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ABSTRACT 
 
The report attempts to deliver a proof of concept that optimal planning and management 
strategies can be formulated through applying robust optimization methodology such that 
limited resources could be allocated more rationally, and reliability of a highway network 
improved more efficiently. 
 
The report focuses on two applications: the network design problem under demand 
uncertainty, and fleet allocation for freeway services patrols. Their corresponding 
decision-makings are formulated as several optimization models. By solving these 
models robust optimal strategies can be obtained. Numerical examples and simulation 
tests are presented to demonstrate the validity and usefulness of the proposed models.  
 
The report has proved that through applying robust optimization methodology, robust 
optimal improvement strategies can be obtained to improve substantially the capacity of a 
highway system against high-consequence scenarios incurred by fluctuations in travel 
demand or irregular incidents. 
 
Key words: highway planning and management, robust optimal strategies 
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EXECUTIVE SUMMARY 
 
Fluctuations in travel demand and irregular incidents give rise to recurrent and non-
recurrent congestion delay on highway segments and thus make the system performance 
unstable and unreliable. The report attempts to deliver a proof of concept that optimal 
planning and management strategies can be formulated through applying robust 
optimization methodology such that limited resources could be allocated more rationally, 
and reliability of a highway network improved more efficiently. 
 
Robust optimization is a modeling methodology to solve optimization problems in which 
the data are uncertain and only known to belong to some uncertainty set. The approach is 
to seek optimal (or near optimal) solutions that are not overly sensitive to any realization 
of uncertainty. 
 
The first-half of the report addresses the network design problem under demand 
uncertainty, namely, subject to a given budget, determining which links from a network 
need improvement (capacity increase) and deciding how much budget should be 
allocated to the links so as to maximize the improvement of the performance of the 
network. Three models, sensitivity-based, scenario-based and min-max, are proposed for 
determining robust optimal improvement schemes that can improve the performance of a 
network efficiently while at the same time allowing it to remain “close” to the designated 
level under any realization of the uncertain demand. Numerical examples and simulation 
tests are presented to demonstrate the validity and usefulness of the proposed models. It 
is suggested that if decision makers aim to achieve a mean-variance tradeoff, the 
sensitivity-based and scenario-based models should be used with particular caution 
placed on the minimization of the sensitivity of total travel time with respect to demand 
perturbations or minimization of the variance of total travel times under various demand 
scenarios. If fluctuations of travel demand are believed to be non-significant, the 
sensitivity-based model is more appropriate to use, because it is simpler and requires 
much less computation efforts. Otherwise, the scenario-based model should be used, and 
additional efforts are needed to generate the demand scenarios and determine the 
corresponding probabilities of occurrence. On the other hand, if decision makers are more 
concerned with the worst-case scenarios, the min-max model should be applied.  
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The scone-half of the report is to investigate how to make use of freeway service patrols 
(FSP) to mitigate the impacts incurred by incidents. As one component of traffic incident 
management systems, freeway service patrols (FSP) facilitate quick removal of incidents 
through faster response and reduced clearance time. One of the key issues in 
determination of the deployment strategy is how to allocate tow trucks among patrol 
beats to maximize the effectiveness of the FSP services. The report presents a min-max 
bi-level programming model to determine a robust optimal fleet allocation that minimizes 
the maximal system travel time that incidents may incur. A heuristic iterative solution 
algorithm is proposed to solve the model. Both the model and the algorithm are 
demonstrated and validated through a numerical example. It is found that the robust 
optimal fleet allocation always performs better against the worst-case scenarios. The 
performance difference becomes more significant with higher levels of capacity 
uncertainty or network congestion, suggesting that the model may contribute more or 
make more difference in the situations of high frequencies of incidents or high levels of 
network congestion 
 
The report has proved that through applying robust optimization methodology, robust 
optimal improvement strategies can be obtained to improve substantially the capacity of a 
highway system against high-consequence scenarios incurred by fluctuations in travel 
demand or irregular incidents. 
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1. INTRODUCTION  
 
The potential sources of disruption to highway traffic operations are numerous, ranging 
from irregular and random incidents, like earthquakes, terrorist attacks, floods, adverse 
weathers, traffic accidents, breakdowns, signal failures, roadwork etc, to regular 
fluctuations of travel demand in times of day, days of the week, and seasons of the year.  
The scales, impacts, frequencies and predictability of these disruptive events will of 
course vary enormously, with natural or man-made disasters at one extreme, and routine 
events that happen every now and then at the other, as illustrated in Figure 1-1.  
 

                 

 

Frequency 

Adverse weather 
         Minor collision  
                   Vehicle breakdown 

Earthquake 
         Terrorist attack  
                   Flood 

Impact 

 
FIGURE 1-1  Disruptive Events with Combinations of Impacts and Frequencies  

 
While little can be done about their scales, frequencies or predictability, particularly 
where natural disasters and accidents are concerned, it remains possible to design and 
manage highway networks so as to minimize the disruption such events can cause.  It is 
not realistic to expect the performance of a highway network under catastrophic disasters 
is the same as that under minor incidents.  Therefore, the required functionalities and 
ways to ensure the functionalities for those two extreme types of disruptive events would 
differ significantly.  The research focuses on improving performance reliability of a 
highway network at its routine operations, addressing everyday incidents that would be 
placed in the lower right-hand corner in Figure 1-1.  
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Various policies and activities can be adopted to improve highway network reliability.  In 
order to facilitate delivering a proof of concept, we build our modeling framework to 
consider road improvement and incident management.  Other policies, such as providing 
information through advanced traveler information systems (ATIS) can be 
accommodated by the proposed modeling framework without much difficulty. 
 
With a limited budget available to highway network management, engineers and planners 
sometimes need to decide on which links improvement works, such as maintenance and 
rehabilitation or road expansion, should be implemented in order to maintain or improve 
the effectiveness of a highway system.  It is quite often that the decisions are made 
without considering the impacts of disruptive events on the system performance.  As a 
result, the system performance may deteriorate significantly upon the onset of those 
disruptive events.  In some rare cases, in order to deal with the impacts, sensitivity 
analyses have been performed to evaluate sensitivities of the decisions to the 
uncertainties (onsets of disruptive events).  However, such practices are intrinsically 
posteriori or reactive, and provide no direct mechanism for controlling the sensitivities.  
 
On the other hand, traffic incident management is emerging as a proven solution to 
ensure highway reliability.  It is a planned and coordinated process to detect, respond to, 
and remove traffic incidents and restore traffic capacity as safely and quickly as possible.  
As one component of incident management, incident response teams and freeway service 
patrols (FSP) facilitate the quick removal of incidents through fast response and clearance 
times. Given a limited budget, setting up FSP beats that tow trucks patrol on and 
assigning FSP resources to beats so as to maintain sufficient service intensity are very 
important to success of the system.  However, these decisions are often made in a 
heuristic manner.  For example, criteria for funding allocations in the FSP program in 
California have been based on population, urban freeway lane miles, and vehicle hours of 
congestion delay (Skabardonis et al., 1998).  A wiser allocation of available funding 
could be made from a systematic perspective such that the effectiveness of the FSP 
system can be maximized.    
  
In summary, the decision problem that we tackle in the research is, with a given budget, 
choosing links from a network to implement road improvement works and determining 
the corresponding investment magnitudes, and/or choosing links to implement FSP 
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program and determining the corresponding service intensity so as to improve 
performance reliability of the network at most. Our approach is not to propose some 
reliability index and then maximize it to obtain the optimal improvement scheme. In 
contrary, we attempt to gracefully trade off effectiveness vs. guaranteed robustness and 
reliability.  Our objective is still maximization of effectiveness, but the fundamental idea 
is to seek a robust optimal solution that tolerates changes of travel demand and network 
supply caused by disruptive events, up to a given bound known a priori.  The solution is 
therefore neither careless (without considering uncertainty at all) nor overly conservative.  
Because the improvement scheme is robust, we expect that the resulting highway 
network will remain “close” to its designated performance under any realization of the 
uncertainties (onsets of disruptive events).  In this sense, the network will be more 
reliable and predictable.     
 
We apply robust optimization to determine robust planning and management strategies 
for a highway network. Robust optimization is a modeling methodology to solve 
optimization problems in which the data are uncertain and only known to belong to some 
uncertainty set. The approach is to seek optimal (or near optimal) solutions that are not 
overly sensitive to any realization of uncertainty. Recent reviews on this topic can be 
found in Mulvey et al. (1995), Ben-Tal and Nemirovski (2002) and El Ghaoui (2003) 
among others.  
 
The most widely known approach to deal with uncertain or perturbed data is sensitivity 
analysis. Sensitivity analysis is an a posteriori or reactive tool for infinitesimal 
uncertainty. It simply measures the sensitivity of a solution to changes in the input data 
and provides no direct mechanism for controlling this sensitivity. Stochastic 
programming and robust optimization on the other hand are proactive methods. However, 
unlike the stochastic approach, which assumes the uncertainty is random, with a known 
distribution, robust optimization assumes the data of the problem are unknown but 
bounded (e.g., via intervals of confidence for the data). No underlying stochastic model 
of the data is assumed to be known, although such knowledge may be of use to obtain 
reasonable uncertainty sets. A robust feasible solution is one that tolerates changes in the 
problem data, up to a given bound known a priori, and a robust optimal solution is a 
robust feasible solution with the best possible value of the objective function. By 
carefully constructing and efficiently solving the robust counterpart of the original 
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problem, it is possible to obtain solutions that gracefully trade off performance vs. 
guaranteed robustness and reliability.  
 
Previous studies on robust optimization have mainly focused on solving uncertain linear, 
conic quadratic and semi-definite programming problems.  Successful applications of 
robust optimization can be found in many areas, such as finance, telecommunication and 
structural engineering.  Relatively few applications have been done in the transportation 
field.  More importantly, to our best knowledge, no study has been done on the subject of 
bi-level programming model, the modeling structure that we will use to determine robust 
planning and management policies.  
 
The reminder of the report is organized as follows. Chapter 2 focuses on robust network 
design under demand uncertainty while Chapter 3 addresses the robust optimal fleet 
allocation problem for FSP services. Conclusions and recommendations for further 
research are offered in the last chapter. 
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2. ROAD NETWORK DESIGN UNDER DEMAND UNCERTAINTY 
 

2.1 BACKGROUND 
 
As the gap between investment needs and available funds for road network improvements 
continues to grow, a critical issue facing state departments of transportation today is how 
to allocate limited resources so as to obtain the best return for their expenditure. Often, 
road improvement decisions are made without adequately taking into account the impacts 
of disruptive events. As a result, road system performance may deteriorate significantly 
upon the onset of those disruptive events. In some cases, in order to deal with the impacts, 
sensitivity analysis has been performed to evaluate the sensitivities of the decisions to the 
uncertainties (FHWA, 2003). However, such practices are intrinsically a posteriori or 
reactive, and thus provide no direct mechanism for controlling these sensitivities.  
 
This chapter is concerned with development of robust improvement schemes for road 
networks under demand uncertainty. Demand uncertainty here refers to day-to-day or 
within-day fluctuation of travel demand in the daily operations of road networks, rather 
than the changes in demand patterns after major disruptive events. The problem of 
interest is the following: subject to a given budget, determine which links from a network 
need improvement (capacity increase) and decide how much budget should be allocated 
to the links so as to maximize the improvement of the performance of the network. More 
specifically, we attempt to determine a robust optimal improvement scheme that 
maximizes the improvement of the effectiveness of the network, while at the same time 
ensuring it remains “close” to the designated level under any realization of demand 
uncertainty. The implementation of such a scheme will improve the network reliability.  
 
Solving for improvement schemes is a component of the network design problem. 
Although a vast, growing body of research on network design has been developed in the 
past two decades [see the paper by Yang and Bell (1998) for a recent survey of this topic], 
most of the studies were conducted without considering the impacts of uncertainties. 
Barnhart (2000) presented a scenario-based stochastic model, called the average plan 
model, to incorporate uncertainty into deterministic transportation planning models. The 
objective was to find a solution that is average in the sense that it is closer to the solution 
of very high probability events, as opposed to infrequent events. The average plan model 
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was applied to a network design problem for the distribution of crops in Mexico, 
considering the uncertainty in demand of commodities that should be transported. Yin 
and Ieda (2002) investigated a network design problem with stochastic travel time. They 
demonstrated a new reliability version of Braess’ paradox where reducing the variability 
of travel time (by implementing incident management) or increasing the capacity (by 
road expansion) of some links may actually lead to a less reliable network. They further 
proposed a bi-level optimization model through which the reliability paradox can be 
avoided and optimal improvement can be achieved. Waller et al. (2001) examined the 
impact of demand uncertainty on the evaluation of network improvements. They 
concluded that using expected demand tends to overestimate performance of the network 
and could lead to erroneous choice of improvements. Several potential actions were 
discussed to deal with the problem, the simplest of which is demand inflation that yields 
benefits not only selecting improvements with lower expected total system travel time but 
also significant reductions in the variance associated with these measures. However, as 
suggested in their paper, a well-defined theory is needed for selecting a suitable inflation 
level. Waller and Zilliaskopoulos (2001) applied the demand inflation method in a 
dynamic network design problem to address demand uncertainty. They also suggested a 
two-stage stochastic formulation with recourse for the problem. Chen et al. (2003) 
developed a multiobjective bi-level mean-variance model to determine the optimal toll 
and capacity in a build-operate-transfer roadway subject to demand uncertainty. The 
objective of the model was to maximize the mean profit as well as the variance of the 
profit. A simulation-based multiobjective genetic algorithm was developed to solve the 
model. Their model and solution algorithm are readily applicable to the problem of 
interest in this chapter.          
 
This chapter presents three alternate models, sensitivity-based, scenario-based and min-
max, for determining robust optimal improvement schemes for road networks under 
demand uncertainty. These models have simple structures and are computationally 
tractable, yet efficient. The following three sections of this chapter introduce these three 
models in sequence, covering model formulation, solution algorithm, a numerical 
example and model validation.  
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2.2 SENSITIVITY-BASED MODEL  
 
2.2.1 FORMULATION PREPARATION 
 
Consider a network , where N is the set of nodes, and A is the set of links. Let 
W be the set of all origin-destination (O-D) pairs in the network, Rw be the set of routes 
between O-D pair w∈W  and  be the demand between O-D pair w. To represent 

demand uncertainty, we assume that there exists some perturbation in the demand and the 
perturbed demand 

),( ANG =

wq

)(εq  is given by the following equation:  
                                               www qq εε +=)(  (2-1) 
where wε  is a perturbation associated with the travel demand . wq

 
Let  be the flow on route fr

w r R w Ww∈ ∈,  , and  be the traffic flow on link . 

We thus have the following flow conservation equations:  

va Aa∈

                                      (2-2) Aafv
Ww Rr

w
ar

w
ra

w
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∈ ∈

,δ

                                      (2-3) Wwqf w
Rr
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∈=∑
∈

,

                                      (2-4) WwRrf w
w

r ∈∈≥ ,,0
where =1 if route r between O-D pair w uses link a, and 0 otherwise. Denote the 
travel time for each link 

w
arδ

Aa∈  as , which is assumed to be an 
increasing/decreasing and strictly convex function of link flow v  on that link/link 
capacity . Consequently, the route travel time is:  

),( aaa cvt

a

ac
                                       (2-5) WwRrvtt w

Aa

w
araa

w
r ∈∈= ∑

∈

, ,)( δ

where  is the travel time on route rw
rt Rw∈  between O-D pair w W∈ .  

 
Because the modeling framework we propose is intended for planning purposes, various 
static network traffic models are applicable to describe drivers’ reaction to an 
improvement scheme and to evaluate the resulting system performance. In this chapter, 
we adopt the stochastic user equilibrium (SUE) model for the following two major 
reasons: firstly, the SUE model has been proved to be a large-demand approximation to 
the mean of more general stochastic models that explicitly represent drivers'’ information 
acquisition in a stochastic environment (Clark and Watling, 2004); Secondly, in contrast 
to the directional differentiability of deterministic user equilibrium link flows, the 
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perturbed Logit-based and Probit-based SUE link flows are both continuously 
differentiable functions in the perturbation parameters (Meng et al., 2004). Following the 
work by Daganzo (1983) and Cantarella (1997), the SUE assignment can be expressed as 
a fixed-point (FP) problem in the link flow space, over the non-empty, compact and 
convex set of feasible link flow patterns. The FP problem is written as: 

                                 Aatpqv
Ww Rr

ww
r

w
arwa

w

∈= ∑∑
∈ ∈

,)(δ  (2-6) 

where  is the probability of drivers choosing route )( ww
r tp r Rw∈  and  is a vector of 

travel times of all routes between the O-D pair w.  

wt

 
Moreover, the Logit-based SUE model is employed herein to facilitate the presentation of 
the robust optimization schemes, because of its closed-form analytical expression and 
associated computational advantage. In order to overcome the main shortcoming of the 
Multinomial Logit, which is that it yields unrealistic choice probabilities for overlapping 
or correlated routes, we apply the C-Logit model proposed by Cascetta et al. (1996). The 
C-Logit model retains a closed analytical form, but does not suffer from the 
independence of alternatives assumption. Note that other Logit models that overcome this 
weakness, such as the cross-nested Logit model by Prashker and Beckhor (1998) and the 
paired combinatorial Logit model by Koppelman and Wen (2000) may also be applied 
here. With the C-Logit model, we have:   

                                 WwRr
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where  is the commonality factor for route w
rCF r Rw∈ , representing the degree of 

similarity (overlapping) of route r with other routes in the set of Rw. Cascettta et al. (1996) 
suggested several ways to specify the commonality factor that give similar results. One of 
those specifications is given as below:  
                                               WwRrNwCF w
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w
a

w
ar

w
ar

w
r ∈∈= ∑

∈

, ,lnδ  (2-8) 

where  is the number of routes, connecting O-D pair w that share link a and  is the 
proportional weight of link a for route 

w
aN w

arw
r Rw∈ , specified as the fraction of total route 

travel time which can be attributed to link a:  
                                                      w

ra
w
ar ttw =  (2-9) 
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2.2.2 MODEL FORMULATION 
 
The traditional network design model prescribes optimal improvement schemes that 
minimize the total travel time.  In this chapter, we attempt to determine a scheme with 
which the resulting system performance (more specifically, the total travel time) is 
insensitive to changes in travel demand. In other words, in addition to minimization of 
the total travel time, our objective includes minimization of the sensitivity of the total 
travel time with respect to the uncertain demand.  
 
With a limited budget available for road improvement, a sensitivity-based model for a 
robust scheme can be written as:  
                                   000 )()1(min === ∇⋅∇⋅−+⋅=

+ εεεεε αα TTTZ T

c
 (2-10) 

Subject to: 
                                          (2-11) Bch
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aa ≤∑

∈

+ )(

                                         ,   max0 aa cc ≤≤ + Aa∈  (2-12) 
                                         ( ) Aacctpqv
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r

w
arwa

w
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∈ ∈

+ ,)( 0δ  (2-13) 

where Z  is the value of the objective function; is a vector having as elements the 
continuous capacity increases of all links; 

+c
α  is a parameter, 10 ≤≤α ; 0=εT  is the total 

travel time when the demand perturbation equals 0 and ∑
∈

=
Aa

aaa vtvT )( ; 

T
wTTT ],,,[ 1 ΛΛ εεε ∂∂∂∂=∇ , which is the vector of derivatives of the total travel time 

with respect to the demand perturbation and 0=∇ εεT  represents the values of derivatives 

when the demand perturbation equals 0;  is the continuous capacity increase of link a; +
ac

( )+aa ch  is the construction cost function that is generally assumed to be non-negative, 
increasing and differentiable; B is the available budget;   is the upper limit of the 

capacity increase and  is the vector of the original link capacities.  

max
ac

0c
 
The model (Equations 2-10 through 2-13) can be treated as a bi-level programming 
model, in view of that the problem has the structure of a leader-follower game. The upper 
level (Equations 2-10 through 2-12) represents the leader’s behavior that minimizes the 
objective function in the feasible set defined by Equations 2-11 and 12, and the lower 
level problem (Equation 2-13) is a SUE traffic assignment problem, representing the 
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follower’s response to the leader’s decision. On the other hand, the model can also be 
solved as a single-level mathematical program with equilibrium constraints (MPEC) 
(Davis, 1994 and Meng et al., 2004). In this case, the decision variables include the 
continuous capacity increase  and the link traffic flow  as well.  +

ac av

 
The model can be considered a first-order approximation to a mean-variance model 
because the variance of total travel time  where εε εσ TT T

T ∇⋅⋅∇≈ )(Cov2 )(Cov ε  is the 

covariance matrix of the demand perturbations (Chen et al., 2002). The parameter α  
represents practitioners’ caution towards demand uncertainty. A larger value of α  would 
be used when travel demand is believed to be stable. If the fluctuation of travel demand is 
a concern, a smaller value should be used.   
 
The sensitivity-based model is a direct extension of the traditional network design model, 
which is in fact a special case of the former when 1=α  . The model is deterministic (in 
terms of the way it handles demand uncertainty) and thus is computationally simple if 
compared with previous stochastic network design models (e.g., Chen et al., 2003). Its 
disadvantage is that it works well only if demand fluctuation is infinitesimal.  

 
2.2.3 SOLUTION ALGORITHM 
 

For calculating the value of the objective function Z, we note that 
ww q

TT
∂
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where wa qv ∂∂  is the derivative of the SUE link flow with respect to the travel demand, 

which can be calculated by using the sensitivity analysis method for SUE link flows 
developed by Meng et al. (2004) and Ying and Miyagi (2001). The results are presented 
below without proof. 
 
Define the function:  

                             AatpqvH
Ww Rr
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r

w
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w
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,)(δ  (2-16) 
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Thus the SUE FP problem (Equation 2-6) is equivalent to AaHa ∈= ,0 . According to 

the implicit function theorem, gradients of SUE link flows are:  
                                                 (2-17) qvq HHv ∇⋅−∇=∇ −1

where  is the gradient matrix of SUE link flows with the dimension of qv∇ WA × ; vH∇  
and  are the respective Jacobian matrices of a set of Equation 2-16 with respect to 

the link flow and the demand perturbation. The elements of these two matrices are: 
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A number of algorithms can be applied to solve the sensitivity-based model, including the 
sensitivity-analysis-based iterative algorithms by Yang et al. (1994) and Meng et al. 
(2004) respectively for solving bi-level programming models, and the successive 
quadratic programming (SQP) algorithm by Davis (1994) for solving the single-level 
models with equilibrium constraints. These algorithms may require the gradients of the 
objective function with respect to link capacity ( cZ∇ ). Calculation of cZ∇  involves 
evaluation of the second-order derivatives bwa cqv ∂∂∂2 , which is difficult to obtain 

directly through the sensitivity analysis on the SUE link flows. One remedy, though time-
consuming, is to compute the derivatives bwa cqv ∂∂∂2  by finite difference 

approximations. Another possibility is to apply the genetic-algorithm-based approach of 
Yin (2000) since this approach does not require the gradient information at all.  
 
2.2.4 NUMERICAL EXAMPLE 
 
A numerical example is now provided to illustrate the proposed model. The example road 
network shown in Figure 2-1 has 13 nodes, 19 links and 4 O-D pairs, adopted from 
Nguyen and Dupuis (1984). The Bureau of Public Road link travel time function was 
used 
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FIGURE 2-1 An Example Network  

 
TABLE 2-1  Network Characteristics of the Example Network 

Link a 0
at  ac  

1 7.0 800 
2 9.0 400 
3 9.0 200 
4 12.0 800 
5 3.0 350 
6 9.0 400 
7 5.0 800 
8 13.0 250 
9 5.0 250 
10 9.0 300 
11 9.0 550 
12 10.0 550 
13 9.0 600 
14 6.0 700 
15 9.0 500 
16 8.0 300 
17 7.0 200 
18 14.0 400 
19 11.0 600 
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And the network characteristics and O-D demand are given in Tables 2-1 and 2 
respectively. In the example, the link construction cost function was assumed to 
be ( ) ++ = aaa cch , and no upper limit was set for the capacity increase. The total budget for 
the improvement project was 200; the parameters 0θ  and 1θ  for the SUE assignment w

0.05 and 0.5 respectively. A SQP subroutine with finite-differencing derivatives in 
Matlab was used to solve the example as well as two self-programmed subroutines: one 
to implement the SUE assignment to obtain the SUE link flows and the other to conduct 
the sensitivity analysis to estimate the derivatives

ere 

qT∇ .  

 
TABLE 2-2 O-D Travel Demand for the Example Network 

O/D 2 3 
1 400 800 
4 600 200 

 
Table 2-3 presents the values of two components of the objective function (total travel 
time T and its sensitivity index ) under varying values ofq

T
q TT ∇⋅∇ α . As expected, we 

observe that the sensitivity index decreases but the total travel time increases as α  
decreases, which clearly shows a tradeoff between the optimality (minimization of travel 
time) and the robustness (minimization of sensitivity) for the nominal demand. This 
result suggests that to improve robustness, a certain degree of optimality has to be given 
up. Table 2-4 presents the corresponding optimal schemes under varying values of α .  

 
TABLE 2-3  Values of Components of Objective Function of the Sensitivity-Based 

Model 

α  
T 

)10( 4×  
q

T
q TT ∇⋅∇  

)10( 3×  
0.0 9.9588 9.4989 
0.1 9.9248 9.5217 
0.3 9.8421 9.7203 
0.5 9.8207 9.8519 
0.7 9.8125 9.9713 
0.9 9.8091 10.215 
1.0 9.8075 10.344 
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TABLE 2-4  Improvement Schemes from the Sensitivity-Based Model 

Scheme +
2C  +

3C  +
5C  +

6C  +
15C  +

16C  
SEN-0.0 71.4 0.0 0.0 114.7 0.0 13.9 
SEN-0.1 53.5 0.0 10.1 109.8 0.0 26.6 
SEN-0.3 4.4 0.0 54.9 84.6 0.0 56.1 
SEN-0.5 0.0 0.0 60.7 59.6 0.0 79.7 
SEN-0.7 0.0 0.0 62.3 40.2 0.0 97.6 
SEN-0.9 0.0 14.6 58.2 28.1 0.0 99.1 
SEN-1.0 0.0 22.2 55.8 22.9 0.0 99.1 

Note: 1) Scheme naming rule, for instance, SEN-0.5 stands for the improvement scheme obtained by using 
the sensitivity-based model with α  equal to 0.5.  2)  for the other links.  0=+

ac

 
The effectiveness and robustness of the resultant improvement schemes can be tested by 
simulation. That is, samples can be drawn from specified distributions of travel demand, 
and for each sample a SUE assignment is conducted to evaluate the improvement 
schemes. The mean and variance of the resulting total travel times for all samples for 
each scheme will be calculated and then used for comparison of effectiveness and 
robustness. Although the sensitivity-based model is intended for use in the situation 
where the demand fluctuation is minor, we conducted simulation tests to examine how 
the resultant improvement schemes behave if confronted with higher levels of demand 
fluctuation.  
 
Simulation tests were performed with two types of demand distributions. One is a 
truncated normal distribution. For O-D pairs 1-2, 1-3, 4-2 and 4-3, the demand follows 
the following independent distributions, respectively: 500)2500,400(300 ≤≤ N , 

, 1000)2500,800(600 ≤≤ N 800)2500,600(400 ≤≤ N  and 300)900,200(100 ≤≤ N . The 

other is a uniform distribution. The O-D demand was assumed to be independently and 
uniformly distributed in the following intervals respectively: [300, 500], [600, 1000], 
[400, 800] and [100, 300]. Note that for both sets of distributions, the average travel 
demand for each O-D pair is the same, which is the nominal demand we used to obtain 
the optimal improvement schemes.  
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TABLE 2-5  Robustness Test Results for the Sensitivity-Based Model 

Normal Distribution 
Scheme SEN-0.0 SEN-0.1 SEN-0.3 SEN-0.5 SEN-0.7 SEN-0.9 SEN-1.0 
Mean  
( ) 410× 10.005 9.971 9.888 9.867 9.859 9.856 9.856 
S.D. 

( ) 310× 6.818 6.807 6.792 6.817 6.843 6.909 6.944 
Uniform Distribution 

Scheme SEN-0.0 SEN-0.1 SEN-0.3 SEN-0.5 SEN-0.7 SEN-0.9 SEN-1.0 
Mean  
( ) 410× 10.148 10.112 10.029 10.008 10.001 9.998 9.998 
S.D. 

( ) 310× 14.242 14.207 14.151 14.186 14.227 14.339 14.401 
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FIGURE 2-2 Average Travel time versus Standard Deviation for the Sensitivity-Based 
Model 

 
Means and standard deviations of total travel times from the tests with 1000 samples 
respectively are reported in Table 5. Figure 2 presents a graphic representation of the 
same set of results. From Table 5 and Figure 2, it is interesting to observe that:  

 There exists a tradeoff between effectiveness (average travel time) and 
robustness (standard deviation). Therefore, for a network design problem with 
demand uncertainty, there may not be an unambiguously optimal improvement 
scheme that is able to yield the lowest expected total travel time and the largest 
reduction in the variance at the same time. Hence, we may end up with a set of 
Pareto-optimal (non-dominated) schemes, which are optimal in the sense that no 
improvement can be achieved in one objective without degradation in the other. 
With these non-dominated schemes, decision makers can then select one that 
appeals to them based on their preferences.  

 
 Even confronted with higher levels of demand fluctuation, the sensitivity-based 

model is able to generate improvement schemes that are more robust than that 
from a deterministic network design model (the scheme of SEN-1.0), but only by 
giving up effectiveness to some extent. However, the schemes of SEN-0.0 and 
SEN-0.1 are dominated by SEN-0.3 and SEN-0.5 in both simulation tests, 
suggesting that higher caution placed on demand uncertainty (smaller α ) does 
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not necessarily result in a more robust scheme. Therefore, when facing high 
levels of demand fluctuation, the performance of the schemes from the 
sensitivity-based model may not be pre-ascertainable and robust schemes have to 
be determined through trial and error.   

                                                                             
2.3 SCENARIO-BASED MODEL  
 
The shortcoming of the sensitivity-based model with high levels of demand uncertainty 
motivates us to apply another approach, the scenario-based optimization, to the problem 
of interest. Scenario-based optimization represents uncertainty via a limited number of 
discrete uncertainty scenarios associated with strictly positive probability of occurrence, 
and attempts to solve the optimization problem across these scenarios for solutions that 
are near-optimal with respect to the population of all possible realizations of uncertainty. 
Scenario-based optimization has been widely used in different domains, such as electric 
utilities and telecommunications (e.g., Mulvey et al., 1995 and Laguna, 1998).    
 
2.3.1 MODEL FORMULATION 
 
Consider a network where travel demand is uncertain. To represent the 
uncertainty, we introduce a set of scenarios 

),( ANG =
{ }S,,3,2,1 Λ=Ω . For each scenario Ω∈s , 

the probability of occurrence is sπ and the demand between O-D pair w is .    s
wq

 
It is assumed that under each demand scenario, network traffic condition can be 
represented by the SUE model, for which the notation and formulation are the same as 
those in the sensitivity-based model, with an additional scenario index s where 
appropriate. For instance, under demand scenario s, the SUE assignment can be 
expressed as:  

                                  (2-21) Aapqv
Ww Rr

sw
r

w
ar

s
w

s
a

w

∈= ∑∑
∈ ∈

,δ

where  is the traffic flow on link a under demand scenario s and  is the probability 
of drivers choosing route  under demand scenario s.  

s
av

sw
rp

r Rw∈

 
With a set of demand scenarios, we now seek a robust improvement scheme that may 
achieve a tradeoff between the effectiveness and the robustness of a road network. In a 
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similar manner as the sensitivity-based model, the scenario-based model for determining 
a robust improvement scheme can be written as:  
                              ( )2)1(min ∑∑

Ω∈Ω∈

−−+=
+

s
sss

s
ss

c
TTTZ πβπβ  (2-22) 

Subject to: 
                                                      Bch

Aa
aa ≤∑

∈

+ )(  (2-23) 

                                               ,   max0 aa cc ≤≤ + Aa∈  (2-24) 

                                  (2-25) Aapqv
Ww Rr
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r

w
ar

s
w

s
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w

∈= ∑∑
∈ ∈

,δ

where β  is a parameter, 10 ≤≤ β ;  is the total travel time under demand scenario s, 

, and 
sT

∑
∈

=
Aa

s
a

s
a

s
as vtvT )( sT  is the expected total travel time and ∑

Ω∈

=
s

sss TT π .  

 
It is easy to see that the first component of the objective function (Equation 2-22) is the 
average total travel time while the second represents the variance of the total travel times 
across all demand scenarios. Thus the model is apparently a mean-variance model and the 
parameter β  reflects the trade-off between mean (effectiveness) and variance 

(robustness). Similarly, the scenario-based model can be treated as either a bi-level 
programming model or an MPEC. 
 
There is no doubt that the scenarios in Ω  are only one possible set of realizations of the 
uncertain demand. Two important questions about scenario-based optimization are: 1) 
how many scenarios should be included in order to find a solution that is robust across 
the population of all possible realizations of uncertainty, and 2) how to specify these 
scenarios and their associated probabilities. Intuitively, the more scenarios we include, 
the more robust solution we are likely to obtain. However, as the number of scenarios 
increases, the problem may become prohibitively large. This is actually one of the major 
shortcomings of the scenario-based model. Fortunately, prior studies (e.g., Mulvey et al., 
1995 and Laguna, 1998) have shown that relatively small samples will be able to produce 
near-optimal polices. In regard to the other question, as Mulvey et al. (1995) pointed out, 
although scenario-based optimization does not provide a means by which the scenarios 
can be specified, variance reduction methods, such as importance sampling in stochastic 
simulation can be applied to generate the representative scenarios. There is an extensive 
literature on random sampling.  Borcherds (2000) and Linderoth et al. (2004) provide an 
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illustrative introduction and describe the empirical behavior of various sampling methods 
respectively.        
 
2.3.2 SOLUTION ALGORITHM 
 
Compared with the sensitivity-based model, the scenario-based model will require a 
higher computational effort. However, the model has a structure that allows it to be 
decomposed into sub-problems corresponding to scenarios. Therefore the computational 
complexity of the model only increases linearly as the number of scenarios increases, and 
thus a relatively efficient algorithm can be developed to solve the model  
 
In this chapter, we treat the model (Equations 2-22 through 25) as a bi-level 
programming model and apply the sensitivity-analysis-based iterative algorithms to solve 
it. In order to implement these algorithms, the values and gradients of the objective 
function at iterative points are required, based on which a linear programming (LP) or a 
quadratic programming (QP) sub-problem can be defined and solved. To calculate the 
values of the objective functions at iterative points, the SUE assignment will be 
performed for each demand scenario respectively, for a total of S times. To calculate the 
gradients of the objective function cZ∇ , we have:  

                         ( ) Aa
c
TTT

c
Z

s a

s
sss
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∂
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−−+=
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Ω∈
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It is easy to show that:  
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where b
s
a cv ∂∂  is the derivative of the SUE link flow under demand scenario s with 

respect to the link capacity , which can be calculated through sensitivity analysis, in a 

similar manner as that presented earlier for the sensitivity-based model. In addition, the 
Jacobian matrix of a set of Equation 2-16 with respect to the link capacity, denoted as 

, should be calculated. Its element are: 
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And then,  
cvc HHv ∇⋅−∇=∇ −1  (2-29) 

where  is the gradient matrix of the SUE link flows with the dimension of cv∇ AA × . 

 
The general framework of the proposed decomposition algorithm is summarized as 
follows:  

Step 0: Initialization. Determine an initial value . Set iteration counter: n=0;  )(nc+

Step 1: Solve the lower-level SUE assignment problem for the given )  for each 
demand scenario s and then conduct the sensitivity analysis respectively to 
obtain ;  

(nc+

s
cv∇

Step 2: Calculate Z and ;  cZ∇

Step 3: Formulate a LP or a QP approximation to the original upper-level constrained 
optimization problem at the points of  (the details are described in Yang 
et al. ,1994 and Meng et al., 2004), and then solve the resulting problem to 
obtain a search direction ; 

)(nc+

)(nx
Step 4: Do a line search to obtain the step length ;  )(nλ
Step 5: Compute . )()()()1( nnnn xcc λ+= +++

Step 6: Convergence check. If ( ) δ≤− +++ )()1(max n
a

n
aa

cc , then stop, where δ  is a 

predetermined error tolerance. Otherwise, let n=n+1, go to Step 1 
 
2.3.3 NUMERICAL EXAMPLE 
 
The scenario-based model was applied to the same example network to obtain robust 
improvement schemes. The demands were assumed uncertain but bounded within the 
following intervals: [300, 500], [600, 1000], [400, 800] and [100, 300] for O-D pairs 1-2, 
1-3, 4-2 and 4-3 respectively.  In order to investigate the impacts of the number of 
scenarios (denoted by S), we considered four sizes: 5, 10, 20 and 50. The representative 
demands were determined as the points that equally divide the demand intervals into 

 segments (that is, 6, 11, 21 or 51 segments respectively), and the corresponding 
probabilities of occurrence were all assumed to be , the assumption also made by 
Kouvelis and Yu (1997) and others.  

1+S
S/1
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The SQP algorithm based on the sensitivity analysis method was applied to solve for the 
improvement schemes. Table 2-6 reports the optimal schemes under each set of demand 
scenarios with different values of β .  

 
TABLE 2-6  Improvement Schemes from the Scenario-Based Model 

Scheme 
+
3C  +

5C  +
6C  +

15C  +
16C  

SCE-5-0.0 0.0 13.4 127.5 59.2 0.0 

SCE-5-1.0 13.4 60.3 24.7 0.0 101.7 

SCE-10-0.0 0.0 16.5 125.1 58.4 0.0 

SCE-10-1.0 10.8 61.3 24.8 0.0 103.2 

SCE-20-0.0 0.0 18.2 123.6 58.2 0.0 

SCE-20-1.0 3.3 64.0 24.0 0.0 108.7 

SCE-50-0.0 0.0 18.7 123.3 58.1 0.0 

SCE-50-1.0 3.6 63.9 24.2 0.0 108.3 
Note: Scheme naming rule, for instance, SCE-5-1.0 stands for the improvement scheme obtained by using 
the scenario-based model with 5 scenarios and β equal to 1.0.  

 
The effectiveness and robustness of the resultant improvement schemes were examined 
by the aforementioned simulation tests. The resultant means and standard deviations of 
total travel time from the tests are reported in Table 2-7, and further illustrated by Figure 
2-3. For comparison purposes, we included the schemes obtained by using the sensitivity-
based model.  
 

TABLE 2-7  Robustness Test Results for the Scenario-Based Model 
Normal Distribution 

Scheme SCE-5-0 SCE-5-1.0 SCE-10-0 SCE-10-1.0 SCE-20-0 SCE-20-1.0 SCE-50-0 SCE-50-1.0 
Mean  
( ) 510× 9.956 9.856 9.954 9.856 9.953 9.857 9.953 9.857 
S.D. 

( ) 410× 6.722 6.909 6.723 6.900 6.723 6.877 6.723 6.877 
Uniform Distribution 

Scheme SCE-5-0 SCE-5-1.0 SCE-10-0 SCE-10-1.0 SCE-20-0 SCE-20-1.0 SCE-50-0 SCE-50-1.0 
Mean  
( ) 510× 10.093 9.998 10.091 9.998 10.090 9.999 10.090 9.999 
S.D. 

( ) 410× 14.025 14.341 14.027 14.326 14.028 14.286 14.028 14.286 
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FIGURE 2-3 Average Travel Time versus Standard Deviation for Three Models 
 
Several observations on Table 2-7 and Figure 2-3 are summarized as follows:  

 The results confirm that there is a tradeoff between effectiveness and robustness. 
The schemes obtained with emphasis on effectiveness ( 1=β ) and those on 
robustness ( 0=β ) are non-dominated optimal solutions.  
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 In face of high levels of uncertainty, the scenario-based model is able to generate 
schemes that are more robust than those from the sensitivity-based model.  

 
 The schemes resulting from a smaller number of scenarios have similar 

performances to those from larger numbers of scenarios, suggesting that 
relatively small samples may be able to produce near-optimal polices.  

 
 When the number of scenario becomes large (more than 20 for the numerical 

example), there are no performance improvement even if we increase the sample 
size. However, the threshold value is dependent on the underlying distribution of 
the uncertainty and how the uncertainty scenarios are generated and the 
corresponding probabilities of occurrence are determined.  

 
 In the simulation tests with the truncated normal distribution, the schemes 

obtained by using the identical probability of occurrence (that is to say, using the 
uniform distribution) are proved to be robust. This implies that with the objective 
of minimization of variance, using distorted probabilities of scenario occurrence 
may still result in robust schemes.   

 
2.4 MIN-MAX MODEL  
 
Both the sensitivity-based and the scenario-based models use variance (or approximation 
of variance) as a proxy for solution robustness and attempt to establish a mean-variance 
tradeoff. However, variance gives equal weight to deviations above and below the mean, 
and the focus on the mean-variance tradeoff often fails to address the risks associated 
with extreme outcomes (List et al., 2003). In real-world applications, decision makers 
tend to be risk-averse and are more concerned with the worst-case scenarios. In their 
mind, as long as the system performance achieves a certain acceptable level, it does not 
matter that much how it changes above that level. Therefore, it would be desirable to 
have an improvement scheme that performs better in the worst cases, even though the 
average performance is poorer. More specifically, we intend to determine an 
improvement scheme that minimizes the total travel time for the worst-case demand 
scenario among all of the realizations of the uncertain demand, which is bounded by an 
uncertainty set known a priori.      
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Such a min-max concept is the basic notion behind a stream of recent research in the area 
of robust optimization (see Ben-Tal and Nemirovski, 2002 and El Ghaoui, 2003 among 
others). Previous studies have mainly focused on finding robust counterparts to LP, QP, 
semi definite programs and dynamic programming algorithms. Successful applications of 
robust optimization can be found in many areas, such as finance, telecommunication and 
structural engineering. Relatively few applications can be found in the field of 
transportation (see Ordonez and Zhao, 2004 for an example). Moreover, to the best of our 
knowledge, no robust counterpart to bi-level programming or MPEC has been 
successfully formulated and solved.  
 
2.4.1 FORMULATION 
 
Denote travel demand between all O-D pairs as a vector q, which is assumed to be 
unknown but bounded by an uncertainty set Q. The uncertainty set should be closed and 
convex, specified by practitioners based on their knowledge on the uncertainty associated 
with travel demand. No underlying stochastic model of travel demand is assumed to be 
known, although such knowledge may be of use to obtain a reasonable uncertainty set. 
Below are three typical sets that are meaningful in confining uncertain travel demand: 
 
1) Box 
It is assumed that the travel demand in each O-D pair independently varies within an 
interval of [ ]maxmin , www qqQ = . This interval could be the confidence interval of the 

estimated demand obtained through surveys or by using an O-D estimation model. As a 
result, the whole uncertainty set will be WQQQQ ×××= Λ21 , which is a box centered at 

the nominal (average) travel demand.  
 
2) Polyhedron 
A polyhedron is the solution set of a finite number of linear equalities and inequalities 
that travel demand of different O-D pairs have to satisfy. For example, in addition to 
interval constraints, we may have extra constraints such as max

i
Ow

w Dq
i

≤∑
∈

, where  

could be the set of O-D pairs whose origin is node  max
iD  is the maximum possible 

number of trips generated from node i, specified by a trip generation model consider

iO

i and

ing 
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car ownership and population etc. Alternatively, iO  could be the set of O-D pairs across 
the cordon line i a max

i  is the maximum number of trips observed crossing the cordon 

line i during a certain period of time. As another example, one could observe traffic 
volumes at selected locations to obtain their upper and lower bounds, and then const
the following constraints to confine the uncertain demand: max

av

nd D

ruct 

Ww

w
awa pqv ≤≤

 

min ∑
∈

re

nd m

y 
dral set.  

, whe  

w
ap  is the proportion of travel dema  wq  in link volu e av , which should be 

determined exogenously (but do not need to be precise) when specifying the uncertaint
set. Note that the box uncertainty set is a special case of the polyhe
 
3)  Ellipsoid 
An ellipsoidal set is defined as { }1,

2
≤⋅== uuMqqq W 0 +∈RQ , where  is the 

nominal travel demand and the center of the ellipsoid, and 

0q
WWRM ×∈ , which is 

symmetric and positive definite. The ellipsoid uncertainty set is a compromise between 
the flexibility of modeling diverse uncertainties (with the box and polyhedral sets as 
special cases) and the computational complexity of the resultant robust counterpart (Ben-
Tal and Nemirovski, 2002). An ellipsoid may be given parametrically by observation data 
of moderate size. Due to the absence of an efficient way to obtain O-D information, it is 
difficult to specify such an ellipsoidal uncertainty set in real-world applications. However, 
it is feasible to use or develop an O-D estimation model to estimate the likelihood region 
of the O-D matrix based on a large set of archived loop traffic data, and then determine 
an ellipsoid that approximates the likelihood region.   
 
It should be stressed that the uncertainty set will affect the optimality and robustness of 
the resultant optimal improvement scheme. However, when applying the min-max 
concept, it is not necessary to include into the uncertainty set all the possible realizations 
of travel demand (Ben-Tal and Nemirovski, 2002).    
 
Once the uncertainty set is determined, we aim to find a robust solution that tolerates 
changes in travel demand up to the given bound. Thus the robust counterpart of the 
original network design problem can be formulated as:  
                                                  ∑

∈+
a

aaaQqc
vtv )(maxmin  (2-30) 
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It is easy to see that by solving the robust counterpart, we will be able to obtain an 
improvement scheme that results in the minimal total travel time under its corresponding 
worst-case demand scenario (note that the worst-case demand scenarios could be 
different for different feasible schemes).  
 
2.4.2 SOLUTION ALGORITHM 
 
We propose a heuristic algorithm to solve the above robust optimization model. The 
algorithm involves an iteration procedure to solve two inner optimization problems to 
obtain move directions and generate a sequence of solutions until a convergence criterion 
is met. The algorithm is described as follows:  

Step 0: Initialization. Set outer iteration counter n=0. Determine an initial value .  )(nc+

Step 1: Direction finding.  
Step 1.1: Solve the following inner problem for the given  to identify its 

corresponding worst-case demand scenario:  

)(nc+
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Step 1.2: With the resultant optimal solution , formulate a traditional 

deterministic network design problem as below and solve it for a search 
direction :  
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Step 2: Move. Compute ( ))()()()()1( nnnnn cxcc ++++ −+= λ , where  is the step length.  )(nλ
Step 3: Convergence check. If ( ) δ≤− +++ )()1(max n

a
n

aa
cc , then stop, where δ  is a 

predetermined error tolerance. Otherwise, let n = n+1, go to Step 1. 
 
In this algorithm, the step size  could be determined a priori, which should be small 
enough and satisfy  and 

)(nλ
0lim )( =

∞→

n

n
λ ∞=∑

n

n)(λ . It also could be obtained by conducting a 

local line search to ensure the successive decease of the objective function value. Such an 
iterative scheme follows the general framework of iterative descent methods, and has 
been widely applied to solve different types of transportation optimization problems. 
Although the scheme cannot be always guaranteed theoretically to converge to a local 
optimum solution, actual applications normally show good convergence and results. 
 
The first inner problem is again a bi-level programming problem or an MPEC, and thus 
can be solved efficiently by the sensitivity-analysis-based iterative methods. In each 
iteration, one has to solve a localized linear approximation to the original upper-level 
constrained optimization problem (Yang et al. 1994). 
 
When the uncertainty demand set is an ellipsoid of { }1,

2
0 ≤⋅+== uuMqqqQ , the 

problem turns out to be a quadratically constrained quadratic program (QCQP) as follows: 
uMT T

qu
⋅⋅∇

≤1
max , where  is the vector of derivatives of the total travel time with 

respect to the travel demand, calculated by using Equations (2-15)-(19). This QCQP can 
be analytically solved; the optimal objective value is 

qT∇

)()( q
T

q TMTM ∇⋅⋅∇⋅  and the 

optimal solution is )()( q
T

qq TMTMTM ∇⋅⋅∇⋅∇⋅ . 

 
When the uncertainty set is a box or a polyhedron, the localized approximation becomes 
a simple LP. An important note for the case of the box uncertainty set is that, although in 
many circumstances the worst-case demand scenario resulting from the first inner 
problem is the one with each individual O-D demand equal to its upper bound, this is not 
always true due to the presence of Fisk’s paradox that both origin to destination and total 
travel times decrease as a result of an increase in demand inputs (Fisk, 1979). 
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The iterative algorithm essentially solves a sequence of two inner bi-level programming 
problems. Therefore, the computation effort of the algorithm for solving the robust 
counterpart only increases in a polynomial manner.  
 
2.4.3 NUMERICAL EXAMPLE 
 
We used the same example network and setting to illustrate the min-max model and the 
iterative algorithm. We assumed a polyhedral uncertainty set that includes interval 
constraints [300, 500], [600, 1000], [400, 800] and [100, 300] for O-D pairs 1-2, 1-3, 4-2 
and 4-3 respectively, and a total demand constraint Dqqqq ≤+++ −−−− 34243121 . The 

maximum total demand D can be viewed as a variable to represent the level of demand 
uncertainty for the numerical example. To be consistent with the interval constraints, D 
was set to change from 1400 to 2600.  
 
We first examine the convergence of the iterative algorithm. Figure 2-4 plots the 
convergence gap ( ))()1(max n

a
n

aa
cc +++ −  against the iteration number, where the maximum 

total demand D is 1900. It can be observed that the algorithm has a fairly fast 
convergence; convergence is achieved in about 40 iterations. For other cases, we 
observed similar or faster convergence speeds.  
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FIGURE 2-4 Convergence of the Iterative Algorithm for the Min-Max Model  
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For each experiment, we computed the system performance differences between the
robust and deterministic improvement schemes under the worst-case and best-case 
demand scenarios respectively. The deterministic improvement scheme was obtained by 
using the nominal demand of 300, 600, 400 and 100 for O-D pairs 1-2, 1-3, 4-2 and 4-3
respectively while the robust schemes were obtained by solving the robust counterpart 
with varying values of maximal total demand D.  The system performance differences 
under the worst scenario were calculated as the worst-case objective value (total tra
time) of the deterministic solution minus the optimal objective value of the robust 
solution, while the difference under the best scenario was the optimal objective valu
the deterministic solution minus the objective value of the robust solution with the 
nominal demand. Intuitively, the worst-case performance differences should be positi
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Figure 2-5 plots how demand uncertainty affects the system performance differenc
When the maximal demand D is 1400, the only feasible demand scenario was the 
nominal one. Therefore, there is no performance difference. As the maximum dema
(the uncertainty level) increases, the robust solutions are obviously superior to the 
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deterministic solution in the aspect of guarding against the worst-case demand scenario. 
Interestingly, the performance differences do not always increase as the uncertainty le
increases. This observation is consistent with the one reported by Ordonez

vel 
 and Zhao 

004) for transportation networks without congestion and route choice.  

mand 

rst-
 robust solutions can compensate the losses under the best-case 

ominal) scenario.  

he min-m int al constr nly. T
s. 

 

min-
max scheme offers middle-range performance in terms of both mean and variance.  

 

(2
 
The robust solutions do not lose much “nominal” optimality, when the maximum de
D is less than 2100. After that, the loss increases then decreases. The loss does not 
increase monotonically with the uncertainty level. In all cases, the gains under the wo
case scenarios by the
(n
 
To fairly compare this model with the sensitivity-based and the scenario-based models, 
we also solved t ax model with the erv aints o he resultant min-
max scheme is 6.575 =+c , 3.516 =+c , 2.1015 =

+c , 9.8016 =
+c  and 0=+

ac  for the other link

The mean and variance of the robust scheme was also examined by the aforementioned 
simulation tests, and reported in Figure 3. It can be seen that although the min-max model
is not designed for achieving a mean-variance tradeoff, it does generate a non-dominated 
optimal solution. Compared with the schemes obtained from the former models, the 
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3. OPTIMAL FLEET ALLOCATION OF FREEWAY SERVICE PATROLS 
 
3.1 BACKGROUND 
 
Traffic incident management is a planned and coordinated process to detect, respond to, 
and remove traffic incidents and restore traffic capacity as safely and quickly as possible. 
It has emerged as a proven solution to ensure highway efficiency and reliability (PB 
Farradyne, 2000). As one component of incident management systems, freeway service 
patrols (FSP) facilitate quick removal of incidents through faster response and reduced 
clearance time.  
 
FSP typically operate as follows. The freeways are divided into disjoint beats, each 10-20 
miles long with a certain number of tow trucks patrolling on. These trucks travel back 
and forth along the beat, stopping to clear incidents in a first-reach-first-serve manner. 
The tow trucks would remove the vehicles stalled in the freeways and provide services 
such as changing flat tires and providing a needed gallon of gasoline. If they cannot get 
the vehicles operational in a few minutes they will tow them off the freeway to a 
designated area (Petty, 1997). FSP systems have been deployed extensively across the 
U.S., such as in Chicago, Los Angeles and the San Francisco Bay Area. Reviews on these 
practices can be found in Morris and Lee (1994), Petty (1997) and David and Ogden 
(1998) among others. Note that the way FSP systems work is different from the incident-
response dispatch system, where trucks are placed at certain depots, waiting for the 
dispatch commands. Once an incident is detected or reported, the dispatch center will 
dispatch a truck to the incident location. In contrast, in FSP systems tow trucks 
spontaneously detect, respond and clear the incidents.  
 
Previous research has examined the benefits of FSP. For example, Skabardonis et al. 
(1998) evaluated the FSP system on a 7.8 mile section of I-10 freeway (Beat 8) in Los 
Angeles, and reported that the services reduce incident duration in the order of 15 
minutes and the B/C ratio is greater than 5 where benefits calculated include delay and 
fuel savings. Levinson et al. (2003) carried out a stated preference analysis to investigate 
the utility that FSP provide to an individual and found that the B/C ratio for the Los 
Angeles FSP is in the range of 6.2-6.3. Moore II et al. (2004) examined the prevailing 
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assumption that FSP may reduce the likelihood of secondary accidents and concluded 
that secondary accidents on Los Angeles freeway are much less frequent than generally 
reported and avoiding secondary accidents provides only a small incentive to deploy FSP. 
However, the expected benefits associated with reducing already low secondary rates 
may be sufficient to justify the program.  
 
It is well recognized that the deployment strategy of FSP services is the key to the 
success of the program. Design of the strategy involves determination of patrol beats, 
fleet size, allocation of the fleet among beats and hours of operations etc. In practice, the 
deployment is often made based upon engineering experience and judgment. In view of 
this, previous investigations have been conducted to develop simulation, statistical and 
optimization models to help the decision making.  
 
Pal and Sinha (2002) and Ozbay and Bartin (2003) have developed simulation models 
that can be used for evaluating various FSP system configurations. Certainly, if a small 
number of alternatives can be predetermined, such simulation models can also be adopted 
to select the best deployment or expansion FSP strategy.  
 
Davies et al. (2003) developed a tool to determine the B/C ratio for providing new FSP 
service to a freeway section or enhancing the existing service. Given the number of tow 
trucks on the section, the tool uses statistical models, derived from analysis of over 120 
existing beats with 680,000 assists in California, to estimate the delay, fuel and emission 
savings per assisted incident, and consequently calculate the B/C ratio. The tool can be 
used to help decision making on where to implement the next service patrol. Khattak et al. 
(2003) developed another tool for the same purpose. The tool allows users to obtain 
statewide rankings for a freeway section based on three index criteria, and estimate the 
B/C ratio of implementing FSP on that section. The estimates are made primarily based 
upon statistical data and user inputs. Both of these decision-support tools focus on the 
facility level and localized impacts, lacking a systems perspective.  
 
This chapter does not attempt to address all of the issues associated with the deployment 
strategy of FSP. It is only concerned with how to assign tow trucks to each beat to 
maximize the effectiveness of FSP services, given the setup of FSP beats and the fleet 
size. In the current practices, the allocation is made in a heuristic manner. Uniform 
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allocation is sometimes adopted, or the fleet is allocated proportionally to the criteria like 
traffic volume, vehicle miles traveled and incident rates etc.  
 
The most directly relevant research from the literature is Petty (1997) and Ozbay et al. 
(2004). Petty (1997) proposed a model for determining where to place tow trucks so as to 
maximize the expected reduction in congestion, based on traffic theory in combination 
with marginal benefit analysis. Ozbay et al. (2004) developed a mixed-integer 
programming model to determine the number of service vehicles assigned to each depot 
given the locations of depots, and the distribution of incident occurrences. Both studies 
assume a prior knowledge of incident occurrence distributions, and do not consider the 
interaction among system performance, incident occurrence, drivers’ spontaneous 
responses to incidents, and the service intensities of FSP on various beats.  
 
3.2 MODEL FORMULATION  
 
3.2.1 DEFINITION OF THE PROBLEM  
 
We consider a FSP fleet allocation problem for a general traffic network. Given a limited 
number of FSP tow trucks and the setup of FSP beats, the decision to make is to assign 
trucks to each beat to maximize the effectiveness of FSP services. Since the length of 
each FSP beat is fixed, more tow trucks patrolling on beats imply higher service intensity, 
quicker removal of incidents and thus less incident-induced delay. Since the impacts of 
the same incidents vary significantly from location to location, where to place the trucks 
is critical to the effectiveness of the services.  
 
There exist a variety of ways to represent the effectiveness of FSP services, such as the 
expected reduction in congestion. Considering the fact that decision makers are mostly 
risk averse and more concerned with the high-consequence scenarios, this study attempts 
to determine the number of tow trucks patrolling on each beat to minimize the maximal 
system travel time that incidents may incur. In other words, we try to obtain a fleet 
allocation that achieves the least system total travel time under its corresponding worst-
case scenario (note that the worst-case scenarios could be different for different fleet 
allocation plans).  
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3.2.2 TIME-INDEPENDENT MODELING FRAMEWORK  
 
A time-independent modeling framework is used in this chapter. There are two reasons 
for adopting such a static framework. Firstly, as aforementioned, FSP work in a way 
different from the real-time dispatch systems, and thus the FSP fleet allocation is a “once 
for all” decision rather than a real-time one. Different patterns of service intensity or 
vehicle allocation could be determined for different times of day. Secondly, for each 
feasible vehicle allocation it is favorable to use a time-dependent analytical or simulation 
traffic model to evaluate the effectiveness of the alternative. However, such a model is 
always too complicated to be incorporated in the optimization procedure. Moreover, 
since the model developed in this chapter is intended for the planning purpose, details of 
traffic dynamics may not be the major concern at such a macroscopic level.  
 
3.2.3 BASIC SETTINGS 
 
Consider a network , where N is the set of nodes, and A is the set of links. Let 
W  be the set of all origin-destination (O-D) pairs in the network, Rw be the set of routes 
between O-D pair w∈W  and  be the demand between O-D pair w. Denote the total 
number of FSP beats as I, and  is the set of links that beat i comprises. Let  be the 
flow on route , and v  be the traffic flow on link 
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following flow conservation equations:  
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where =1 if route r between O-D pair w uses link a, and 0 otherwise. Denote the 
travel time for each link  as , which is assumed to be an 
increasing/decreasing and strictly convex function of link flow  on that link/the 
capacity  of that link. Consequently, the route travel time is:  
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where  is the travel time on route rw
rt Rw∈  between O-D pair w W∈ .  
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Incidents may reduce capacities of freeways for a certain period of time. With a static 
modeling framework, to represent the impacts of incidents, we assume the capacity of 
each link varies within a certain range. Mathematically, for each link a we have:  
                                             (3-5) 0000

aaaaaaa ccccc εε +≤≤−

where  is the nominal link capacity and 0
ac aε  is the coefficient of link capacity 

uncertainty (variability), whose value depends on the characteristics of that link, such as 
frequency and severity of incidents and geometry. The value can be calibrated using 
historical incident data including locations, types and durations.  
 
If the capacity of each link varies independently, the uncertainty set of link capacity 
pattern for the whole network will be a box. Recall that we are concerned with the worst 
case incurred by incidents. With a box uncertainty set, if Braess’ paradox (1968) is not 
present, it is straightforward to identify the worst-case capacity pattern where each link 
has its minimal capacity. However, it is rare, if not impossible, that such a case would 
ever occur in reality. In other words, a box uncertainty set is too conservative. To be 
more realistic, we define an ellipsoidal set to confine the pattern of uncertain link 
capacity for a general network, written as:   
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where A  is the dimension of set A (the total number of links). The set can be also written 

as: { }1,
2

0 ≤⋅+=∈= uuMccRcC A , where M is a diagonal matrix whose element is 

. Note that such an ellipsoidal uncertainty has been widely used in a recent stream of 

research on robust optimization (Ben-Tal and Nemirovski, 2002; El Ghaoui, 2003). An 
ellipsoid may be given parametrically by observation data of moderate size. 

0
aacε

 
We further assume that drivers have perfect information and always choose their routes 
with minimal travel times, and therefore network traffic flows would achieve a user 
equilibrium condition (Beckmann et al., 1956). For any realization of the uncertain link 
capacity pattern from the ellipsoidal set (caused by certain incidents), we have a 
corresponding network equilibrium problem, which can be solved to approximately 
estimate the resulting system travel time incurred by the incidents.  
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3.2.4 REPRESENTATION OF FSP IMPACTS 
 
Since FSP trucks continuously patrol on beats looking for incidents to assist, they would 
be able to respond to incidents more quickly and thus reduce incident durations. Incidents 
may reduce freeway capacities, and consequently locations of incidents could become 
bottlenecks. Essentially, FSP are able to reduce durations of activation of the bottlenecks. 
With the current time-independent modeling framework, it is impossible to exactly 
replicate such impacts of FSP. Rather, we assume that FSP may shorten the range of the 
capacity variation of the link that the trucks are patrolling on. In other words, the impacts 
of the services are represented as reducing the variability of link capacity. 
 
With an ellipsoidal uncertainty set of link capacity across the network, what the FSP 
service really change is the geometry of the set, as illustrated in Figure 3-1 for an 
illustrative two-link example, where the outer ellipse represents the uncertainty set before 
TSP while the inner ellipse is the set after implementing FSP at link 1. Therefore, 
different FSP fleet allocation may change the uncertainty set differently, leading to 
different worst-case scenarios realized from the corresponding sets. More precisely, the 
set C should be written as , where z is the vector of fleet allocation.  ( )zC

 
 

Capacity of Link 1 

Capacity of Link 2 

Before FSP

After Implementing FSP at Link 1 

 
                             Legend: dots represent actual observations of link capacities  

FIGURE 3-1 An Illustrative Example of FSP Impacts  
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It is easy to know that the intensity or frequency of the FSP tow trucks on each beat is 
given as: 

                                                               
i

i
i t

zh =  (3-7) 

where  is the service intensity at beat i,  is the number of tow trucks assigned to beat 
i, and it  is the round trip time of beat i. This round trip time is endogenously o

exogenously calculated by considering round trip length, actual truck patrol speed, 
layover times at ends of trips and incident clearance time averaged across the trips made 
within the time period of interest.  

ih iz
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We further represent the relationship between service intensity of FSP and link capacity 
variability. For , the set of links that beat i comprises, we assume the following 

relationship:  
iBa∈∀

                                                 )(')( iia zshs ==ε   (3-8) 

Where s or s’ is a decreasing function of service intensity or number of assigned tow 
trucks, which could be continuous or discrete. The relationship is intuitively correct, and 
it is feasible to calibrate it from empirical data reported in Davies et al. (2004) and 
Dowling et al. (2004).  
 
3.2.5 FORMULATION 
 
As below we present a model to determine an optimal tow-truck fleet allocation that 
minimizes the maximal system travel time that incidents may incur. With the above 
considerations, the optimization problem can be written as below:  
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           subject to:  
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where Z is the number of total available trucks. In summary, the upper level problem also 
has the following two definition constraints respectively:  
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and the lower level problem satisfies the following definition constraint:  
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This is a min-max bi-level programming model. The upper level problem represents 
planners’ behavior, determining tow truck allocation to minimize the maximal total travel 
time incurred by incidents. The lower level problem represents drivers’ route choice 
behaviors, affected by the allocation decision from the upper level and capacity 
reductions caused by incidents.  
 
Note that the variable , the number of allocated trucks should be integer, and thus the 

above model should be an integer programming model. However, due to the computation 
difficulty, this chapter treats them as real numbers. This simplification does not 
necessarily impair the applicability of the model. In actual application, one could use the 
model to obtain optimal service intensity, and then marginally adjust layover times to 
provide the intensity with an integer number of vehicles, and thus eventually determine 
the fleet allocation.    

iz

 
3.3 SOLUTION ALGORITHM 
 
The model (9)-(13) is non-convex, and thus only local optima can be found. There is no 
available solution algorithm for the model. Therefore, we propose a heuristic iterative 
algorithm to solve the model. Although the algorithm cannot be guaranteed theoretically 
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to converge to a local optimum solution, actual applications normally show good 
convergence and results. 
 
The iterative algorithm views the model (3-9)-(13) as a master problem with a slave 
problem. The master problem is written as:   
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z

           subject to:   

                                                       (3-18) Zz
I

i
i ≤∑

 
where  is a non-convex function, defined by the optimal objective function of a bi-

level programming slave model.  
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For solving the master problem, many efficient algorithms proposed in the literature of 
operations research could be applied. Unfortunately, since it is difficult to derive 
analytically the gradient  and only values of  can be made available, we 

could only use the sequential simplex method (Nelder and Mead, 1965) or apply iterative 
descent methods with finite differencing derivatives, such as the sequential quadratic 
programming algorithm (SQP, Han, 1976).   
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The slave bi-level programming model defining  is given as below:   )(zJ
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A number of algorithms can be applied to solve the slave problem, such as those 
proposed by Yang et al. (1994) and Chiou (2005). In this chapter, we apply the 
sensitivity-analysis-based iterative method by Yang et al. (1994). The basic idea of the 
algorithm is to formulate local linear approximation of the upper-level objective function 
using the derivative information from sensitivity analysis for equilibrium flows (Tobin 
and Friesz, 1998), and solve the resultant linear programming problems for a descent 
search direction. Therefore, the algorithm is in fact a sequence of linear approximation to 
the original problem.  
 
In this study, with the ellipsoidal capacity uncertainty set, the local linear approximation 
to the original bi-level model turns out to be a quadratically constrained quadratic 
program (QCQP) as follows: 
                                                 uMT T

cu
⋅⋅∇

≤1
max  (3-24) 

where  is the gradient of the total travel time with respect to link capacity, calculated 

by conducting the sensitivity analysis for user equilibrium flows. This QCQP can be 
analytically solved; the optimal objective value is 
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3.4 NUMERICAL EXAMPLE 
 
A numerical example is now presented to illustrate the proposed model. The example 
road network shown in Figure 3-2 has 13 nodes, 19 links and 4 O-D pairs, adopted from 
Nguyen and Dupuis (1984). The Bureau of Public Road link travel time function was 
used 
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And the network characteristics and O-D demand are given in Tables 3-1 and 3-2 
respectively.  
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FIGURE 3-2 An Example Network 

 

TABLE 3-1 Network Characteristics of the Example Network 
Link a 0

at  0
ac  0

aε  
1 7.0 800 0.5 
2 9.0 400 0.1 
3 9.0 200 0.2 
4 12.0 800 0.3 
5 3.0 350 0.2 
6 9.0 400 0.5 
7 5.0 800 0.2 
8 13.0 250 0.2 
9 5.0 250 0.1 
10 9.0 300 0.4 
11 9.0 550 0.1 
12 10.0 550 0.5 
13 9.0 600 0.3 
14 6.0 700 0.5 
15 9.0 500 0.1 
16 8.0 300 0.4 
17 7.0 200 0.2 
18 14.0 400 0.1 
19 11.0 600 0.1 
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TABLE 3-2 O-D Travel Demand for the Example Network 
O/D 2 3 
1 400 800 
4 600 200 

 
In the example, the FSP impact function was assumed to be ( ) iz

aa ezs *5.00' −⋅= ε , where  

is given in Table 3-1. The setup of beats is also illustrated in Figure 3-2, which is: Beat 1 
= {links 1, 6}; Beat 2 = {links 3, 5, 7}; Beat 3 = {links 17, 8}; Beat 4 = {links 12, 14}; 
Beat 5 = {links 4, 13} and Beat 6 = {links 10, 16}.  

0
aε

 
A SQP subroutine with finite-differencing derivatives in Matlab was used to solve the 
master problem (3-17)-(18) as well as one self-programmed subroutine to solve the bi-
level programming model (3-19)-(23).  
 
We first examined the convergence of the iterative algorithm. Figure 3-3 plots the value 
of the objective function against outer iteration number of the SQP procedure, where the 
size of FSP fleet was 10. It can be observed that the outer iteration of the algorithm had a 
fast convergence; convergence was achieved in about 15 iterations. However, total 
computation was quite demanding due to the use of finite-differencing derivatives, which 
suggests that the iterative algorithm may not be applicable for a large-scale network. The 
resultant fleet allocation is 3.1, 1.5, 0, 0.7, 1.9 and 2.8 for Beats 1 to 6 respectively.  
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FIGURE 3-3 Convergence of the Iterative Algorithm for the Min-Max Model 
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To validate the effectiveness of the proposed model, we compared system performance 
that optimal and uniform allocation may result in. Here the total fleet was set as 6 and 
uniform allocation means one assigned truck on each beat. We computed differences of 
total travel times that uniform and optimal allocation could achieve under their 
corresponding worst cases. In order to examine the impacts of capacity uncertainty and 
network congestion, we varied the level of capacity uncertainty by multiplying  listed 

in Table 3-1 by an amplifier, changing from 0 to 1.6, and considered two demand levels: 
100% and 70% of the demand given in Table 3-2.  

0
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FIGURE 3-4 System Performance Differences between Uniform and Optimal 

Allocation (Total Travel Time of Uniform minus that of Optimal) 

 
Figure 3-4 depicts performance differences of optimal and uniform allocation (the worst-
case system travel time of uniform allocation minus that of optimal allocation) against 
varied values of the amplifier for two demand levels. The results are within expectation 
and intuitively realistic.  We have two observations from the figure:  

 The performance difference is always positive, suggesting that the optimal fleet 
allocation always performs better against the worst-case scenarios than the 
uniform allocation. 
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 The performance difference becomes more significant with higher levels of 

capacity uncertainty or network congestion, suggesting that the model may 
contribute more in the situations of high frequencies of incidents or high levels of 
network congestion.   
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4. CONCLUSIONS  
 
This report has applied robust optimization methodology to determine robust strategies to 
improve the performances of highway systems, confronted with fluctuations in traffic 
demands or irregular incidents.  
 
The first-half of the report has addressed network design with demand uncertainty. Three 
alternate models, sensitivity-based, scenario-based and min-max respectively have been 
presented to determine robust optimal improvement schemes for road networks under 
demand uncertainty. The usefulness and validity of these three models have been 
demonstrated through numerical examples and simulation tests. It is suggested that if 
decision makers aim to achieve a mean-variance tradeoff, the sensitivity-based and 
scenario-based models should be used with particular caution placed on the minimization 
of the sensitivity of total travel time with respect to demand perturbations or 
minimization of the variance of total travel times under various demand scenarios. If 
fluctuations of travel demand are believed to be non-significant, the sensitivity-based 
model is more appropriate to use, because it is simpler and requires much less 
computation efforts. Otherwise, the scenario-based model should be used, and additional 
efforts are needed to generate the demand scenarios and determine the corresponding 
probabilities of occurrence. On the other hand, if decision makers are more concerned 
with the worst-case scenarios, the min-max model should be applied.      
 
It should be pointed out that although only demand uncertainty was of concern in the 
three models, the proposed modeling framework is quite general and is applicable to 
accommodate other types of uncertainty, such as incident-induced travel time uncertainty. 
As aforementioned, non-recurrent events, such as incidents will reduce the effective road 
capacity and deteriorate the network performance rapidly. Transportation network design 
may be improved significantly if these impacts can be predicted. To address incident-
induced travel time uncertainty (or more specifically, link capacity uncertainty), we can 
add another additional component to the objective function of the sensitivity-based model 
to minimize the sensitivity of total travel time to the link capacity, generate another set of 
scenarios to approximate the link capacity uncertainty and then incorporate them into the 
scenario-based model, or add another additional optimization layer to identify the worst-
case capacity scenarios into the min-max model.         
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The second-half of the report has investigated how to make use of FSP systems to 
improve the robustness of the highway systems. We have presented a min-max bi-level 
programming model to determine the optimal fleet allocation strategy for FSP services. A 
heuristic solution algorithm has been proposed to solve the model. Both the model 
formulation and the solution algorithm have been validated and demonstrated through a 
numerical example.  It has been observed that the robust optimal fleet allocation always 
performs better against the worst-case scenarios. Moreover, the performance difference 
becomes more significant with higher levels of capacity uncertainty or network 
congestion, suggesting that the model may contribute more in the situations of high 
frequencies of incidents or high levels of network congestion.   
 
In summary, this report has delivered a proof of concept that optimal planning and 
management strategies can be formulated through applying robust optimization 
methodology such that limited resources could be allocated more rationally, and 
reliability of a highway network improved more efficiently. 
 
Further research would be applying the robust optimization concept to help Metropolitan 
Planning Organizations to refine their regional transportation planning to further improve 
the robustness or reliability of road systems at the regions or to allow Departments of 
Transportation to schedule maintenance activities in networks in a manner that is 
“robust” to demand uncertainties or incidents. The concept can also be adopted to fine-
tune the existing FSP systems at specific locations, such as the San Francisco Bay Area 
or Los Angeles or to determine optimal deployment strategies of new FSP systems. 
Several tasks will be needed when applying the concept: 1) validation of the assumptions 
of the model formulations and calibration of parameters by using actual data; 2) 
development of more efficient algorithms for the models; 3) extension of the FSP fleet 
allocation model to simultaneously determine the setup of beats and fleet allocation; 4) 
data collection and evaluation.  
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