
UCLA
UCLA Electronic Theses and Dissertations

Title
Hardware Variability-Aware Embedded Software Adaptation

Permalink
https://escholarship.org/uc/item/6wg2g0t9

Author
Wanner, Lucas Francisco

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wg2g0t9
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Hardware Variability-Aware

Embedded Software Adaptation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Lucas Francisco Wanner

2014

c© Copyright by

Lucas Francisco Wanner

2014

Abstract of the Dissertation

Hardware Variability-Aware

Embedded Software Adaptation

by

Lucas Francisco Wanner

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Mani B. Srivastava, Chair

With scaling of semiconductor fabrication technologies and the push towards

deep sub-micron technologies, individual transistors are now composed by a small

number of atoms. This makes it difficult to achieve precise control of manufactur-

ing quality, with the added consequence that even slight differences in manufactur-

ing can result in significant fluctuation in critical device and circuit parameters

(such as power, performance, and error characteristics) of parts across the die,

die-to-die and over time due to changing operating conditions and age-related

wear-out. Instance and temperature-dependent variation, particularly in power

consumption, has a direct impact on application quality and system lifetime for

battery powered, energy constrained systems.

In this work we discuss software approaches to handle variability in power con-

sumption of embedded systems. We characterize power variation in contemporary

embedded processors, introduce tools for the evaluation of variability-aware soft-

ware, and focus on two variability-aware software approaches: task activation

control through variability-aware duty cycle scheduling and algorithmic choice.

We measured and characterized active and leakage power for a contemporary

ARM Cortex M3 processor, and found that across a temperature range of 20–60◦C

ii

there is 10% variation in active power, and 14x variation in leakage power. As

embedded processors in more advanced technologies become commonplace, the

variations will increase significantly.

While contemporary hardware already suffers from variability, the evaluation

of a variability-aware software stack faces two main challenges: first, commercially

available platforms typically do not provide means to “sense” or discover variabil-

ity. Second, even if this sensing capability was available, evaluating a software

stack across a statistically significant number of hardware samples and ambient

conditions would prove exceedingly costly and time consuming. We introduce

VarEMU, an extensible framework for the evaluation of variability-aware software

that provides users with the means to emulate variations in power consumption

and fault characteristics and to sense and adapt to these variations in software.

We introduce variability aware duty cycling methods and a duty cycle ab-

stractions for embedded operating systems (TinyOS and FreeRTOS) that allow

applications to to explicitly specify lifetime and minimum duty cycle or quality re-

quirements for individual tasks, and dynamically adjust duty cycle rates and task

activation schedules so that overall quality of service is maximized in the presence

of power variability. We show that variability-aware duty cycling yields a 3–22x

improvement in total active time over schedules based on worst-case estimations of

power, with an average improvement of 6.4x across a wide variety of deployment

scenarios based on collected temperature traces. Conversely, datasheet power

specifications fail to meet required lifetimes by 7–15%, with an average 37 days

short of a required lifetime of one year. Finally, we show that a target localization

application using variability-aware duty cycle yields a 50% improvement in quality

of results over one based on worst-case estimations of power consumption.

In addition to task activation control though duty cycling, a choice of soft-

ware to be executed provides further opportunities for optimization. We introduce

ViRUS (Virtual function Replacement Under Stress), an application runtime sup-

iii

port system that adjusts service quality according to variability-aware policies. In

ViRUS, different code paths implement the same function with varying quality-

of-service for different energy costs. Mutations from one version to another are

triggered by monitoring vectors of variability and energy stress. We demonstrate

ViRUS with a framework for transparent function replacement in shared libraries

and a polymorphic version of the standard C math library in Linux. Applica-

tion case studies show how ViRUS can tradeoff upwards of 4% degradation in

application quality for a band of upwards of 50% savings in energy consumption.

iv

The dissertation of Lucas Francisco Wanner is approved.

Mario Gerla

Puneet Gupta

Jens Palsberg

Mani B. Srivastava, Committee Chair

University of California, Los Angeles

2014

v

Table of Contents

1 Introduction . 1

1.1 Contributions . 3

1.2 Related Work . 5

1.2.1 Task Activation Control 5

1.2.2 Selective use of Hardware Resources 6

1.2.3 Adaptation of Hardware Parameters 7

1.2.4 Adaptation of Software Parameters 7

1.2.5 Dynamic Recompilation 8

1.2.6 Algorithmic Choice . 9

1.2.7 Summary of Related Work 10

1.3 Organization . 12

2 Power Consumption Variability in Embedded Processors . . . 14

2.1 Experimental Setup . 14

2.2 Sleep Mode Power Consumption 15

2.2.1 Analytical Modeling of Sleep Power 15

2.2.2 Experimental Measurements 18

2.3 Active Mode Power Consumption 20

2.3.1 Analytical Modeling of Active Power 21

2.3.2 Experimental Measurements 22

2.4 Power Projections for Advanced Technologies 24

3 Evaluation of Variability-Aware Software 27

vi

3.1 VarEMU Architecture and Implementation 28

3.1.1 Cycle and Time Accounting 29

3.1.2 Energy Accounting . 32

3.1.3 NBTI Aging Model . 33

3.1.4 Aging-aware Power and Delay Model 34

3.1.5 Faults . 36

3.2 Software Interfaces . 37

3.2.1 Interaction with Emulated Software 38

3.2.2 Software Interface for Linux 39

3.3 Experiments and Results . 45

3.3.1 Time Accounting Accuracy 45

3.3.2 Runtime Overheads . 47

4 Variability-Aware Duty Cycling 49

4.1 Duty Cycle Scheduling . 51

4.1.1 Variable Power Consumption 52

4.1.2 Variability-Aware Uniform Duty Cycle 53

4.1.3 Reactive Duty Cycle . 54

4.2 Variability-Aware Duty Cycle Software Adaptation with TinyOS 55

4.2.1 Evaluation . 59

4.3 Duty Cycle and Utility optimization with VaRTOS 67

4.3.1 Mapping task knobs to duty cycle and utility 69

4.3.2 Online Modeling of Power 72

4.3.3 Maximizing Application Utility 76

4.3.4 Evaluation . 78

vii

4.4 Application Results . 81

5 Variability-Aware Algorithmic Choice 85

5.1 System-Driven Algorithmic Choice 87

5.2 System Design for Algorithmic Choice 88

5.3 Library Generation . 90

5.4 ViRUS controller . 93

5.5 Variability Monitor . 96

5.6 Evaluation . 100

5.6.1 Memory Usage . 100

5.6.2 Microbenchmarks . 102

5.6.3 Variable Quality Standard Math Library 103

5.6.4 Application case studies 105

5.7 Discussion . 113

6 Conclusions . 116

References . 120

viii

List of Figures

1.1 ITRS projections of power variability 2

2.1 Experimental setup . 16

2.2 Sleep power at room temperature 18

2.3 Measured and modeled variability of sleep power with temperature 19

2.4 Active power at room temperature 23

2.5 Measured and modeled variability of active power with temperature 23

2.6 Measured frequency variation with temperature 24

2.7 Sleep power projection across technologies 26

2.8 Active power projection across technologies 26

3.1 VarEMU Architecture . 41

3.2 Sleep Time Accounting . 42

3.3 Stuck-at fault in the multiply instruction 43

3.4 VarEMU register layout . 43

3.5 Linux application using VarEMU 44

3.6 Time Accounting Accuracy . 47

4.1 Potential results of variability in terms of system quality and lifetime 50

4.2 Allowable duty cycle across SAM3U instances and temperature . 51

4.3 Designing a software stack for variability-aware duty cycling . . . 55

4.4 System architecture for variability-aware duty cycle scheduling in

TinyOS . 57

4.5 Weather profile for Death Valley, CA, 2010. 60

ix

4.6 Duty cycle schedule for all instances. 61

4.7 Results from duty cycle regimes across all instances 62

4.8 Temperature profile for test locations. 63

4.9 Improvement over worst-case duty cycle for test locations. 64

4.10 Lifetime reduction with DC based on datasheet. 64

4.11 Improvement over worst-case DC across battery capacities. 65

4.12 Projection of improvement with scaling of technology. 66

4.13 VaRTOS Task and Application Example 70

4.14 Modeling sleep and active power through linearization. 73

4.15 Error convergence for sleep power modeling. 74

4.16 Error in average power estimation for varying number of training

years and histogram bins. 75

4.17 VaRTOS state chart . 77

4.18 Error in energy consumption for various optimal duty cycles across

deployment scenarios. 79

4.19 Total utility for VaRTOS vs. oracle system 80

4.20 Mean localization error across duty cycles. 82

4.21 Mean localization with variability-aware, worst-case and datasheet-

based duty cycle schedules. 83

5.1 Exposing multiple functions with mismatched signatures. 91

5.2 Mutator function templates. 92

5.3 Constructor template. When the library is loaded prior to reaching

the application’s main function, the constructor for each function

is executed. 93

x

5.4 Function replacement algorithm 97

5.5 Variability Monitor Architecture 98

5.6 Normalized energy cost of Whetstone iterations with different qual-

ity versions. 107

5.7 Normalized energy cost of blackscholes with different quality

versions . 109

5.8 Output for blackscholes with different quality levels 110

5.9 Normalized energy cost of swaptions with different quality versions112

5.10 Output for swaptions with different quality levels 114

xi

List of Tables

1.1 Classification of Software Adaptation Methods 11

2.1 Sleep power model parameters across technologies 25

2.2 Active mode power model parameters across technologies 25

3.1 Runtime overheads for VarEMU and the VarEMU kernel extensions 48

4.1 Summary of Results for Variability-Aware Duty Cycling 59

5.1 ViRUS configuration rules example. Each rule associates a func-

tion with a vector of sensitivity (sensor and range) and acceptable

quality levels. Rules are resolved in order of priority. 95

5.2 ViRUS runtime overheads . 102

5.3 ViRUS math library memory usage 104

5.4 NRMSE and MAPE for blackscholes 111

5.5 NRMSE and MAPE for swaptions 112

xii

Acknowledgments

I would like to extend my to gratitude the many people that helped and guided

me through my journey as a Ph.D. student.

To my advisor Mani Srivastava, for ideas, support, encouragement, and con-

structive criticism that not only made this work possible, but also immensely

enriched my whole experience at UCLA.

To Puneet Gupta, for advice and guidance that helped shape and refine much

of this work.

To my committee members Jens Palsberg and Mario Gerla for their time,

interest, and valuable comments.

To Rajesh Gupta, Nikil Dutt, Subhasish Mitra, and my colleagues in the NSF

Variability Expedition, for early feedback on ideas and results and for forming an

inquisitive community around the problem of hardware variability.

To my friends, colleagues, and collaborators in the NESL and NanoCAD labs

at UCLA, especially Rahul Balani, Paul Martin, Liangzhen Lai, Salma Elmalaki,

Charwak Apte, Sadaf Zahedi, Gauresh Rane, Haksoo Choi, Newton Truong,

Henry Herman, Thomas Schmid, Zainul Charbiwala, and Supriyo Chakraborty.

To my mother Filomena Hoff and my sister Joice Wanner, for their constant

support that travels the furthest distances.

Finally, to my wife Gabriella Simon Maia, for making me happy every day.

This material is based upon work supported in part by CAPES/Fulbright grant

#1892/07-0 and by the NSF under awards # CNS-0905580 and CCF-1029030.

Any opinions, findings and conclusions or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily reflect the views of these

agencies.

xiii

Vita

2001–2004 Undergraduate Research Assistant, Computer Science Depart-

ment, Federal University of Santa Catarina, Brazil

2004 B.S. (Computer Science), Federal University of Santa Catarina

2004–2005 Teaching Assistant, Computer Science Department, Federal

University of Santa Catarina, Brazil

2004–2008 Research Assistant, Software/Hardware Integration Labora-

tory, Federal University of Santa Catarina

2006 M.S. (Computer Science), Federal University of Santa Catarina

2008–2012 Fulbright/CAPES Scholar

2010–2011 Teaching Assistant, Henry Samueli School of Engineering and

Applied Science, UCLA

2008–2014 Research Assistant, Networked and Embedded Systems Labo-

ratory, UCLA

Publications

Lucas F. Wanner, Salma Elmalaki, Liangzhen Lai, Puneet Gupta, and Mani B.

Srivastava, VarEMU: An emulation testbed for Variability-Aware Software, In

Proceedings of the International Conference on Hardware/Software Codesign and

System Synthesis (CODES-ISSS’13), 2013.

xiv

Paul Martin, Lucas F. Wanner, and Mani B. Srivastava, Runtime Optimization

of System Utility with Variable Hardware, Submitted to IEEE Transactions on

Embedded Computing Systems (TECS),2013.

Lucas F. Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, Mani B. Srivas-

tava, Hardware Variability-Aware Duty Cycling for Embedded Sensors, In IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2013.

Rahul Balani, Lucas F. Wanner, and Mani B. Srivastava, Fast Iterative Optimiza-

tion in Networked Cyber-Physical Systems, In ACM Transactions in Embedded

Computing Systems (TECS), 2013.

Yuwen Sun, Lucas F. Wanner, and Mani B Srivastava, Low-cost Estimation of

Sub-system Power, In International Green Computing Conference (IGCC’12), San

Jose, California, June 2012.

Lucas F. Wanner, Rahul Balani, Sadaf Zahedi, Charwak Apte, Puneet Gupta,

Mani B. Srivastava, Variability-Aware Duty Cycle Scheduling in Long Running

Embedded Sensing Systems, In Design, Automation and Test in Europe (DATE),

Grenoble, France, March 2011.

Rahul Balani, Kaisen Lin, Lucas F. Wanner, Jonathan Friedman, Rajesh K.

Gupta, Mani B. Srivastava, Programming Support for Distributed Optimization

and Control in Cyber-Physical Systems, In International Conference on Cyber-

Physical Systems (ICCPS) , Chicago, IL, April 2011.

Lucas F. Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, Mani B. Sri-

vastava, A Case for Opportunistic Embedded Sensing In Presence of Hardware

xv

Power Variability, In Workshop on Power Aware Computing and Systems (Hot-

Power ’10), Vancouver, Canada, October 2010.

Lucas F. Wanner and Antônio A. Fröhlich, Operating System Support for Wireless

Sensor Networks, In: Journal of Computer Science, 4(4):272-281, 2008.

Geovani R. Wiedenhoft, Lucas F. Wanner, Giovani Gracioli and Antônio Augusto

Fröhlich, Power Management in the EPOS System, In: SIGOPS Operating Sys-

tems Review, 42(6):71-80, 2008.

Rafael Pereira Pires, Lucas F. Wanner and Antônio Augusto Fröhlich, A Frame-

work for Configuration and Assembly of Routing Protocols for Wireless Ad-Hoc

Networks, In International Conference and Workshop on Ambient Intelligence and

Embedded Systems, Kiel, Germany, 2008.

Rafael Pereira Pires, Lucas F. Wanner and Antônio Augusto Fröhlich, An Effi-

cient Calibration Method for RSSI-based Location Algorithms, In: Intl. IEEE

Conference on Industrial Informatics, Daejeon, Korea, 2008.

Lucas F. Wanner, Augusto Born de Oliveira, and Antonio Augusto Frohlich. Con-

figurable Medium Access Control for Wireless Sensor Networks. In International

Embedded System Symposium, pages 401–410, Irvine, CA, USA, May 2007.

Augusto B. de Oliveira, Lucas Wanner, and Antonio Augusto Frohlich. Integrat-

ing Wireless Sensor Networks and the Grid through POP-C++. In International

Embedded System Symposium, pages 411–420, Irvine, California, US, May 2007.

Arliones Stevert Hoeller Junior, Lucas F. Wanner, and Antonio Augusto Frohlich.

xvi

A Hierarchical Approach For Power Management on Mobile Embedded Systems.

In 5th IFIP Working Conference on Distributed and Parallel Embedded Systems,

pages 265–274, Braga, Portugal, October 2006.

Hugo Marcondes, Arliones Stevert Hoeller Junior, Lucas F. Wanner, and Anto-

nio Augusto Frohlich. Operating Systems Portability: 8 bits and beyond. In 11th

IEEE International Conference on Emerging Technologies and Factory Automa-

tion, pages 124–130, Prague, Czech Republic, 2006.

Lucas F. Wanner, Arliones Stevert Hoeller Junior, Augusto B. de Oliveira, and

Antonio A. Frohlich. Operating System Support for Data Acquisition in Wireless

Sensor Networks. In 11th IEEE International Conference on Emerging Technolo-

gies and Factory Automation, pages 582–585, Prague, Czech Republic, 2006.

Lucas F. Wanner, Arliones S. Hoeller Junior, Fauze V. Polpeta, and Antonio Au-

gusto Frohlich. Operating System Support for Handling Heterogeneity in Wireless

Sensor Networks. In 10th IEEE International Conference on Emerging Technolo-

gies and Factory Automation, Catania, Italy, September 2005.

xvii

CHAPTER 1

Introduction

Energy management methods in embedded systems rely on knowledge of power

consumption of the underlying computing platform in various modes of operation.

These power specifications are usually derived from the datasheets. Unfortunately,

the microelectronic substrate is increasingly plagued by variability, especially in

power consumption [BKN03, ITR], both across multiple instances of a system and

in time over its usage life. As a result the “datasheet power specifications” are

heavily guardbanded [JKS09, GKM05] leaving much of the energy potential or

application quality untapped. The major sources of variability are:

• Semiconductor manufacturing. Scaling of physical dimensions faster than

the optical wavelengths or equipment tolerances used in the semiconductor

manufacturing line has led to increased process variability [Ber06, CGK02]

which makes integrated circuit designs unpredictable.

• Environment. Ambient condition variability (e.g., voltage in unregulated

power supplies and temperature).

• Aging. Transistor aging (e.g., due to negative bias temperature instability

[ZVR09]) can change system power/performance over time.

• Vendor. Multi-sourcing of parts with identical specification from different

vendors is common and can cause significant variation.

Figure 1 [ITR] shows that the manufacturing variability in sleep (or static)

power and total power is likely to grow over 500% and 100% respectively in the

1

 0

 100

 200

 300

 400

 500

 600

 2010 2012 2014 2016 2018 2020 2022

%
 V

a
ri
a

b
ili

ty

Year

Total Power
Static Power

Figure 1.1: ITRS projections of power variability

next decade. Variability has been typically addressed by process, device and

circuit designers with software designers remaining isolated from it by a rigid

hardware-software interface, which leads to decreased chip yields and increased

costs [JKS09].

Recently there have been some efforts to handle variability at higher layers

of abstraction. For instance, software fault tolerance schemes have been used to

address voltage [RGS09] or temperature variability [CCF07]. Hardware “signa-

tures” are used to guide adaptation in quality-sensitive multimedia applications in

[PGS11]. In embedded sensing, [MTY06, GM07] propose sensor node deployment

schemes based on the variability in power across nodes.

In this work we discuss power variability for off-the-shelf embedded processors,

and software approaches to handle variability in power consumption of embedded

systems. In particular, we focus on instance and temperature dependent power

variability that already manifests in contemporary embedded processors [BDS11].

For this, we (i) measure and characterize power for a contemporary embedded

processor based on an ARM Cortex M3 core; (ii) derive projections of sleep and

2

active power for embedded processors with scaling of manufacturing technology;

(iii) build a framework that enables testing and evaluation of variability-aware

software strategies under different conditions; (iv) evaluate variability-aware duty

cycle and reward-based scheduling methods under a variety of deployment sce-

narios and across projected future variation; (v) study the impact of duty cycle

adaptation to application quality of inference; (vi) show how system-driven al-

gorithmic choice can be leveraged to explore quality and energy cost tradeoffs in

embedded applications.

1.1 Contributions

The contributions of our work are the following:

• Measurement, characterization, and projections of power variation for em-

bedded processors. Our measurements across several instances of a contem-

porary ARM Cortex M3 processor show that across a temperature range of

20–60◦C there is 10% variation in active power, and 14x variation in leakage

power.

• Design and implementation of VarEMU, an extension to the QEMU virtual

machine monitor that serves as a framework for the evaluation of variability-

aware software techniques. VarEMU provides users with the means to emu-

late variations in power consumption and in fault characteristics and to sense

and adapt to these variations in software. Through the use (and dynamic

change) of parameters in a power model, users can create virtual machines

that feature both static and dynamic variations in power consumption.

• Proposal, implementation, and analysis of variability-aware duty cycle adap-

tation methods. We show that variability-aware duty cycling yields a 3–22x

improvement in total active time over schedules based on worst-case estima-

3

tions of power, with an average improvement of 6.4x across a wide variety

of deployment scenarios based on collected temperature traces.

• Embedded operating system extensions for variability-aware duty-cycle adap-

tation. Two implementations, one based on the TinyOS operating system

for embedded sensors and one based on the FreeRTOS real-time kernel, allow

applications to express elasticity through control knobs that the operating

system can tune to adjust task duty cycle, quality, and energy cost. In both

implementations, a variability-aware duty cycle scheduler dynamically ad-

justs application control knobs so that a system-wide allowable duty cycle

rate is met and overall quality-of-service is maximized.

• Analysis of the impact of duty cycle to quality of sensing. We show that

a target localization application using variability-aware duty cycle yields a

50% improvement in quality of results over one based on worst-case estima-

tions of power consumption.

• Design an implementation of ViRUS (Virtual function Replacement Under

Stress), a framework for system-driven variability-aware algorithmic choice.

ViRUS allows the runtime system to switch between blocks of code that

perform roughly equivalent functionality at different quality-of-service levels

when the system is under stress — be it in the form of scarce energy re-

sources, temperature emergencies, or various vectors of environmental and

process variability — with the ultimate goal of energy efficiency. We present

a framework for function replacement in shared libraries in Linux demon-

strated with a polymorphic version of the C math runtime library. We show

how this system can help users in developing and analyzing tradeoffs between

accuracy and energy consumption with variable hardware, and reduce the

energy consumption with user-controlled quality-of-service degradation.

4

1.2 Related Work

Variability, thus far, has been largely addressed by process, device and circuit

designers. In this context, prior work that addresses variability can be classified

into (i) statistical design approaches [NS05, DBM05, KPR06], (ii) post silicon

compensation and correction [GC07, KS07, TKN02], and (iii) variation avoid-

ance [CPR04, BMR07, GBR07]. Our work differs in that it addresses hardware

variability in the software layer. The closest resemblance is with [PGS11], which

proposes adapting software video codec configurations based on hardware signa-

tures. In the context of embedded sensing, our work is closest to [MTY06, GM07],

which propose sensor node deployment methodologies based on variability in leak-

age power across different nodes.

The range of possible responses that the software can make in response to

variability include: alter the computational load by adjusting task activation;

use a different set of hardware resources (e.g. use instructions that avoid a faulty

module or minimize use of a power hungry module); change software parameters or

the hardware’s operational setting (e.g., tune software-controllable control knobs

such as voltage/frequency; and change the code that performs a task, either by

dynamic recompilation or through algorithmic choice.

1.2.1 Task Activation Control

Variations in power consumption can be interpreted as changes in resource (en-

ergy) usage (and hence availability). Adaptation of work to resource availability

is a common theme in embedded and real-time systems. In its simplest form,

adaptation can be relegated to applications, with minimal system support. The

system may, for example, keep track of energy consumption and notify applica-

tions to adapt in order to conserve energy when needed to meet a desired life-

time [FS99]. In energy harvesting, tasks can be adapted to cope with fluctuating

5

energy availability [KHZ07]. Likewise, in sensing applications, adaptive sampling

mechanisms are used to minimize power consumption with different levels of data

quality [AAG07].

In imprecise computation [LSL94], each task is designed to produce usable,

approximate results whenever resource scarcity (e.g. due to transient failures or

overloads) prevents the task from producing its desired precise result. Imprecise

computation has been explored in the context of energy-aware systems, where

tasks may be interrupted, producing an approximate but usable result, according

to energy availability and lifetime requirements [CAC06, WWG08].

The issue of distributing available energy resources to tasks has also been

explored in the literature. ECOSystem [ZEL02] introduced the concept of “Cur-

rentcy” to allocate energy resources to tasks. The system periodically distributes

Currentcy to tasks, which adjust their workload according to availability. Cin-

der [RSL09] is an energy-aware system for mobile computing devices that features

a Capacitor abstraction associated with tasks. Each capacitor represents a task’s

right to request energy from the system to perform its operations.

In chapter 4, we present system software strategies for variability-aware task

activation control in duty cycled embedded systems. We present software stacks

where applications define lifetime requirements and task activation bounds, and

the variability-aware scheduler activates tasks at the maximum rate that meets

that lifetime.

1.2.2 Selective use of Hardware Resources

One strategy for coping with variability is to selectively choose units to perform

a task from a pool of available hardware. ERSA (Error Resilient System Archi-

tecture) [LCB10] is an architecture for probabilistic applications that consists of

small number of highly reliable cores, together with a large number of cores that

6

are less reliable but account for most of the computation capacity. An application

can be divided into control-intensive resource management code that needs to be

executed on error-free hardware while data-intensive computations are often more

error-tolerant.

Random access memory chips are also subject to variations in power con-

sumption [GKGar]. Variability-aware Memory Virtualization (VaMV) defines a

memory allocation architecture that allows programmers to partition their ad-

dress space into regions with different power, performance, and fault-tolerance

guarantees [BDN12]. Over-dimensioned register files (for example, in Graphical

Processing Units used for general-purpose computation) may also be allocated

in a variability-aware fashion in order to minimize errors and power consump-

tion [RBG13].

1.2.3 Adaptation of Hardware Parameters

Variation-aware adjustment of hardware operating point, whether in context of

adaptive circuits (e.g., [BKN03, GBR07, APM05]), adaptive micro architectures

(e.g., [SBK06, EKD03, MJ06, TST07]) or software-assisted hardware power man-

agement (e.g., [DVA10, CLR09, TT08]) has been explored extensively in liter-

ature. A variability-aware software stack can leverage these mechanisms in an

application-aware manner.

1.2.4 Adaptation of Software Parameters

Application parameters can be dynamically adapted to explore energy, quality,

and performance tradeoffs [HSC11]. For example, Green [BC10] provides a soft-

ware adaptation modality where the programmer provides “breakable” loops and

a function to evaluate quality of service for a given number of iterations. The sys-

tem uses a calibration phase to make approximation decisions based on the quality

7

of service requirements specified by the programmer. At runtime, the system pe-

riodically monitors quality of service and adapts the approximation decisions as

needed. In the mobile context, Powerleash [Fal12] monitors energy usage of back-

ground applications in smart phones. Applications inform their rate of progress

to the system through a vector of arbitrary parameters. The system learns the

correlation between each vector of application progress and energy usage. When

energy usage exceeds a desired budget, the system scales the progress vector and

returns it to the application, which in turn adapts its work accordingly in order

to meet a desired rate of battery consumption.

Adaptation of software parameters can be used to maximally leverage the un-

derlying hardware platform in presence of variations. In the context of multimedia

applications, [PGS11] demonstrated how by adapting application parameters to

the post manufacturing hardware characteristics across different die, it is possible

to compensate for application quality losses that might otherwise be significant

in presence of process variations. In H.264 encoding, adapting parameters such

as sub-pixel motion estimation, FFT transform window size, run length encoding

mechanism, and size of motion estimation search window can lead to significant

yield improvements, a reduction in over-design as well as application quality im-

provements [PGS11].

1.2.5 Dynamic Recompilation

Optimizations performed in compile-time are limited by assumptions about the

target hardware for which the code is compiled. With dynamic recompilation [VE01]

different optimization techniques can be tested and profiled at runtime, so that

code is matched to the capabilities of the hardware which is running it. Dynamic

recompilation may be performed in a system-driven manner, with minimal sup-

port from applications, providing the same adaptation knobs as in compile time

optimization, e.g., loop unrolling, memory optimization, and parallelization.

8

1.2.6 Algorithmic Choice

One broad class of approaches for coping with hardware variability is for the

software to switch to a different code path in anticipation of or in response to a

variability event. Alternate code paths, or algorithmic choice have been explored

in the energy-aware software literature. Petabricks [ACW09] and Eon [SKG07],

for example, feature language extensions that allow programmers to provide alter-

nate code paths. The runtime system dynamically chooses paths based on energy

availability. In Petabricks, multiple versions of object code are created and pro-

filed for execution time and quality using a sample set of input data. Paths for

an application may be chosen statically or altered in runtime through accuracy

valuations. A similar process is used in Green [BC10], where a combination of a

calibration phase and runtime accuracy sampling are used by the application to

define which function to execute from a set of possible candidates. In Eon, the

runtime system dynamically chooses paths based on energy availability. Levels is

an energy-aware programming abstraction for embedded sensors based on alter-

native tasks [LMM07]. Programmers define task levels, which provide identical

functionality with different quality of service and energy usage characteristics.

The run-time system chooses the highest task levels that will meet the required

battery lifetime.

While these systems provide interesting design references for algorithmic choice,

many of their assumptions do not hold true in the presence of variability. In

Petabricks, execution time is the primary resource usage metric. Similarly, in

Green power is assumed to be a function of execution time. With variability in

active mode power, the energy cost of a fixed number of CPU cycles varies across

instances and ambient conditions. Both systems rely on a calibration phase to

reduce runtime overhead of evaluating quality-of-service and cost of different code

paths. With variability, runtime cost of a given code path will also be variable

across nominally identical devices and across the lifetime of a device, due both to

9

aging and changes in operating conditions. Levels triggers chances in run levels

based on a history of power consumption and remaining lifetime of the system. As

with the calibration phase in Petabricks and Green, a projection of future power

consumption based on past history may lead to overly conservative or optimistic

adaptation decisions due to variations in power consumption across time and due

to ambient conditions.

While Petabricks, Eon, Green, and Levels do not consider hardware variabil-

ity, similar mechanisms for expressing application elasticity can be leveraged in

a variability-aware software system. For example, the application can read the

current hardware signature, or register interest in receiving notifications or ex-

ceptions when a specific type or magnitude of changes occur in that signature.

Application response to variability events could be structured as transitions be-

tween different run-levels, with code-blocks being activated or deactivated as a

result of transitions.

Algorithms and libraries with multiple implementations can be matched to un-

derlying hardware configuration to deliver the best performance [FJ05, LGP07].

Such libraries can be leveraged to choose the algorithm that best tolerates the

predicted hardware variation and deliver a performance satisfying the quality-of-

service requirement. With support from the OS, the switch to alternative algo-

rithms may be done in an application-transparent fashion by relining a different

implementation of a standard library function. In chapter 5, we present a software

stack for system-driven variability-aware algorithmic choice.

1.2.7 Summary of Related Work

Table 1.1 presents a classification of selected software adaptation methods. Each

method is classified according to type of adaptation and as system or application-

driven. In system-driven methods, the burden of adaptation lies in the system,

10

Type of Adaptation Application-Driven System-Driven

Task Activation Control [FS99], [KHZ07],

[LSL94], [WWG08]

Hardware Resources [LCB10] [BDN12]

Hardware Parameters [DVA10], [CLR09], [TT08]

Software Parameters [BC10], [PGS11] [HSC11], [Fal12]

Dynamic Recompilation [VE01]

Algorithmic Choice [BC10], [LMM07],

[ACW09], [SKG07]

Table 1.1: Classification of Software Adaptation Methods

which provides the adaptation knobs, and initiates adaptation according some

system-wide policy, potentially with input or direction from the application (e.g.

bounds for task activations). In application-driven methods, the application pro-

vides the adaptation knobs, and initiates adaptation under application-specific

policies, potentially with some support from the runtime system (e.g. sensors for

remaining battery level).

While application-driven adaptation methods allow for wide flexibility of adap-

tation, they incur in increased complexity and a higher barrier of entry for applica-

tion developers. Furthermore, system-wide optimization is typically not possible

with application-specific methods, as individual applications can only adapt them-

selves and not the system as a whole. System-driven adaptation methods, on the

other hand, are less flexible, as the only adaptation knobs available are those

provided by the runtime system. Nevertheless, with system-driven adaptation,

applications can be adapted with little or no added complexity, and optimization

decisions can take the whole of the system into consideration. Our work in chap-

ter 4 presents a software stack for system-driven task activation control where

the system adapts duty cycle under application constraints. Chapter 5 presents a

11

variability-aware software stack for system-driven algorithmic choice.

1.3 Organization

The remainder of this text is organized as follows:

• Chapter 2 discusses power consumption variability in modern embedded

processors. We measured power consumption for several instances of Atmel

SAM3U processors, and found that for a temperature range of 20–60◦C

there is 10% variation in active power, and 14x variation in leakage power.

Based on these measurements, we model sleep and active power as a function

of instance and temperature, and project power consumption for advanced

manufacturing technologies.

• Chapter 3 discusses evaluation strategies for variability-aware software and

introduces the VarEMU emulator and its supporting software stack.

• Chapter 4 discusses variability-aware duty cycling. We explored variability-

aware duty cycle schedulers for TinyOS and FreeRTOS where application

modules specify to a range of acceptable activation parameters, and the

scheduler selects the actual duty cycle based on run-time monitoring of

instance-dependent power-temperature models. In an evaluation with ten

instances of Atmel SAM3U processors, we found that variability-aware duty

cycling yields a 3–22x improvement in total active time over schedules based

on worst-case estimations of power, with an average improvement of 6.4x

across a wide variety of deployment scenarios based on collected tempera-

ture traces. Conversely, datasheet power specifications fail to meet required

lifetimes by 7–15%, with an average 37 days short of a required lifetime of

one year. Finally, a target localization application using variability-aware

duty cycle yields a 50% improvement in quality of results over one based on

12

worst-case estimations of power consumption.

• Chapter 5 presents a framework for system driven algorithmic choice for

variability aware software featuring function replacement in shared libraries

in Linux and demonstrated with a polymorphic version of the C math run-

time library. We show how this system can help users in developing and

analyzing tradeoffs between accuracy and energy consumption with variable

hardware, and reduce the energy consumption with user-controlled quality-

of-service degradation.

• Chapter 6 presents our concluding remarks.

13

CHAPTER 2

Power Consumption Variability in Embedded

Processors

Power consumed in an embedded class microprocessor chip is broadly classified

into active mode and sleep mode. In this chapter we study the temperature

dependence of active and sleep mode power consumption in embedded processors

and propose models to characterize it.

Our measurements show sleep and active power as a function of temperature

across several instances of Atmel SAM3U microcontrollers in LQFP144 packages.

While we have been unable to determine from available literature the precise

technology node the chip is fabricated in, indirect evidence as well as the vintage

suggests that it is most likely fabricated in a 130 nm process. The class of low-

end 32-bit processors represented by the Cortex M3 is suitable for embedded

applications where nodes perform data collection, aggregation, and inferences in a

duty-cycled fashion. The variations we observed with the SAM3U are comparable

to those found in other similar embedded processors [BDS11].

2.1 Experimental Setup

For our measurements, we used ten identical SAM3U-EK development boards.

These boards feature jumpers that allow power measurements for different com-

ponents. We measured current and voltage on going into the SAM3U core, with

all peripherals except for the real time clock disabled. To obtain synchronized

14

voltage and current measurements we used a pair of Agilent 34410A digital multi-

meters with a basic accuracy of 0.06%, externally triggered by a function genera-

tor. Each measurement point represents the average power dissipated by the core

across 50,000 measurements, with a sampling rate of 1,000 samples per second.

We used a TestEquity 115F temperature chamber allowing control of ambient

temperature with ±0.5◦C accuracy. Figure 2.1 illustrates our test setup.

2.2 Sleep Mode Power Consumption

With shrinking geometries the ratio of sleep mode power to active mode power

has been increasing (as high as 40% in chips fabricated using 65nm technol-

ogy) [PSB05]. This is due to the inability to turn devices “off” effectively as

device dimensions continue to shrink. Manufacturing spread in transistor param-

eters can cause up to 20x variation in sleep mode power [BKN03] in addition to

substantial variation with supply voltage and temperature. Specifically in con-

text of embedded sensor platforms, which often are deployed in extreme ambient

conditions, the variation in leakage power during the lifetime of a device may be

substantial.

2.2.1 Analytical Modeling of Sleep Power

Sleep power has four main sources:

1. sub-threshold leakage current that flows between source and drain of a MOS-

FET for gate-to-source voltages below the threshold,

2. gate leakage current due to tunneling of carriers through the gate oxide to

the substrate,

3. reverse-biased junction leakage current which flows from the source/drain

regions to the substrate through the reverse biased p-n junctions due to

15

(a) SAM3U-EK Board (b) Temperature Chamber

(c) Power Measurement Setup

Figure 2.1: Experimental setup

16

band-to-band tunneling and diffusion, and

4. gate-induced drain leakage current due to band to band tunneling in the

region of overlap between the gate and drain.

At temperatures below 150◦C, only the first two components are large enough,

and of the two only sub-threshold leakage exhibits strong variability with tem-

perature. Therefore, sleep power can be modeled as the following function of

temperature (derived from BSIM4 compact device model [BSI]):

Psleep = Vdd(AT
2e−B/T + Igl) (2.1)

whereA andB are technology-dependent constants, Igl is the temperature-independent

gate leakage current, and T is the core temperature. Coefficients in the model are

fitted to individual instances, and hence capture both temperature and instance-

dependent variability. We combine the sleep power model with a model of the

thermal dynamics of a packaged chip [HQF10]:

RC
dT (t)

dt
+ T (t)−RP (t) = Tamb (2.2)

where T (t) and P (t) are the core temperature and power consumption of the

chip at time t, R and C are the thermal resistance and capacitance of the chip

package, and Tamb is the ambient temperature. At steady state dT (t)
dt

= 0, so that

Tsteady−state = Tamb +RP (t).

For the SAM3U in a LQFP144 package, the typical values of R and C are

50◦C/W and 4–5 J/◦C respectively. The nominal static power of SAM3U is 30

µW. Nominal active power when operating at 4 MHz while performing a Dhry-

stone benchmark is 9 mW. From (2.2), when sleep mode power measurements

are performed, the self-heating of the chip due to static power consumption is

17

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10

P
o
w

e
r

(u
W

)

Instance (#)

Figure 2.2: Sleep power at room temperature

negligible, and in active mode the temperature difference between ambient and

core temperature is ∼0.5◦C.

2.2.2 Experimental Measurements

Based on the preceding analysis, it is reasonable to assume that the static power

follows a similar dependence on ambient temperature as given by (2.1). We verify

this assumption through measurements and characterize each instance of micro-

controller based on the above model.

For leakage measurements, we disable all peripheral devices in the SAM3U

except for the Real-Time Clock (RTC), select the chip’s internal 32kHz RC os-

cillator as clock source, configure the chip for wakeup with an RTC interrupt,

and execute the “wait for event” instruction, which causes the processor to enter

sleep mode. In addition to sleep, the SAM3U microcontroller features two other

low power modes. The first, backup, completely powers off the core. While this

results in the lowest possible power consumption, it also results in wakeup times

more than 50 times larger than in other modes, and therefore is not practical for

duty-cycled systems. The second low-power mode, wait, allows fast wakeup with

some specific clock configurations and wakeup sources. In our measurements, we

found power dissipated in wait mode to be equivalent to power in sleep mode with

the aforementioned configuration.

18

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70

P
o
w

e
r

(u
W

)

Temperature (C)

P1
P1(m)

P2
P2(m)

P3
P3(m)

P4
P4(m)

P5
P5(m)

P6
P6(m)

P7
P7(m)

P8
P8(m)

P9
P9(m)

P10
P10(m)

Figure 2.3: Measured and modeled variability of sleep power with temperature

19

Figure 2.2 shows that the variation in sleep power across ten instances of

SAM3U at room temperature is approximately 8x. Figure 2.3 shows the ex-

perimental data for sleep power consumption of the SAM3U instances across a

temperature range fitted to the analytic model discussed earlier, using minimum

mean square error criterion. As expected, individual processor instances exhibit

large sleep power variations over the temperature range. While change in sleep

power for any individual processor is monotonic, the magnitudes of variations are

different so that relative rankings of different processors change over temperature.

Root mean square error between measurements and model across all instances is

6.7 µW. Over a temperature range of 20 − 60◦C, which is representative of the

temperatures that embedded sensors deployed under unregulated and extreme am-

bient conditions often face (e.g. in factories, desert, etc.), total variation across

all ten instances is 14x.

2.3 Active Mode Power Consumption

Active power has three main components: switching power, short circuit power,

and active mode leakage. Switching power is consumed when devices switch be-

tween different logic values, and is given by Pswitching = αCV 2
ddf , where α is the

activity factor that represents how often a gate switches per clock cycle, C is

the capacitance at the switching node, Vdd is the supply voltage and f is the

clock frequency. Short circuit power is dissipated during the time period when

inputs ramp between logic levels and there is a direct path between supply to

ground. Finally, devices that do not switch while in active mode also consume

power. Leakage power has an exponential dependence on temperature, as elab-

orated in section 2.2.1. For our experiments, however, Pactive/Psleep is nominally

∼300. Hence this component has a small effect only on the high temperature

range dependence of the total active mode power.

20

2.3.1 Analytical Modeling of Active Power

The temperature dependence of active mode power can be explained by dividing

the temperature range of interest into three regimes [WBA11].

(i) Low temperature regime: The contribution of active mode leakage is neg-

ligible as at low temperatures. An increase in threshold voltage Vth causes expo-

nential decrease in leakage. The capacitance increase is a linear function of tem-

perature and hence contributes to the linear dependence of active mode power. At

low temperatures, inverse temperature dependence causes the decrease in active

mode power to have a steeper slope as temperature reduces. The relationship

with temperature is characterized as:

Pd = PT1 + k1(T − T1)α (2.3)

where, 0 < α < 1, T1 < T < T2, k1 and α are fitting parameters. T1 < T < T2

defines the low temperature regime.

(ii) Nominal temperature regime: Short circuit and switching power have a

linear dependence in this regime, and the active mode leakage is negligible. The

relationship with temperature is characterized as:

Pd = PT2 + k2(T − T2) (2.4)

where, T2 < T < T3 and k2 is a fitting parameter. T2 < T < T3 defines the

nominal temperature regime.

(iii) High temperature regime: The switching power varies linearly (capac-

itance dependence is linear), short circuit power and active mode leakage give

active mode power in this regime a super-linear dependence [WAB13]. The rela-

tionship with temperature is characterized as:

21

Pd = PT3 + k3(T − T3)β (2.5)

where, 1 < β, T3 < T , k3 and β are fitting parameters. T3 < T defines the high

temperature regime.

2.3.2 Experimental Measurements

Figure 2.2 shows that the variation in active power across ten instances of SAM3U

at room temperature is approximately 4%. Figure 2.5 shows the active power

model fitted to our measured data for active mode power consumption across a

temperature range. For this experiment, we used the same measurement setup as

in the sleep mode power measurements. All SAM3U peripherals were disabled,

except for the RTC. The core was clocked from the internal ring oscillator at 4MHz,

continuously running a Dhrystone benchmark program. Root mean square error

between measurements and model across all instances is 0.02 mW. Over a range

of 20–60◦C, total variation across all ten instances is 10%.

Interestingly, for the SAM3U processors we used, even the clock frequency

varied by 2% across the temperature range and 6% across different instances

as shown in Figure 2.6. To measure clock frequency, we toggled an I/O pin at

a rate proportional to the core frequency, and observed the resulting frequency

at different temperatures with a digital oscilloscope. All processors were set to

operate nominally at 4 MHz. The clock is generated by an internal ring oscillator

(RO). Generally, RO frequency decreases with an increase in temperature so there

is always temperature compensation provided with the RO circuit to generate the

clock at the specified frequency across temperature. We observe that the frequency

increases with temperature. This is likely due to temperature over-compensation.

22

 8.65

 8.7

 8.75

 8.8

 8.85

 8.9

 8.95

 9

 9.05

 0 2 4 6 8 10

P
o
w

e
r

(m
W

)

Instance (#)

Figure 2.4: Active power at room temperature

 8

 8.5

 9

 9.5

 10

-40 -20 0 20 40 60 80 100

P
o

w
e

r
(m

W
)

Temperature (C)

P1
P1(m)

P2
P2(m)

P3
P3(m)

P4
P4(m)

P5
P5(m)

P6
P6(m)

P7
P7(m)

P8
P8(m)

P9
P9(m)

P10
P10(m)

Figure 2.5: Measured and modeled variability of active power with temperature

23

 3.95

 4

 4.05

 4.1

 4.15

 4.2

 4.25

-20 -10 0 10 20 30 40 50 60

F
re

q
u
e
n
c
y
 (

M
H

z
)

Temperature (C)

P1
P2
P3
P5
P6
P7
P8

Figure 2.6: Measured frequency variation with temperature

2.4 Power Projections for Advanced Technologies

The characterization discussed above was based on actual measurements from

hardware manufactured in 130nm. Nominal power consumption variability is

characterized in ITRS across sub-130 nm technology nodes. We use this data to

project the spread of power vs. temperature curves. PTM 130, 90, 65 and 45 nm

spice models were used to project the scaling of active and sleep mode power across

these technology nodes based on a ring oscillator design. Relative temperature

dependence was assumed to be the same as observed in the measurements. We

assume that the temperature regimes remain constant across technologies. The

projections can be refined by calibrating these regimes for advanced technology

using real measurements. We also assume in our experiments that while in active

mode 20% of devices are switching. Tables 2.1 and 2.2 list typical sleep and active

mode power model parameters at each technology node. Figures 2.7 and 2.8

show expected projection of nominal sleep and active power across temperature

resulting from these parameters for each node technology.

24

Instance A B Igl Vdd

Typ 130 1.0 2605.5 0.0 1.8

Typ 90 1.26 2400 0.2 1.8

Typ 65 1.76 2300 0.6 1.8

Typ 45 2.52 2100 1 1.8

Table 2.1: Sleep power model parameters across technologies

Instance k1 k2 k3 a b

Typ 130 0.0511 0.0095 0.003325 0.669 1.3456

Typ 90 0.0246 0.0046 0.0016 0.71 1.5228

Typ 65 0.0094 0.00175 0.000615 0.735 1.6335

Typ 45 0.0046 0.000855 0.0003 0.755 1.722

PT1(mW) PT2(mW) PT3(mW) T2 (◦C) T3 (◦C)

Typ 130 7.7 8.6 8.68 21 30

Typ 90 2.82 3.33 3.37 21 30

Typ 65 0.9 1.125 1.14 21 30

Typ 45 0.364 0.479 0.4867 21 30

Table 2.2: Active mode power model parameters across technologies

25

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

S
le

e
p
 P

o
w

e
r

(u
W

)

Temperature (C)

45nm
65nm
90nm

130nm

Figure 2.7: Sleep power projection across technologies

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

A
c
ti
v
e
 P

o
w

e
r

(m
W

)

Temperature (C)

45nm
65nm
90nm

130nm

Figure 2.8: Active power projection across technologies

26

CHAPTER 3

Evaluation of Variability-Aware Software

The evaluation of a variability-aware software stack faces two main challenges:

first, commercially available platforms typically do not provide means to “sense”

or discover variability. Second, even if this sensing capability was available, evalu-

ating a software stack across a statistically significant number of hardware samples

and ambient conditions would prove exceedingly costly and time consuming.

In hardware design, simulations at various levels of abstraction can be used

to evaluate the impacts of hardware variability due to PVT (Process, Voltage,

and Temperature) variations and circuit aging. While gate- and RTL-level sim-

ulators can co-simulate both software and hardware, their runtimes are orders of

magnitude slower than real-time [CDB09]. Cycle-accurate architecture-level sim-

ulators like Wattch [BTM00], with typical runtimes of 2-3 orders of magnitude

slower than real-time, suffer from the same problem. FPGA-based emulators

like [KVR11, CLM12] can achieve similar runtime as real-time, but offer limited

observability and controllability, and suffer from poor portability and flexibility.

We introduce VarEMU, an extensible framework for the evaluation of variability-

aware software. VarEMU provides users with the means to emulate variations in

power consumption and fault characteristics and to sense and adapt to these

variations in software. VarEMU is an extension to the QEMU virtual machine

monitor [QEM13], which relies on dynamic binary translation and supports a

variety of target architectures with very good performance. For many target ma-

chines, QEMU provides faster than real time emulation. Because QEMU can run

27

unmodified binary images of physical machines, VarEMU enables the evaluation

of complete software stacks, with operating system, drivers, and applications.

In VarEMU, timing and cycle count information is extracted from the code

being emulated. This information is fed into a variability model, which takes con-

figurable parameters to determine energy consumption and fault variations in the

virtual machine. Energy consumption and susceptibility to faults are also subject

to dynamic change according to an aging model. Control over faults and virtual

energy sensors are exported as “variability registers” mapped into memory that

is accessible to the software being emulated, closing the loop. This information is

exposed through a variability driver in the operating system, which can be used

to support software adaptation policies. Through the use of different variabil-

ity emulation parameters that capture instance-to-instance, environmental, and

age-related variation, VarEMU allows users to evaluate variability-aware software

adaptation strategies across a statistically significant number of hardware samples

and scenarios.

3.1 VarEMU Architecture and Implementation

Figure 3.1 presents an overview of the VarEMU architecture. Applications in

a virtual machine interact with VarEMU by querying for energy, cycle count,

and execution registers for different classes of instructions and by allowing or

disallowing faults in the execution of emulated instructions. An operating system

driver mediates the interaction of applications with a virtual hardware device

which exposes the VarEMU interface to the VM. On VMs without operating

systems, applications handle this interaction directly.

When starting VarEMU, users provide a configuration file that sorts instruc-

tions into different classes and parameters to a model that is used to determine

power consumption for each of the classes. These parameters are subject to dy-

28

namic change during runtime according to an aging model. Users may change

parameters for the power model dynamically (e.g. to emulate variations in power

consumption due to changes in temperature, the user would periodically change

the temperature parameter of the power model). Users may also query the VM’s

cycle counters and energy registers.

Whenever an instruction is executed in the virtual machine, the cycle counter

for its instruction class is incremented. Energy expenditure for a class of instruc-

tion is determined as a function of accumulated execution time for all instructions

in that class and power consumption for the class as determined by a power model.

For instructions configured by the user as susceptible to faults, the execution

of translated code may be preceded, succeed, or replaced with alternative, faulty

operations. These operations may, in turn, cause changes to cycle counting (e.g.

due to a less precise version of the instruction taking fewer cycles to complete)

or change parameters in the power model (e.g. voltage or frequency). Faults

are injected only when explicitly activated by emulated software. A runtime

parameter passed from emulated software to the fault module when enabling faults

allows users to configure which faults are enabled and/or the nature of faults (e.g.

precision of a numerical operation). This allows users to study the effects of faults

in instruction execution on individual applications phases, without compromising

the stability of the runtime system. The remainder of this section describes the

architecture and implementation of VarEMU.

3.1.1 Cycle and Time Accounting

We account time in VarEMU on an instruction class basis. Each instruction is

associated with a user-defined class. A data structure holds total number of cy-

cles and time spent executing instructions of each class. To associate instructions

with classes, each instruction in a translation block is augmented with an informa-

29

tion structure (vemu instr info) containing fields for the instruction operation

code (opcode), instruction name, instruction class, number of cycles, fault status,

and the instruction word itself.

When a new instruction word is found, its opcode is decoded, and the instruc-

tion information structure is filled with its corresponding default values. An input

file in JSON format allows users to change the default number of cycles, class,

and fault status for any instruction. The number of cycles may also be altered by

the fault module at runtime.

A helper function in QEMU allows calling arbitrary functions from translated

code. We use one such helper to perform a call to a function that increments the

number of cycles for a given instruction class after each instruction is executed

(vemu increment cycles). This function adds the number of cycles in the

instruction’s information structure to the total number of cycles for its instruction

class. Likewise, it increments total active time for that instruction class, based

on current (virtual) frequency. In processors where the number of cycles taken

by an instruction is not constant, information from the instruction word (e.g.

input registers used, immediate values) could be used to accurately determine the

number of cycles.

We must also account for cycles spent in standby or sleep modes. In many

architectures, a special instruction (e.g. WFI in ARM, or HLT in x86 processors)

puts the processor in standby mode. After this instruction is issued, the processor

will not execute other instructions until an interrupt (typically from a timer or an

external device) is fired. Keeping track of real sleep time (i.e., reflecting hardware

timing) is important for applications (e.g., in energy-aware duty cycling), as well

as for circuit aging models. When we encounter such an instruction, we store a

timestamp with current VM time. When an interrupt occurs following standby

we read a new timestamp, and add the time difference to the counter for total

time spent in sleep mode.

30

Because QEMU runs virtual machines as best-effort, the actual execution fre-

quency of emulated instructions may not match the (virtual) frequency of the

hardware. If the VM never enters standby mode, there will be no adverse effects

other than a discrepancy between total virtual time accounted with the cycle

counters and wall clock time elapsed. If the VM does enter a standby mode, time

spent in that mode must be adjusted to reflect hardware behavior.

Consider, for example, a system with periodic tasks where processor utilization

is less than 100%. After the system completes tasks, it goes into standby mode,

and waits for a timer interrupt corresponding to the next period. Figure 3.2a

illustrates such a system, where processor frequency is 100 MHz, timer frequency

is 1 Hz, task execution takes 50 M cycles (0.5 seconds), and time spent in standby

mode is 0.5 seconds. If emulated execution is faster than hardware, sleep time

in the VM would be greater than in hardware. Conversely, if emulation is slower

than hardware, sleep time in the VM would be smaller than in hardware.

In order for sleep time accounting in VarEMU to reflect hardware timing, we

keep track of emulated execution time for each active time cycle. When a sleep

cycle is initiated, we calculate the delta between virtual execution time (from

our cycle counters, reflecting hardware execution time) and emulated execution

time for the last active period. We then deduct this delta from the sleep time

interval. Figure 3.2b illustrates our solution. In cases where processor utilization

in hardware is 100%, but emulated execution time is faster than hardware, it is

possible for the sleep time interval to be negative. In this case, the hardware

version of the processor would continue executing immediately after the standby

instruction. We emulate this by returning a sleep interval of 0. The converse

situation (emulated time is slower than virtual time) does not lead to a problem,

as after continuing execution immediately after the standby instruction we deduct

a negative delta from an interval of zero, leading to the correct sleep time interval.

31

3.1.2 Energy Accounting

Energy consumed by an instruction of a given class is determined as a function of

execution time (number of cycles divided by frequency) and power for that class.

Power is in turn determined by a model with arbitrary parameters (minimally,

voltage and frequency). By fitting the power model with different parameters,

users can emulate instance-to-instance variation. By changing parameters dy-

namically, users can emulate the effects of dynamic or environmental variation

(e.g. due to changes in supply voltage or temperature). Power model parameters

may also be dynamically changed with an aging model.

While active and sleep time are accounted on a per-event basis (i.e. on each

instruction or sleep cycle), energy is accounted on demand, i.e. only when a read

command is issued from emulated software or external monitor, or when one of the

power model parameters change. For each energy accounting event, we keep track

of sleep time and active time for each class of instructions since the last event, and

accumulate energy for each interval in the appropriate energy registers. There is

one active energy register per instruction class, and for sleep energy.

Energy accounting is independent of power model, so that users may define

their own models. A power model implements three functions: The first function

returns active power in Watts for a given class of instruction. The second returns

sleep power in Watts as a function of standby mode (e.g. clock gated, power

gated). The final function is used to change power model parameter n of class c

to value v. Any power model must also define at least two parameters: frequency

and voltage. The default power model for VarEMU, presented in Section 3.1.4

defines several additional parameters to capture static and dynamic variability.

32

3.1.3 NBTI Aging Model

Negative bias temperature instability (NBTI) is a circuit wear-out mechanism that

will degrade the PMOS threshold voltage (Vthp) and thus the circuit performance.

To model the NBTI-induced aging effect in VarEMU, we use the analytical model

for the |Vthp| degradation of a MOS transistor as in [CWC12, BWV06, WYB07].

|∆Vthp| =

(√
K2
vTclkω

1− β1/2n
t

)2n

βt = 1−
b1 +

√
b2(1− ω)Tclkexp(b5/T)

b3 + b4
√
t

Kv = b4(Vdd − Vthp)exp(b5/T)

(3.1)

where Vdd is the supply voltage, b1, b2, b3, b4, b5 are technology-dependent pa-

rameters. Tclk is the time period of one stress-recovery cycle, ω is the duty cycle

(the ratio of the time spent in stress to time period), t is the total lifetime of a

transistor, n is a time exponent equal to 1/6 for an H2 diffusion model. Since

NBTI-induced degradation is insensitive to the switching frequency when it is

larger than 100Hz [BWV06], similar to [WYB07], we assume Tclk = 0.01s in this

work.

Based on the aging model in (3.1), the key activity-related parameters are the

duty cycle ω and total lifetime t. In VarEMU, we use the cycle counting feature

to implement the bookkeeping function for activity-related parameters, i.e. total

normal runtime tn and total runtime under power gating tpg.

Since NBTI-induced degradation depends on the exact signal switching pat-

tern, VarEMU reports the upper and lower bound aging scenarios. The upper

bound of the aging scenario will be t = tn + tpg and ω = tn/t. The lower bound of

the aging scenario will be t = tn + tpg and ω = 0.5tn/t. Since the model in (3.1)

assumes a periodic stress-recovery pattern, this model may not be adequate to

accurately capture NBTI effects under some dynamical scenarios like dynamic

voltage scaling and long-term power-gating. Enabling dynamic will require either

33

more sophiscated aging models or aging simulators as in [CSG11] (too slow for

our purpose).

3.1.4 Aging-aware Power and Delay Model

In this section we present the default power model for VarEMU which accounts

for aging effects. The processor power consumption can be classified as active

power and sleep power. Active power includes switching power and short circuit

power. In VarEMU, we use the switching power model as in [RCN96]:

Pswitching =
n∑
i=1

CiβiV
2
ddf (3.2)

where Ci is the equivalent switching capacitance for each instruction class i, βi is

the fraction of class i instructions in all instructions, and f is the clock frequency.

We use the short circuit power model as in [Vee84]:

Pshort =
n∑
i=1

ηi(Vdd − Vthn − Vthp)3f (3.3)

where ηi is a technology- and design-dependent parameter for instruction class i,

Vthn is the threshold voltage for NMOS, and Vthp is the threshold voltage for PMOS

and equals |Vthp0 + ∆Vthp|, Vthp0 is the threshold voltage without degradation.

The sleep power can be modeled as:

Psleep = Vdd(Isub + Ig) (3.4)

where Isub is the subthrshold leakage current and Ig is the gate leakage current.

The leakage current models can be derived from the device model in [BSI]. We

simplify the model and extract the temperature- and voltage-dependency as:

Isub = a1T
2(exp(

−a2Vthp
T

) + exp(
−a2Vthn

T
))exp(

−a3Vdd
T

) (3.5)

where a1, a2, a3 are empirical fitted parameters.

34

We use the gate leakage model from [KAB03]:

Ig = a4V
2
ddexp(−a5/Vdd) (3.6)

where a4, a5 are empirical fitted parameters. There are secondary effects of tem-

perature on some parameters such as threshold votage and electron mobility, but

the effects are neglagible for our purpose.

The dependence of circuit delay d on supply voltage Vdd and threshold voltage

can be modeled by the alpha-power law [SN90]. Since NBTI has effect only on

PMOS (PBTI on NMOS respectively), due to the complementary property of

CMOS, the overall circuit delay can be modeled as:

d =
KpCpVdd

(Vdd − Vthp)α
+

KnCnVdd
(Vdd − Vthn)α

(3.7)

where Cp and Cn are equivalent load capacitances for PMOS and NMOS respec-

tively, Kp, Kn and α (1 < α < 2)) are technology and design dependent constants.

In this work, we use a commercial 45nm process technology and libraries as

our baseline. The aging model is fitted to the NBTI aging equation given in

the technology design manual. The power and delay model parameters are fitted

to the SPICE simulation results of a inverter chain using device model given

in the technology libraries. Compared to the power and delay value reported

by SPICE results, errors in our model are less than 2% for 0.8V < Vdd < 1V ,

0mV < |∆Vthp| < 50mV and 10◦C < T < 90◦C.

Although the absolute power and delay values of the entire processor may not

match the results of the inverter chain, we expect their sensitivity to voltage and

temperature to follow similar trends if the inverter chain is designed to match the

same design properties (e.g., cell types, fan-out ratio) of a particular processor

design. In this work, the final power and delay values are normalized to the

measured data obtained from a Cortex M3 testchip using the same technology.

35

3.1.5 Faults

VarEMU allows faults to be inserted before or after, or to completely replace

the execution of an instruction. A faulty implementation of an instruction in

VarEMU is an arbitrary C function that has access to the complete architectural

state of the VM, and hence may manipulate memory, general purpose registers,

and status and control registers. Faulty versions of instructions may co-exist with

its respective correct versions, and faults may be dynamically enabled and disabled

from emulated software.

When an instruction is disassembled, we check its VarEMU field to determine if

it is susceptible to faults. For instructions with pre and post execution faults, we

simply generate code that calls the respective fault helper functions at execution

time. These helper functions determine whether the fault will occur, and con-

ditionally call the fault implementation. For instructions with replace faults,

the code generation process is more complex: if we simply called a replace

helper, the developer of the replacement fault would also have to implement a

correct version of the instruction. Hence, we generate two code paths, one for the

faulty path, and one for the original instruction (for when faults do not occur).

The faulty path is always called, and returns a boolean value which determines

whether the original instruction should be executed or not. This is accomplished

with the equivalent of a conditional branch instruction, which jumps to the end of

the current translation block if the return value of the replace helper is not zero.

All of the following conditions must be met in order for a fault to occur: 1)

the instruction under execution is marked as subject to faults; 2) the processor is

not in a privileged mode (e.g., faults are not permitted in the OS kernel); 3) faults

have been enabled by emulated software; 4) user-defined conditions, e.g., based

on conditional or random variables. If these conditions are not met, the original

version of the instruction will be executed without faults.

36

Figure 3.3 shows a simple example of a stuck-at fault in the multiply instruc-

tion. If the processor is currently running in privileged mode, or if faults have not

been enabled from emulated software, the function returns zero, which causes the

original instruction to be executed. Otherwise, the instruction operation code is

decoded. For the multiply opcode, the source and target registers are decoded,

and the multiply operation is augmented with the stuck-at-one fault. The result

is written into the destination register.

While the fault presented in Figure 3.3 is deterministic in nature (a stuck-at-

one in the LSB of the target register) and occurrence (always happens when faults

are enabled in non-privileged mode), users may include additional implementa-

tions or conditions for faults, e.g., based on history, random variables, architec-

tural state, or operational parameters such as voltage and frequency in the power

model. Users may also call external software modules (e.g. RTL simulators) from

the fault module in order to model realistic faults that, for example, take spacial

correlation or instruction inter-dependency into account. Faulty execution may in

turn influence cycle counting (e.g. a faulty version of an instruction that finishes

in fewer cycles) or energy accounting (e.g. a faulty version of the instruction that

is less power intensive).

3.2 Software Interfaces

VarEMU allows users and external software to configure instruction information

(class of instruction, susceptibility to faults), dynamically change power model

parameters, and query the VM for cycle, time, and energy information.

An input file in JSON format specifies instruction classes and power model pa-

rameters for a VM. A class of instructions is defined by an index, a name and a list

of instruction names. By default, all instructions are linked to a single catch-all

class. Instructions not listed in the input file remain linked to the default class. A

37

dictionary links each instruction class with its respective list of power model pa-

rameters. A minimal input file includes only a list of power model parameters for

the catch-all instruction class. The input file may also define lists of instructions

susceptible to each type of fault supported by VarEMU.

QEMU provides a monitor architecture for external interaction with the VM.

This monitor listens for commands and sends replies on an I/O device (e.g. stdio

or a socket). We extended this monitor to provide commands to query a VM’s

energy, cycle, and time information, and to dynamically change power model

parameters. Inputs and responses to and from the monitor are in JSON format.

A query-energy command returns accumulated energy for sleep mode and for

each instruction class. Similarly, a query-time command returns accumulated

execution and sleep times. Finally, a change-model-param command allows

users to change power model parameter n of class c to value v.

A combination of the change-model-param command described above and

the standard stop and cont commands provided by QEMU allows users to sys-

tematically emulate dynamic variations in power consumption due to environmen-

tal factors (e.g. changes in ambient temperature).

We implemented a small application that demonstrates interaction with the

VarEMU monitor commands. This application queries the monitor every second

for energy and time information and plots average active and sleep power for that

time interval. Inputs allow users to change the temperature in the power model,

which leads to changes in average power consumption.

3.2.1 Interaction with Emulated Software

Emulated software interacts with VarEMU through memory mapped registers.

A virtual hardware device maps I/O operations in specific memory regions to

VarEMU functions. A command register provides three operations: read, enable

38

faults, and kill. The read operation creates a checkpoint for all VarEMU registers

(Figure 3.4). Subsequent reads to register memory locations will return values

from the last checkpoint. This allows users to read values that are temporally

consistent across multiple registers.

A write to the enable faults command register propagates its input value to a

variable shared with the VarEMU fault module. A value of 0 means that faults

are completely disabled. The implications of a write to the fault register with a

value greater than zero depend on the specific implementation of the fault model,

but in general such a write means that faults are allowed to happen from this

point on.

Finally, a write to the kill command register kills the VM and stops emulation.

This allows users to systematically finish an emulation session in machines that

do not provide the equivalent of a shutdown command.

In machines without an operating system (or memory protection), applica-

tions may directly interact with the VarEMU memory region. We provide a small

library of high level functions that issues the adequate sequence of write/read

operations in order to interact with VarEMU. For machines that use the Linux

operating system, these operations are embedded into a driver, which also per-

forms per-process time and energy accounting and handles fault status.

3.2.2 Software Interface for Linux

In a multi-process system, it is difficult to attribute energy expenditure to different

processes from a global energy meter without system support. Furthermore, it

would be very difficult to conduct experiments and evaluate the impact of faults

to individual applications in a multi-process system if fault states were allowed

to cross process boundaries. For example, if enabling faults in an application led

to faults being enabled in kernel code, or in the shell process, the system would

39

most likely become unstable and/or crash. Nevertheless, a multi-process system

typically provides several software conveniences that may not be available in a

simpler, OS-less system (e.g. I/O shell, networking stack, remote file copy).

We implemented a series of small extensions to the Linux kernel that allows

applications to benefit from its software stack while avoiding the issues described

above. First, we extended the process data structure with a new data structure

containing VarEMU registers. This field holds fault status and time and energy

counters for each process.

When a process is scheduled in, we create a checkpoint by reading all VarEMU

registers from hardware. When the process is scheduled out, we create a second

checkpoint. Energy and cycles between the schedule in and out events are at-

tributed to the process. Energy and cycles between the out event for the previous

process and the in event for the next process are attributed to the operating sys-

tem. Fault status is part of process context, and hence saved/restored in schedul-

ing events. Thus, enabling faults in one process does not enable faults in other

processes or the OS.

Applications interact with the VarEMU driver through a system call interface.

A write system call takes two parameters: command and value. Two commands

— which map to the corresponding operations in the virtual hardware device

— are available: fault and kill. Value is ignored for the kill command. A read

system takes two parameters: an integer type and a pointer to a VarEMU data

structure (which mirrors the register layout in Figure 3.4). Type can be system,

process, or hardware. Read system calls issue the read command to the hardware

hardware device, read VarEMU registers, and copy values into the VarEMU data

structure provided by the user, according to the type variable. Type can be system

(reads counters for the OS), process (reads counters for the current process), or

hardware (reads raw hardware counters). A small library of functions aids users

in the interaction with the VarEMU driver.

40

Virtual Machine

VarEMU Driver

App App

read energy
& cycle registers

enable / disable
faults

OS

Virtual
Hardware

Device

Energy
Accounting

Cycle & Time
Accounting

Fault
Model

Power ModelUser I/O

Instruction
disassembly
& translation

User Software Monitor

Configure instruction classes
Change power model parameters
Query energy & cycle information

VarEMU

Aging
Model

Figure 3.1: VarEMU Architecture

41

1 second

50 M Cycles

Active

0.5 s

SleepWFI IRQ

50 M Cycles

Active

?

SleepWFI IRQ

Hardware timing:

Emulation timing:

(a) Problem: emulation runs as best-effort, so execution and sleep times do

not match hardware.

Time

Sleep

Accounted: cycles/f

IRQ

WFI

δ

Accounted

Active

Emulation

Emulation

(b) Solution: keep track of accounted and actual execution times, adjust sleep

time interval accordingly.

Figure 3.2: Sleep Time Accounting

42

uint32_t vemu_fault_replace(CPUArchState * env, TranslationBlock* tb)

{

if (privmode|(vemu_faults_enabled == 0))

return 0;

switch(instr_info->opcode) {

case OPCODE_MUL: {

int rd = (instr_word >> 16) & 0xf;

int rs = (instr_word >> 8) & 0xf;

int rm = (instr_word) & 0xf;

env->regs[rd] = (env->regs[rm] * env->regs[rs]) | 0x01;

}; break;

...

default: break;

}

return 1;

}

Figure 3.3: Stuck-at fault in the multiply instruction

typedef struct {

uint64_t act_time[MAX_INSTR_CLASSES];

uint64_t act_energy[MAX_INSTR_CLASSES];

uint64_t cycles[MAX_INSTR_CLASSES];

uint64_t total_act_time;

uint64_t total_act_energy;

uint64_t total_cycles;

uint64_t slp_time;

uint64_t slp_energy;

uint64_t fault_status;

} vemu_regs;

Figure 3.4: VarEMU register layout

43

#include <stdio.h>

#include "vemu.h"

int main() {

vemu_regs hw, sys, proc;

do {

usleep(1000000);

vemu_read(READ_HW, &hw);

vemu_read(READ_SYS, &sys);

vemu_read(READ_PROC, &proc);

printf("Energy: \n");

printf("hw: %d sys: %u proc: %u sleep: %u\n",

hw.total_act_energy,

sys.total_act_energy,

proc.total_act_energy,

hw.slp_energy);

int i, x, y, z, sum;

vemu_enable_faults(1);

for (i = 0; i < 100; i++) {

z = x * y;

sum = sum + z;

}

vemu_disable_faults();

printf("sum: %d", sum);

} while (1);

}

Figure 3.5: Linux application using VarEMU

44

Figure 3.5 shows how a Linux application may interact with VarEMU. The

vemu regs data structure holds fields for all time, energy, cycle, and fault reg-

isters. The main function goes through an infinite loop where it reads and prints

out energy values for process, system, and hardware. It then enables faults and

goes through a for loop with multiplication and additions. Until faults are dis-

abled again towards the end of the main loop, faults are allowed for this process.

This means that, for every instruction configured as susceptible to faults by the

user, a call will be issued to the VarEMU fault model. The exact nature of the

faults will depend on the fault model implementation and may lead to application

crashes (e.g. due to invalid pointers being computed as a result of a faulty add

instruction). A fault or crash in this application will not lead to faults in the

kernel or in other processes.

While our example application only reads and prints out VarEMU register

values, variability-aware applications could use this information to adapt its qual-

ity of service based on energy constraints. Likewise, extensions to the OS kernel

could use this information to inform scheduling decisions.

3.3 Experiments and Results

This section presents verification and performance results for VarEMU.

3.3.1 Time Accounting Accuracy

VarEMU accounts time on the basis of number of instructions executed, clock

frequency, and number of cycles taken by each instruction. In hardware imple-

mentations, the number of cycles taken by some instructions may be variable.

Because VarEMU relies on an underlying platform of functional (not cycle ac-

curate) emulation, this variable timing information is not available to our time

accounting module, and instructions are assumed to take a fixed number of cycles

45

based on their operation code. While this number of cycles may be calibrated to

reflect specific platforms and workloads, it is inherently subject to inaccuracy.

To quantify the accuracy of time accounting in VarEMU, we compare execu-

tion times in hardware with execution times reported by VarEMU for different

applications. For each application tested, we follow the same sequence of events:

1) a GPIO pin is raised, 2) a VarEMU read command is issued 3) the main body

of the application is executed, 4) the GPIO pin from step 1 is lowered, and 5)

a new read command is issued. Because both the GPIO write and the VarEMU

read command can be implemented with a single “write” instruction (in systems

without an OS), there is only one instruction difference between the two. By

connecting the GPIO pin to an oscilloscope and measuring is logical high period,

we can quantify execution time in hardware.

For this evaluation, we used the LM36965 model Cortex-M3 processor by Texas

Instruments. When running in hardware, interaction with VarEMU is replaced

with equivalent read/write operations in a reserved area in memory. GPIO oper-

ations have no effect in QEMU, but are still accounted for (i.e. a read or write

instruction is executed). To check against cumulative errors, we ran a varying

number of iterations for each application.

Figure 3.6 shows VarEMU time accounting accuracy for different applications.

Accuracy is defined as the ratio between actual execution time in hardware and

execution time reported by VarEMU. We calibrated the number of cycles per

instruction using the “empty loop” application, and hence that application has

the highest accuracy. For all other applications, accuracy is better than 96%,

and does not increase with longer execution runs. In future work, we intend

to increase this accuracy by performing deeper inspection of instruction words

(e.g., in Cortex-M3 cores, some instructions take more or less cycles depending on

which registers are used), and by performing basic bookkeeping on branches and

load/store instructions to estimate pipeline bubbles.

46

Figure 3.6: Time Accounting Accuracy

3.3.2 Runtime Overheads

Every time an emulated instruction is executed a call is made to the VarEMU

module that performs cycles and time accounting. Periodically, the cycle counting

module makes calls to the aging module. If an instruction is susceptible to errors,

its translated code is augmented with calls to the error module. Finally, every

time a query is issued for the energy counters, or whenever a variability model

parameter (e.g. temperature) changes, the power model is called.

On the emulated software system, the Linux module for VarEMU performs

per-process energy and time accounting. Every time a process is switched in or

out, a read command is issued to the VarEMU virtual hardware module, and

all VarEMU registers are copied. When an OS is not available, the standalone

VarEMU library performs the same function.

To quantify the various runtime overheads of VarEMU, we compare runtime

performance of software under VarEMU with its equivalent performance under

the vanilla version of QEMU. We measured the relevant performance metrics

(e.g. time-to-completion, throughput) of various software applications. Table 3.1

presents the resulting average of each application’s metric over 10 runs.

The overhead of VarEMU over the vanilla version of QEMU is dependent on

47

App Unit Vanilla VarEMU Overhead Kernel Overhead Total

QEMU Overhead

Dhrystone p/sec. 259304 102536 150% 98352 4 % 164 %

Whetstone MIPS 14.2 5 180% 4.8 4 % 196 %

null syscall µs 12.4 13.5 9% 13.5 0 % 9 %

context switch µs 61 75.6 24% 88.3 17 % 45 %

dd /dev/zero s 0.98 1.43 46 % 1.49 2 % 49 %

JPEG s 0.9 1.3 45 % 1.31 1 % 46 %

MP3 (lame) s 19.1 57.3 200 % 57.4 0 % 200 %

Table 3.1: Runtime overheads for VarEMU and the VarEMU kernel extensions

workload. This is due to the fact that some emulated instructions (e.g. integer

arithmetic) translate very efficiently into native instructions, while others (e.g.,

load/stores, branches) have higher emulation overhead. Because VarEMU adds a

function call with constant execution time to each instruction, for very efficient

instructions the VarEMU extensions become a significant part of total execution

time. For less efficient instructions, VarEMU overhead is relatively smaller. For

our test applications, best-case overhead was 9%, and worst-case 200%.

The overhead of the Linux kernel extensions for VarEMU also depends on

workload. Bookkeeping is performed for every process switch, and therefore the

context switch operation has the highest overhead, at 17%. For the other appli-

cations in our test set, the overhead is at most 4%. Total combined overhead

for VarEMU, including emulation and kernel overheads, ranged from 9% to 200%

for our test applications. Since QEMU (in combination with a fast host system)

provides faster than real-time emulation for many of its target platforms, this over-

head is manageable, and much smaller than that of other simulation alternatives

such as cycle-accurate simulators.

48

CHAPTER 4

Variability-Aware Duty Cycling

Wireless embedded sensing systems employ a variety of power management tech-

niques to achieve system lifetime objectives [RGS06]. A particularly common

technique is duty cycling [DGA05], where the system is by default in a sleep state

and is woken up periodically to attend to pending tasks and events. A higher

duty cycle rate typically translates into higher quality of service [ZSB10]. A sys-

tem with higher duty cycle may, for example, sample sensors for longer intervals

or at higher rates, increasing data quality. A typical application-level goal is to

maximize quality of data through higher duty cycles, while meeting a lifetime

goal. While duty cycles in embedded sensing applications range from below 1%

in Car-Park management [BOO06] and CargoNet [MMF07], to greater than 50%

in VigilNet [HVY06], often the duty cycle ratio is extremely small (<< 1%), and

the energy consumed by the platform during the sleep state accounts for almost

all (> 99%) of the energy consumption.

Significant variability in power across nominally identical instances and across

temperature is already present in contemporary embedded processors, and is ex-

pected to increase in subsequent semiconductor manufacturing processes. Duty

cycling is particularly sensitive to variations in sleep power at low duty cycling

ratios. Variability implies that any fixed, network-wide choice of duty cycle ra-

tio that is selected to ensure desired lifetime needs to be overly conservative and

result in lower quality of sensing or lifetime.

In systems where computation is constrained by limited energy reserves and

49

Q
ua

lity

Lifetime

Underestimated
Power

Guardbanded Specifications

Optimal Operation

Infeasible

Sub-Optimal

Figure 4.1: Potential results of variability in terms of system quality and lifetime

where a long overall system lifetime is desired, maximizing duty cycle (and hence

quality) of a given application subject to these constraints is both challenging

and an important step towards achieving high quality deployments. Underesti-

mation of system power consumption can lead to a reduction in lifetime which

will eventually impact quality of service, while guardbanding against worst-case

power consumption by using overly conservative estimates can reduce application

quality for the entirety of the lifetime. The potential solution space is shown

in Figure 4.1, where the optimal solution is one that maximizes quality without

decreasing lifetime.

Consider for example an application running on the Atmel SAM3U that peri-

odically wakes up, samples a sensor, sends the result to a forwarding module (e.g.

for storing, sending to the network), and goes into sleep mode. We assume that

the sampling task will complete within 10 ms with a 4 MHz clock in active mode.

For the sake of clarity, we also assume that the system and the forwarding module

take negligible time and power to complete their operations. The performance

requirement is a desired lifetime of one year using one AAA battery (850 mA-h)

operating at 1.8V. As shown in Figure 4.2, across ten hardware samples and over

a temperature range of 0 − 50◦C, the worst case duty-cycle to achieve the de-

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50

D
u
ty

 C
y
c
le

 (
%

)

Temperature (C)

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

Figure 4.2: Allowable duty cycle across SAM3U instances and temperature

sired lifetime is approximately 0.1%, which results in a sleep duration of 9990 ms

for every active period of 10 ms. The best case duty-cycle is approximately 2%,

which results in a sleep duration of 490 ms and approximately 20x more sensor

data being collected.

4.1 Duty Cycle Scheduling

A duty cycle schedule indicates the activity rate of a system at any point in its

lifetime. An optimal duty cycle schedule maximizes the active time of the system

across its desired lifetime, given an energy constraint. If there is no variability in

power consumption, the optimal duty cycle schedule can be uniform across the

lifetime of the system.

Given an energy budget of E Joules, a lifetime of L seconds, and invariable

constants for active and sleep power consumption PA and PS Watts, the maximum

allowable allowed duty cycle DC is given in (4.1). The values of PA and PS can

51

be typically obtained from the processor datasheet. We henceforth refer to this

as datasheet-based duty cycle .

PA ·DC + PS · (1−DC) =
E

L

DC =
E − L · PS

L · PA − L · PS
(4.1)

4.1.1 Variable Power Consumption

When instance and temperature-dependent variation is taken into consideration,

the worst-case uniform duty cycle can be found by applying the worst-case

active and sleep power consumption across all instances and operating tempera-

ture range as constants PA and PS in Equation (4.1). We henceforth refer to this

as worst-case duty cycle .

With prior characterization, active and sleep power can be expressed as func-

tions of temperature PA(T) and PS(T). Additional peripheral components used

while in active mode, such as radios or sensors, can be added to total active mode

power as constants or functions, depending on whether power variation is present

or not. If the temperature profile is known (or can be learned) for the lifetime

of the system, temperature can be expressed as a frequency distribution. For a

known operating temperature profile and a given processor instance, the prob-

lem of finding an optimum duty cycle can be formulated as a linear program.

Given the expected frequency distribution of (discretized) temperatures across the

lifetime of the application, the optimum duty cycle at each temperature T , DCT

is given by Equation (4.2):

arg max
DCT

Tmax∑
T=Tmin

DCTfT (4.2)

52

such that
Tmax∑

T=Tmin

fT · (PA(T) ·DCT + PS(T) · (1−DCT)) ≤ E

L

DCmin ≤ DCT ≤ DCmax

Tmin ≤ T ≤ Tmax

where fT is the relative frequency of temperature T across the lifetime L, assuming

discretized temperature bins. DCmin and DCmax are the minimum and maximum

duty cycles allowed for the application. The maximum duty cycle constraint can

be used to limit duty cycles when increasing duty cycle beyond a given rate would

bring no further increase to quality of service.

4.1.2 Variability-Aware Uniform Duty Cycle

Assuming a uniform duty cycle DCT = DC∗ independent of temperature, we can

determine DC∗ that satisfies the constraints given in Equation (4.2).

DC∗ = min [γ,DCmax] (4.3)

where γ =

E − L ·
Tmax∑

T=Tmin

PS(T) · fT

L ·
Tmax∑

T=Tmin

(PA(T)− PS(T)) · fT

Moreover, it can be shown that when PA(T) − PS(T) is constant across all

T , DC∗ is the uniform duty cycle that optimizes the linear program in (4.2).

We observed this to be practically true under nominal operating temperatures

for the current generation microprocessors, like the Atmel SAM3U, because (i)

their sleep power consumption PS(T) is much less than active power consumption

PA(T), and (ii) the PA(T) is effectively constant as active mode leakage power is

insignificant for their fabrication technology, and switching power variation across

53

normal temperatures is small. Henceforth, whenever we refer to variability-

aware duty cycle, we are referring to (4.3).

4.1.3 Reactive Duty Cycle

Allowable duty cycle rates can also be found dynamically through measurements

or estimations of past power consumption, given total energy capacity at the start

of lifetime. Energy consumption can be directly measured with dedicated mon-

itors [MHY06], inferred from remaining battery capacity [LMM07], or through

variability-aware models that estimate energy expenditure by measuring condi-

tions that affect power consumption, e.g. temperature and activity rates.

In a reactive model, duty cycle can be dynamically determined at time t as a

ratio of duty cycle at time t−1, according to energy spent from time t−1 to time

t, and remaining energy in the system. Remaining energy at time t is given by

Et = E−
∑t−1

i=0 Pi, where E is the total energy capacity and Pi is power estimated

or measured at time i. An example of a reactive duty cycle adaptation model

is given in (4.4).

DCt =
Et ·DCt−1

(Et − Et−1) · (L− t)
(4.4)

The reactive model in (4.4) assumes that the power consumption rate for the

previous time period is indicative of the power consumption for the remainder

of lifetime of the system. While more complex models could incorporate longer

histories, any reactive model will depend on accurate measurement of past en-

ergy consumption or estimation of remaining battery energy. While systems with

dedicated power monitors have been explored in the literature [MHY06], it is

acknowledged that their integration in low power sensing platforms would likely

result in prohibitive cost overhead. Hence, most systems rely on estimations of

remaining battery capacity to infer energy consumption [LMM07]. Battery ca-

54

Ev
en

t o
f I

nt
er

es
t

(ty
pe

, s
ev

er
ity

)

Po
ll

P

P

timer

App

Va
ria

bi
lit

y
Ev

en
t

handler

App
App

Duty Cycling
Scheduler

OS

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Hardware Signature Inference

Platform Sensors: P , P , Memory, Temperature, Battery, ...

sl
ee

p

sl
ee

p

sleep active

On/Off
Read Sample

Sampling Configuration

Sample
Event
Time-Series, ...

Duty Cycle = f(P , P)sleep active

Figure 4.3: Designing a software stack for variability-aware duty cycling

pacity estimation is a research issue in itself and subject to inaccuracies. In target

systems with long lifetimes (e.g. greater than a year), in which the energy con-

sumed in one hour might be less than 0.01% of total battery capacity, this makes

short-term adaptation problematic. We therefore do not use this method.

4.2 Variability-Aware Duty Cycle Software Adaptation with

TinyOS

In order to maximize the sensing quality in the presence of power variation, an

opportunistic sensing software stack can help discover and adapt the application

duty cycle ratio to the sleep mode power variations across parts and over time. The

run-time system for the opportunistic stack will have to keep track of changes in

hardware characteristics and provide this information through interfaces accessible

to either the system or the applications. Figure 4.3 shows several different ways

55

such an opportunistic stack may be organized; the scenarios shown differ in how

the sense-and-adapt functionality is split between applications and the operating

system. Scenario 1 relies on the application polling the hardware for its current

“signature”. In the second scenario, the application handles variability events

generated by the operating system. In the last scenario, handling of variability is

largely offloaded to the operating system.

Using architecture similar to that of scenario 3 in Figure 4.3, we implemented a

prototype variability-aware duty cycling framework in TinyOS. Application mod-

ules specify to the scheduler a range of acceptable duty cycling ratios, and the

scheduler selects the actual duty cycle based on run-time monitoring of opera-

tional parameters, and a power-temperature model that is learned off-line for the

specific processor instance. While this approach is potentially less flexible than

the ones presented by scenarios 1 and 2, it simplifies application development by

abstracting the underlying complexities of the variability signature model.

TinyOS [LMP05] differs from traditional operating systems in that it is event-

based. Applications respond to events (e.g. interrupts from hardware, incoming

radio messages) with event handlers. These handlers should typically complete

within a few hundred processor cycles. To execute long running computations,

applications post tasks, which work as deferred function calls. Each task runs to

completion on a scheduler loop. Whenever the system has no tasks to schedule, it

puts the processor in sleep mode, waiting for the next interrupt, which will trigger

new event handlers and potentially new tasks. The event handler / background

tasks model of TinyOS naturally lends itself to duty cycled systems: event han-

dlers and tasks represent active periods, empty scheduler queues lead to inactive

periods. Nevertheless, there’s no explicit support for discovering and adapting

duty cycle in TinyOS.

We introduce a new Duty Cycle Scheduler to TinyOS. Figure 4.4 shows

our system architecture. A hardware signature inference module provides power

56

Application

Task
(Adaptable Period)

Task
(Adaptable Iterations)

Task
(Non-Adaptable)

System

TaskVariablePeriod

TaskVariableIterations

Traditional Task

min, max
period

min, max
iterations

Adaptable
Task <Label>

Adaptable
Task <Label>

Hardware Signature
Inference

Adaptable Task
<Label>

DC Scheduler
Duty Cycle = f(P , P , ...)sleep active

lifetime

Figure 4.4: System architecture for variability-aware duty cycle scheduling in

TinyOS

vs. temperature curves for each processor instance. While in our TinyOS imple-

mentation we assume that these curves are pre-characterized, extensions to this

module could feature online learning through dedicated power meters and take

other variability vectors such as aging into account.

The scheduler determines an allowable duty cycle based on: (i) sleep and active

power vs. temperature curves provided by the hardware signature inference mod-

ule, (ii) temperature profile for the application, which can be pre-characterized

or learned dynamically, (iii) lifetime requirement, (iv) battery capacity, and (v)

the variability-aware duty cycle formulation presented in Equation (4.3) in Sec-

tion 4.1.2.

In order to maintain compatibility with existing system code that makes liberal

use of standard tasks, we introduce a new class of Adaptable Tasks . These

tasks respond to events from the Duty Cycle scheduler that informs them of their

allowable duty cycle compared to current duty cycle. However, the system does

not enforce adaptation of these tasks. These are assumed to adapt according to

the duty cycle change event from the scheduler.

57

For standard applications, we provide two additional classes of tasks, which

implement two common adaptation scenarios: tasks with variable iterations and

tasks with variable period. For the first class, the programmer provides a function

that can be invoked repeatedly a bounded number of times within each fixed

period. For the second class of tasks, the application programmer provides a

function representing task functionality that is invoked once within each variable

but bounded period of time. Internally, each of these tasks uses an adaptable task

and unique identifier. The system adjusts the number of iterations or period of

the task based on the allowable duty cycle informed to its underlying adaptable

task.

To adapt duty cycle, the system first needs to account active and sleep time

for the entire application. Active time is divided into fixed, non-adaptable com-

putation time Cf (for traditional tasks and interrupt handlers) and adaptable

computation time Ca(i) (for each adaptable task i). For each task activation, the

system registers timestamps and accumulates computation time in the appropri-

ate counters. This incurs in a small overhead to task activations quantified in

section 4.2.1.5.

For every accounting period τ , the system compares total computation time

Cτ = Cf +
∑N

1 Ca(i), where N is the number of adaptable tasks in the system,

and allowable active time CDC = τ ×DC, where DC is the allowable duty cycle

for the node. To allow adequate timing estimations with low duty cycles, the

accounting period τ is large enough to encompass several active/sleep cycles for

each task (τ = 10 minutes in our implementation). If |Cτ − CDC | <= δ, where

δ is an arbitrary tolerance, the system has converged to the allowable duty cycle.

Otherwise, each adaptable task is assigned a new allowable computation time

CDC(i) obtained by dividing available active time equally between all adaptable

tasks. The new computation time is informed to the tasks in the form of a ratio to

the previous time Ca(i) through an event. The ratio is used to adjust the number

58

of iterations or period duration of tasks.

4.2.1 Evaluation

To evaluate the duty cycle scheduling methods, we make use of a common scenario

in embedded sensing: a long running duty cycled application with a limited energy

source (battery), which periodically becomes active to perform sensing/processing

tasks, and subsequently returns to a low-power sleep mode until the next period.

We assume an application which, when active, uses only the main processor

running at 4MHz, and when in sleep mode, disables all peripherals except for a

low-power wake-up timer. Table 4.1 summarizes the results we present in this

section. Active and sleep power are obtained from the characterization model and

measurements presented in Chapter 2. Figure 4.12 is based on technology projec-

tions. All other results are based on the models fitted to SAM3U measurements.

The temperature profile is based on hourly temperature data from the National

Climactic Data Center [US14], and specified for each result.

Fig. Type of Result Variable

4.6 Duty Cycle Schedules Time

4.9 Improvement with Var-Aware DC Temperature profile

4.10 Lifetime with Datasheet-Based DC Temperature profile

4.11 Improvement with Variability-Aware DC Battery Capacity

4.12 Improvement with Variability-Aware DC Technology

Table 4.1: Summary of Results for Variability-Aware Duty Cycling

59

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 50 100 150 200 250 300 350

T
e
m

p
e
ra

tu
re

 (
C

)

Time (days)

Figure 4.5: Weather profile for Death Valley, CA, 2010.

4.2.1.1 Comparison of Duty Cycle Scheduling Methods

We first compare duty cycle schedules resulting from the worst-case, datasheet-

based, and variability-aware methods discussed in Section 4.1. We assume an

energy supply of 5400 mA-h from two AA batteries, a lifetime of one year, and

temperature profile based on the location of Stovepipe Wells, CA (Death Valley

National Park), which has extreme seasonal and daily temperature variations

and hence clearly illustrates the differences between the duty-cycling regimes.

Figure 4.5 shows the temperature trace used for this experiment.

Figure 4.6 shows the DC schedules across the lifetime of an application for all

processor instances. It shows that the duty cycle resulting from datasheet power

specifications usually does not meet the required lifetime, as the specification is

not guardbanded enough. Determining a completely pessimistic sleep power spec-

ification is very difficult since leakage distribution has a long tail. The worst-case

duty cycle is exceedingly low, as it assumes the worst-case and power across all

instances and the entire temperature range to which the application experiences,

and hence leaves out untapped energy resources. The variability-aware duty cy-

60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #1

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #2

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #3

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)
Time (days)

Instance #4

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #5

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #6

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #7

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #8

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #9

Worst-Case
Datasheet Spec

Variability-Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Instance #10

Worst-Case
Datasheet Spec

Variability-Aware

Figure 4.6: Duty cycle schedule for all instances.

61

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

Im
p
ro

v
e
m

e
n
t
(x

)

Instance (#)

(a) Improvement of variability-aware duty cycle

over worst-case duty cycle

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

E
n
e
rg

y
 l
e
ft
 u

n
ta

p
p
e
d
 (

%
)

Instance (#)

(b) Energy left untapped with worst-case duty

cycle

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

L
if
e
ti
m

e
 r

e
d
u
c
ti
o
n
 (

%
)

Instance (#)

(c) Lifetime reduction with datasheet-based

duty cycle

Figure 4.7: Results from duty cycle regimes across all instances

cle maximizes active time, constrained by lifetime requirements and application

temperature profile. Figure 4.7 shows the per-instance improvement of variability-

aware duty cycle over worst-case duty cycle, energy left untapped with worst-case

duty cycle, and lifetime reduction with datasheet-based duty cycle. On average,

we found a 22x improvement in active time with the variability-aware DC over the

worst-case DC, 63% of energy potential left untapped by the worst-case duty cycle,

and 15% reduction in lifetime with duty cycle based on datasheet specifications.

62

4.2.1.2 Temperature Profile

Next, we use the same energy and lifetime scenario described above for 140 loca-

tions with different temperature profiles. Figure 4.8 shows the average, minimum,

and maximum temperature for all the test locations.

-40

-20

 0

 20

 40

 0 20 40 60 80 100 120 140

M
in

,
A

v
e
ra

g
e
,
M

a
x
 T

e
m

p
e
ra

tu
re

 (
C

)

Location (#)

Figure 4.8: Temperature profile for test locations.

Figure 4.9 shows the average improvement of variability-aware duty-cycle com-

pared to worst-case duty cycle. There is an exponential relation of improvement

with temperature. This results from the exponential nature of leakage power

with temperature: as maximum temperature increases, leakage power increases

exponentially, and hence the worst-case duty cycle is exponentially worse than

the variability-aware duty cycle. For any given maximum temperature, improve-

ment also depends on temperature distribution: temperature profiles with higher

maximum temperatures benefit more from the variability-aware scheme, as the

worst-case power becomes progressively worse with higher temperatures. The

average improvement across all temperature profiles is 6.4x.

Figure 4.10 shows lifetime reduction in days when duty cycle is determined

based on the datasheet specification. There is a linear dependence between life-

time and average temperature. As average temperature increases, the difference

63

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 10 15 20 25 30 35 40 45 50 55

Im
p
ro

v
e
m

e
n
t
o
v
e
r

W
o
rs

t-
C

a
s
e
 D

C
 (

x
)

Maximum Temperature for Location (C)

Improvement

Figure 4.9: Improvement over worst-case duty cycle for test locations.

 25

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25

L
if
e
ti
m

e
 r

e
d
u
c
ti
o
n
 (

d
a
y
s
)

Average Temperature for Location (C)

Lifetime Reduction with Datasheet DC

Figure 4.10: Lifetime reduction with DC based on datasheet.

between actual and spec power increases, and hence lifetime decreases. Across all

temperature profiles there is an average lifetime reduction of 37 days for a lifetime

of one year.

64

 10

 100

 1000

 10000

 6000 8000 10000 12000 14000 16000 18000

Im
p
ro

v
e
m

e
n
t
o
v
e
r

W
o
rs

t-
C

a
s
e
 D

C
 (

%
)

Battery capacity (mA-h)

Death Valley, CA
Williams, AZ

Mauna Loa, HI

Figure 4.11: Improvement over worst-case DC across battery capacities.

4.2.1.3 Battery Capacity

Figure 4.11 shows the average percentile improvement of a variability-aware duty

cycle schedule (4.3) over the worst-case duty cycle for different battery capacities.

Each curve shows improvement with a different temperature profile. Death Valley,

CA has the most extreme temperatures, and hence greater improvement. Mauna

Loa, HI has low average temperatures and little temperature variation, and hence

benefits the least from the variability-aware scheme. Williams, AZ represents the

average case.

This plot shows that the variability-aware duty cycling regime is more advan-

tageous for applications with smaller duty cycles. For “small” batteries (5400

mA-h, or 2 AA batteries), improvement is more than 100% for all temperature

profiles. The improvement for very large batteries (20 A-h), improvement is be-

tween 20% and 30%, depending on temperature profile. The worst-case duty cycle

with a 20 A-h battery is more than 5% for all temperature profiles. This suggests

that, for current embedded fabrication technologies, this scheme is beneficial for

small (less than 5%) duty cycles.

65

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 40 50 60 70 80 90 100 110 120 130

Im
p
ro

v
e
m

e
n
t
o
v
e
r

W
o
rs

t
C

a
s
e
 (

x
)

Technology (nm)

Death Valley, CA
Williams, AZ

Mauna Loa, HI

Figure 4.12: Projection of improvement with scaling of technology.

4.2.1.4 Technology Projections

Figure 4.12 shows the improvement of the variability-aware duty cycle over worst-

case duty cycle with technology scaling as per the model presented in Chapter 2.

As with the previous result, we show three curves with different temperature

profiles. For each point in the curve, we simulate a battery capacity large enough

to support a worst-case duty cycle of 5%. As noted in the previous results, with

a worst-case duty cycle of 5%, there are only marginal benefits of a variability-

aware duty cycle schedule for current technology characteristics (130nm). As

technology progresses and the ratio between active and sleep power decreases

[PSB05], variability-aware duty cycling regime shows considerable benefits even

for this relatively high duty cycle. At 45nm, the improvement saturates at 19x

for two of the temperature profiles (duty cycle cannot be higher than 100%).

66

4.2.1.5 Runtime Overheads

We profiled our duty cycle scheduler implementation for the SAM3U processor,

running at 4 MHz. Compared to the base TinyOS scheduler, our implementation

requires an additional 20 bytes of RAM memory. Each adaptable task instance

uses 5 bytes of memory, and the TaskVariablePeriod and TaskVariableIterations

abstractions require an additional 4 bytes per task. This overhead is well within

the capacity of low-end sensor nodes (typically > 4KB RAM).

Compared to basic TinyOS tasks, each adaptable task activation has an over-

head of 10µs. As a point of comparison, the typical startup and conversion times

for the ADC in this platform are 30µs and 20µs, respectively. Finally, the uni-

form variability-aware duty cycle control module, which runs periodically every

10 minutes, completes within 20(N + 1)µs, where N is the number of adaptable

tasks in the system. This time is required to distribute available active time across

all adaptable tasks, and to determine the rate of activity (i.e. period, number of

iterations) of each task. When the system becomes stable, i.e., when all the tasks

reach their allowable duty-cycle, the uniform variability-aware duty cycle control

module completes within 20µs. The runtime overhead of our simple duty cycling

abstractions is comparable to related solutions [ZEL02, LMM07].

4.3 Duty Cycle and Utility optimization with VaRTOS

In our TinyOS implementation we use a simple scheduling mechanism, typical of

small embedded sensor operating systems. When multiple adaptable tasks are

used alongside traditional, non-adaptable tasks, the burden of adaptation to the

allowable duty cycle is distributed equally across all adaptable tasks. This hin-

ders the use of this system with multi-task applications where tasks may have

variable importance and potentially competing goals. In this section we present a

real-time duty cycle scheduler that overcomes this limitation by assigning energy

67

resources to tasks according to reward and priority functions. This is accom-

plished by introducing task knobs—task-specific expressions of quality and power

elasticity – in an architecture we call VaRTOS, the Variability-aware Real-Time

Operating System. VaRTOS is implemented as a as a series of extensions to the

FreeRTOS real time operating system [Fre13], though its architecture could be

applied to other embedded operating systems as well. FreeRTOS provides typical

operating system abstractions such as preemptive scheduling of multiple tasks,

synchronization primitives, and dynamic memory allocation with low overhead

and small memory footprint.

Like our TinyOS stack, VaRTOS is a realization of Scenario 3 in Figure 4.3.

Tasks inform the operating system of their duty cycle bounds, and the sched-

uler adjusts task activations in order to converge to a system-wide duty cycle

that meets lifetime constraints. In order to tune the task-specific duty cycle ra-

tio, we introduce the notion of task knobs. In practical terms, a task knob is

a variable that determines either (1) the computation time of a task or (2) the

frequency with which a task is activated. Knobs can thus be seen as a general-

ization of the adaptation mechanisms presented in Figure 4.4: variable iterations

lead to variable computation time, and variable periods lead to variable activation

frequencies. We argue that a large portion of tasks found in embedded applica-

tions will fall in one of these two classes, and those that require both frequency

and period modulation can often be divided into two legal subtasks coupled with

inter-process communications. For example, tasks that fall under class 1 include

variable length sensing tasks, tasks that listen for inbound communication, and

variable length processing chains. Those that fall under class 2 include variable

frequency transmission, variable frequency sensor sampling, time synchronization

handshaking, control and actuation events.

Unlike our TinyOS stack, task knobs in VaRTOS are also used to denote task

utility. We define task knobs as ki, such that increasing ki will increase duty

68

cycle di, and consequently utility ui. Task knobs are created by passing a variable

address to the OS, allowing direct manipulation of knob values by an optimization

routine. In addition, the developer specifies a minimum and maximum knob value,

ki,min and ki,max. The value ki,min specifies the minimum value of ki that yields a

nonzero utility. Below this value, a task offers no utility. The value ki,max specifies

a value after which increasing ki further will yield no added utility. As an example,

a radio transmission task may be useless if it does not meet a certain latency

requirement, but usefulness may plateau at some frequency governed perhaps by

the physics and time response of the event being sensed. A priority parameter pi

allows users to arbitrarily scale utility.

Tasks are issued in VaRTOS with a modified version of FreeRTOS’s task cre-

ation function with additional parameters to account for task knobs and bounds.

Figure 4.13 illustrates task implementation and issuing in VaRTOS, where (a) is

the task creation API, (b) is a task where the knob changes task computation

time, (c) is a task where the knob changes task activation frequency, and (d)

is the application’s main routine that creates the tasks. The sensor task in (b)

acquires a variable number of sensor samples, leading to variable execution time.

The radio task in (c) takes constant execution time, but has variable frequency.

The knob bounds in (d) determine the minimum and maximum execution time

and frequency of the sensor and radio task, respectively.

4.3.1 Mapping task knobs to duty cycle and utility

The function mapping ki to duty cycle di is not known a priori, but is assumed lin-

ear and learned through regression at runtime. Dividing active time accumulated

per task by a fixed supervisory time interval tsuper yields task-specific duty cycle

ratios, di. Active time per task ta,i is measured using hardware timer snapshots at

the context swap level. The mapping from ki to di for each task is arrived at by

systematic perturbation of ki within the range [ki,min, ki,max]. The knob value ki is

69

xTaskCreate(TaskFunction, "name", StackSize, Priority, &TaskHandle,

&TaskKnob, k_min, k_max, p_i);

(a) Task Creation API

static void SensorTask(void *pvParameters) {
// ...
for(;;) {

vTaskDelayUntil(&xLastExecutionTime, SENSOR_DELAY);
sensor_val_sum = 0.0;
sensor_num = 0;
for(i=0; i<sensor_knob; i++){

sensor_val_sum += getSensorValue();
sensor_num++;

}
if(sensor_num > 0){

sensor_val_avg = sensor_val_sum/((float)sensor_num);
printf("avg: %f \n", sensor_val_avg);

}
}

}

(b) Task with Variable Execution Time

static void RadioTask(void *pvParameters) {
// ...
for(;;) {

radio_delay = 1000*(1000/portTICK_RATE_MS)/radio_knob;
vTaskDelayUntil(&xLastExecutionTime, radio_delay);
radioSend(sensor_val_avg);

}
}

(c) Task with Variable Frequency

int main(void) {
// ...
xTaskCreate(RadioTask, "Task1", configMINIMAL_STACK_SIZE, NULL,

mainTASK_PRIORITY, &handleRadio, &radio_knob, 100, 5000, 1);
xTaskCreate(SensorTask, "Task2", configMINIMAL_STACK_SIZE, NULL,

mainTASK_PRIORITY, &handleSensor, &sensor_knob, 1, 100, 1);
vTaskStartScheduler();

}

(d) Task Creation and Initialization

Figure 4.13: VaRTOS Task and Application Example

70

repeatedly increased by a delta defined such that the difference between maximum

and minimum knobs is divided by a small number of points. Between each pertur-

bation in ki, the task is allowed to run for a time period sufficiently long enough

to capture active time measurements for tasks with very infrequent activity. This

supervisory period is set at tsuper = 1 hour, and hence the mappings are calculated

after 4 hours. Many tasks are likely to make heavy use of interrupt subroutines

(e.g. for analog to digital conversion, radio transmission, serial communication,

etc.). In order for this time to be accounted during the supervisory period, we

provide functionality for assigning each subroutine to a particular task using a

handle provided during task creation.

Changing each knob value ki will cause a corresponding change in duty cycle

ratio di based on the nature of the task. Given minimum and maximum knob

values ki,min and ki,max as well as a mapping from ki to di we can construct a

utility function ui = f(di) as the convex portion of a logistic function:

ui(di) =
2

1 + e−cidi
− 1, ci ≥ 0, di,min ≤ di ≤ di,max (4.5)

where di,min and di,max are task duty cycles corresponding to ki,min and ki,max.

A logistic function is used because the convex portion of the characteristic s-like

curve offers a convenient form for modeling diminishing returns on ki. Here, ci

governs the convergence rate of ui from the minimum utility to the maximum

utility and is calculated as a function of ki,min and ki,max such that 99% of the

utility has been reached by kmax. Finally, each utility curve can be arbitrarily

increased or decreased by a priority scalar pi for tasks with intrinsically higher

or lower utility than others. This offers a level of customization in addition to

specifying ki,min and ki,max, allowing the developer to give preference to one task

over another.

71

4.3.2 Online Modeling of Power

As discussed in Chapter 2, both sleep power and active power are nonlinear func-

tions of temperature. A large portion of this nonlinearity comes from leakage

and sub-threshold currents which dominate in PS. For our TinyOS implemen-

tation, we assumed that the temperature to active and sleep power curves were

characterized before deployment.

In general, learning these nonlinear curves for each hardware instance could

prove difficult with limited resources and without, in many cases, fully fledged

math libraries. For example, nonlinear regression is often performed as an op-

timization problem using a specialized library such as NLopt, requiring more

than 300 kB of program space in order to do even rudimentary optimization

routines [NLo13] and prohibiting its use in many low power platforms. Knowl-

edge of the closely exponential shape of the sleep power function, however, al-

lows us to linearize the model which in turn allows the use of linear regression

to accurately model PS. Specifically, linear regression is run on log(PS), giving

offset bs and slope ms. The desired sleep power model is likewise computed as

PS(T) ≈ exp(bs + msT). After PS(T) has been computed, PA(T) can be mod-

eled by subtracting PS(T) from active power measurements and continuing with

a second linear fit.

The error between the models described in Chapter 2 and the linear approxima-

tion methods described above is shown in Figure 4.14 for three separate power in-

stances representing the best-case (BC), nominal-case (NC), and worst-case (WC)

for a 45nm Cortex M3 processor—(a) shows the sleep power model with the corre-

sponding error in (b), and (c) shows the active power model with the correspond-

ing error in (d). For the linear approximation of PS on the temperature range

[-20◦C, 100◦C], the worst case error is around -15% while on a more temperate

range of [0◦C, 80◦C] the worst case error is around 5%. For most temperature

72

−20 0 20 40 60 80 100
0

200

400

600

800

1000

1200

Temperature (°C)

Id
le

 P
o
w

e
r

(µ
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

−20 0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Temperature (°C)

A
c
ti
v
e
 P

o
w

e
r

(m
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

(a) Sleep Power

−20 0 20 40 60 80 100
0

200

400

600

800

1000

1200

Temperature (°C)

Id
le

 P
o
w

e
r

(µ
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

−20 0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Temperature (°C)

A
c
ti
v
e
 P

o
w

e
r

(m
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

(b) Sleep Power Error−20 0 20 40 60 80 100
0

200

400

600

800

1000

1200

Temperature (°C)

Id
le

 P
o
w

e
r

(µ
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

−20 0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Temperature (°C)

A
c
ti
v
e
 P

o
w

e
r

(m
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

(c) Active Power

−20 0 20 40 60 80 100
0

200

400

600

800

1000

1200

Temperature (°C)

Id
le

 P
o
w

e
r

(µ
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

−20 0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Temperature (°C)

A
c
ti
v
e
 P

o
w

e
r

(m
W

)

−20 0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Temperature (°C)

E
rr

o
r

(%
)

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

BC

BC fit

NC

NC fit

WC

WC fit

BC fit error

NC fit error

WC fit error

(d) Active Power Error

Figure 4.14: Modeling sleep and active power through linearization.

73

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Time (hours)

E
rr

o
r

(%
)

Mean Error

90% Confidence Interval

99% Confidence Interval

Figure 4.15: Error convergence for sleep power modeling.

profiles this accuracy will be adequate, but deployments in extreme environments

can experience the detriments of errors in the linear model of PS. Because of the

added baseline in Pa, the corresponding prediction error is drastically reduced—

less than 2% across [-20◦C, 100◦C] for the best-case and nominal instances and

less than 5% for worst-case. These errors can be further reduced using nonlin-

ear regression methods if the computational resources are not a limiting factor;

for VaRTOS we have chosen a lightweight design so that resource-constrained

low power processors—those that are likely to be used in long lifetime sensing

tasks—can easily perform the necessary computations.

Models for both PS and PA take some time to converge, before which an

accurate prediction for the optimal duty cycle cannot be calculated. Convergence

is aided by variations in temperature, giving a variety of points on the T →

{PS, PA} curves, and hurt by noise variance in power sensors. For example, if

our sensor for PS takes hourly measurements with additive white Gaussian noise

∼ (0, 5µW), the percentage error of our model has reached a reasonable accuracy

after 40 hours and is nearly fully converged after 60 hours. This is shown in

Figure 4.15 for 190 different locations within the United States with between 1

74

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(%
)

Training sets

100 bins
10 bins
5 bins
3 bins

Figure 4.16: Error in average power estimation for varying number of training

years and histogram bins.

and 9 years of hourly data in all locations and for processor instances with best-

case, nominal-case, and worst-case power consumption.

Determining the optimum duty cycle in Equation 4.2 requires knowledge of

temperature distribution across the lifetime of deployment. We were unable to

perform online learning of temperature distribution, as it takes the entirety of a

year to develop an accurate histogram of the temperature values seen at a given

location. We found however that a very coarse representation of the temperature

profile suffices for accurate calculations of the optimum duty cycle, and further-

more temperature profiles change very little from year to year for a given location.

Figure 4.16 shows how certain temperature models affect the error in predicting

average power consumption for PS across the lifetime of the system (in this case,

1 year). The x-axis here represents the number of years of temperature data

used to train the model before testing on a single year. Each line represents a

certain number of bins used in a histogram representing fT for a given location.

This figure shows that the decreasing estimation error indicates that temperature

profiles change very little from year to year, and because of this using multiple

years to build fT only serves to decrease the prediction error in years to come; and

75

while a 3-bin histogram is inadequate to fully represent the temperature profile

for a given location, there is very little benefit in representing fT with more bins

than 5 and even less so with more than 10. Because of this, for a given location we

train with as many previous years as are available and we use a 10-bin histogram

to represent fT .

4.3.3 Maximizing Application Utility

Given temperature to sleep and active power mappings, temperature profile, and a

lifetime requirement, the optimum system-wide duty cycle is given under practical

conditions by Equation 4.2 in Section 4.1.2. Given the system-wide duty cycle, we

now seek a distribution of duty cycle to multiple tasks that maximizes system-wide

utility. Because we have defined utility ui to be a logistic function, we can use a

greedy approach when optimizing utility. The optimization routine in VaRTOS is

a two step process: (1) attempt to assign the minimum duty cycle needed for each

task in order of decreasing priority, and (2) continue distributing computational

time in small increments to those tasks yielding the largest marginal utility until

no active computational time is left. Duty cycle is incrementally added by a small

fraction δ to those tasks with the largest marginal utility until the system-wide

duty cycle is reached. Task knobs are then assigned according to the knob to duty

cycle mapping for each task.

Figure 4.17 illustrates the optimization process in VaRTOS. To begin, the

system is initialized with task creations, energy and lifetime specifications, and

a location-specific temperature model. If at least one task has been created, the

scheduler begins operation and we enter a model convergence state. While in

this state, hourly temperature and power measurements are collected and knob

values are incremented to construct to construct the knob to duty cycle map for

each task. The optimization routine cannot complete until both models have

converged, after which linear regression and linearization are used to fit the knob

76

main scheduler
started

collect knob, time
points

collect temperature,
power points

Model Training

Optimization

find system wide
duty cycle optimize task knobs

T→ PA, PSk→ t

scheduler running

tas
k c

rea
ted

tas
k d

ele
ted

error
correction

Figure 4.17: VaRTOS state chart

to duty cycle and temperature to power curves, respectively.

In the optimization state, the various task duty cycles are calculated and the

corresponding knob values are assigned to the appropriate tasks. At this point we

begin steady state operation in the ‘Scheduler Running’ state. Potential reasons

for leaving this state include task creation (necessitating learning the new task’s

knob to duty cycle mapping and re-optimizing) or task deletion (requiring only

re-optimization). Because the modeling tasks only run on an as-needed basis,

these are implemented as OS tasks with null-valued knobs. This allows for easy

suspension and resumption of these tasks as necessary.

77

The dashed line on Figure 4.17 represents an optional feedback error-checking

mechanism that can help for online readjustment of poor initial power model

construction (e.g. for cases where measurement of PS and PA is particularly

noisy). This can be done by comparing true energy expenditure with predicted

expenditure, if such a sensor exists, and using the error to apply proportional

feedback. We do not explore results for a feedback mechanism in this work.

4.3.4 Evaluation

We evaluate VaRTOS different hardware instances and deployment scenarios (tem-

perature profiles) across a lifetime of 1 year. Because it would be impractical to

physically deploy these applications, we rely on VarEMU for the evaluation. When

starting VarEMU, we provide a configuration file with parameters for the power

model described in Section 3.1.4. We evaluate the system with three instances

(nominal, best-case, and worst-case). We also provide a trace of temperature

based on hourly temperature data from the National Climactic Data Center [US14]

for three locations: Mauna Loa, HI (‘best-case’: mild temperature, very little vari-

ation), Sioux Falls, SD (‘nominal-case’: average temperature and variation), and

Death Valley, CA (‘worst-case’: extreme temperature and variation). For every

hour elapsed on the Virtual Machine, VarEMU reads a new line from the tem-

perature trace file and changes the temperature parameter in the power model

accordingly. In order to accelerate the simulation (which would otherwise run in

real-time), we use a time scale of 1:3600, resulting in a total simulation time of

approximately 2.5 hours for a lifetime of one year.

4.3.4.1 Energy consumption

In order to achieve accurate energy consumption to meet a lifetime goal, VaRTOS

needs to accurately be able to achieve the overall system duty cycle. To test this,

78

10
−3

10
−2

10
−1

−8

−6

−4

−2

0

2

4

6

8

Target Duty Cycle (Inst: BC)

E
rr

o
r

in
 E

n
e

rg
y
 C

o
n

s
.

(%
)

T: mild

T: medium

T: harsh

10
−3

10
−2

10
−1

−8

−6

−4

−2

0

2

4

6

8

Target Duty Cycle (Inst: NC)

E
rr

o
r

in
 E

n
e

rg
y
 C

o
n

s
.

(%
)

T: mild

T: medium

T: harsh

10
−3

10
−2

10
−1

−8

−6

−4

−2

0

2

4

6

8

Target Duty Cycle (Inst: WC)

E
rr

o
r

in
 E

n
e

rg
y
 C

o
n

s
.

(%
)

T: mild

T: medium

T: harsh

Figure 4.18: Error in energy consumption for various optimal duty cycles across

deployment scenarios.

we constructed a simple application with only a single task containing a knob with

fine granularity values. We then specified various values for E and L that would

ideally lead to a particular system-wide duty cycle for each of the power instance

models (best-, nominal-, and worst-case) as well as three temperature profile in-

stances (harsh, medium, and mild). The target duty cycles ranged from 0.2% to

10%, and the resulting errors in energy consumption are shown in Figure 4.18.

Errors are larger in harsher environments, where any errors in the power models

will be magnified. In the worst case, an error of 4.9% in energy consumption is

seen for a harsh environment and for the worst-case power instance (far right plot

in Figure 4.18). This means that, in the worst case, a 5% guard band in lifetime

or in energy is necessary if the lifetime goal is to be treated as a hard constraint.

4.3.4.2 System Utility

In this section, we comparing the resulting utility of a single task app running

in VaRTOS to that of an all-knowledgeable oracle system. Unlike the VaRTOS

system, the oracle system has (1) complete knowledge of the temperature profile

for the test year; (2) perfect knowledge of task behavior (i.e. mapping from

knob to time); (3) full accuracy models for PS and PA; and (4) zero overhead

for optimization routines. Figure 4.19 shows the utilities for both the oracle and

VaRTOS. In most cases VaRTOS achieves within 10% of the oracle utility, and is

79

B/B B/N B/W N/B N/N N/W W/B W/N W/W
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
o
ta

l
U

ti
lit

y
 (

a
.u

.)

Instance and Temperature Profile (Inst/Temp)

Oracle

VaRTOS

Figure 4.19: Total utility for VaRTOS vs. oracle system

as much as 20% off in the worst case.

4.3.4.3 Runtime Overheads

Energy consumption by the various VaRTOS subsystems must be minimized in

order to prevent energy wastage. Similarly, the memory required for VaRTOS

must be kept reasonably low in order to make it a viable option for resource-

constrained platforms.

Memory overhead of the VaRTOS system is application and configuration

dependent. As a baseline, VaRTOS requires an increase in code memory usage over

the vanilla FreeRTOS framework from 2.29 kB to 6.80 kB (a 4.51 kB increase).

This includes a lightweight library for math functions required for optimization

routines (including exponential, logarithmic, and square root functions) as well as

a preemptive scheduler. If a full math library needs to be used for the application

itself, these functions can be replaced and the overhead amortized. In terms of

data memory, an additional 508 bytes baseline is required (480 bytes of this is

due to the power learning procedure and, if the developer is so motivated, can

be reused after the models have converged). An additional 46 bytes per task is

80

also required for knob modeling and other parameters. Finally, the temperature

profile is stored in program ROM as a constant array and uses 10 bytes.

The largest energy overhead in VaRTOS comes from the scheduler itself, which,

if context swaps occur every 10 ms, causes a baseline system duty cycle of 0.1%.

This ratio can be decreased if coarser granularity context swaps are acceptable.

The power consumption attributed to this 0.1% depends on the power consump-

tion of the processor and the environmental temperature, but even in the worst

case the scheduler adds only marginal energy consumption on top of the baseline

sleep power.

Other potential energy consuming processes attributed to VaRTOS include

knob modeling, power measurement and fitting, finding the optimal d∗sys, and

finding the optimal knob values. The amount of processing time spent in these

tasks is negligible: reading power and temperature takes 250 µs and occurs only

40 times over the course of a deployment (10 ms total); knob perturbations take

48 µ s and occur 4·N times (for N tasks); performing the linear regression for

power curves and for determining task knob to time mappings takes 40 ms and

occurs twice (Ps and Pa) per deployment and once per task; finding system-wide

duty cycle takes 54 ms and occurs once unless tasks are deleted and created after

the initial optimization; and finally finding optimal per-task duty cycle and knob

values takes 345 µs. In total, these added tasks consume less than 1 mJ in the

worst-case for a 1 year deployment, a negligible overhead if our energy budget is

12960 Joules (2 AAA batteries).

4.4 Application Results

Higher duty cycles allow the sensors to stay “on” for a longer time and capture

more data during deployment. This typically increases accuracy and shortens

response times in high fidelity real-time sensing tasks such as object localization

81

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9 10

M
e
a
n
 L

o
c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

Duty Cycle (%)

T=20s
T=40s

Figure 4.20: Mean localization error across duty cycles.

and tracking [ZSB10]. For instance, Figure 4.20 quantifies the effect of different

duty cycles on the accuracy of sound source localization with a network of 20

acoustic (e.g. microphone) sensor arrays using Maximum Likelihood Estimation

(MLE). The simulations were adapted from [ZSB10] and represent 200s of appli-

cation execution in real-time. Each point in the plot is generated from an average

of 200 simulation runs with varying sensor on/off schedules. It shows that with

increasing duty cycles (as well as with longer data acquisition times), the perfor-

mance of the application improves as the mean localization error decreases. The

application estimates the location of a target based on line-of-bearing (LoB) mea-

surements from the sensor arrays deployed randomly in a 10m × 10m field. Each

sensor requires approximately 1 second on an embedded ARM-based processor

to compute one LoB measurement from raw audio samples. The error in sensor

measurements is assumed to be less than 10%.

Moreover, Figure 4.20 demonstrates that the error also decreases with time, for

a specific DC, as the algorithm waits to collect measurements from all the sensors

before fusing them to obtain the location estimates. This result is important when

the sensor nodes follow asynchronous wake-up and sleep schedules to avoid the

82

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300 350

M
ea

n
 L

o
ca

li
za

ti
o

n
 E

rr
o

r
(m

)

Time (days)

Optimal DC
Worst-case DC

Datasheet DC

Figure 4.21: Mean localization with variability-aware, worst-case and datasheet-

based duty cycle schedules.

control message overhead associated with synchronous duty cycling. For instance,

the sensors duty cycle asynchronously with a period of 200s in our simulations of

the localization application. However, this is based on the implicit assumption

that the target remains static during data collection to enable the sensors to

obtain relevant LoB measurements. Correspondingly, in Figure 4.20, the target

is assumed to be static for a period of 20s and 40s for the respective plots. This

constraint on target motion is due to the limited number of nodes in the simulation

scenario, and the low duty cycles in question.

In accordance with these results, Figure 4.21 demonstrates that the algorithm

generates estimates of target location with a lower mean error in presence of

variability-aware optimal schemes as compared to worst-case schedules for the

same battery capacity and lifetime constraints, using the evaluation scenario de-

scribed in section 4.2.1.1. Although the mean error is the lowest at the start of

the deployment with DC schedules determined from datasheet values, it increases

steeply towards latter half of the deployment timeline as sensors exhaust their

83

batteries before the intended lifetime of 1 year. In all these simulations, it is as-

sumed that targets appear at the center of the field once every 200s and remain

static for a period of 40s at each appearance. As with the previous result, this

constraint on target motion could be relaxed if a larger number of nodes were

available, or if more energy was available to each node (larger batteries). In the

later case, as indicated in Figure 4.11, the benefits of the variability-aware scheme

over the worst-case scheme would be smaller.

84

CHAPTER 5

Variability-Aware Algorithmic Choice

A software stack that changes its functions to exploit and adapt to runtime vari-

ations can operate the hardware platform close to its operational limits. The key

to this achievement is to understand the information exchanges that need to take

place, and the design choices that exist for the responses to variability, in terms

of what the character of the responses is, where they occur (i.e., which layer of

software), and when they occur (design or run time).

The range of possible responses that the software can make is rich: control

the rate of computation through control of task activations; use a different set

of hardware resources (e.g. minimize use of a power hungry module); change

the algorithm or algorithm parameters (e.g., switch to an algorithm that yields

lower quality, but requires fewer resources); dynamically recompile code to better

match a platform’s capabilities; and change hardware’s operational setting (e.g.,

tune software-controllable control knobs such as voltage/frequency).

These changes can occur at different places in the software stack or at runtime

with corresponding trade-offs in agility, flexibility, and co-existence: explicitly

coded by the application developer making use of special language features and

API frameworks (application-driven), or transparently managed by the operating

system resource scheduler (system-driven).

A seen in section 1.2, a large body of work exists in system-driven manage-

ment of software and hardware parameters, as well as dynamic recompilation and

hardware resource management. In chapter 4 we presented prototype system soft-

85

ware stacks that adapt to variations by controlling task activation and adjusting

duty cycle, i.e. the rate of activity of the system, based on lifetime requirements,

energy availability, and application parameters. Task activation control is a valu-

able adaptation strategy for embedded sensing systems, where time spent in sleep

mode may account for most of the energy dissipated by the system across its life-

time. For systems with significant variation in active power consumption, a choice

of software to be executed provides further opportunities for optimization. Algo-

rithmic choice, however, is typically driven by applications, and not the runtime

system.

In this chapter we introduce the concept of ViRUS: Virtual function Replace-

ment Under Stress. ViRUS is loosely related to polymorphic engines [Yet93] in

that it is used to transform sections of a program into different versions with

alternate code paths that perform roughly the same functionality. Polymorphic

engines are used to intercept and modify code transparently, typically for mali-

cious purposes such as hiding malware functionality from anti-virus software. In

ViRUS, the different code paths provide varying quality-of-service for different

energy costs. Mutations from one version to another are triggered by vectors of

variability and energy stress. ViRUS can thus be seen as a dynamic or flexible

version of delegation [Lie86] for object-oriented systems, where lookup rules are

used to bind methods to objects. A specific block of code may be activated in

ViRUS, for example, when processor temperature reaches a certain threshold. A

second block may be activated when remaining battery capacity drops bellow

a specified percentage. The different code blocks may be either standard library

functions provided by the runtime system or alternative implementations provided

by application programmers. Per-application configuration files determine when

and under what circumstances code mutations should be triggered. The runtime

system monitors the energy stress vector and transparently triggers mutations at

appropriate times.

86

We present a realization of ViRUS in the form of a framework for transparent

function replacement in shared libraries demonstrated with a polymorphic version

of the standard C math library in Linux. Microbenchmarks show that both sys-

tems can monitor hardware and environmental conditions and trigger code muta-

tions with negligible overhead. We show how ViRUS can help users in developing

and analyzing tradeoffs between accuracy and energy consumption in different

contexts and reduce the energy consumption with user-defined quality-of-service

degradation.

5.1 System-Driven Algorithmic Choice

Operating systems implicitly provide multiple code paths through their Hardware

Abstraction Layer. A specific code path from applications to hardware will be

determined according to hardware availability and configuration. For instance, in

embedded systems where multiple communication channels are available (e.g., a

mobile phone with Wi-Fi and a 3G data connection), an application may open

a communication socket, which can be bound to a specific interface according

to application requirements or automatically, e.g., through a priority mechanism.

While applications may be given adaptation choices (e.g. using the setsockopt

system call to bind a raw socket to a specific interface), a quality vs. resource

usage tradeoff is typically either not present or implicit (e.g. connections may be

faster with Wi-Fi than with 3G or vice-versa).

One example of a system service with elastic quality is found in the Android

operating system location service, which provides applications with geographic lo-

cation information [Goo]. In a typical mobile phone, location information can be

derived from a series of sensors (e.g. GPS, assisted GPS, Wi-Fi triangulation) with

different energy cost and location accuracy. For each of these sensors, location

accuracy may also be variable according to ambient conditions (e.g. availability

87

of satellites and nearby wireless access points). If the application needs only “best

effort” location information, it simply acquires a reference to the system’s loca-

tion service, and requests notifications based on change of location. The system

manages location sensors and quality autonomously. Applications that need fine

grain location information may request a location provider that meets a given

accuracy criteria. Applications may also poll the system or request notifications

for changes in location accuracy.

We propose ViRUS as an application runtime support system where the op-

erating system adjusts service quality according to variability-aware policies. To

accomplish this, we (i) leverage techniques for algorithmic choice, building this

capability into the application support system; (ii) allow for adaptation with min-

imal application intervention, as in the example of the Android location stack;

(iii) expose service quality information to the applications, so that developers can

constrain or guide adaptation according to application requirements; (iv) build

variability-aware adaptation policies that expose variability information to the

various layers of the software stack and drive system adaptation.

5.2 System Design for Algorithmic Choice

Several services provided by the operating and runtime support are amenable to

adaptation and may be extended to support elastic quality levels. These ser-

vices include numeric and signal processing services (e.g. with variable numeric

precision), multimedia services (e.g. with variable video encoding and decoding

quality), sensing stack (e.g. the aforementioned location service), and communi-

cation stack (e.g. diversity of communication channels). Different versions of each

of these services can be provided to applications through a common interface, or

through a wrapper that adapts versions with different interfaces.

Assuming that, for a given service, multiple libraries with identical interfaces

88

and semantics are available, a simple strategy for providing different versions of

a service would be to link an application with a shared library selected from a

poll of available alternatives when the application is loaded. While this would

require minimal extensions to the OS and only incur a small overhead when the

application is loaded, it would also allow only for coarse-grained adaptation, as

adaptation decisions are only made when the application is loaded. Because oper-

ating conditions may change with time, long running applications may be bound

to sub-optimal choices of service level.

To allow for dynamic adaptation, the dynamic linking process could be altered

to allow changes in the Procedure Linkage Table (PLT) of an application after

it is populated. The PLT stores references to shared library functions used by

the application. The dynamic linker populates the PLT on demand, and function

addresses are not bound to processes until the functions are called. If multiple

versions of a function were present, the linker could choose a target implementation

based on application parameters and the system’s variability aware policies. A

signal from the operating system to the application could, for example, invalidate

entries in the PLT, triggering a change in choice of code paths.

To allow for transparent application adaptation without changes to the dy-

namic linking process, in ViRUS we build a thin wrapper around libraries to pro-

vide variability-aware algorithmic choice. This wrapper takes adaptation configu-

ration parameters from applications (e.g. what functions are sensitive to sources of

stress and amenable to adaptation, bounds for quality requirements), and handles

variability messages from the operating system that trigger function replacement.

The wrapper also adapts multiple libraries with common functionality but differ-

ent function signatures into a common interface.

89

5.3 Library Generation

Given multiple implementations f0(· · ·), f1(· · ·), · · · , fn(· · ·) of a function featur-

ing the same signature, ViRUS exposes a single function f(· · ·) to applications.

In our C language implementation, this is accomplished by declaring f(· · ·) as

a function pointer, and dynamically assigning the pointer to the address one of

the fn(· · ·) implementations. Because calls to functions and function pointers are

identical in C, there is no indirection between a call to the function entry point

f and the function call fn(· · ·). In other words, the function pointer f(· · ·) is

aliased to one of the implementations; for example, if the function pointer f(· · ·)

is assigned to f1(· · ·), an application call to f(· · ·) translates to the same sequence

of operations as a call to f1(· · ·).

In general, multiple implementations of a function f may have different type

signatures. For every fn function implementation we therefore must create a wrap-

per function that matches the signature of pointer f . This process is automated in

ViRUS as illustrated by Figure 5.1. The F ONE macro exposes function f of type

rettype and one parameter of type argtype as function var name level,

where level is an integer that defines an order of quality between the multiple im-

plementations. Lower numbers represent higher quality. In this example, multiple

implementations of the exponential function are declared with different signatures

(5.1.a). A function declaration macro (5.1.b) uses the double pre-processor direc-

tive (##) to concatenate function name, quality level, return type, parameter type,

and function to be called into an inline function definition. In the example, the

macro maps a function with one parameter into a wrapper with one parameter.

Similar templates are used for other combinations of parameter mappings. The

wrapper templates are used as in 5.1.c, and the resulting code after pre-processing

is shown in 5.1.d.

Taking a design reference from [BC10] and [LMM07], we expose the multiple

90

double exp (double x);

float expf (float x);

static inline float fastexp (float p) { ... }

static inline float fasterexp (float p) { ... }

(a) Function Signatures

#define F_ONE_ONE(name, level, rettype, argtype, f) \

rettype __var__ ##name ##level (argtype arg) { return f(arg); }

(b) Wrapper function prototype

F_ONE_ONE(exp, 0, double, double, exp)

F_ONE_ONE(exp, 1, double, double, expf)

F_ONE_ONE(exp, 2, double, double, fastexp)

F_ONE_ONE(exp, 3, double, double, fasterexp)

(c) Usage example

double __var__exp0 (double arg) { return exp(arg); }

double __var__exp1 (double arg) { return expf(arg); }

double __var__exp2 (double arg) { return fastexp(arg); }

double __var__exp3 (double arg) { return fasterexp(arg); }

(d) Resulting code

Figure 5.1: Exposing multiple functions with mismatched signatures.

91

#define F_MUTATORS(name, max_level) \

int __v_ ##name ## _curr_level = 0; \

void v_ ##name ## _set_qlevel(int lvl) \

{ \

if (lvl < 0) { \

lvl = 0; \

}; \

if (lvl > max_level) { \

lvl = max_level; \

}; \

__v_ ##name ## _curr_level = lvl; \

v_ ##name =__v_##name[lvl]; \

} \

int v_ ##name ## _get_qlevel(void) { return __v_ ##name ##

_curr_level;} \

int v_ ##name ## _avl_qlevel(void) { return max_level; }

Figure 5.2: Mutator function templates.

implementations of a function as a function array ordered by quality. For each

f , a four-function API is exposed: f itself, two mutator methods for quality

level (getter/setter), and a method that returns the number of implementations

available. The generation of these methods is automated with a set of macros

that take the function name and total number of implementations as parameters,

as illustrated in Figure 5.2.

For every function to be exposed, ViRUS requires of a function pointer; a

series of alternate function declarations (as in Figure 5.1.c); function mutator

methods automatically generated with a call to the F MUTATORS macro, e.g.,

MUTATORS(exp, 3); a function array with pointers to each of the multiple

wrappers; and a constructor method. Because the function array is of arbitrary

size, it cannot be automatically generated with pre-processor macros. This array

92

#define LIB_INIT(name, strname) \

void __attribute__ ((constructor)) __var__ ##name ## _init(void); \

void __var__ ##name ## _init(void) { \

__v_ ##name ## _curr_level = 0; \

v_ ##name =__v_##name[0]; \

v_register_knob(strname, v_ ##name ## _set_qlevel, v_ ##name ##

_get_qlevel, v_ ##name ## _avl_qlevel); \

}

Figure 5.3: Constructor template. When the library is loaded prior to reaching

the application’s main function, the constructor for each function is executed.

could be automatically generated, for example, using metaprogramming templates

in C++. In our current implementation, the library programmer must create this

array manually.

For each function, a constructor method is automatically generated and exe-

cuted to set the default function pointer and quality level when the library is first

loaded (using the constructor function attribute syntax of GCC). Figure 5.3 il-

lustrates constructor implementation. This method also registers the name of the

function along with its mutator methods with the ViRUS controller that handles

messages from the operating system and triggers function mutation according to

application and system configuration.

5.4 ViRUS controller

The ViRUS controller monitors hardware and operating environment for vectors

of stress and dynamically triggers function mutations according to system and

application configuration. Each application using a ViRUS library has its own

controller featuring all control knobs (function mutators), function replacement

rules, and sensor monitors for its stress vectors.

93

Each function in a ViRUS library is associated with a constructor, as illustrated

in Figure 5.3. Each constructor registers the function with the ViRUS controller

using a name and a set of mutators. The collection of these register entries forms

the knob table – i.e., the set of possible mutation actions – in the ViRUS controller

for an application.

Each application is associated with a configuration file listing its function re-

placement rules. Each rule in the configuration links a function with a stress

sensitivity vector and a set of acceptable quality levels. A sensitivity vector is

defined as a range of values for a sensor, for example, temperature between 0

and 40◦C or instant active power between 100 and 500mW. The set of acceptable

quality levels is defined as an integer range from the highest to lowest quality

acceptable for each function while operating under each sensitivity vector.

Table 5.1 shows a ViRUS configuration table for a hypothetical application.

Each rule describes a function, priority, sensor, range for the sensor, and set

of acceptable quality levels. The application is sensitive to battery level and

temperature. Function f may operate in quality levels 0 or 1 when temperature

is between 0 and 40◦C, and quality levels 2 or 3 when temperature is between

40 and 100◦C. Lower numbers represent higher quality levels. When multiple

sensors may trigger mutations for the same function, rules are resolved in order of

priority, with lower numbers representing higher priority. Function g may operate

in quality levels 0, 1, or 2 when remaining battery is between 20 and 100%, but

only in quality level 2 when the battery level is bellow 20%. A lower priority rule

for temperature further refines the choices to level 0 when temperature is between

0 and 60◦C, and levels 1 and 2 when temperature is between 60 and 100◦C. Due to

different priorities, function g will operate at quality level 2 when battery is bellow

20% even if temperature is bellow 60◦C. When rules are defined for a function with

different sensors and the same priority level, the most energy conservative rule

(i.e., the one with the lowest quality set of alternatives) is interpreted as having

94

function priority sensor range quality

f 0 temperature [0, 40) {0, 1}

f 0 temperature [40, 100) {2, 3}

g 0 battery [20, 100) {0, 1, 2}

g 0 battery [0, 20) {2}

g 1 temperature [0, 60) {0}

g 1 temperature [60, 100) {1, 2}

Table 5.1: ViRUS configuration rules example. Each rule associates a function

with a vector of sensitivity (sensor and range) and acceptable quality levels. Rules

are resolved in order of priority.

the highest priority. Likewise, when multiple quality choices are available for a

function after resolving all the rules, the lowest quality version is chosen. A special

function name, *, is used for rules that apply to all functions. If an application

configuration mixes function specific and wildcard rules, function-specific rules

override wildcard rules.

Stress sensors are exported to the ViRUS controller by a variability monitor

(described in Section 5.5) as a table of sensor names and a floating point vari-

able to access current sensor values. The ViRUS controller is implemented as

a library that is linked with each application. A constructor method parses the

rules file for the application. Configuration files are stored under /etc/virus/

and named identically to the application executable. File name is obtained with

the realpath standard library function. Each line in the file reflects a line in

Table 5.1. For each line that is parsed, we iterate through the tables of knobs and

sensors searching for function and sensor names that match the rule. If matches

are found, a rule with the knob, sensor, range, and quality is added to the rules

table. If there are no matches for the function or sensor name, the rule is ignored.

If no configuration file is found for the application, a default global configuration

95

file containing wildcard rules is used. Linking order ensures that the function

constructors are executed before the ViRUS controller constructor, and therefore

knobs are registered before rules are parsed.

Mutations are triggered by a message from the variability monitor. These can

be of a periodic nature or range-based alarms for sensors, according to application

configuration. The controller library constructor configures variability alarms and

installs a message handler. When a message is received, we iterate through all

the rules to find replacements for each function using the algorithm in Figure 5.4.

For every unique knob name, we find the corresponding set of rules, starting with

the wildcard (*) rules. For each of the rules for a knob name, we check current

sensor values against the range for the rule. If the sensor value is within range,

we mark the rule as matched. Starting with a set of all possible quality levels,

we iterate through matched rules in order of priority to refine the set of allowable

quality levels. Finally we set the quality of the function associated with the rule

(or all functions in the case of a wildcard rule) to the maximum of the set of

allowable qualities after processing the rules. If this quality is a higher number

than the number of alternate implementations provided the function will be set

to the lowest quality (highest number) available.

5.5 Variability Monitor

ViRUS monitors stress vectors for variability and notifies applications to trigger

function replacements. The monitor is built with two components: a system

daemon that monitors sensors and triggers alarms upon certain conditions, and a

small library linked with applications that registers processes to receive adaptation

triggers and handles notifications from the daemon.

Figure 5.5 illustrates the interaction between applications and the monitor dae-

mon. The monitor listens for connection on a UNIX-domain socket. A constructor

96

Data: Rules: set of (knob, priority, sensor, range, quality) tuples

RulesToProcess ← Rules;

KnobName ← * ;

while RulesToProcess 6= ∅ do

RulesForKnob ← {r ∈ RulesToProcess : r.knob.name = KnobName};

MatchedRules ← ∅;

forall the rule ∈ RulesForKnob do

sensor ← rule.sensor.value();

rmin ← rule.range.min;

rmax ← rule.range.max;

if rmin ≤ sensor < rmax then

MatchedRules ← MatchedRules ∪ rule;

end

end

QualitySet ← {r.quality ∀r ∈ MatchedRules } ;

forall the rule ∈ MatchedRules ordered by rule.priority do

if (QualitySet ∩ rule.quality) 6= ∅ then

QualitySet ← QualitySet ∩ rule.quality;

end

end

Set quality of functions matching KnobName to max(QualitySet) ;

RulesToProcess ← RulesToProcess \ RulesForKnob;

KnobName ← rule.knob.name for some rule ∈ RulesToProcess ;

end

Figure 5.4: Function replacement algorithm

97

alarm
rules

socket

constructor

system daemon app library

sensor

sensor

sensor signal
handler

monitor

sensor
names

register

signal

sensor
values

Figure 5.5: Variability Monitor Architecture

method registers the application process identifier with the monitor through this

socket upon library initialization. This constructor also reads a sensor descriptor

file to discover available sensors and build the sensor table used when matching

application function replacement rules, and registers a signal handler for the ap-

plication. The monitor daemon periodically reads sensors and writes their values

to a file. A sensor configuration file for the monitor determines sampling rates

and rules for generating alarms. These rules may determine that alarms should

be raised, for example, when a sensor value exceeds a certain threshold or when

sensor values change more than a certain percentage across subsequent samples.

When sensor values lead to an alarm, the monitor daemon goes through a list of

registered processes and sends each of them a signal. The signal handler in the ap-

plication reads sensor values from the monitor and triggers function replacement

according to the algorithm in Figure 5.4.

The application library interacts with the monitor through a socket (to register

the application), files (to discover available sensors and to read sensor values), and

98

signals. The constructor method for the monitor library starts by connecting to a

UNIX domain socket provided by the monitor server, and sending the application

process ID (obtained with the getpid standard library function). It then opens

the sensor descriptor file written by the server. This file contains a single line

with sensor names separated by spaces, and the sensor name tokens are used

to construct the sensor table for the ViRUS library. Sensor names are linked

to function replacement rules when the application configuration file is parsed.

Finally, the constructor method registers a handler for the USR1 signal.

When the process receives the USR1 signal, the application must read current

sensor values to determine if function mutations should be triggered. Because the

signal itself does not convey information other than signal number, sensor values

are communicated from the monitor daemon to the application through a shared

file. This file contains the last sample for each sensor in the same order as they

appear in the sensor descriptor file. Values are parsed and the sensor table for the

application is updated with the latest samples. When rules are matched (as per

Figure 5.4), reading a sensor value corresponds to reading a floating point variable

in memory.

In the variability monitor daemon, hardware and software sensors are ab-

stracted through drivers that expose the sensor name and current value through

a floating point function. Available sensors depend on the underlying hardware

platform, and are linked with the monitor system service at compile time. In the

future this could be extended to allow for dynamic discovery of sensors through a

plug-and-play driver architecture. Our VarEMU build of ViRUS includes sensors

for temperature, frequency, voltage, and power as determined by the power model

in the emulator. Our standard PC ViRUS build exposes frequency and average

CPU utilization as a proxy for energy consumption.

For each sensor, a user-defined configuration file determines sampling rate in

Hz and alarm rules. Four types of alarm are defined: value greater than, value

99

equal to, value smaller than, and change in magnitude. The change in magnitude

rule will raise an alarm if the sensor has changed by the expressed percentage

since the last sample. The four basic alarm types can be dynamically changed

without requiring re-compilation, but more complex alarm rules must be attached

to sensors through a software module in compile time.

After acquiring a sample, the monitor iterates though sensor rules to search

for a match. If a match is found, a signal is sent to all processes that registered

their PIDs. If a signal can’t be sent to a process, that process is assumed to have

finished, and the PID is removed from the list of registered processes. While vari-

ability alarms are global, function mutation rules are defined on a per-application

basis and therefore a signal may not lead to a mutation.

5.6 Evaluation

For the results in this section, we built our ViRUS libraries and applications for

the ARM9 architecture and ran it on our prototype Linux system for VarEMU

described in Section 3.2. Unless specified, energy results are normalized across the

runs under comparison, and obtained from a nominal (typical) instance running

under nominal voltage and temperature. Energy numbers are obtained through

the Linux system call interface for VarEMU as described in Section 3.2.2. We use

the -O3 compiler optimization flag for all tests.

5.6.1 Memory Usage

The ViRUS controller is implemented as a shared library that handles: 1) knob

registration for multi-quality functions; 2) parsing of application-dependent mu-

tation rules; 3) registration and handling of signals from the variability monitor

and reading of sensor data; and 4) function replacement. Combined, these func-

tions use a total of approximately 2.8KB of code memory. When standard library

100

functions needed to perform operations in the ViRUS controller (e.g., strcmp,

connect) are statically linked with the library in an application, code memory

usage totals approximately 8KB.

Adaptation knobs (i.e., available functions) and replacement rules are defined

on a per-application basis, and so tables of available knobs, rules, and sensors must

be kept for each process. We chose to define the size of these tables statically,

avoiding the overhead of dynamic memory allocation when rules and knobs are

parsed and registered. Each entry in the knob table contains a string name, and

pointers to each of the three mutator functions (getter, setter, and maximum for

quality). Sensor entries have a name and floating point value. Finally, rules have

a pointer to a knob, a pointer to a sensor, an integer priority, integer minimum

and maximum quality, and floating point sensor range (minimum and maximum).

Sensor and knob names have a maximum length of 16 characters. For a 32-bit

ARM architecture, each entry in the knob, rule, and sensor tables occupies 32,

32, and 24 bytes, respectively (some space is wasted due to memory alignment

directives). We define a default number of entries of 16 for the sensor table, and

64 for the knob and rules table. Combined with other internal variables in the

controller library, this results in approximately 7KB of data memory being used

for each application that links with the ViRUS controller library.

Code memory used by the multiple versions of a function depends on the na-

ture of the function and the implementations. Section 5.6.3 presents a library for

variable quality math functions that adds approximately 10% memory overhead

to a single high-quality implementation. The function wrappers and mutators re-

quired for each ViRUS-compliant function add negligible overhead for each func-

tion: < 100 bytes in code and 4(n + 1) bytes in data memory, where n is the

number of quality levels.

101

Operation Dependency KCycles

N = 1 N = 5 N = 10

Process registration — 161.5

Knob registration # functions 15 16.5 18

Sensor discovery — 232.7

Rule parsing — 238.0

Sensor reading — 54.4

Function replacement # rules 1.6 6.6 13.1

exp (reference) — 3.5

Table 5.2: ViRUS runtime overheads

5.6.2 Microbenchmarks

In this section we evaluate the runtime overheads of ViRUS through a series of

microbenchmarks. These overheads include knob registration, sensor discovery,

rules parsing and initialization, process registration with the variability monitor,

signal handling, and function mutation.

Table 5.2 shows the number of cycles taken by the various ViRUS operations.

For operations that have O(N) complexity (where N may be the number of knobs

or replacement rules), we show the number of cycles taken for N = 1, 5, and 10.

The O(N) dependency of operations that involve file I/O (rules parsing and sensor

discovery and reading) is negligible compared to the baseline runtime of the I/O

operation. We show the number of cycles taken by the glibc double precision

exponential function as a point of reference.

The runtime overhead of ViRUS can be divided into one-time and periodic

operations. One-time operations include process and knob registration, sensor

discovery, and rule parsing. Assuming an app with ten knobs and ten replace-

ment rules, and a processor frequency of 1 GHz, ViRUS adds approximately 0.7 ms

102

to application initialization. Periodic operations happen every time there is a sig-

nal from the variability monitor to the ViRUS handler in the application process.

This triggers sensor reading and rule matching (function replacement) in the ap-

plication, and corresponds to approximately 70 µs under the assumptions above.

5.6.3 Variable Quality Standard Math Library

We implemented a ViRUS library for the mathematical operations of the C stan-

dard library declared in the math.h header file. The GNU version of the C

standard library provides IEEE 754-compliant single and double precision im-

plementations for most math functions [Fou14]. These implementations are typi-

cally hardware-accelerated e.g., using SSE (Streaming Single Instruction, Multiple

Data) extensions in x86 processors, or VFP (Vector Floating Point) instructions

for ARM processors.

For our ViRUS math.h implementation, we use the standard double and

single precision libc functions as quality levels 0 and 1 respectively. For sub-

sequent quality levels, we use implementations from the fastapprox [Min14]

library. This library provides approximate versions of functions commonly used

in machine learning, including exponential, logarithm, power, cos, sin, tan, and

others.

Table 5.3 shows total code memory usage for significant methods in the ViRUS

math library. To measure code size of each function, we compare the size of the

.text segment of a statically linked application binary where the application

calls only one of the multiple versions and prints the result, with an application

that prints a constant number. Because the multiple quality methods may share

portions of code, the combined memory usage of the multiple versions of a function

is typically smaller than the summation of memory usage for each of the individual

versions. Likewise, the combined total for all library functions is less than the

103

Function Memory Usage (KBytes) Combined

Qual: 0a Qual.: 1b Qual: 2c Qual: 3d Combined Overhead (%)

exp 31.2 16.2 3.4 3.1 34.7 11.2

log 40.9 15.8 2.8 2.6 44.0 7.6

pow 43.6 18.8 3.7 3.2 50.1 14.9

sin 70.7 9.8 2.7 2.6 79.9 13.0

cos 70.7 9.8 3.0 2.6 79.9 13.0

tan 79.3 9.7 3.1 3.1 88.5 11.7

asin 67.1 16.0 - - 70.2 4.6

acos 67.1 16.2 - - 70.3 4.8

atan 37.3 3.6 - - 39.8 6.9

sinh 33.4 17.7 3.5 3.2 38.6 15.5

cosh 33.4 17.7 3.5 3.2 38.5 15.4

tanh 4.4 4.3 3.5 3.2 8.1 86.7

lgamma 103.5 19.8 3.1 2.8 110.8 7.1

combined 227.8 64.8 4.5 4.1 251.8 10.5

alibc double precision
blibc single precision
cfastapprox best quality
dfastapprox worst quality

Table 5.3: ViRUS math library memory usage

104

summation of the individual functions.

The rightmost column in Table 5.3 shows the overhead of the combined mul-

tiple quality methods compared to the single highest quality (double precision)

method. The overhead of providing multiple versions of a function over providing

only its double precision version averaged 16% and ranged from 5% to 86%. The

combined memory usage of all methods on the table was approximately 252 KB,

compared to 228 KB for all the methods in double precision only—an increase of

10%. Note that this does not include the small memory overhead of the ViRUS

controller/handler library (discussed in Section 5.6.1). We evaluate the impact of

the ViRUS math library to application quality and energy usage in Section 5.6.4.

5.6.4 Application case studies

In this section we show how ViRUS can use polymorphic libraries to adjust appli-

cation quality and energy consumption to counteract system stress from process

and environmental variability. We present case studies using the ViRUS math

library and show how benchmark applications are impacted in terms of quality

and energy across the multiple alternate function implementations.

The potential energy benefits of ViRUS are limited by the fraction of time

and energy that an application spends using the polymorphic library functions

provided by the system—standard math library functions in our case studies.

We profiled a subset of applications in the Parsec suite of benchmarks [Bie11]

and found that for some benchmarks that link with the standard numeric library

this fraction is too small to yield significant benefits. The x264 video enconder,

for example, relies heavily on integer comparisons. Real-time ray tracing with

raytrace spends most time and energy in file I/O operations. Streamcluster

doesn’t spend any significant time in standard library functions, with computa-

tions for Euclidean distance taking approximately 94% of time in the program.

105

Simulated annealing with canneal uses standard C++ libraries for string com-

parison, but no significant math functions. Finally, fluid dynamics animation with

fluidanimate uses floating point math, but doesn’t spend significant time in

library functions.

In cases where applications do not use significant runtime support system

functions, ViRUS may still be useful in managing application-level adaptation.

Developers can register multiple versions of a function as knobs by using and link-

ing with the ViRUS controller applications. This modality of application-driven

algorithmic choice has been explored in the literature, e.g. in [BC10, LMM07,

ACW09]. In our evaluation, we show examples of benchmark applications where

library functions represent a significant fraction of application energy and time

cost and library implementation impacts application quality: the whetstone

benchmark, and the blackscholes and swaptions applications from the Par-

sec suite.

5.6.4.1 whetstone

Whetstone [CW76] is a standard synthetic benchmark that measures floating-

point arithmetic performance. The benchmark combines different operations such

as floating point arithmetic, branches, memory access, and procedure calls into

a single score. While library math functions comprise only a small fraction of

the benchmark, their implementation has dramatic impact in application perfor-

mance. Library functions used by whetstone include sin, cos, arctan, exponent,

and square root.

We modified the Netlib implementation [Rep14] of Whestone to use the ViRUS

math library, and profiled energy consumption when each of the different quality

levels was used. Energy numbers were obtained by running a nominal instance of

VarEMU under nominal operating conditions (voltage, frequency, and tempera-

106

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

 p
er

 it
er

at
io

n
(a

.u
.)

Number of iterations (#)

Quality 0
Quality 1
Quality 2
Quality 3

Figure 5.6: Normalized energy cost of Whetstone iterations with different quality

versions.

ture). For each run, a global destructor in the application is called upon termina-

tion and prints out total accumulated energy. ViRUS configuration files provide

rules that lead to immediate switching to a desired quality level upon application

initialization. No variation alarms are generated for the run. Energy results are

normalized to highest energy cost per iteration (highest quality, smallest number

of iterations).

Figure 5.6 shows normalized energy consumption for whetstone under dif-

ferent quality levels and across a variable number of iterations for each run. The

greatest benefit in energy consumption results from switching from the double

precision (highest quality) versions to the single precision versions, which leads to

an average 45% reduction in energy consumption. There is a further relative ben-

efit of 8% when going from the single precision version to the first approximate

version, and 15% when going from the first approximate version to the lowest

quality approximate version. Going from the highest to the lowest quality version

107

results in a 57% reduction in energy consumption. Because Whetstone does not

produce meaningful outputs we do not analyze the impact of the different versions

to application quality.

5.6.4.2 blackscholes

The blackscholes application is part of the Parsec suite of benchmarks. It

computes the Black–Scholes partial differential equation for stock option price

estimation [BS73]. Black–Scholes predicts the price of an option on a stock given

a certain volatility and interest rate. Because there is no closed-form solution to

the partial differential equation, Black–Scholes is computed numerically.

We modified the blackscholes application to use the ViRUS math library

and profiled its energy consumption as described for whestone in Section 5.6.4.1.

The implementation of blackscholes relies mainly on two numeric library

functions, exp and log. In approximately 500 lines of code, there are two calls

to exp and one call to log, and none of the calls are inside loops for each option

price calculation. While blackscholes provides runtime options for a varying

number of iterations, we found no difference in the relative energy cost of the

multiple quality versions as the number of iterations changed.

Figure 5.7 shows normalized energy consumption for blackscholes under

different quality levels. Going from quality level 0 (double precision) to 1 (single

precision) led to a 25% reduction in energy consumption. Going from level 1 to

2 (first approximate version) resulted in a further 18% reduction in energy. From

the first to the second approximate version (quality level 2 to 3), there is a 20%

energy benefit. Across the board, from the highest to lowest quality version, there

is 52% energy consumption band.

Since the Black–Scholes equation yields a meaningful result (the price of an

option), we can also analyze the impact of multiple versions to application qual-

108

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

C
os

t (
a.

u)

Quality Level

Figure 5.7: Normalized energy cost of blackscholes with different quality

versions

ity. We ran the benchmark for 64k inputs for each of the quality levels. Fig-

ure 5.8 compares the output of the highest quality and approximate results of

blackscholes. In each of the plots, the x-axis represents the double precision

output, and the y-axis is the output when one of the lower quality versions is used.

We use two metrics to analyze output quality: normalized root mean square

error (NRMSE) and mean absolute percentage error (MAPE). NRMSE is defined

as:

NRMSE = 100%

√∑N
n=1(Pn − An)2

N

Pmax − Pmin
(5.1)

where N is the number of inputs, Pn and An are the double precision and approx-

imate outputs respectively for input n, and Pmax and Pmin are the maximum and

minimum precise outputs across all inputs. MAPE is defined as:

MAPE =
100%

N

N∑
n=1

∣∣∣∣Pn − AnPn

∣∣∣∣ (5.2)

where N is the number of inputs, and Pn and An are the double precision and

109

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
pp

ro
xi

m
at

e
R

es
ul

t (
a.

u.
)

Original Result (a.u.)

Quality: 1

(a) Quality: 1

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
pp

ro
xi

m
at

e
R

es
ul

t (
a.

u.
)

Original Result (a.u.)

Quality: 2

(b) Quality: 2

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
pp

ro
xi

m
at

e
R

es
ul

t (
a.

u.
)

Original Result (a.u.)

Quality: 3

(c) Quality: 3

Figure 5.8: Output for blackscholes with different quality levels

110

Quality NRMSE (%) MAPE (%) (1-NRMSE)/Energy (1-MAPE)/Energy

0 — — 1 1

1 0.000005 0.00002 1.34 1.34

2 0.003 0.1 1.65 1.65

3 4.3 39.7 1.98 1.25

Table 5.4: NRMSE and MAPE for blackscholes

approximate outputs for input n.

Table 5.4 shows NRMSE and MAPE for blackscholes for the multiple

qualities in the ViRUS math library, along with measures of energy efficiency.

The later numbers are obtaining by dividing (1− error)/E, where error is one of

the error metrics, and E is the normalized energy cost for the run. Going across

approximate levels in blackscholes increases errors by 2–4 orders of magnitude

for each step. Acceptable results are produced until step 3, where MAPE becomes

approximately 40%. Energy efficiency increases with each step for NRMSE, but

is maximized in level 2 for MAPE.

5.6.4.3 swaptions

The swaptions benchmark [Bie11] performs a Monte-Carlo simulation to price

a portfolio of swaptions. We modified swaptions to use the ViRUS math library

and profiled its energy usage and output result quality. The core source code mod-

ule of swaptions is an implementation of the Heath-Jarrow-Morton framework

for swaption valuation [HJM92]. The exponential function is used three times in

approximately 400 lines of code for this module, two of which are within loops.

The complete implementation of swaptions has approximately 1600 lines of

code. As with blackscholes, we found no difference in the relative energy cost

of swaptions across the multiple quality levels as the number of iterations and

111

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

C
os

t (
a.

u)

Quality Level

Figure 5.9: Normalized energy cost of swaptions with different quality versions

Quality NRMSE (%) MAPE (%) (1-NRMSE)/Energy (1-MAPE)/Energy

0 — — 1 1

1 0.0000004 0.000002 1.17 1.17

2 0.002 0.02 1.31 1.31

3 0.57 3.8 1.42 1.37

Table 5.5: NRMSE and MAPE for swaptions

inputs of the program varied.

Figure 5.9 shows normalized energy consumption for swaptions under dif-

ferent quality levels. Going from quality level 0 (double precision) to 1 (single

precision) led to a 15% reduction in energy consumption. Going from level 1 to

2 (first approximate version) resulted in a further 11% reduction in energy. From

the first to the second approximate version (quality level 2 to 3), there is a 9%

energy benefit. Across the board, from the highest to lowest quality version, there

is 30% energy consumption band.

We ran swaptions with 4k inputs for each of the quality levels. Table 5.5

shows NRMSE, MAPE, and energy efficiency for swaptions. Going across

approximate levels in swaptions increases errors by 2–5 orders of magnitude

112

for each step. Acceptable results are produced for all quality levels. In the lowest

quality level, MAPE is approximately 40%. Energy efficiency increases with each

step for both NRMSE and MAPE. Figure 5.10 compares the output of the highest

quality and approximate results.

5.7 Discussion

ViRUS provides a band of energy consumption adaptation for applications by

supplying multiple quality levels of certain functions and triggering function mu-

tations based on monitoring of energy stress vectors. In this section we discuss

some of the limitations of the system.

One implicit assumption in the design of ViRUS is that alternate implementa-

tions of a function may be ordered in terms of quality and energy cost, i.e. higher

cost functions are assumed to produce higher quality results. For certain appli-

cations and functions, quality and cost may be input dependent, and hence this

ordering may change dynamically. Different quality/cost orders across different

applications are easily captured by application-defined function replacement rules

in ViRUS. For the same function and sensor range configuration, two applications

may for example prefer a different level of a function. If the ordering of quality

and cost changes for the same application but different inputs, however, sepa-

rate configuration files would be required when the application in run with each

of the inputs. Application quality feedback mechanisms, e.g. in [BC10] where

application developers write a function to evaluate quality of service for a given

function and input, burden the programmer and lead to increased runtime over-

head due to periodic sampling and re-evaluation of quality/cost for the different

app/function/level/input combinations. In future work we instead intend to ex-

plore enhanced cost/quality profilers that could automatically assign or suggest

mutation rules for applications running under certain environmental and process

113

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
R

es
ul

t (
a.

u.
)

Original Result (a.u.)

Quality: 1

(a) Quality: 1

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
R

es
ul

t (
a.

u.
)

Original Result (a.u.)

Quality: 2

(b) Quality: 2

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
R

es
ul

t (
a.

u.
)

Original Result (a.u.)

Quality: 3

(c) Quality: 3

Figure 5.10: Output for swaptions with different quality levels

114

variation conditions.

ViRUS functions need not be pure, but must have consistent side effects and

state—i.e., each alternative implementation of a function must manipulate any

global state consistently and atomically for each function call. For non-pure func-

tions, global variables must be defined in units of code shared by all implemen-

tations. This design choice simplifies function mutation both in implementation

and in runtime complexity. To allow for inconsistent states, ViRUS would require

state migration procedures between every possible pair of alternate functions.

Function mutations would also be more costly in runtime—our simpler design

choice requires only replacing a function pointer for each migration. While lift-

ing these design restrictions could potentially lead to broader choices of function

adaptation, we believe that would lead to an impractical system both in terms of

development and runtime overhead.

ViRUS trades off choice in energy consumption for increased memory usage.

For the ViRUS math library this memory overhead proved to be very small at

approximately 10% added to a monomorphic high precision library. This is further

minimized when ViRUS is used in shared libraries, where the overhead may be

amortized across many applications. In general, however, the memory overhead

of ViRUS can be expected to be potentially as large as the number of choices.

Recent trends show the relative energy cost of memory subsystems increasing and

leading to more aggressive memory energy management techniques (e.g., [DGN13,

BDN12, RBG13]), where certain parts of memory may be powered off in order

to decrease overall system energy consumption. In these scenarios, mutations

in ViRUS could require dynamic loading and unloading of alternate modules as

needed for mutations. We leave an exploration of the costs and benefits of such a

scheme for future work.

115

CHAPTER 6

Conclusions

We started by investigating how much variation exists in contemporary embed-

ded processors. We measured and characterized active and leakage power for a

contemporary ARM Cortex M3 processor, and found that across a temperature

range of 20–60◦C there is 10% variation in active power, and 14x variation in

leakage power [WAB10]. Low-end embedded processors like the Cortex M3 are

typically a few generations behind state-of-the-art manufacturing processor, so as

embedded processors in more advanced technologies become commonplace, the

variations will increase significantly.

We introduced different strategies to handle instance and temperature depen-

dent power variation at the system software layer based on task activation control

through variability-aware scheduling. We started by formulating the problem of

finding the ideal duty cycle rate for a sensor node as an optimization problem sub-

ject to power consumption, expected temperature profile, and a lifetime require-

ment [WBA11]. This was translated into a duty cycle abstraction for TinyOS that

allows applications to explicitly specify lifetime and minimum duty cycle require-

ments for individual tasks, and dynamically adjusts duty cycle rates so that overall

quality of service is maximized in the presence of power variability [WAB13]. We

showed that variability-aware duty cycling yields a 3–22x improvement in total

active time over schedules based on worst-case estimations of power, with an av-

erage improvement of 6.4x across a wide variety of deployment scenarios based

on collected temperature traces. Conversely, datasheet power specifications fail

116

to meet required lifetimes by 7–15%, with an average 37 days short of a required

lifetime of one year. Finally, we showed that for some applications such as target

localization, variability-aware duty cycle scheduling yields a 50% improvement

in quality of results over scheduling based on worst-case estimations of power

consumption.

We followed up on this framework with VaRTOS, a real-time embedded oper-

ating system implementation that optimizes task rewards subject to the same con-

straints of power consumption, temperature profile, and required lifetime [MWS13].

Tasks in VaRTOS express elasticity by exposing individual knobs—shared vari-

ables that the operating system can tune to adjust task quality and correspond-

ingly task power, maximizing application utility both on a per-task and system-

wide basis. Instead of relying on pre-characterization, VaRTOS dynamically learns

instance-specific sleep power, active power, and task-level power expenditure. Our

results show that VaRTOS can reduce variability-induced energy expenditure er-

rors from over 70% in many cases to under 2% in most cases and under 5% in the

worst-case.

Some classes of embedded sensing applications are not amenable to the task

control adaptation described in this work. These include highly synchronized,

real-time, or constant data acquisition tasks. Furthermore, our adaptation scheme

adds some complexity to the application, in the form of bounds to task activations

or knobs, which may in turn lead to further complexities in data storage, inference

and communication strategies. Nevertheless, we believe that the benefits of our

scheme outweigh the added complexity for a large class of sensing applications.

While our duty cycle adaptation scheme indirectly leads to a form of energy-based

load balancing across a network of sensors, we do not provide other network-wide

adaptation mechanisms such as role selection for nodes, where a node could take

different roles (e.g. data collector, router, aggregator) depending on its respective

energy rank in the network.

117

Task activation control is a valuable adaptation strategy for embedded sens-

ing systems, where time spent in sleep mode may account for most of the energy

dissipated by the system across its lifetime. For systems with significant varia-

tion in active power consumption, a choice of software to be executed provides

further opportunities for optimization. We introduced ViRUS (Virtual function

Replacement Under Stress) as an application runtime support system where the

operating system adjusts service quality according to variability-aware policies.

In ViRUS, the different code paths provide varying quality-of-service for different

energy costs. Mutations from one version to another are triggered by vectors of

variability and energy stress. A specific block of code may be activated, for exam-

ple, when processor temperature reaches a certain threshold. A second block may

be activated when remaining battery capacity drops bellow a specified percentage.

The different code blocks may be either standard library functions provided by

the runtime system or alternative implementations provided by application pro-

grammers. Per-application configuration files determine when and under what

circumstances code mutations should be triggered. The runtime system monitors

the energy stress vector and transparently triggers mutations at appropriate times.

We demonstrated ViRUS with a framework for transparent function replacement

in shared libraries and a polymorphic version of the standard C math library in

Linux. The ViRUS control framework uses less than 3KB of RAM, and the poly-

morphic math library adds 10% memory overhead to its comparable single choice,

high precision version. Application case studies using the polymorphic math li-

brary showed how ViRUS can tradeoff upwards of 4% degradation in application

quality for a band of upwards of 50% savings in energy consumption.

While developing these software strategies to handle hardware variability, we

faced the problem of how to evaluate their effectiveness. Current hardware plat-

forms typically lack variability sensing capabilities. Even if sensing capabilities

were available, evaluating variability-aware software techniques across a signifi-

118

cant number of hardware samples would prove exceedingly costly and time con-

suming. To cope with this problem, we developed VarEMU, an extension to the

QEMU virtual machine monitor that serves as a framework for the evaluation

of variability-aware software techniques. VarEMU provides users with the means

to emulate variations in power consumption and in fault characteristics and to

sense and adapt to these variations in software. Through the use (and dynamic

change) of parameters in a power model, users can create virtual machines that

feature both static and dynamic variations in power consumption. Faults may be

injected before or after, or completely replace the execution of any instruction.

Power consumption and susceptibility to faults are also subject to dynamic change

according to an aging model. A software stack for VarEMU features precise con-

trol over faults and provides virtual energy monitors to the OS and processes. In

addition to this work, VarEMU has been used to aid the evaluation of variability-

aware software [WEL13] and in graduate-level courses at UCLA.

Code and data supporting this work are available at http://variability.org/

and http://github.com/nesl/.

119

References

[AAG07] C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Roveri.
“Adaptive Sampling for Energy Conservation in Wireless Sensor Net-
works for Snow Monitoring Applications.” In IEEE Internatonal Con-
ference on Mobile Adhoc and Sensor Systems (MASS), pp. 1 –6, oct.
2007.

[ACW09] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. “PetaBricks: a language
and compiler for algorithmic choice.” SIGPLAN Not., 44:38–49, June
2009.

[APM05] A. Agarwal, B.C. Paul, S. Mukhopadhyay, and K. Roy. “Process vari-
ation in embedded memories: failure analysis and variation aware ar-
chitecture.” IEEE Journal of Solid-State Circuits, 40(9):1804 – 1814,
2005.

[BC10] Woongki Baek and Trishul M. Chilimbi. “Green: a framework for
supporting energy-conscious programming using controlled approxima-
tion.” SIGPLAN Not., 45:198–209, June 2010.

[BDN12] L. Bathen, N. Dutt, A. Nicolau, and P. Gupta. “Vamv: Variability-
aware memory virtualization.” In DATE’12, 2012.

[BDS11] D. Bull, S. Das, K. Shivashankar, G.S. Dasika, K. Flautner, and
D. Blaauw. “A Power-Efficient 32 bit ARM Processor Using Timing-
Error Detection and Correction for Transient-Error Tolerance and
Adaptation to PVT Variation.” IEEE Journal of Solid-State Circuits,
46(1):18–31, 2011.

[Ber06] K. Bernstein et al. “High-performance CMOS variability in the 65-nm
regime and beyond.” IBM J. Res. Dev., 50(4):433–449, 2006.

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[BKN03] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Ke-
shavarzi, and Vivek De. “Parameter variations and impact on circuits
and microarchitecture.” In Proceedings of the 40th annual Design Au-
tomation Conference, DAC ’03, pp. 338–342, New York, NY, USA,
2003. ACM.

[BMR07] Swarup Bhunia, Saibal Mukhopadhyay, and Kaushik Roy. “Process
Variations and Process-Tolerant Design.” In 20th International Con-
ference on VLSI Design, pp. 699 –704, jan. 2007.

120

[BOO06] J. P. Benson, T. O’Donovan, P. O’Sullivan, U. Roedig, C. Sreenan,
J. Barton, A. Murphy, and B. O’Flynn. “Car-park management using
wireless sensor networks.” In IEEE Conference on Local Computer
Networks, pp. 588–595, 2006.

[BS73] Fischer Black and Myron S Scholes. “The Pricing of Options and
Corporate Liabilities.” Journal of Political Economy, 81(3):637–54,
May-June 1973.

[BSI] BSIM. “http://www-device.eecs.berkeley.edu/∼bsim3/.”.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. “Wattch: a
framework for architectural-level power analysis and optimizations.”
ACM SIGARCH Computer Architecture News, 28(2):83–94, 2000.

[BWV06] S. Bhardwaj, Wenping Wang, R. Vattikonda, Yu Cao, and S. Vrudhula.
“Predictive modeling of the NBTI effect for reliable design.” In CICC,
2006.

[CAC06] L.N. Chakrapani, B.E.S. Akgul, S. Cheemalavagu, P. Korkmaz, K.V.
Palem, and B. Seshasayee. “Ultra-Efficient (Embedded) SOC Archi-
tectures based on Probabilistic CMOS (PCMOS) Technology.” In Pro-
ceedings on the Conference on Design, Automation and Test in Europe
(DATE), volume 1, pp. 1 –6, march 2006.

[CCF07] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Henrdrik
Hamann, Alan Weger, and Pradip Bose. “Thermal-aware task schedul-
ing at the system software level.” In Proceedings of the 2007 interna-
tional symposium on Low power electronics and design, ISLPED ’07,
pp. 213–218, New York, NY, USA, 2007. ACM.

[CDB09] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. “GCS:
High-performance gate-level simulation with GPGPUs.” In DATE,
2009.

[CGK02] Y. Cao, P. Gupta, A.B. Kahng, D. Sylvester, and J. Yang. “Design
sensitivities to variability: extrapolations and assessments in nanome-
ter VLSI.” In IEEE International ASIC/SOC Conference, pp. 411 –
415, sept. 2002.

[CLM12] Hyungmin Cho, L. Leem, and S Mitra. “ERSA: Error Resilient System
Architecture for Probabilistic Applications.” IEEE TCAD, 31(4):546–
558, 2012.

[CLR09] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey. “Variation-
Tolerant Dynamic Power Management at the System-Level.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
17(9):1220 –1232, 2009.

121

[CPR04] Seung Hoon Choi, Bipul C. Paul, and Kaushik Roy. “Novel sizing
algorithm for yield improvement under process variation in nanometer
technology.” In Proceedings of the 41st annual Design Automation
Conference, DAC ’04, pp. 454–459, New York, NY, USA, 2004. ACM.

[CSG11] Tuck-Boon Chan, John Sartori, Puneet Gupta, and Rakesh Kumar.
“On the efficacy of NBTI mitigation techniques.” In DATE, 2011.

[CW76] H. J. Curnow and Brian A. Wichmann. “A Synthetic Benchmark.”
Comput. J., 19(1):43–49, 1976.

[CWC12] Xiaoming Chen, Yu Wang, Yu Cao, Yuchun Ma, and Huazhong Yang.
“Variation-Aware Supply Voltage Assignment for Simultaneous Power
and Aging Optimization.” IEEE TVLSI, 20(11):2143–2147, 2012.

[DBM05] A. Datta, S. Bhunia, S. Mukhopadhyay, N. Banerjee, and K. Roy. “Sta-
tistical modeling of pipeline delay and design of pipeline under process
variation to enhance yield in sub-100nm technologies.” In Proceedings
of the Conference on Design, Automation and Test in Europe, pp. 926
– 931 Vol. 2, march 2005.

[DGA05] Prabal Dutta, Mike Grimmer, Anish Arora, Steven Bibyk, and David
Culler. “Design of a wireless sensor network platform for detecting
rare, random, and ephemeral events.” In Proceedings of the 4th in-
ternational symposium on Information processing in sensor networks,
IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[DGN13] N. Dutt, P. Gupta, A. Nicolau, L.A.D. Bathen, and M. Gottscho.
“Variability-aware memory management for nanoscale computing.” In
Design Automation Conference (ASP-DAC), 2013 18th Asia and South
Pacific, pp. 125–132, Jan 2013.

[DVA10] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bow-
man, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. De, and
S. Borkar. “Within-Die Variation-Aware Dynamic-Voltage-Frequency
Scaling Core Mapping and Thread Hopping for an 80-Core Processor.”
In ISSCC, 2010.

[EKD03] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. “Razor:
A Low-Power Pipeline Based on Circuit-Level Timing Speculation.”
In Proc. Intl. Symp. Microarchitecture, pp. 7–18, 2003.

[Fal12] Hossein Falaki. Automating Personalized Battery Management on
Smartphones. PhD thesis, UCLA, 2012.

122

[FJ05] Matteo Frigo and Steven G. Johnson. “The Design and Implemen-
tation of FFTW3.” Proceedings of the IEEE, 93(2):216–231, 2005.
Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[Fou14] Free Software Foundation. “GNU C Library.”
http://www.gnu.org/software/libc/, 2014.

[Fre13] FreeRTOS Project. “FreeRTOS.” http://www.freertos.org, 2013.

[FS99] Jason Flinn and M. Satyanarayanan. “Energy-aware adaptation for
mobile applications.” SIGOPS Oper. Syst. Rev., 33:48–63, December
1999.

[GBR07] S. Ghosh, S. Bhunia, and K. Roy. “CRISTA: A New Paradigm for
Low-Power, Variation-Tolerant, and Adaptive Circuit Synthesis Using
Critical Path Isolation.” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 26(11):1947 –1956, nov. 2007.

[GC07] J. Gregg and T.W. Chen. “Post Silicon Power/Performance Opti-
mization in the Presence of Process Variations Using Individual Well-
Adaptive Body Biasing.” Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 15(3):366 –376, march 2007.

[GKGar] M. Gottscho, A.A. Kagalwalla, and P. Gupta. “Power Variability in
Contemporary DRAMs.” IEEE Embedded System Letters, 2012 (to
appear).

[GKM05] Puneet Gupta, Andrew Kahng, and Swamy Muddu. “Quantify-
ing Error in Dynamic Power Estimation of CMOS Circuits.” Ana-
log Integrated Circuits and Signal Processing, 42:253–264, 2005.
10.1007/s10470-005-6759-4.

[GM07] Siddharth Garg and Diana Marculescu. “On the impact of manu-
facturing process variations on the lifetime of sensor networks.” In
Proceedings of the 5th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, CODES+ISSS ’07, pp.
203–208, New York, NY, USA, 2007. ACM.

[Goo] Google. “Android Developers Reference.”
http://developer.android.com/reference/.

[HJM92] David Heath, Robert Jarrow, and Andrew Morton. “Bond Pricing
and the Term Structure of Interest Rates: A New Methodology for
Contingent Claims Valuation.” Econometrica, 60(1):pp. 77–105, 1992.

123

[HQF10] H. Huang, G. Quan, and J. Fan. “Leakage temperature dependency
modeling in system level analysis.” In International Symposium on
Quality Electronic Design (ISQED), 2010.

[HSC11] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. “Dynamic knobs for responsive
power-aware computing.” SIGARCH Comput. Archit. News, 39:199–
212, March 2011.

[HVY06] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru,
Q. Cao, J.A. Stankovic, and T. Abdelzaher. “Achieving Real-time
Target Tracking Using Wireless Sensor Networks.” IEEE Real-Time
and Embedded Technology and Applications Symposium, 2006.

[ITR] ITRS. “The International Technology Roadmap for Semiconductors.”
http://public.itrs.net/.

[JKS09] K. Jeong, A.B. Kahng, and K. Samadi. “Impact of Guardband Re-
duction On Design Outcomes: A Quant. Approach.” IEEE Trans. on
Semiconductor Manufacturing, 22(4):552–565, 2009.

[KAB03] N. S. Kim, T. Austin, D Baauw, T Mudge, K Flautner, J S Hu, M J
Irwin, M Kandemir, and V Narayanan. “Leakage current: Moore’s law
meets static power.” Computer, 36(12):68–75, 2003.

[KHZ07] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava.
“Power management in energy harvesting sensor networks.” ACM
Trans. Embed. Comput. Syst., 6, 9 2007.

[KPR06] Kunhyuk Kang, Bipul C. Paul, and Kaushik Roy. “Statistical timing
analysis using levelized covariance propagation considering systematic
and random variations of process parameters.” ACM Trans Des. Au-
tom. Electron. Syst., 11:848–879, October 2006.

[KS07] Vishal Khandelwal and Ankur Srivastava. “Variability-driven formu-
lation for simultaneous gate sizing and post-silicon tunability alloca-
tion.” In Proceedings of the 2007 international symposium on Physical
design, ISPD ’07, pp. 11–18, New York, NY, USA, 2007. ACM.

[KVR11] Vivek J Kozhikkottu, Rangharajan Venkatesan, Anand Raghunathan,
and Sujit Dey. “VESPA: Variability emulation for System-on-Chip
performance analysis.” In DATE, 2011.

[LCB10] L. Leem, Hyungmin Cho, J. Bau, Q.A. Jacobson, and S. Mitra.
“ERSA: Error Resilient System Architecture for probabilistic applica-
tions.” In Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, pp. 1560 –1565, march 2010.

124

[LGP07] X. Li, M.J. Garzaran, and D. Padua. “Optimizing Sorting with Ma-
chine Learning Algorithms.” In Proc. Parallel and Distributed Pro-
cessing Symposium, 2007.

[Lie86] Henry Lieberman. “Using Prototypical Objects to Implement Shared
Behavior in Object-oriented Systems.” SIGPLAN Not., 21(11):214–
223, June 1986.

[LMM07] Andreas Lachenmann, Pedro José Marrón, Daniel Minder, and Kurt
Rothermel. “Meeting lifetime goals with energy levels.” In Proceed-
ings of the 5th international conference on Embedded networked sensor
systems, SenSys ’07, pp. 131–144, New York, NY, USA, 2007. ACM.

[LMP05] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. “TinyOS: An
operating system for sensor networks.” Ambient Intelligence, pp. 115–
148, 2005.

[LSL94] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung.
“Imprecise computations.” Proc. of the IEEE, 82(1):83–94, 1994.

[MHY06] Dustin McIntire, Kei Ho, Bernie Yip, Amarjeet Singh, Winston Wu,
and William J. Kaiser. “The low power energy aware processing
(LEAP)embedded networked sensor system.” In Proceedings of the
5th international conference on Information processing in sensor net-
works, IPSN ’06, pp. 449–457, New York, NY, USA, 2006. ACM.

[Min14] Paul Mineiro. “fastapprox software library.”
https://code.google.com/p/fastapprox/, 2014.

[MJ06] Ke Meng and Russ Joseph. “Process variation aware cache leakage
management.” In Proceedings of the 2006 international symposium on
Low power electronics and design, ISLPED ’06, pp. 262–267, 2006.

[MMF07] Mateusz Malinowski, Matthew Moskwa, Mark Feldmeier, Mathew Lai-
bowitz, and Joseph A. Paradiso. “CargoNet: a low-cost micropower
sensor node exploiting quasi-passive wakeup for adaptive asychronous
monitoring of exceptional events.” In Proceedings of the 5th interna-
tional conference on Embedded networked sensor systems, SenSys ’07,
pp. 145–159, New York, NY, USA, 2007. ACM.

[MTY06] T. Matsuda, T. Takeuchi, H. Yoshino, M. Ichien, S. Mikami,
H. Kawaguchi, C. Ohta, and M. Yoshimoto. “A Power-Variation Model
for Sensor Node and the Impact against Life Time of Wireless Sensor
Networks.” In Proceedings of the First International Conference on
Communications and Electronics. (ICCE), pp. 106 –111, oct. 2006.

125

[MWS13] Paul Martin, Lucas Wanner, and Mani Srivastava. “Runtime Opti-
mization of System Utility with Variable Hardware.” ACM Transac-
tions on Embedded Computing Systems, 2013. Under review.

[NLo13] NLopt Project. “NLopt.” http://ab-
initio.mit.edu/wiki/index.php/NLopt, 2013.

[NS05] S. Neiroukh and Xiaoyu Song. “Improving the process-variation tol-
erance of digital circuits using gate sizing and statistical techniques.”
In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE)., march 2005.

[PGS11] A. Pant, P. Gupta, and M. v.-d. Schaar. “AppAdapt: Opportunistic
Application Adaptation to Compensate Hardware Variation.” IEEE
Transactions on Very Large Scale Integration Systems, 2011.

[PSB05] Ruchir Puri, Leon Stok, and Subhrajit Bhattacharya. “Keeping hot
chips cool.” In Proceedings of the 42nd annual Design Automation
Conference, DAC ’05, pp. 285–288, New York, NY, USA, 2005. ACM.

[QEM13] QEMU. “QEMU Open Source Processor Emulator.” http://qemu.org,
2013.

[RBG13] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. “Aging-aware
Compiler-directed VLIW Assignment for GPGPU Architectures.” In
Proceedings of the 50th Annual Design Automation Conference, DAC
’13, pp. 16:1–16:6, New York, NY, USA, 2013. ACM.

[RCN96] Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolic. Dig-
ital integrated circuits, volume 996. Prentice-Hall, 1996.

[Rep14] ”Netlib Repository”. “Benchmark Programs and Reports.” Available
at http://www.netlib.org/benchmark/, 2014.

[RGS06] V. Raghunathan, S. Ganeriwal, and M. Srivastava. “Emerging tech-
niques for long lived wireless sensor networks.” IEEE Communications
Magazine, 44(4):108–114, 2006.

[RGS09] Vijay Janapa Reddi, Meeta S. Gupta, Michael D. Smith, Gu-yeon
Wei, David Brooks, and Simone Campanoni. “Software-assisted hard-
ware reliability: abstracting circuit-level challenges to the software
stack.” In Proceedings of the 46th Annual Design Automation Con-
ference, DAC ’09, pp. 788–793, New York, NY, USA, 2009. ACM.

[RSL09] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières,
and Nickolai Zeldovich. “Apprehending joule thieves with cinder.”
In Proceedings of the 1st ACM workshop on Networking, systems, and

126

applications for mobile handhelds, MobiHeld ’09, pp. 49–54, New York,
NY, USA, 2009. ACM.

[SBK06] D. Sylvester, D. Blaauw, and E. Karl. “ElastIC: An Adaptive Self-
Healing Architecture for Unpredictable Silicon.” Design Test of Com-
puters, IEEE, 23(6):484 –490, 2006.

[SKG07] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew
Brennan, Mark D. Corner, and Emery D. Berger. “Eon: a language
and runtime system for perpetual systems.” In Proceedings of the 5th
international conference on Embedded networked sensor systems, Sen-
Sys ’07, pp. 161–174, New York, NY, USA, 2007. ACM.

[SN90] Takayasu Sakurai and A Richard Newton. “Alpha-power law MOS-
FET model and its applications to CMOS inverter delay and other
formulas.” IEEE J. of Solid-State Circuits, 25(2):584–594, 1990.

[TKN02] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and Vivek De. “Adaptive body bias for reducing impacts
of die-to-die and within-die parameter variations on microprocessor
frequency and leakage.” In IEEE International Solid-State Circuits
Conference (ISSCC), volume 1, pp. 422 –478, 2002.

[TST07] A. Tiwari, S. R. Sarangi, and J. Torrellas. “ReCycle: pipeline adap-
tation to tolerate process variation.” In International Symposium on
Computer Architecture, 2007.

[TT08] Radu Teodorescu and Josep Torrellas. “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors.” In In-
ternational Symposium on Computer Architecture, 2008.

[US14] U.S. Climate Reference Network (USCRN). “Hourly temperature
data.” http://www.ncdc.noaa.gov/crn/, 2014.

[VE01] Michael J. Voss and Rudolf Eigemann. “High-level adaptive program
optimization with ADAPT.” SIGPLAN Not., 36(7):93–102, June
2001.

[Vee84] Harry JM Veendrick. “Short-circuit dissipation of static CMOS cir-
cuitry and its impact on the design of buffer circuits.” IEEE J. of
Solid-State Circuits, 19(4):468–473, 1984.

[WAB10] Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani
Srivastava. “A Case for Opportunistic Embedded Sensing in Presence
of Hardware Power Variability.” In Proceedings of the 2010 Inter-
national Conference on Power Aware Computing and Systems, Hot-
Power’10, pp. 1–8, Berkeley, CA, USA, 2010. USENIX Association.

127

[WAB13] Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani
Srivastava. “Hardware Variability-Aware Duty Cycling for Embedded
Sensors.” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 21(6):1000–1012, 2013.

[WBA11] Lucas Wanner, Rahul Balani, Charwak Apte, Sadaf Sahedi, Puneet
Gupta, and Mani Srivastava. “Variability-aware duty cycle scheduling
in long running embedded sensing systems.” Design, Automation &
Test in Europe Conference & Exhibition, pp. 1–6, 2011.

[WEL13] Lucas Wanner, Salma Elmalaki, Liangzhen Lai, Puneet Gupta, and
Mani Srivastava. “VarEMU: An Emulation Testbed for Variability-
aware Software.” In Proceedings of the Ninth IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS ’13, pp. 27:1–27:10, Piscataway, NJ, USA,
2013. IEEE Press.

[WWG08] Geovani Ricardo Wiedenhoft, Lucas Francisco Wanner, Giovani Graci-
oli, and Antônio Augusto Fröhlich. “Power management in the EPOS
system.” SIGOPS Oper. Syst. Rev., 42:71–80, October 2008.

[WYB07] Wenping Wang, Shengqi Yang, Sarvesh Bhardwaj, Rakesh Vattikonda,
Sarma Vrudhula, Frank Liu, and Yu Cao. “The impact of NBTI on
the performance of combinational and sequential circuits.” In DAC,
2007.

[Yet93] T. Yetiser. “Polymorphic viruses: Implementation, detection, and pro-
tection.” Technical report, VDS Advanced Research Group, 1993.

[ZEL02] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat.
“ECOSystem: managing energy as a first class operating system re-
source.” SIGOPS Oper. Syst. Rev., 36:123–132, October 2002.

[ZSB10] S. Zahedi, M.B. Srivastava, C. Bisdikian, and L.M. Kaplan. “Quality
Tradeoffs in Object Tracking with Duty-Cycled Sensor Networks.” In
IEEE Real-Time Systems Symposium (RTSS), pp. 160 –169, Dec 2010.

[ZVR09] R. Zheng, J. Velamala, V. Reddy, V. Balakrishnan, E. Mintarno, S. Mi-
tra, S. Krishnan, and Yu Cao. “Circuit aging prediction for low-power
operation.” In IEEE Custom Integrated Circuits Conf. (CICC), pp.
427–430, 2009.

128

