
teractions between asymmetrically-shaped components.
In particular, Cuk & Nesvorny (2010) found that the li-
bration of an elongated asteroid satellite can result in
a negative apsidal precession rate. Since this type of
libration-induced precession may take place but is not
included in our model, we speculate that the minimiza-
tion procedure artificially lowers the value of the parame-
ter J2, which would normally result in a positive apsidal
precession rate. Including libration-induced precession
requires knowledge of the component shapes that is not
available at this time; it is therefore beyond the scope of
this paper.

3.4. Precession Rates: Numerical and Analytical
Comparisons

There is good agreement in the precession rates for
2001 SN263 (Table 5) between those measured from nu-
merical integrations and our analytical estimates, de-
scribed in Section 2.3. For 1994 CC, we see good agree-
ment between our analytical and numerical precession
rates for the outer body, Gamma (Table 7). For the
inner body (Beta), whose orbit lies in Alpha’s equato-
rial plane, there is appreciable disagreement between the
total values for the precession rates. We attribute this
disagreement to the non-secular terms in the disturbing
function; due to the infinite number of short-period terms
in the disturbing function, there are differences between
the results of our numerical integration and the predic-
tions of secular analytical theory. We verified this by
calculating the precession rates from numerical integra-
tions with an outer body mass of near zero, which meant
that any precession of the inner body must be due to
J2 only. Indeed, our inner body’s precession rate ($̇ ≈
0.197 deg/day) from numerical integrations with essen-
tially no outer body closely matched the expected ana-
lytical precession ($̇ ≈ 0.196 deg/day) due to J2 only.
Thus, it is likely that any disagreement between our nu-
merical and analytical values for Beta can be credited to
non-secular terms in the disturbing function. We suspect
that the reason we see this discrepancy between numer-
ical and analytical rates for 1994 CC’s Beta and not for
the other bodies in these triple systems is the fact that
the perturber in this case is Gamma, whose orbital plane
is both eccentric as well as inclined to Alpha’s equatorial
plane and Beta’s orbital plane.

3.5. Mean-Motion Resonance

The satellites of 2001 SN263 have an orbital period ra-
tio near 9:1 using their nominal orbital elements. How-
ever, we did not find any librating resonant arguments
over long, secular timescales for either system. We found
cases where a resonant argument appeared to librate ini-
tially and then circulated thereafter; an example of this
is shown in Figure 8 for 1994 CC. In this example, we
see a distinct onset of circulation as a result of the sec-
ular precession of the longitudes of pericenter and the
ascending node. Both of these longitudes are changing
over time (see Table 7), causing the resonant argument
in this situation to cease its apparent libration and to
start circulating over all possible angles.

4. ORBITAL ORIGIN AND EVOLUTION

It is interesting to find a non-zero eccentricity (∼0.19)
for 1994 CC’s outer body, Gamma. Furthermore, our
best orbital solutions yielded significant mutual inclina-
tions (2001 SN263: ∼14 degrees, 1994 CC: ∼16 degrees)
between the orbital planes of the satellites. Other known
systems with a significant inclination include the main-
belt asteroid triple (45) Eugenia, whose satellites have
been reported to be inclined 9 and 18 degrees with re-
spect to the primary’s equator (Marchis et al. 2010)
and the dwarf planet Haumea, whose two satellies have a
mutual inclination of 13.41 degrees (Ragozzine & Brown
2009).

Possible mechanisms to excite orbital eccentricity and
inclination include Kozai resonance, evection resonance,
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Fig. 8.— This figure shows a sample resonant argument
for 1994 CC, where there initially appears to be libration
(oscillating motion) followed by circulation through all
angles.

mean-motion resonance crossings, close planetary en-
counters, and a combination of these effects. In the sub-
sequent sections, we calculate the eccentricity and incli-
nation damping timescales and investigate each of these
possible mechanisms.

4.1. Eccentricity and Inclination Damping Timescales

Tidal damping of a synchronous satellite’s orbit is a
competing process between tides raised on the satellite
by the primary (causing the eccentricity to decay) and
tides on the primary due to the satellite (causing both the
semi-major axis and eccentricity to grow). Tidal dissipa-
tion in the satellite’s interior due to the primary can heat
the satellite and circularize its orbit. The corresponding
eccentricity damping timescale τe,damp (Murray & Der-
mott 1999) is:

τe,damp =
4

63

m

M

(a
r

)5( µ̃sQs
n

)
(14)

and the competing timescale for tides raised on the pri-
mary is:

τe,excite =
16

171

M

m

( a
R

)5( µ̃cQc
n

)
(15)

where M is the central body’s mass, m is the mass of
the satellite, a is the semi-major axis, R is the central
body’s mean radius, r is the satellite’s mean radius, µ̃ is
a measure of a body’s rigidity, Q is the tidal dissipation
function, and n is the mean motion. The subscripts c
and s represent the central body and the satellite, re-
spectively. The effective rigidity µ̃, a unitless quantity
as defined in Murray & Dermott (1999), is uncertain but
can be estimated for gravitational aggregates (“rubble
piles”) as shown in Goldreich & Sari (2009): we find
µ̃s ∼ 3.1 ×106 for Gamma (r ∼ 45 m). The factor Q
is even harder to determine, but available evidence sug-
gests that Q ∼ 102 for monoliths and potentially smaller
for rubble piles. With these values as well as our best-fit
solution (Table 6) for 1994 CC, the eccentricity damp-
ing timescale for Gamma, if synchronously rotating, is
τe,damp ∼ 1013 years. There is evidence that Gamma

is, in fact, not synchronously rotating (Brozovic et al.
2010); however, even if Gamma is synchronous, we have
shown that its eccentricity cannot damp on billion-year
timescales because it is too small and distant.

Assuming identical composition and Q values for Al-
pha and Gamma, the ratio of the timescales of eccentric-
ity damping and excitation for rubble piles are

τe,damp

τe,excite
=

19

28
(16)

which shows that tides will always damp the eccentricity
for a synchronously rotating satellite regardless of the
system’s size and mass ratios (Goldreich & Sari 2009).
The tidal despinning timescale, which is the time for a
satellite to reach synchronous rotation with its central
body, can be estimated for the satellites in both sys-
tems. For 2001 SN263, Gamma (inner) has a despinning
timescale on the order of 105 years and Beta’s (outer)
timescale is on the order of 109 years. For 1994 CC,
Beta (inner) has a timescale on the order of 107 years
and Gamma’s (outer) timescale is on the order of 1011

years. 2001 SN263 Gamma and 1994 CC Beta are there-
fore plausible synchronous rotators. If 1994 CC Beta was
once closer to Alpha, its despinning timescale would be
accordingly shorter.

The inclination damping timescale τI,damp is related to
the eccentricity damping timescale (Yoder & Peale 1981):

τI,damp =
7

4
τe,damp

(
sin I

sin ε

)2

(17)

where I is the inclination of the orbit with respect to
the central body’s equator and ε is the obliquity of the
satellite’s spin axis relative to the orbit normal. To arrive
at an estimate of this timescale, we assume ε ∼ 1 deg
and find that τI,damp is on the order of 1015 years for
1994 CC Gamma. These long eccentricity and inclination
damping timescales indicate that tides cannot damp out
e and I on timescales comparable to possible excitations
of the system, which we now examine, nor the dynamical
and collisional lifetimes of the system.

4.2. Kozai Resonance

Kozai resonance (Kozai 1962; Murray & Dermott 1999)
is an angular momentum exchange process between a
satellite’s eccentricity and inclination that takes place
under the influence of a massive outer perturber, pro-
vided that the relative inclination between the orbits of
the satellite and the perturber exceeds a limiting value.

When considering the outer satellite as the perturber,
we find that the Kozai process is not active, as the mu-
tual inclinations do not exceed the required value. For
instance, the limiting Kozai inclination corresponding to
2001 SN263’s semi-major axis ratio (ainner/aouter ∼ 0.23)
can be estimated as ∼37.5 degrees (Kozai 1962). The
currently observed mutual inclination between the or-
bital planes of 2001 SN263 Beta and Gamma is only ∼14
degrees.

We also consider the case with the Sun as the mas-
sive, outer perturber (as in Perets & Naoz 2009). The
respective inclinations between the Sun’s apparent orbit
around Alpha and the orbits of the satellites are ∼8 and
∼17 degrees for 2001 SN263 Beta and Gamma and ∼76
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and ∼61 degrees for 1994 CC Beta and Gamma. Con-
sequently, while 2001 SN263 does not satisfy the limit-
ing Kozai inclination (in this case estimated as ∼39.2
degrees), 1994 CC can be prone to Kozai oscillations.
From numerical integrations corresponding to our best-
fit parameters for 1994 CC, we do not see either satellite
in Kozai resonance with the Sun. In integrations where
we have removed one satellite, such that there were only
three bodies total (Alpha, Beta or Gamma, and the Sun),
we saw that Gamma is particularly susceptible to Kozai
resonance. We observed the telltale signs: strong cou-
pled oscillations of eccentricity and inclination with the
relevant period of ∼56 years, conservation of the Delau-
nay quantity Hk =

√
(1− e2) cos I, and libration of the

argument of pericenter. The differences between the two
cases is that when the inner body is present, it causes the
outer body’s argument of pericenter to precess too fast
for libration to occur. When both satellites are present,
Kozai oscillations due to the Sun are suppressed. There-
fore, Kozai interactions are not likely to explain the ob-
served mutual inclinations and eccentricity.

4.3. Evection Resonance

Evection resonance can occur when the satellite’s or-
bit around Alpha has a longitude of pericenter $ that
precesses at the same rate as the Sun’s apparent mean
longitude λs with respect to Alpha. This results in libra-
tion of the argument φ = 2λs − 2$, and can produce a
change in the eccentricity of the orbit (Touma & Wisdom
1998).

None of the satellites are currently in a configuration
where the evection resonance can affect their evolution.
However, as the semi-major axes change over time due
to tidal or radiation effects, the precession rates evolve
and Beta or Gamma can cross the evection resonance.
However, as in the case of Kozai resonance, mutual per-
turbations will likely suppress the evection resonance or
prevent it from being active for very long. Therefore,
evection interactions are not likely to explain the ob-
served mutual inclinations and eccentricity.

4.4. Passage Through Mean-Motion Resonances

Tidal evolution and binary YORP (BYORP; Cuk &
Nesvorny 2010), which affects synchronous satellites, can
change the orbits and lead to mean-motion resonances
in the system. The outer bodies in both triple systems
cannot be directly affected by BYORP as there is evi-
dence that they are not in synchronous rotation (Nolan
et al. 2008b; Brozovic et al. 2010). For the inner bodies
where the synchronization condition is more likely to be
met, it is possible that BYORP will cause migration of
their orbits. This can result in an increase or decrease of
the semi-major axis, depending on the satellite’s shape.
Previous work have shown that outward migration can
cause an increase in the orbit’s eccentricity (Cuk & Burns
2005), but inward migration can lead to a decrease in free
eccentricity and is thought to be the most likely result
of its evolution (Cuk & Nesvorny 2010). On the con-
trary, other studies (McMahon & Scheeres 2010a; McMa-
hon & Scheeres 2010b) find that over long timescales,
the eccentricity changes in the opposite direction of the
semi-major axis. As for tidal evolution, this process will
change the semi-major axis as da/dt ∝ a(−11/2) (Murray
& Dermott 1999), leading to converging orbits.

Whether due to tidal or BYORP evolution, a change in
semi-major axes can lead to capture or passage through
mean-motion resonances, which in turn can excite eccen-
tricity and inclination (Dermott et al. 1988; Ward &
Canup 2006). Such processes may therefore be responsi-
ble for the observed mutual inclinations and eccentricity.

4.5. Close Planetary Encounters

We tested the possibility that 1994 CC Gamma’s
nonzero eccentricity and both systems’ mutual inclina-
tions are due to close encounters with terrestrial planets.
We performed systematic numerical simulations of the
triple asteroid system and an Earth-sized body with over
5,000 permutations of orbital elements: inclinations with
respect to Earth’s equator, longitudes of the ascending
node, and mean anomalies for both satellites. We started
our simulations with equatorial, coplanar and circular or-
bits for Beta and Gamma, and integrated various close
encounter distances up to 60 R⊕ with an encounter veloc-
ity v∞ of 12 km/s (typical for Earth-crossing asteroids).
We validated this procedure by comparing with results
from Bottke & Melosh (1996) for a binary system.
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Fig. 9.— 2001 SN263: These figures show the close en-
counter statistics for the onset of instability (top) and
excitation (bottom). The top diagram shows the frac-
tion out of all systems; the bottom diagram shows the
fraction out of only stable systems, defined as those with
no collisions and ejections.
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Fig. 10.— 2001 SN263: These histograms show the dis-
tribution of final eccentricities (top) and final mutual
inclinations (bottom) for stable systems after close ap-
proaches of 20 R⊕.

Our close encounter results are shown in Figures 9-12,
where we looked for (a) collisions between any of the bod-
ies (Alpha, Beta, Gamma, and Earth-sized perturber) or
(b) break-up of the system defined as ejection of either
the inner or outer body, or both. For stable systems in
which there were neither collisions nor break-ups, we ex-
amined cases where there were (c) excited eccentricities
in the outer body of at least ∼0.2 seen in our orbit fit-
ting for 1994 CC or (d) mutual inclinations greater than
10 degrees. The final eccentricities and inclinations were
calculated from the mean of the osculating elements dur-
ing the final few orbital periods.

It is clear from Figures 9-12 that 1994 CC is more eas-
ily disrupted and excited than 2001 SN263, which agrees
with our earlier calculation of asatellite/rHill in Section 2.
During close approaches with Earth, the outer body was
easily excited to eccentricities of at least 0.2 as far away
as encounter distances of ∼40 R⊕ for 2001 SN263 and
∼50 R⊕ for 1994 CC. The orbital planes of the satellites
gained mutual inclinations of at least 10 degrees start-
ing at encounter distances of ∼25 R⊕ for 2001 SN263
and ∼30 R⊕ 1994 CC. Unbound systems due to break-
up/ejection scenarios started occurring at ∼20 R⊕ en-
counter distances for 2001 SN263 and ∼25 R⊕ for 1994
CC. The distribution of the outer body’s final eccentric-
ity and final mutual inclination between satellite orbits
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Fig. 11.— 1994 CC: These figures show the close en-
counter statistics for the onset of instability (top) and
excitation (bottom). The top diagram shows the frac-
tion out of all systems; the bottom diagram shows the
fraction out of only stable systems, defined as those with
no collisions and ejections. At encounter distances . 5
R⊕, there are no stable systems left and as a result, we
do not have excitation statistics for those very close en-
counters.

at a close encounter distance of 20 R⊕ are shown for
2001 SN263 (Figure 10) and 1994 CC (Figure 12). We
note that in Figures 9 and 11, at very close encounter
distances (less than 5 R⊕) there are few stable systems
left due to a high rate of ejections. As a result, for very
close encounter distances the statistics shown for fraction
of stable systems with excited eccentricities and mutual
inclinations are more uncertain.

From these hyperbolic flyby simulations, we found that
close planetary encounters could affect the orbits at dis-
tances as large as 50 R⊕. Such close approaches to Earth
cannot at present happen, based on the current value
of the minimum orbital intersection distance (MOID):
∼1190 R⊕ for 2001 SN263 and ∼380 R⊕ for 1994 CC
(see Table 8). The MOID is the minimum separation be-
tween the osculating ellipses of the orbits of two bodies,
without regard to position of the bodies in their orbits
(Sitarski 1968); it remains valid as long as the osculating
elements approximate the actual orbits. Over time, these
elements will change, and it is likely that the observed
high eccentricity and mutual inclinations were acquired
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Fig. 12.— 1994 CC: These histograms show the distribu-
tion of final eccentricities (top) and final mutual inclina-
tions (bottom) for stable systems after close approaches
of 20 R⊕.

TABLE 8
Minimum Orbital Intersection Distance

(MOID)

2001 SN263 1994 CC

Mercury MOID (AU) 0.695 0.508

Venus MOID (AU) 0.320 0.233

Earth MOID (AU) 0.0506 0.0162

Mars MOID (AU) 0.169 0.112

This table shows the current minimum orbital
intersection distance (MOID) between the triple-
asteroid systems and the terrestrial planets using
orbital elements that are valid at MJD 54509.0
(2001 SN263) and MJD 54994.0 (1994 CC).

during planetary encounters at a time when the MOID
was lower and allowed for closer approaches.

We can calculate a rough estimate for how often close
planetary encounters occur for generic near-Earth sys-
tems (Chauvineau et al. 1995):

t ∼
2τcollR

2
⊕

b2
(18)

where t represents the time between encounters up to
an impact parameter b and τcoll is the asteroid’s lifetime

against impact with the terrestrial planets. For Earth,
the average interval between impacts is ∼4 × 106 and
∼3 × 105 years for objects similar in size to 2001 SN263
and 1994 CC, respectively (Stuart & Binzel 2004). There
are approximately ∼150 near-Earth asteroids with a size
comparable to 2001 SN263 and ∼2000 for 1994 CC, and
accordingly, we estimate τcoll ∼ 6 × 108 years for both
2001 SN263 and 1994 CC.

In our simulations with planetary encounters, break-
up of the asteroid triples occurred in 50% of our systems
at impact parameters b ∼ 10R⊕ for 2001 SN263 and b ∼
13R⊕ for 1994 CC. Thus, we calculate t to be ∼12 Myrs
for 2001 SN263 and ∼7 Myrs for 1994 CC, which repre-
sent the estimated lifetimes of the systems due to such
scattering encounters. These timescales are comparable
to the ∼10 Myr dynamical lifetimes calculated by Glad-
man et al. (1997). A similar calculation for the time
interval between planetary encounters that could excite
1994 CC Gamma’s eccentricity using b ∼ 30R⊕ (when
50% of our simulations showed excited eccentricities of at
least 0.2) yields ∼1 Myrs. As a result, close planetary en-
counters that occur on million-year timescales can repro-
duce the observed eccentricity and inclinations. These
generic timescales could be improved with encounter cal-
culations for specific near-Earth asteroids, such as those
performed by Nesvorny et al. (2010).

We note that while close planetary encounters can ex-
plain the excited eccentricity and mutual inclinations in
near-Earth triple systems like 2001 SN263 and 1994 CC,
different processes are required for main belt asteroids
and those trans-neptunian objects that have not experi-
enced strong planetary scattering events.

5. CONCLUSION

In this work, we found dynamical solutions for two
triple systems, 2001 SN263 and 1994 CC, where we have
derived the orbits, masses, and Alpha’s J2 gravitational
harmonic using full N-body integrations. We used range
and Doppler data from Arecibo and Goldstone to solve
this non-linear least-squares problem with a dynamically
interacting three-body model that provided an excellent
match to our radar observations. Given the three-body
nature of these systems, we also measured the precession
rates of the apses and nodes, and compared them to our
corresponding analytical expressions from J2 and secular
contributions. No resonant arguments were found to be
librating in either triple system.

For both systems, we detected significant mutual in-
clinations (2001 SN263: ∼14 deg, 1994 CC: ∼16 deg)
between the orbital planes of Beta and Gamma. We
also found a nonzero orbital eccentricity (∼0.2) for 1994
CC’s outer body, Gamma. The eccentricity and inclina-
tion damping timescales are long, suggesting that both
systems are in excited states. We investigated excita-
tion mechanisms that could explain the observed orbital
configurations, including Kozai and evection resonances,
mean-motion resonance crossings, and close encounters
with the terrestrial planets. Close encounters that oc-
cur on million-year timescales can reproduce the ob-
served mutual inclinations in both systems and 1994 CC
Gamma’s eccentricity.
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