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Abstract 

We have conducted a study of Sierra Nevada runoff by analyzing the onset of snowmelt 

(or peak snowmass timing) from observations and conducting model simulations of 

snowpack. For our observation study, monthly snow water equivalent (“SWE”) 

measurements were combined from two data sets to provide sufficient data from 1930 to 

2008. The monthly snapshots are used to calculate peak snow mass timing for each snow 

season. Since 1930, there has been an overall trend towards earlier snow mass peak 

timing by 0.6 days per decade. The trend towards earlier timing also occurs at nearly all 

individual stations. Even stations showing an increase in April 1st SWE exhibit the trend 

toward earlier timing, indicating that enhanced melting is occurring at nearly all stations. 

Analysis of individual years and stations reveals that warm daily maximum temperatures 

averaged over March and April are associated with earlier snow mass peak timing for all 

spatial and temporal scales included in the data set. The influence is particularly 

pronounced for low accumulation years indicating the potential importance of albedo 

feedback for the melting of shallow snow. The robustness of the early spring temperature 

influence on peak timing suggests the trend towards earlier peak timing is attributable to 

the simultaneous warming trend (0.1ºC per decade since 1930, with an acceleration in 

warming in later time periods). For our modeling study, we have used the Weather 

Research and Forecasting Model (“WRF”) to model snowpack at high resolution over the 

Sierra Nevada during the 2001-2002 water year. We have focused on one year to validate 

the use of WRF for understanding runoff variability. We have found that high resolutions 

are necessary to accurately model snow cover over the Sierras. 

 

Introduction  

The California water supply is determined by cold season precipitation (rain in low 

elevations and snow in high elevations) and the capacity of natural and man-made 

reservoirs. Most man-made reservoirs were built in the early 20th century for two 

purposes: (1) the storage and disbursement of cold season rains and (2) the storage and 

disbursement of runoff from spring snowmelt. Reservoirs were designed to store only a 

fraction of the state's total yearly precipitation, under the assumption that a sufficient 

delay between winter rains and spring snowmelt runoff would always exist, with 

snowmelt occurring at roughly the same time every year. The annual mountain snowpack 

thus provides natural storage for the water supply until the onset of snowmelt. Changes in 

the amount of precipitation, percentage of precipitation falling as rain instead of snow, 

and onset of snowmelt can therefore affect the state's water supply. During anomalously 

high rain or snowmelt events, reservoirs must not only store water, but also discharge 

excess water to avoid flooding. Water must sometimes even be discharged in anticipation 

of large events to reduce flood risk. The dual functions of storage and flood management 

require reservoir managers to carefully balance factors such as: precipitation, snowmelt 

timing, reservoir storage capacity, and demand. Even if future climatological 

precipitation remains unchanged, shifts in snowmelt timing can affect California's water 

supply during the warm season due to reservoir storage capacity constraints. To 

understand changes in snowmelt water supply as a result of climate change, it is therefore 
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important to understand changes in the timing of snowmelt in addition to total spring 

snowpack amounts. 

Snowpack measurements are essential for predicting timing and amount of warm season 

snowmelt runoff. For this reason, a network of stations in the Western United States 

dating back to the 1930s tracks water content of snow (also known as snow water 

equivalent or “SWE”). Measurements are taken manually around the 1st of the month at 

each station according to a prescribed monthly schedule. Because of the desire to track 

peak SWE--thought to occur in early April--many more records are available on or 

around April 1st (Serreze et al. 1999).  Previous snowpack studies have focused on this 

well-sampled April 1st SWE data set (Barnett et al. 2008, Mote 2006, Mote et al. 2005, 

Cayan 1996) to assess the climatology and variability of snowpack in the Western United 

States. These studies are important for understanding total melt water available during the 

warm months, but do not directly address the timing of the transition from accumulation 

to melt from snow observations. 

Ideally, high-temporal resolution data would be available to study the evolution of the 

snowpack over the course of the season, particularly the exact date and amount of 

maximum SWE and subsequent melt rates. Stations have been built in California since 

the 1970s to measure daily SWE automatically, but do not begin early enough for long-

term variability analysis. Previous observational studies have instead utilized streamflow 

data, presumably snowmelt-dominated, as a proxy for snowmelt timing. They show there 

has been a trend in streamflow discharge towards earlier in the spring using a variety of 

streamflow metrics (Regonda et al. 2005, Stewart et al. 2005, Cayan et al. 2001).  Daily 

SWE data from 1992 to 2002 has also been combined with long-term historic streamflow 

data to study the onset of spring in the Sierra Nevada  (Lundquist et al. 2004); however, 

because of the shortness of the SWE time series, streamflow measurements must still be 

relied upon to measure long-term variability in snowmelt. Unfortunately, this indirect 

variable is not a perfect measure of snowmelt, as it can be influenced by other factors 

such as precipitation, temperature, lithology, soil composition, vegetation (Aguado et al. 

1992), and pre-snowmelt soil moisture.  

The majority of regional modeling studies of the hydroclimate over the Western United 

States have been run at a resolution of 36km or coarser (Dickinson et al. 1989; Giorgi et 

al. 1994; Kim et al. 2002; Leung et al. 2003; Duffy et al. 2006; Kim et al. 2009; Lynn et 

al. 2009); this resolution is an improvement over coarse resolution global climate model 

(“GCM”) studies, but higher resolutions are still needed to increase the accuracy of 

snowpack studies over the Sierras. For example, Duffy et al. (2006) found that GCM 

output at 100km resolution has an absence of snow over the Sierra Nevada. Increasing 

resolution to 40km using a regional model yields minimal snow over the Sierra Nevada, 

but still lacks the granularity of the observations and is an order of magnitude smaller.  

 

Objectives 

To study changes in the Sierra Nevada snowpack directly and provide a purely empirical 

background to compare against modeling studies, we first conducted a study focused on 

observations of monthly SWE. A data set has been compiled from two different sources 
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to provide sufficient stations with SWE measurements from mid-January through mid-

May over a long enough time period to do robust trend and sensitivity analysis. The 

monthly data is used to infer peak snow mass timing from February to May. We hoped to 

explain the trend in runoff timing by finding a relationship between peak snowmass 

timing and other climate variables.  

The second part of our study of Sierra Nevada runoff aimed to model a snow season to 

explore runoff variability. The modeling study was conducted by running a regional 

climate model, the Weather Research Forecasting Model (“WRF”), over the Sierra 

Nevada for one snow season. The observation data from the first study has been used to 

validate the model for future runoff modeling work. In this study we explore what 

resolution is necessary to capture runoff timing and amount. 

 

Procedure: Observation Study 

A snow station data set was compiled from two existing data sets for the state of 

California: the National Resources Conservation Service ("NRCS") and Water and 

Climate Center (www.wcc.nrcs.usda.gov/snowcourse/) and the California Department of 

Water Resources (http://cdec.water.ca.gov/misc/SnowCourses.html).  A total of 154 

stations across California with recorded SWE data from mid-January to mid-May with at 

least 30 years of data from 1930 to 2008 are used (see Fig. 1). These stations range in 

their years of available data. It has been noted that the exact timing of historical monthly 

snow course measurements can vary, with some measurements being taken within a few 

days of the 1st-of-the-month measurement date (Cayan 1996). In these measurements, 

there may also be a systematic shift in the actual date of measurement towards later 

(Mote et al. 2005). To circumvent these issues we only selected stations with exact 

measurement dates corresponding to raw SWE data for our analysis. The correlations 

shown in this paper are noticeably reduced when SWE values are assumed to be 1st-of-

the-month values; such employment of SWE measurements may therefore lead to a non-

negligible source of random error in the other studies. Subsequent sections will describe 

criteria used to produce subsets of data for analysis.  

Temperature data is also used to diagnose snow accumulation and melt processes. 

Maximum and minimum daily temperature data from 1930 to 2003 was obtained from 

the Surface Water Modeling group at the University of Washington from their web site 

(www.hydro.washington.edu/Lettenmaier/Data/gridded/) the development of which is 

described by Hamlet and Lettenmaier (2005). This data set was chosen for its long 

temporal coverage (1915 to 2003) and high spatial resolution (1/8 degree) relative to 

other pre-satellite era temperature products. This product has also been used in previous 

snowpack studies (Mote et al. 2005, Hamlet et al. 2005). 

To assess inter-annual variations in California snowpack evolution, a metric was 

developed quantifying systematic changes in snow accumulation and melt timing. In 

particular, we focused on the timing of peak snow mass. We created a measure of this 

quantity relying on SWE measurements taken around the 1st-of-the-month from February 

to May. We used these monthly snapshots rather than daily SWE data because the daily 
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data are only robustly available from 1980 to the present, too short a time series to 

calculate long-term trends in maximum SWE timing.  

The peak snow mass timing is defined for any given year as the temporal centroid date, 

also known as the center of mass, of SWE values (SWE centroid date or “SCD”) from 

approximately February 1st to May 1st for stations with complete data over this four 

month time period. The SCD is given by the equation: 

! 

SCD =
t
i
SWE

i
"

SWE
i

"
 

Each individual measurement during the season is distinguished by i. The SWE 

measurements are given by SWE_i in cm. The value t_i is the exact date of the 

measurement in Julian days and falls within two weeks of the first of the month for 

February, March, April, and May. The SCD metric is similar to that used in previous 

studies of streamflow peak timing (Stewart et al. 2005, 2004). Fig. 2a provides a 

visualization of this calculation for a location and a year when daily data are also 

available. As is clear from the figure, SCD captures the gross timing of snow processes. 

For the peak to shift earlier (later), the percentage of snow accumulation later in the 

season must decrease (increase), or there must be an increase (decrease) in the percentage 

of snow melting later in the season. Thus it corresponds roughly with the peak in snow 

mass.  

The SCD metric provides a more accurate representation of the timing of snow 

accumulation and melt than the date of absolute maximum SWE value given in the four 

approximate 1st-of-the-month point measurements.  It allows for the snow mass peak 

timing to shift on the order of days instead of being constrained to shifts in monthly 

increments. Long-term variability in snow mass peak timing can be studied on sub-

monthly time scales despite the lack of daily data. As we show below, the changes in 

peak snow mass timing in the Sierra Nevada are order days, confirming the need for a 

metric with this property. 

For stations where daily data are available within close proximity to long-term monthly 

stations, SCD was calculated on a daily and monthly basis to assess the accuracy of using 

historical monthly SWE values. Daily SWE values from January 15th to May 15th from 

13 stations were used to calculate a “daily SCD”, while 1st-of-the-month measurements 

taken from the daily stations were used to calculate a “monthly SCD”. These stations 

were chosen to correspond to those used in subsequent long-term monthly trend analysis. 

For each station, years missing 10 or more days from January to May were excluded; this 

criterion was similarly employed by Knowles et al. (2006) and developed by Huntington 

et al. (2004). The SCD values calculated from monthly and daily data was found to be 

extremely highly correlated (r = 0.98, p < 0.01), giving confidence that the temporal 

resolution of monthly snapshots is high enough to provide accurate information about 

snowpack timing. 
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Procedure: Modeling Study 

The Weather Research and Forecasting (“WRF”) model version 3.0 was used to study the 

Sierra Nevada hydroclimate. The following physics options were used: the modified 

Kain-Fritsch convection parameterization (Kain and Fritsch 2004; Kain 2004), the 

Thompson et al. (2004) cloud microphysics scheme, the CAM3 shortwave and longwave 

radiation schemes (Kiehl et al. 1996), and the Yonsei University planetary boundary layer 

scheme (Hong and Dudhia 2006).  More details on the WRF model can be found at the 

website: http://wrf-model.org.  

The hindcast simulation was forced with the North American Regional Reanalysis 

(“NARR”) product (Mesinger et al. 2006). The NARR product covers North America and 

a portion of the surrounding oceans at 32km resolution with temporal coverage from 

1972 to the present. The product was created using the National Center for 

Environmental Prediction’s (“NCEP”) Eta model to downscale the NCEP Reanalysis 

product to 32km, with additional data assimilation to improve the reanalysis product. The 

NARR product has been proven to be an improvement over the NCEP Reanalysis 

product with better estimations of pressure, temperature, and precipitation, especially 

during the winter months (Mesinger et al. 2006). The simulation was run from November 

2001 to November 2002. 

The model domain has three one-way nested domains at 27km, 9km, and 3km resolution 

over the Sierras (Figure 7). The outermost domain covers much of the Western United 

States to capture moisture flow into the region. The 9km domain covers all of California, 

and the 3km innermost domain covers the Sierra Nevada. The mountain terrain is well 

represented at this resolution.  

Validation of the model output was conducted by comparing daily SWE gridcell values 

again daily observations from snow stations. While the scale of observations (1 to 10m 

resolution) is very different than that of model observations (27, 9, or 3km resolution), 

the observations can give us a rough estimate of when snowmelt should start to occur 

over the snowpack.  

 

Results: Observation Study 

Examination of SCD from 1930 to 2008 yields evidence that it is trending earlier. When 

stations with data for at least 75% of these years are included, SCD is found to occur 

earlier at a rate of 0.6 days per decade (Fig. 3; this is similar to figures showing trends in 

earlier spring timing in Cayan et al. (2001)). This trendline has a slope significantly 

different than zero (using the Student’s T-test, p < 0.01). When stations with fewer yearly 

SCD values are also included, or when the starting year of the trendline is set later to 

include more stations, statistically significant non-zero trendlines of earlier peak timing 

are still found (Table 1). In most cases, the trend towards earlier peak timing is enhanced 

(i.e. the trend becomes more negative). There is a similar enhancement in the averaged 

March and April maximum daily temperature warming trend from 1930 to 1970 as 

successively later periods of the time series are isolated (Table 1, last row).  We discuss 

the potential causal link between the warming and SCD trends in the discussion. 
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Almost all individual station SCD trends are also negative (Fig. 4), suggesting a 

consistent signal from catchment to catchment. In addition, Fig. 4 compares station trends 

in SCD to trends in the highly studied April 1st SWE record. (Note that measurements 

are taken within two weeks of April 1st for the “April 1st SWE record.” Mote et al. 

(2005) noted that the fluctuation in measurement date may affect April 1st SWE trends, 

but concluded that climatic factors likely have a dominant effect on the trend.) The 

majority of stations exhibit a negative trend in both SCD and April 1st SWE. A negative 

SCD trend is associated with snow melting earlier, which also results in trends towards 

lower SWE. Some of the change in SCD may also be driven by a shift towards more rain 

and less snowfall as described by Knowles et al. (2006); our analysis shows that only the 

lowest elevation stations have exhibited statistically significant trends in both metrics.  

Fig. 4 resolves the apparent inconsistency between increasing April 1st SWE at some 

locations and a warming climate. All the points with positive trends in April 1st SWE 

have negative trends in SCD. These points all have positive trends in SWE from February 

to May (not shown). Enhanced melting at these locations must therefore be compensating 

for the increased accumulation to create the negative trend in SCD. The link between 

April 1st SWE values and melt during previous months has been observed in some daily 

Snowpack Telemetry (“SNOTEL”) stations in the California Sierra Nevada; April 1st 

SWE was shown to be highly anti-correlated with daily melt events from the previous 

months, implying changes in April 1st SWE have been due at least in part to melt events 

(Mote et al. 2005).  

Variability in April 1st SWE is evaluated against variability in the SCD metric to explore 

relationships between SCD and the SWE variable used to predict water supply. Fig. 5 

shows a scatterplot of April 1st SWE versus SCD values. Each point represents a snow 

station during one snow season. Snow stations with a minimum of 75% of SCD values 

over the period from 1950 to 2003 were used for this analysis. This time period was 

selected to coincide with the available temperature record and increase the number of 

snow stations available for temperature sensitivity studies in Section 3d. (A nearly 

identical distribution is found if the start date is changed to 1930.) For the given subset of 

snow stations, SCD occurs over a wide range, with the average SCD occurring on Julian 

day 73 (mid-March). The average April 1st SWE value is 74cm. 

The striking bell-shaped distribution of the April 1st SWE versus SCD scatterplot arises 

because of differing behavior of SCD for large and small seasonal snow accumulation. 

When April 1st SWE is large (roughly greater than or equal to 100cm), the SCD tends to 

occur in a narrow band between Julian day 70 and 90, with most points (96%) above the 

mean of 73. This corresponds to a time period mainly falling between the middle of the 

2nd and 3rd bar of Fig. 2, or the calendar month of March. There are three main reasons 

for this behavior: (1) To attain such high April 1st SWE values, relatively consistent 

storm activity and steady accumulation is necessary from February to March. (2) The 

large accumulation then increases the effective thermal inertia of the snowpack, delaying 

the onset of melting. (3) This large accumulation then only melts once the seasonal 

warming becomes great enough to initiate the melting process. These three processes 

make for a late SCD, with little variation from season to season.  

When April 1st SWE is small (less than roughly 100cm) however, the SCD falls over a 

large range between Julian day 21 and 114. This range is more than four times that of the 
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high seasonal accumulation and covers the middle of the 1st bar to the middle of the 4th 

bar in Fig. 2, or from the last day in January to the end of April. The significantly greater 

range in SCD values is due to two factors: (1) Low accumulation is the result of a 

relatively small number of storms with highly variable timing. (2) Melting in shallow 

snow is more sensitive to temperatures above freezing because of the smaller thermal 

inertia of shallow snow and its greater susceptibility to albedo feedback. This results in 

earlier (later) snowmelt when temperatures are warm (cold). 

To explore the sensitivity of SCD to temperature further, the colorbar given in Fig. 5 

distinguishes the distribution of SCD values by local averaged March and April (“MA”) 

maximum daily temperature. The local average maximum daily temperature for each 

station is calculated by taking the local gridcell maximum daily temperature, averaging it 

over two months, and adjusting it for the elevation of each station assuming a constant 

lapse rate of 6.5˚C/km.  When the distribution of SCD vs. April 1st SWE is distinguished 

by temperature, SCD has very little systematic association with either January or 

February temperatures, but is closely linked to early spring temperature (colorbar in Fig. 

5). The correlations of observed SCD and temperatures for different months are shown in 

the first row of Table 2, and clearly quantify the influence of late accumulation-season 

temperature on SCD. Lower MA temperatures appear to shift SCD into the later half of 

the season. The most likely reason for this connection is that snowmelt during March and 

April is reduced (increased) by anomalously cold (warm) March and April temperatures, 

thus moving SCD to the later (earlier) portion of the season. The sensitivity to MA 

temperature is particularly pronounced for years when April 1st SWE is low (r = -0.61, p 

< 0.01 when April 1st SWE is less than 100cm versus r = -0.47, p < 0.01 when it is above 

this threshold), providing direct evidence of the greater susceptibility of shallow snow to 

fluctuations in temperature and potentially albedo feedback. 

Fig. 5 provides visual evidence that air temperature, the primary thermodynamic control 

of melt, is potentially a major variable affecting SCD. Fig. 6a provides a statistical 

measure of the link between the MA maximum daily temperature and SCD for the direct 

observations of these variables. Temperature is found to shift SCD earlier in the season 

by 2.5 days per degree and is significantly anti-correlated (r = -0.62, p < 0.01) with SCD. 

As noted in Section 3b, the trend towards earlier SCD coincides with a trend toward 

warmer MA temperature. The anti-correlation between SCD and temperature seen in Fig. 

6a could result from these two trends. However, when the SCD and temperature time 

series are detrended, the anti-correlation remains (r = -0.47, p < 0.01). This suggests the 

link between MA temperatures and SCD is robust for temporal variability as well as 

trends in SCD, a point we return to in the discussion. 

Figures 6b and 6c reveal the SCD-temperature relationship when controlled for spatial 

and temporal variability. In Fig. 6b, the temporal SCD and maximum daily temperature 

anomalies (defined as the observation value minus the mean value at each station) are 

compared. Here we eliminate any systematic relationship between SCD and temperature 

in Fig. 6a arising from the fact that the stations are at different locations and therefore 

have different climatological temperatures. Conversely, in Fig. 6c, temporal variability is 

eliminated by comparing station mean SCD values against station mean maximum daily 

temperatures. Thus, each point on the graph is an individual station. A negative 

relationship between SCD and temperature remains when spatial and temporal variability 

are each isolated in turn. Moreover, Table 2 shows that MA temperatures have the 
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greatest overall relationship with SCD from January to May for direct observations, 

anomalies, and mean station values. This analysis was also conducted using averaged 

daily minimum temperatures; negative correlations between SCD and temperature 

remained, but were lower than shown in Fig. 6 and Table 2. This is likely due to 

maximum temperature being more closely associated with snowmelt given that average 

minimum temperatures are predominantly below freezing. This analysis provides 

evidence of the predictive value of MA maximum temperature for both spatial and 

temporal variability in SCD. 

 

Results: Modeling Study 

To quantify the errors associated with using WRF 3.0 to study the hydroclimate of the 

Sierras, we first compared model simulations with observations. High-resolution nests 

(on the order of 3km) are necessary to produce SWE values on the same order as 

observations (Figure 8). However, point observations have shown that the simulated 

snowpack experiences melt earlier in the season than in reality (Figure 9). This results in 

lower maximum SWE values and a total loss of snowpack earlier in the season in the 

simulation. The timing of the onset of snowmelt for the set of snow stations used is 

correlated with elevation, resulting in low elevation stations experiencing snowmelt 

before high elevation stations. This is also a hypothesis for why the top two stations in 

Figure 9 are better correlated with the simulated snowpack than the bottom two stations; 

stations at lower elevations are experiencing snowmelt significantly earlier than they 

should and therefore miss accumulation during the time of maximum snowfall. Previous 

studies have shown that the default values of emissivity and snow albedo in older 

versions of the Noah land surface model may have been unrealistic and led to a model 

warm bias leading to the premature onset of snowmelt and abnormally high values of 

sublimation (Qian et al. 2009; Slater et al. 2007). These values have been changed in the 

current NOAH land surface model in the most recent WRF model (WRF 3.1.1). We have 

begun to simulate the snowpack using the new WRF model and have found that snow is 

not melting as early as it did previously. We are still conducting analysis of our new 

simulation. 

 

Conclusions 

In our observation study, a metric is developed to calculate peak snow mass timing in the 

California Sierra Nevada using monthly SWE data from 1930 to 2008. Robust statistical 

analysis is conducted to assess the variability in the timing of peak snow mass. From 

1930 to present, the peak timing of the entire data set exhibits a trend towards earlier in 

the season of 0.6 days per decade. On an individual station basis, most stations show 

earlier SCD and reduced April 1st SWE, and the only stations with statistically 

significant trends in both SCD and April 1st SWE exhibit negative trends in both 

variables. The trends in SCD complicate interpretations of April 1st SWE as a metric of 

Sierra Nevada snowpack trends as nearly all stations exhibit negative trends in SCD 

indicating that enhanced melting is occurring even when April 1st SWE may be 

increasing. The influence of MA temperature on SCD is almost certainly due to the effect 
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of early spring temperature on snowmelt. This relationship is particularly pronounced for 

low accumulation years, indicating the lower thermal inertia of shallow snow and 

potential enhancement of snowmelt due to albedo feedback as bare ground and vegetation 

is exposed. The robustness in the sensitivity of SCD to MA temperature for all spatial and 

temporal scales inherent in the data set indicates the SCD trend can be attributed to the 

MA warming trend.  

The trend in snow mass peak timing found in this observation study is less than those of 

snowmelt-dominated streamflow found in some previous studies (Regonda et al. 2005, 

Stewart et al. 2005, Cayan et al. 2001), which provide changes in the date of peak runoff 

on the order of a few days per decade. The differences in the trends in these two metrics 

may be accounted for by the fact that a shift in the timing of streamflow runoff is not 

necessarily accompanied by an equal shift in peak snow mass. In fact, if the shift in SCD 

is due to earlier snowmelt, the snowmelt acceleration would probably have to be much 

more rapid than the SCD shift. This is due to the steadiness of the weights of the 

accumulation months (i.e. measurements around February 1st and March 1st) in the SCD 

calculation. The involvement of four months of data in the SCD calculation introduces 

more “inertia” into this quantity than snowmelt runoff. 

Preliminary analysis of a simulation of the Sierra Nevada hydroclimate has shown that 

high-resolution grids are necessary to accurately capture SWE variability. The land 

surface model used in the WRF model greatly affects the timing of snowmelt, and thus 

runoff. Snowmelt timing in the model appears to be influenced by local temperature, 

leading to grid cells at higher elevations more accurately capturing snowmelt timing than 

those at lower elevations. Further analysis must be conducted on hydroclimate 

simulations using the latest land surface model (in WRF 3.1.1) to better understand 

runoff variability. 

Given the importance of high-resolution snowpack predictions, continued research on the 

Sierra Nevada snowpack is critical to understanding the state's future water supply. 

Continuation of SWE measurements is necessary to monitor and predict changes in the 

water supply from the Sierra Nevada snowpack. Further regional modeling studies of the 

Sierra Nevada would also be helpful to determine the mechanisms affecting accumulation 

and melt events and to identify regions where precipitation will shift from being snow-

dominated to rain-dominated. Snowmelt runoff will be affected by changes in snowfall 

amounts and snowmelt timing. An understanding of the mechanisms affecting these 

variables will help predict the future of the California water supply. 

 

List of Publications  

The following two publications have been accepted or published. We foresee that two 

additional manuscripts on the modeling of snowpack will be produced from this project 

in the next year. 

Kapnick, S. and A. Hall, 2010: Observed climate-snowpack relationships in California 

and their implications for the future. Accepted to Journal of Climate. 
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Kapnick, S. and A. Hall, 2009: Observed changes in the Sierra Nevada snowpack: 

potential causes and concerns. California Environmental Protection Agency and 

California Energy Commission Report CEC-500-2009-016-F. 
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Tables 

Table 1: Trend in peak timing (days per decade) for collective stations and temperature 

(degrees per decade) found in the gridcells covering the snow stations from start date 

(denoted in columns) to 2008. Trend in peak timing is given for three different cases: all 

stations with available SCD data, stations with data for only 50% of available years, and 

stations with data for only 75% of available years. The bolded cell gives the SCD trend 

corresponding to Fig. 3. Trend in average monthly maximum daily temperature at 

elevations above 1700m (elevation minimum for snow stations used in the bulk of this 

analysis) is given from start date to 2003 (due to the limitation of the available 
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temperature data set) for the months of January, February, March, and April with the last 

row providing the averaged March and April temperature trend. 

 

 

Table 2: Correlation of temperature versus SCD for 70 stations from 1950 to 2003 for 

January through May and for direct observations, anomalies, and mean values of these 

variables. This table provides a sensitivity analysis of the correlations found in Fig. 6 (the 

last column, bolded) for different months. 

 

 

Table 1. Trend in peak timing (days per decade) for collective stations and temperature
(degrees per decade) found in the gridcells covering the snow stations from start date (de-
noted in columns) to 2008. Trend in peak timing is given for three different cases: all stations
with available SCD data, stations with data for only 50% of available years, and stations
with data for only 75% of available years. The SCD trend corresponding to Fig. 3 is given
by the bolded cell. Trend in average monthly maximum daily temperature at elevations
above 1700m (elevation minimum for snow stations used in the bulk of this analysis) is given
from start date to 2003 (due to the limitation of the available temperature data set) for the
months of January, February, March, and April with the last row providing the averaged
March and April temperature trend.

Case 1930 1940 1950 1960 1970
All Stations -0.7 -0.8 -0.7 -0.7 -0.4
50% of Yrs -1.0 -1.1 -0.7 -0.7 -0.7
75% of Yrs -0.6 -0.9 -0.8 -1.0 -0.5

January Temp 0.3 0.3 0.5 0.5 0.7
February Temp 0.2 0.2 0.1 0.0 -0.1
March Temp 0.2 0.3 0.4 0.5 0.7
April Temp 0.0 0.1 0.1 0.3 0.5
May Temp 0.1 0.2 0.3 0.3 0.2

Averaged March & April Temp 0.1 0.2 0.3 0.4 0.6
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Table 2. Correlation of temperature versus SCD for 70 stations from 1950 to 2003 for

January through May and for direct observations, anomalies, and mean values of these

variables. This table provides a sensitivity analysis of the correlations found in Fig. 6 (the

last column, bolded) for different months.

Sensitivity January February March April May Averaged March & April
Direct Observation -0.21 -0.21 -0.56 -0.52 -0.28 -0.62

Anomaly 0.04 0.02 -0.52 -0.49 -0.10 -0.65
Station Mean -0.55 -0.60 -0.65 -0.60 -0.60 -0.63
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Figures 

 

Figure 1: Location of 154 snow stations with usable data in the California. Open circles 

denote NRCS Water and Climate Center stations and closed circles denote California 

Department of Water Resources stations. Stations are colored by elevation in meters. 

 

 

Figure 2: SCD monthly calculation example for one station in 1996 (a) and a comparison 

of the monthly vs. daily calculations of SCD for 13 stations (b). In (a), the solid black line 
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Fig. 1. Location of 154 snow stations with usable data in the California. Open circles denote

NRCS Water and Climate Center stations and closed circles denote California Department

of Water Resources stations. Stations are colored by elevation in meters.
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Fig. 2. SCD monthly calculation example for one station in 1996 (a) and a comparison

of the monthly vs. daily calculations of SCD for 13 stations (b). In (a), the solid black

line denotes daily 1996 SWE values at the SNOTEL Adin Mtn station from January 1st

to May 31st. The grey bars help illustrate how four measurements of SWE values are used

to calculate the SCD over the time period shown. The grey hatch on each bar denotes the

first of February, March, April, and May. The black dashed line at Julian Day 72 denotes

the SCD found by using the monthly SCD values. In (b), 13 stations with daily data were

used to calculate SCD using the daily and monthly methods. The stations were chosen by

their proximity to stations used in the long trend analysis shown in Fig. 3. The monthly

approximation of SCD is well correlated with the daily calculation of SCD (r = 0.98, p <
0.01). There are 336 data points for 13 stations from 1970 to 2008.
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denotes daily 1996 SWE values at the SNOTEL Adin Mtn station from January 1st to 

May 31st. The grey bars help illustrate how four measurements of SWE values are used 

to calculate the SCD over the time period shown. The grey hatch on each bar denotes the 

first of February, March, April, and May. The black dashed line at Julian Day 72 denotes 

the SCD found by using the monthly SCD values. In (b), 13 stations with daily data were 

used to calculate SCD using the daily and monthly methods. The stations were chosen by 

their proximity to stations used in the long trend analysis shown in Fig. 3. The monthly 

approximation of SCD is well correlated with the daily calculation of SCD (r = 0.98, p < 

0.01). There are 336 data points for 13 stations from 1970 to 2008. 

 

 

Figure 3: SCD for 22 stations with annual data available for at least 75% of the record 

from 1930 to 2008. There are 1,482 data points for the time period. The dashed line 

denotes the mean SCD (Julian day 76) and the solid line denotes the linear trendline for 

the time series. 
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Fig. 3. SCD for 22 stations with annual data available for at least 75% of the record from
1930 to 2008. There are 1,482 data points for the time period. The dashed line denotes the
mean SCD (Julian day 76) and the solid line denotes the linear trendline for the time series.
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Figure 4: Trend in SCD versus trend in April 1st SWE for 22 stations with at least 75% 

of years available from 1930 to 2008. Stations are the same ones used for Fig. 3. Dashed 

lines denote trends of zero. Stations are colored by elevation in meters. Circled stations 

have statistically significant trends (at p < 0.05) in April 1st SWE and SCD. Stations with 

an x have statistically significant trends (at p < 0.05) in April 1st SWE or SCD. 
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Fig. 4. Trend in SCD versus trend in April 1st SWE for 22 stations with at least 75% of
years available from 1930 to 2008. Stations are the same ones used for Fig. 3. Dashed lines
denote trends of zero. Stations are colored by elevation in meters. Circled stations have
statistically significant trends (at p < 0.05) in April 1st SWE and SCD. Stations with an x
have statistically significant trends (at p < 0.05) in April 1st SWE or SCD.
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Figure 5: Scatterplot of SCD versus April 1st SWE value for 70 stations with at least 

75% of years available from 1950 to 2003; colored by the local averaged March and 

April daily maximum temperature. Temperature data is from the Hamlet and Lettenmaier 

(2005) data set (available from 1915 to 2003) and has been adjusted for station elevation 

assuming a constant lapse rate of 6.5˚C/km. If the graph is confined to stations with at 

least 75% of years available from 1930 to 2003, a similar distribution is found. The 

average SCD for the data set is Julian day 73, and is given by the dashed black line. 
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Fig. 5. Scatterplot of SCD versus April 1st SWE value for 70 stations with at least 75%

of years available from 1950 to 2003; colored by the local averaged March and April daily

maximum temperature. Temperature data is from the Hamlet and Lettenmaier (2005) data

set (available from 1915 to 2003) and has been adjusted for station elevation assuming a

constant lapse rate of 6.5
◦
C/km. If the graph is confined to stations with at least 75% of

years available from 1930 to 2003, a similar distribution is found. The average SCD for the

data set is Julian day 73, and is given by the dashed black line.
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Figure 6: Scatterplot of averaged March and April daily maximum temperature versus 

SCD for 70 stations from 1950 to 2003 for: (a) observations of SCD and local 

temperature, (b) anomalies, and (c) mean values. The dashed black line denotes the linear 

trendline on each graph. The two variables are strongly anti-correlated for all plots: (a) r 

= -0.62, (b) r = -0.65, and (c) r = -0.63, with p < 0.01 for all graphs. If the correlation is 

calculated for the detrended direct observations and detrended anomalies, the anti-

correlations are slightly lower(r= -0.47 in each case), but still material. 
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Fig. 6. Scatterplot of averaged March and April daily maximum temperature versus SCD
for 70 stations from 1950 to 2003 for: (a) observations of SCD and local temperature, (b)
anomalies, and (c) mean values. The dashed black line denotes the linear trendline on each
graph. The two variables are strongly anti-correlated for all plots: (a) r = -0.62, (b) r =
-0.65, and (c) r = -0.63, with p < 0.01 for all graphs. If the correlation is calculated for
the detrended direct observations and detrended anomalies, the anti-correlations are slightly
lower(r= -0.47 in each case), but still material.
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Figure 7: Three domains of the WRF 3.1 simulation. The horizontal resolutions from the 

outermost to the innermost domain are: 27km, 9km, and 3km (in magenta). 
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(a) (b) 

 
(c) 

Figure 8: SWE averaged for WRF 3.0 forced by NARR for 2002 MAM at resolutions of 

(a) 27km, (b) 9km, and (c), 3km. SWE values given in mm. 
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