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Relatively mesic environments within arid regions may be important conservation targets as ‘climate change refugia’ for
species persistence in the face of worsening drought conditions. Semi-arid southern California and the relatively mesic
environments of California’s Channel Islands provide a model system for examining drought responses of plants in potential
climate change refugia. Most methods for detecting refugia are focused on ‘exposure’ of organisms to certain abiotic
conditions, which fail to assess how local adaptation or acclimation of plant traits (i.e. ‘sensitivity’) contribute to or offset
the benefits of reduced exposure. Here, we use a comparative plant hydraulics approach to characterize the vulnerability of
plants to drought, providing a framework for identifying the locations and trait patterns that underlie functioning climate
change refugia. Seasonal water relations, xylem hydraulic traits and remotely sensed vegetation indices of matched island and
mainland field sites were used to compare the response of native plants from contrasting island and mainland sites to hotter
droughts in the early 21st century. Island plants experienced more favorable water relations and resilience to recent drought.
However, island plants displayed low plasticity/adaptation of hydraulic traits to local conditions, which indicates that relatively
conserved traits of island plants underlie greater hydraulic safety and localized buffering from regional drought conditions.
Our results provide an explanation for how California’s Channel Islands function as a regional climate refugia during past and
current climate change and demonstrate a physiology-based approach for detecting potential climate change refugia in other
systems.
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Introduction
Plants in the 21st century are exposed to hotter and more
frequent climate change-driven drought conditions (Breshears
et al., 2005; Seager, 2007; Williams et al., 2013; Trenberth
et al., 2014; Allen et al., 2015). The persistence of species that
experience such abiotic conditions may depend, in part, on
the presence of relatively mesic environments within drought-

exposed landscapes—i.e. ‘hydrologic refugia’ (McLaughlin
et al., 2017; Cartwright, 2018). The detection and protection
of such climate change refugia is a key strategy for species con-
servation (Keppel et al., 2011; Morelli et al., 2016). However,
existing methods for detecting refugia that involve modeling
the persistence of abiotic conditions within the suitable range
for target species or ecosystems (e.g. bioclimate envelope
models) do not provide direct information on the sensitivity of
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target species due to local adaptation or acclimation (Pearson
and Dawson, 2003). Assessing both the extent to which
species are exposed to climate change driven droughts and
how local adaptation and acclimation contribute to species
sensitivity is necessary for accurately predicting the responses
of ecosystems to future conditions (Williams et al., 2008a;
Crausbay et al. 2017).

Frameworks for identifying and assessing conservation tar-
gets that are based on a more complete understanding of plant
physiological responses to environmental stress are needed
to address the threats climate change poses to ecosystems
(Madlinger et al., 2018). Comparative trait-based approaches
may be able to improve detection of climate change refu-
gia by directly assessing the true vulnerability (exposure +
sensitivity) of plants to increasing drought (Fig. 1). Of par-
ticular utility in this context is the characterization of traits
associated with plant hydraulic function and carbon gain,
which can be predictive of drought-induced plant mortality
under a warmer, drier future climate (McDowell et al., 2008;
Anderegg et al., 2016; Venturas et al., 2017; Choat et al.,
2018). While there may be multiple, interacting mechanisms
that drive plant mortality during drought (Sala et al., 2010;
Jacobsen et al., 2011; Sevanto et al., 2014), the risk of
hydraulic failure—i.e. the loss of the ability to transport
water due to drought-induced xylem cavitation—is predictive
across a wide range of species and ecosystems (Jacobsen
et al., 2007b; Choat et al., 2012, 2018; Anderegg et al., 2016;
Adams et al., 2017). Measurements of hydraulic traits can be
combined with seasonal water relations to estimate ‘hydraulic
safety margins’ as the difference between minimum water
status (�min) and the xylem pressure potential causing signif-
icant xylem dysfunction (e.g. P50). Hydraulic safety margins
provide important, comparable information on the hydraulic
function of plants experiencing contrasting environmental
conditions that can be predictive of future drought-induced
mortality (Choat et al., 2012; Skelton et al., 2015; Anderegg
et al., 2016).

Islands are generally cooler, wetter and less seasonal than
mainland environments due to strong maritime influences on
island climate (Weigelt et al., 2013). Such maritime conditions
within semi-arid regions like southern California involve
increased coastal fog occurrence that may locally buffer plants
from exposure to severe drought conditions (Fischer et al.,
2009; Vasey et al., 2012; McLaughlin et al., 2017). In addi-
tion, modeling approaches suggest that areas with strong
coastal influence will experience less pronounced warming
over the next century (Lebassi et al., 2009; Potter, 2014).
These factors may allow islands to function as regional cli-
mate refugia during worsening drought conditions with cli-
mate change. However, whether local adaptation and/or phe-
notypic plasticity of plant hydraulic traits can offset the
benefits of more mesic environments is poorly understood.
Comparing hydraulic traits and, in particular, hydraulic safety
margins of island and mainland plant communities would

Figure 1: Conceptual figure depicting two hypothesized
relationships between exposure (a and b), sensitivity (c and d) and
vulnerability (e and f) that depend on how plant physiological traits
vary across gradients. On one hand, if sensitivity is determined by
traits that are fine-tuned to local conditions (c)—either through local
adaptation or phenotypic plasticity—then there is likely to be static
vulnerability across the gradient (e). However, if sensitivity is
determined by traits that are relatively conserved across a stress
gradient (d), then vulnerability will be reduced in low exposure
environments (right).

provide a test of relative drought vulnerability in these con-
trasting environments.

Southern California and the adjacent California Chan-
nel Islands present an ideal study system for evaluating
hydraulic safety in island versus mainland environments.
During seasonal and inter-annual droughts in this region,
mature chaparral shrubs can experience significant dieback
and mortality (Schlesinger and Gill, 1978; Schlesinger
et al., 1982; Davis et al., 2002, Paddock et al., 2013,
Pratt et al., 2014, Venturas et al., 2016). As a result,
these environments have selected for plants with highly
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drought tolerant functional strategies, including many with
high xylem cavitation resistance (Ackerly, 2004; Bhaskar
et al., 2007; Jacobsen et al., 2008). Previous studies in these
systems have shown that cavitation resistance and hydraulic
safety can vary seasonally (Jacobsen et al., 2007a, 2014;
Pivovaroff et al., 2015) and inter-annually (Jacobsen et al.,
2007b) within particular species. Also, hydraulic traits have
been shown to vary between species with different life history
strategies (Redtfeldt and Davis, 1996; Kolb and Davis, 1994;
Davis et al., 1999; Jacobsen et al., 2007b) and across different
semi-arid plant communities (i.e. chaparral, coastal sage
scrub, and desert scrub) in southern California (Jacobsen
et al., 2008). However, few studies have investigated hydraulic
traits on the California Channel Islands (But, see Jacobsen
et al., 2018), where the maritime climate and geographic
isolation of island environments create a high likelihood of
evolutionary divergence in adaptive traits (Ackerly, 2003).

In addition, biogeographic patterns of vegetation on the
California Channel Islands have long been suspected as evi-
dence of more buffered conditions on the islands that allowed
the persistence of taxa once widespread in other parts of
California (Axelrod, 1967; Raven and Axelrod, 1978). The
existing narrative for this pattern is that the islands provided
a cooler, wetter climate that facilitated this persistence. A
trait-based approach to testing the hypothesis that the islands
function as a climate, and more specifically a hydrologic,
refugia could provide a mechanistic explanation for these
long-observed biogeographic patterns.

A common limitation of studies that compare traits across
environments is not accounting for phylogenetic relationships
between taxa, which can make it difficult to interpret trait
patterns driven by the statistical non-independence of closely
related species (Felsenstein, 1985; Harvey and Pagel, 1991;
Maherali et al., 2004). One solution to this problem is
to incorporate phylogenetic information that can be used
to investigate differences among a series of closely related
taxonomic pairs (Westoby et al., 1998; Westoby, 1999;
Ackerly, 2000). Collecting data that takes into account the
phylogenetic relationships between taxa allows for more
accurate linkage of trait patterns to the underlying responses
to different environments (Ackerly and Donoghue, 1998).

Here, we present data to assess the relative drought vul-
nerability of native woody plant communities on the Cali-
fornia Channel Islands and the adjacent southern California
mainland, sites which harbor similar plant assemblages but
differ in the strength of maritime-influence on the local
climate (Figs 2 and 3). Our research aims to (i) determine
if the maritime climate of island environments is sufficient
to buffer native California plants from 21st century drought
conditions exacerbated by climate change and (ii) to evaluate
a trait-based method for detecting the physiological mech-
anisms of hydrologic refugia that can be applied to other
systems.

Figure 2: Locations (a), mean annual climate (b) and temperature
seasonality (c) of southern California region based on historical
weather station records (via Western Regional Climate Center: http://
www.wrcc.dri.edu). Each closed circle represents climate means from
a single weather station. Matched island (Santa Catalina Island) and
mainland (Santa Ana Mountains) field sites are indicated by a blue
and red star, respectively, in each figure. Despite their proximity and
similar mean annual climates, island and mainland field sites are on
opposite ends of the temperature seasonality spectrum, with the
island site experiencing lower summer and higher winter tempera-
tures (i.e. a more maritime climate). Inset in Fig. 4a shows the study
region within the state of California.

..........................................................................................................................................................
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Figure 3: Phylogenetic relationships between the 20 species (10 species pairs) included in the study. Relationships are based on a recent
phylogenetic supertree (R2G2_20140601; available online). The tree was constructed using the software program phylomatic. Seven of the
species pairs represent congeneric pairs, i.e. one species occurring on the mainland and the other on the island. The remaining three pairs are
conspecific pairs, where different populations of the same species occur at each site. Single asterisk denotes a species endemic to the CA
Channel Islands; double asterisks denote a species endemic to Santa Catalina Island.

Table 1: Summary of site characteristics for matched island and mainland field sites

Site Aspect Elevation Total N (%) Total C (%) Sand/silt/clay (%)

Catalina Island NE 500 m 0.160 ± 0.042 3.037 ± 1.122 62/24/14

Santa Ana Mountains NE 900 m 0.157 ± 0.046 2.398 ± 0.77. 66/21/13

Soil measurements of Total N, Total C and particle size (% sand, % silt and % clay) are based on 0–10 cm soil samples. Soil characteristics are means (n = 6) ± 1 standard
error.

Materials and methods
Study sites and species
Matched island and mainland sites were used to compare
the seasonal water relations and cavitation resistance of cha-
parral shrubs on Santa Catalina Island (SCI) and the adjacent
southern California mainland. The island site was located on
the east (channel-facing) slope of SCI near Blackjack Moun-
tain (33◦23′38.1′′N; 118◦23′50.4′′W). The mainland site was
located on the east slope of the Santa Ana Mountains in the
Cleveland National Forest (33◦38′44.6′′N; 117◦23′46.6′′W),
overlooking Lake Elsinore, CA (Fig. 2). These sites were

selected to maximize similarity in latitude, slope, aspect,
elevation, soil characteristics, mean annual precipitation/tem-
perature and species composition across the island–mainland
environments (Table 1, Fig. 2).

Site climate characteristics were estimated from local
weather station data managed by the Western Regional
Climate Center (http://www.wrcc.dri.edu). Long-term weather
information (1897–2016 mainland; 1909–2016 island) was
available from stations within 10 km and at similar elevations
to both field sites. In addition, site-level temperature and
humidity (at 30-min interval) were recorded during the 3-year
study using HOBO data loggers placed at each site (Onset

..........................................................................................................................................................
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Computer Corporation, Bourne, MA, USA). Similarity of soil
characteristics was determined by analyzing soil particle size
(% sand, % silt and % clay) and soil fertility (Total N and
Total C) in the top 10 cm (Table 1). Soil samples (n = 6)
were collected within 2 days from both island and mainland
field sites and transported to UC Berkeley for processing.
Samples were analyzed by the UC Davis Analytical Labs
(https://anlab.ucdavis.edu/analysis/Soils/320). In brief, Total N
and Total C were quantitatively determined via a combustion
method with a thermal conductivity detector (TCD) system
and an IR detector. This method is based on the oxidation of
the sample during flash combustion that converts nitrogen
and carbon substances into combustion gases and has a
detection limit of 0.02% for C and N (AOAC Official Method
972.43, 1997). In addition, % sand, % silt and % clay were
determined based on settling rates in an aqueous solution
using a hydrometer (Sheldrick and Wang, 1993). The chief
difference between sites was the strength of the maritime
influence on temperature seasonality, with the island site
experiencing more moderate conditions—cooler summers
and warmer winters—compared to the more seasonally
variable and extreme mainland site (Fig. 2).

Ten phylogenetically independent island–mainland taxon
pairs (seven congeneric and three conspecific pairs) were
used in this study (Fig. 3). The 10 island–mainland pairs
were spread across five plant families and were representative
of the dominant lineages in southern California chaparral.
Included in these pairs were several species endemic to the
Channel Islands (Prunus ilicifolia ssp. lyonii, Quercus paci-
fica, Ceanothus megacarpus var. insularis and Ceanothus
arboreus) and one species endemic to Santa Catalina Island
(Arctostaphylos catalinae). With one exception, all island–
mainland pairs belonged to distinct genera; in the genus
Ceanothus taxon pairs were drawn from each of the two
distinct subgenera (Ceanothus-Ceanothus and Ceanothus-
Cerastes), which often exhibit different functional and life
history traits (McMinn, 1942; Nobs, 1963; Ackerly et al.,
2006; Fross and Wilken, 2006; Pratt et al., 2008; Burge et al.,
2011). Because the experimental design includes comparisons
of both congeneric and conspecific pairs, we will refer to all
species pairs as ‘taxa’ or ‘taxon pairs’ for clarity.

Seasonal water relations and chlorophyll
fluorescence
To determine plant water status, monthly to bi-monthly
measurements (March 2012–March 2013) of leaf water
potential (�w) were estimated using a pressure chamber
(PMS Instrument Company, Albany, OR, USA). At predawn
(4—6 am; �pd) and midday (12—2 pm, �md), leaves of
six individuals per taxon (6 indiv. × 10 taxa = 60 samples
at each site) were harvested, bagged and placed in an ice
chest. Samples were immediately (typically within 30 min.)
used to estimate leaf water potential in the field using
pressure chambers and attached portable N tanks. Care
was taken to select the youngest healthy, fully mature leaves

and branchlets exposed to full sun. In addition to analyzing
seasonal patterns in �pd and �md, the minimum water
potential (�min) measured at midday during the end of the
dry season (September 2012) was compared between island–
mainland taxon pairs. Measurements were always recorded
the same day within a site and within 2 days across sites,
using the same techniques and equipment.

Stomatal conductance was measured during the study
(June 2012–March 2013) using a steady-state leaf porom-
eter (SC-1, Decagon Devices, Pullman, WA). Measurements
were performed on six fully mature, sun-exposed leaves per
taxon (6 indiv. × 10 taxa = 60 measurements). To account for
diurnal fluctuations in atmospheric and solar condition, these
measurements were always conducted during the same time
of day (9 am—12 pm), during mostly clear (i.e. cloud-free)
days. Minimum values of stomatal conductance measured at
the end of the dry season (September 2012) were compared
across island and mainland sites.

To determine drought stress effects on leaf photosynthetic
capacity, intrinsic quantum efficiency of PSII (Fv/Fm) was
measured at midday during the peak of the dry season
(September 2012) using a pulse-modulated chlorophyll
fluorometer (FMS2, Hansatech, Pentney, Norfolk, UK). Mea-
surements were conducted on the same individuals measured
for seasonal water relations. Prior to measurements, leaves
were dark-adapted for 15–20 min using dark adaptation leaf
clips (Hansatech, Pentney, Norfolk, UK). Initial fluorescence
(Fo) was measured using low levels of light followed by a
saturating pulse of light (15 000 μmols m−2 s−1) to measure
maximum fluorescence (Fm). Variable fluorescence (Fv)
was calculated as initial minus maximum fluorescence
and intrinsic quantum efficiency of PSII was expressed
as Fv/Fm.

Hydraulic traits and safety margins
To determine the sensitivity of stem xylem to drought condi-
tions, cavitation resistance was estimated with vulnerability
curves using a standard centrifuge technique with a con-
ductivity apparatus (Alder et al., 1997; Tobin et al., 2013;
Supplementary Fig. S8). Stems approximately 5–6 mm in
diameter were harvested from the same six individuals per
taxon used for seasonal water relations. The samples were
bagged and transported to a laboratory where they were
refrigerated until measurements could be performed (within
7 days). Prior to measurements, stems were cut to either
140 or 270 mm long and flushed for 60 min at 100 kPa to
remove emboli with an ultra-filtered (0.1 μm pore exclusion
filter) solution of deionized and degassed 20 mM KCl solu-
tion. The longer stem lengths were used for taxa that had
extremely high resistance to cavitation (e.g. Ceanothus spp.)
and spun in a larger centrifuge rotor capable of delivering
greater levels of centrifugal force to the water column. In some
cases, stems were rehydrated overnight under a vacuum using
the same degassed 20 mM KCl solution, in place of flush-
ing. Following flushing (or vacuum rehydration), hydraulic
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conductivity (Kh) of stem xylem was measured using a tubing
apparatus under a low-pressure head (about 4 kPa). This gave
the maximum Kh (Khmax) with xylem emboli removed. Stems
were then spun in a centrifuge to generate negative xylem
tension and repeatedly measured to determine loss of Kh with
decreasing water potential. Percentage loss of Kh (PLC) was
calculated as:

Loss of Kh (%) = (
1 − Kh/Khmax

) × 100

Vulnerability curves were constructed by plotting decreas-
ing values of water potential versus PLC (supplementary
materials). Stem-specific hydraulic conductivity (Ks) and cavi-
tation resistance (P50) were estimated from each vulnerability
curve. P50 was calculated as the water potential at which
50% of hydraulic conductivity (Kh) was lost due to cavita-
tion of xylem conduits. Ks was calculated by dividing the
maximum hydraulic conductivity by the xylem cross-sectional
area (mm2). Measurements of P50 were combined with the
minimum seasonal water potential measured at the end of
the 2012 dry season (�min) to calculate the hydraulic safety
margin (HSM50) for each taxon (n = 6):

HSM50 = �min − P50

Vulnerability curves were measured on 9 of the 10 island–
mainland taxon pairs in two sampling efforts. Five pairs were
measured in Summer/Fall 2010 (Arctostaphylos, Ceanothus-
Ceanothus, Ceanothus-Cerastes, Heteromeles and Quercus)
and four pairs were measured in Summer/Fall 2012 (Adenos-
toma, Cercocarpus, Prunus, Rhus). Because vulnerability
curves were not calculated for Rhamnus ilicifolia, due to
a sampling error, the Rhamnus pair was removed from this
analysis. While measurements of vulnerability curves were
performed in different years, measurements within taxon
pairs were always performed in the same season and year.
Therefore, seasonal and inter-annual variation in cavitation
resistance (Jacobsen et al., 2007a,b, 2014) should not affect
comparisons within taxon pairs.

Some of the taxa measured have known vessel lengths
longer than the excised stems used here to measure vul-
nerability curves (Jacobsen et al., 2012). Recent work has
demonstrated that the ‘long vessel artefact’ (Cochard et al.,
2010) is not an issue when using standard centrifuge methods
like those presented here (Tobin et al., 2013; Hacke et al.,
2015; Pratt et al., 2019; Jacobsen et al. 2019; Jacobsen and
Pratt et al., 2012; Sperry et al., 2012). However, some readers
may still be concerned about such an effect (Skelton et al.,
2018). Therefore, in order to demonstrate our findings are
robust in the face of current debates on methodology, we
have analyzed our hydraulic trait data (P50 and HSM50) in
multiple ways to illustrate the effects of different curve shapes
on our main findings, which are consistent across alternative
analytical approaches (see Supplementary Table S3).

Xylem density (XD) was measured by dividing the dry
mass of xylem tissue by its water-saturated volume. To mea-

sure XD, ∼5 cm long segments were cut from the same stems
used to construct vulnerability curves. The segments were cut
longitudinally and the pith and bark were removed manu-
ally. The segments were then soaked overnight in degassed
water brought to a pH of 2. The volume of fully saturated
stem segments was determined using Archimedes principle.
Following volume measurements, stem segments were dried
to a constant weight in a drying oven and dry mass was
determined using a four-digit balance.

Remote sensing of drought response
In order to determine if observed trait patterns were
associated with broader vegetation responses to recent
drought events in our study area, we analyzed the Enhanced
Vegetation Index (EVI) derived from Landsat surface
reflectance data (NASA/USGS; 30 m resolution), accessed
via the Climate Engine web tool (Huntington et al., 2017).
EVI is similar to the Normalized Difference Vegetation Index
(NDVI), widely used as an index to monitor vegetation health
during drought (e.g. Byer and Jin 2017), but optimizes the
vegetation signal by reducing noise from canopy background
and atmospheric conditions (Liu and Huete, 1995). We
generated time series of mean summer EVI (June–August)
from 2000 to 2017 for the three California Channel Islands
with significant chaparral components (Santa Catalina, Santa
Cruz, and Santa Rosa Island). We also generated summer EVI
values for chaparral-dominated areas in three south coast
mountain ranges (Santa Monica, Santa Ynez, and Santa Ana
mountain ranges). These areas were selected because they
occur at similar latitudes, elevational ranges, and have similar
vegetation composition as the three California Channel
Islands analyzed (Supplementary Fig. S1).

We categorized the EVI data into drought and non-drought
years based on the U.S. Drought Monitor categorizations
for the south coast region. Non-drought years were used
to calculate an EVI “baseline” for each area. This baseline
was then used to quantify departures of EVI from normal
conditions by calculating z-scores:

z = EVIyear − EVIbaseline

σbaseline.

where EVIbaseline and σ baseline represent the mean and
interannual standard deviation for baseline years and EVIyear
is the mean summer EVI value for a given year. This z-score-
based method has recently been shown to track drought-
induced declines in vegetation health in the Sierra Nevada
Mountains, California, during the recent multi-year drought
(Byer and Jin 2017).

Mean z-scores for island and mainland areas were com-
puted and compared for two drought periods: the single-year
drought of 2007 and the recent multi-year drought (2012–
2017). Special attention was paid to the EVI patterns during
and immediately following these two drought events to com-
pare both the drought resistance (magnitude of decline in EVI
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during drought) and resilience (magnitude of EVI improve-
ment post-drought) of island and mainland vegetation.

Statistical analyses
Seasonal water potential and stomatal conductance were
analyzed using repeated-measures ANOVA with site (island/-
mainland), taxon-pair and date as independent variables and
plant ID (i.e. individual) as a random, nested variable (Sup-
plementary Table S1). Mean values for minimum stomatal
conductance, minimum water potential, chlorophyll fluo-
rescence, cavitation resistance, xylem density and hydraulic
safety margins were compared using a mixed-model ANOVA
with site (island/mainland) as a fixed factor and taxon-pair
as a random variable nested within site. This model was used
to test for general differences between island–mainland pairs
(Supplementary Table S2). Additional pairwise comparisons
were used to test for differences within species pairs when a
significant site × taxon interaction was detected. A two-way
ANOVA was used to compare mean EVI z-scores between
island and mainland environments, and pairwise comparisons
were used to test for differences during specific drought and
post-drought years.

Results
Seasonal water relations
Predawn water potential (�pd) varied throughout the study
(Fig. 4, Supplementary Table S2, Supplementary Figs S4 and
S5) with maximum (least negative) values (�max) recorded
during the wet season (March 2012 and 2013) and minimum
(most negative) values (�min) recorded during the peak of the
dry season (September 2012). Within each site, taxa differed
in �pd, especially during the dry season (Fig. 4, Supple-
mentary Figs S4 and S5). Shallower-rooted, more cavitation
resistant taxa (e.g. Ceanothus-Cerastes and Arctostaphylos)
exhibited more negative �pd than deeper-rooted, less cavi-
tation resistant taxa (e.g. Heteromeles, Quercus, and Rhus).
Differences across sites were 2 MPa lower for mainland
vegetation on average (Supplementary Fig. S5), but varied by
taxon pair, resulting in a significant site × taxon interaction
(Supplementary Table S1). Stomatal conductance (gs) exhib-
ited little variation seasonally (Fig. 4, Supplementary Table
S1). However, for most taxa, the lowest values of gs were
measured during the peak of the dry season (Fig. 4), sug-
gesting plants experienced drought-induced stomatal closure.
Differences across sites varied by taxon pair, resulting in a
significant site × taxon interaction (Supplementary Table S1).

Minimum seasonal water potential,
stomatal conductance and chlorophyll
fluorescence
During the peak of the dry season (September 2012),
predawn water potential (�pd), stomatal conductance (gs)

and chlorophyll fluorescence (Fv/Fm) were higher (more
favorable) for island plants compared to mainland relatives
(Fig. 5, Supplementary Table S1; P < 0.001). Generally, deep-
rooted taxa that resprout after fire (e.g. Rhus, Heteromeles,
Prunus) had the highest (least negative) �, while more
shallow-rooted, obligate seeders (e.g. Ceanothus-Cerastes,
Arctostaphylos) had the most negative water potentials
(Figs 5a, 6a, Supplementary Table S2, Supplementary Figs
S4 and S5). Deep-rooted resprouters also had the largest
differences in gs across sites (Fig. 5b, Supplementary Table
S2), but the largest differences in Fv/Fm were observed
in non-sprouting Arctostaphylos (Fig. 5c, Supplementary
Table S2).

Hydraulic traits and safety margins
None of the measured stem hydraulic traits (Ks, P50, or
XD) were consistently different between island—mainland
sites (P > 0.05; Supplementary Table S2). Significant pair-
wise comparisons of Ks were recorded for Ceanothus-
Ceanothus, Adenostoma, Cercocarpus and Prunus. Resis-
tance to drought-induced cavitation (P50) varied widely
between taxa, with similar ranges at each site (−1 to
−11 MPa; Fig. 6). However, there were no consistent dif-
ferences between island–mainland taxon pairs (F1,94 = 3.952;
P = 0.117). Only Heteromeles exhibited a significant pairwise
comparison, with greater resistance on the mainland
(P < 0.05; Supplementary Table S2). Xylem density, XD,
was also not consistently different between island–mainland
relatives (F1,109 = 0.405; P = 0.526). None of the pairwise
comparisons of XD were significantly different (P < 0.05;
Supplementary Table S2).

Hydraulic safety margins (HSM50) also varied widely
between taxa (−4 to +5 MPa; Fig. 7). Nine of 18 taxa
measured had negative safety margins, suggesting they are
likely to experience > 50% loss of hydraulic conductivity
during the peak of the dry season (some of the negative safety
margins may reflect long-vessel artifacts affecting the P50
values). In general, taxa maintained the same ranking in safety
margin across sites—i.e. taxa with high safety margins relative
to other taxa on the mainland also had high safety margins
on the island. Importantly, island taxa had consistently higher
safety margins (F1,94 = 37.950; P < 0.01) with significant
pairwise comparisons in 7 out of 9 taxon pairs (Fig. 7).
Our findings of no difference in P50 and strong differences
in HSM50 between island–mainland taxa are consistent
whether or not long-vesseled taxa are included in the analysis
(Table S3).

Remote sensing of responses to recent
drought
Interannual variation in mean summer EVI z-scores allowed
for meaningful comparison of island and mainland vegetation
responses to recent drought events (Fig. 8). During the
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Figure 4: Figures showing contrasting climate (a, b), seasonal water potential (c, d) and stomatal conductance (e, f) for island (a, c, e) and
mainland (b, d, f ) field sites. Climate figures depict monthly averages of max. Temperature (solid line), min. Temperature (dashed line) and
precipitation (vertical bars) based on long-term climate data from nearby weather stations (1908–2019). Water potential and stomatal
conductance plots depict mean values ±1 SE for each species.

extreme drought conditions across southern California that
took place in 2007 (single-year drought), island plants
experienced less-pronounced reductions in summer EVI
compared to mainland areas (P < 0.05). In addition, the
island vegetation rebounded more quickly in the first year
after the drought (P < 0.05). The patterns were similar during
the recent ‘exceptional’ multi-year drought (2012–2016).
However, during the third and fourth years of the drought,
increased variability in island EVI resulted in no statistically
significant differences between island and mainland environ-
ments during these years. The island plants also had more
favorable EVI response following the multi-year drought
(P < 0.05).

Discussion
Conservative traits result in greater
hydraulic safety for island plants
We did not observe consistent differences in cavitation resis-
tance (P50) between island–mainland sites. This lack of a
difference in P50 between sites with different levels of water
availability is surprising considering global meta-analyses that
show P50 values closely match environmental patterns of
water availability (e.g. Choat et al., 2012). This ‘fine-tuning’
of plant hydraulics to current environmental conditions sug-
gests that on a global scale plants are similarly at risk of
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Figure 5: Predawn water potential (a), stomatal conductance (b) and quantum efficiency of PSII (c) measured during the peak of the summer
dry season for 10 island–mainland species pairs. Each point represents one species pair. Dashed line is a 1:1 line. A majority of points above the
1:1 line (i.e. blue region) indicate more favorable water relations for island plants. P-values for paired statistical comparisons are depicted in the
lower right corner of each plot.

Figure 6: Minimum seasonal water potential (�min; a) and cavitation resistance (P50; b) for island–mainland species pairs. These traits serve as
proxies for exposure versus sensitivity to drought and are the components used to estimate hydraulic safety margins and provide a quantitative
test of the conceptual model linking physiological trait patterns to detection of climate refugia (Fig. 1). P-values for paired statistical
comparisons are depicted in the upper left corner of each plot.

hydraulic failure, despite differences in water availability and
functional strategies. However, our findings suggest that there
may be important exceptions on a regional to local scale,
where P50 does not closely track patterns of water availability.
This is consistent with studies comparing hydraulic traits
between intraspecific populations in coastal and drier interior
sites (Jacobsen and Pratt, 2013; Jacobsen et al., 2014), as
well as community-level analyses of different semi-arid plant
communities (Jacobsen et al., 2007a).

It is not clear why island taxa possess levels of cavitation
resistance similar to mainland relatives living in drier environ-
ments. One hypothesis for the disparity between water avail-
ability and P50 is that cavitation resistance arises from selec-
tion at the seedling stage, when the risk of drought-induced
cavitation is high due to a small, developing root system’s
need to provide enough water for a rapidly growing shoot
(Frazer and Davis, 1988; Thomas and Davis 1989; Schwilk
and Ackerly, 2005; Pratt et al., 2008). Another hypothesis
is that cavitation thresholds are set during severe episodic

droughts (Pockman and Sperry, 2000), suggesting that water
availability and P50 may be decoupled during more normal
conditions. However, in order for these hypotheses to explain
the patterns in the present study, water stress would have to
be similar between island and mainland plants at the seedling
stage but not at the adult stage, or island and mainland plants
would need to experience similar conditions during episodic
droughts but not during the intervening years. Neither of
these explanations seems very likely considering the consis-
tent gradient in climate that exists between the island and
mainland environments (Fig. 2; Weigelt et al., 2013).

Another factor that may explain the lack of P50 differences
between island–mainland pairs is the weak relationship
between hydraulic safety and hydraulic efficiency. In studies
that account for phylogenetic similarity, no correlation
between P50 and hydraulic conductivity (Ks) is typically
observed (Maherali et al., 2004; Bhaskar et al., 2007;
Jacobsen et al., 2007b). Therefore, it is possible that the trade-
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Figure 7: Box plots of hydraulic safety margins (HSM50 = �min—P50) for nine island-mainland species pairs. Blue background indicates higher
safety margin for island species (8/9 pairs); red background indicates lower safety margin for island species (1/9 pairs). Asterisks denote
significant pairwise comparisons (P < 0.05).

offs between hydraulic safety and efficiency are not strong
enough to drive selection against high cavitation resistance
once it has evolved in a lineage. Consistent with this are
studies that have shown cavitation resistance to be a highly
conserved trait (Lamy et al., 2011; Hao et al., 2008; Wilson et
al., 2008; Pittermann et al., 2012). In the present study, we are
comparing island lineages, most likely descended from main-
land taxa that migrated to the islands to their contemporary
mainland relatives. Colonization of the island by mainland
taxa occurred at some point during the approximately
500 000 years that the island has been continuously above
water (Schoenherr et al., 1999). It is possible that island
plants have retained the high cavitation resistance of their
mainland ancestors due to weak selection against it, coupled
with the relatively short time that they have been isolated on
the island environment.

In general, few studies examine the spatial and temporal
variation in hydraulic traits (Anderegg, 2015). Of those that
do, similar evidence of low variability across environmental
gradients is often observed (e.g. Jacobsen and Pratt, 2013;
Jacobsen et al., 2014; Skelton et al., 2019). The observed low
spatial variability in hydraulic traits may be explained, in part,
by high phylogenetic conservatism in such traits (Lamy et
al., 2011; Hao et al., 2008; Pittermann et al., 2012; Skelton
et al., 2018), This suggests that many plants may be relatively
protected from hydraulic failure compared to close relatives
or ecotypes in comparatively drier environments. Therefore,
hydrologic refugia capable of buffering plants from hydraulic
failure may be common in nature.

The lack of variation in hydraulic traits does not preclude
variation in other important functional traits that allow island
taxa to achieve a ‘fit’ with their contemporary environ-
ment. Hochberg (1980) first analyzed differences in leaf traits
between island and mainland shrubs native to southern Cali-
fornia, finding that island plants exhibited more mesomorphic
(i.e. drought-sensitive) traits. In addition, Bowen and Vuren
(1997) found that plants from Santa Cruz Island, California,
possessed less robust leaves that made them preferred forage
for exotic herbivores. Salladay and Ramirez (2018) found
similar results for leaves of several island plant species on
Santa Catalina Island. Either stronger selection or greater
phenotypic plasticity in leaf traits may explain the differences
observed between these previous studies and the current one.

Island plants are buffered from seasonal
and interannual drought conditions
Despite similar precipitation regimes, island plants had higher
water availability and experienced less water stress during the
dry season as evidenced by higher (less negative) water poten-
tials, higher stomatal conductance and higher chlorophyll
fluorescence. Furthermore, remotely sensed health (via EVI
analysis) of island plants was less impacted by recent drought
events. These findings are consistent with a recent study
comparing the dry season water relations of Arctostaphy-
los spp. in maritime versus interior chaparral sites in Cal-
ifornia (Vasey et al., 2012; Jacobsen and Pratt, 2013). In
that study, water relations differences between maritime and
interior Arctostaphylos populations were explained by the
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Figure 8: Time-series of mean summer (JJA). Enhanced Vegetation Index in southern California island and mainland environments (a). Recent
acute (single year; 2007) and chronic (multi-year; 2012–2017) drought events are shaded in gray. Lower panel (b) shows U.S. Drought Monitor
categorizations for the South Coast region (U.S. Drought Monitor: http://droughtmonitor.unl.edu/) during the same time interval. Island EVI is
averaged from Santa Catalina, Santa Cruz and Santa Rosa Islands, which all have significant island chaparral components. Mainland EVI is
averaged from chaparral-dominated areas in the Santa Monica, Santa Ynez and Santa Ana ranges. EVI averages were generated by combining
surface reflectance data from Landsat 4/5/7/8 using the Climate Engine web tool (https://app.climateengine.org/). Asterisks denote significant
differences during drought years and years immediately following drought (i.e. recovery years).
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reduced evaporative demand and increased inputs from fog
that are characteristic of coastal California environments. It
is likely that these factors—reduced evaporative demand and
increased summertime fog—also affect plant water relations
on the California Channel Islands (Williams et al., 2008b;
Fischer et al., 2009; Carbone et al., 2011; Taylor et al., 2019;
Supplementary Fig. S3).

Another factor that may be related to dry season water
relations in island and mainland sites is reduced shrub density
resulting from prior land use patterns. Island chaparral com-
munities on SCI are less dense, exhibiting a more open canopy
structure than mainland chaparral communities (Hochberg,
1980; Minnich, 1982; Schoenherr et al., 1999; Supplementary
Fig. S6). This pattern is thought to largely be an artifact of
19th and 20th century land use practices on SCI—specifically,
overgrazing by feral animals—and may not reflect the ‘nat-
ural’ state of SCI plant communities (Minnich, 1982; Rick
et al., 2014). Previous studies in southern California chaparral
and coastal sage communities have shown that decreased
transpiration and improved water availability are associated
with low woody vegetation density (Ng and Miller, 1980;
Poole and Miller, 1975).

Reducing stand density and competition for water is
hypothesized to improve individual plant water relations and
is a theoretical justification for the thinning of forest stands as
a strategy for managing drought impacts (Grant et al., 2013;
McDowell and Allen, 2015; Bradford and Bell, 2017). It is
possible that a similar process takes place in SCI chaparral
communities where the altered canopy structure (i.e. reduced
stand density) results in reduced competition by woody
plants for deeper water sources, leaving more water available
to the remaining individuals in the community (Hochberg,
1980). However, recent work from another semi-arid system
finds little evidence for this ‘moisture release hypothesis’,
suggesting instead that any reductions in competition are
offset by increased water loss from exposed soil, wind and
changes in hydraulic redistribution (Morillas et al., 2017).
It should also be noted that the potential role of introduced
herbivores in improving outcomes of island plants is limited.
Ramirez et al. (2012) found that browsing by mule deer
on Santa Catalina Island caused high post-fire mortality—
presumably, via carbon starvation—despite these populations
having a reduced risk of hydraulic failure compared to the
mainland. Future studies designed to isolate the effects of
maritime climate and stand density may help determine their
independent roles in determining seasonal water relations of
plants in this system.

While increased buffering of mature island chaparral
shrubs was observed in the present study, drought stress may
still play an important role in island sites through impacts to
post-fire seedlings and resprouts, as well as localized impacts
on drought-sensitive species. In a recent study of three island
chaparral species from Catalina Island, Jacobsen et al. (2018)
found that seedlings recruiting after a recent fire experienced
high levels of mortality and that cavitation resistance was pre-

dictive of these mortality patterns. In addition, indirect effects
of drought such as increased browsing pressure on delicate
regenerating vegetation during drought years may contribute
to post-fire mortality patterns (Ramirez et al., 2012). On
Santa Cruz Island, southern California, bishop pines (Pinus
muricata D. Don) have experienced drought-related mortality
during recent drought events (Baguskas et al., 2016; Taylor
et al., 2019). Furthermore, there may be limits to the buffering
observed in the present study for drought-tolerant chaparral
species that will be crossed during continued warming,
drying climate trends. Like other climate change refugia,
the persistence of species and ecosystems in hydrologic
refugia may only provide a temporary climate buffer (Millar
et al., 2007; Morelli et al., 2016; McLaughlin et al., 2017).

Hydraulic safety reveals hydrologic refugia
The improved safety margins we observed in island chaparral
shrubs may allow them to fare better during episodes of
increasing aridity. Greater hydraulic safety in island plants
indicates that they are able to tolerate greater declines in
minimum seasonal water potential before they experience
the same amount of drought-induced cavitation as mainland
relatives. Our remote sensing of island vegetation responses
during recent droughts suggests this buffering may improve
drought resistance and resilience in these environments.
Therefore, as the regional patterns of climate change in
California trend towards warmer, drier conditions, chaparral
shrubs living on the California Channel Islands may
experience less drought-induced cavitation, fewer declines
in performance and lower rates of mortality compared to
mainland plants with lower hydraulic safety margins.

Improved safety margins may also have been a factor
during past episodes of climate change, contributing to the
pattern of relictual endemism on the California Channel
Islands. Many of the woody endemics on the California Chan-
nel Islands are thought to be remnant populations of lineages
that once had broader distributions (Axelrod, 1967; Raven
and Axelrod, 1978; Schoenherr et al., 1999). The general
explanation offered for this pattern of relictual endemism
on the California Channel Islands is that changing climatic
conditions since the late Tertiary has resulted in extirpation of
mainland populations and persistence of island populations
due to more favorable climate and reduced competition in
insular environments. Our findings allow for such explana-
tions to be taken a step further by suggesting that reduced
risk of hydraulic failure may have contributed to woody plant
lineages persisting on the California Channel Islands during
past transitions to warmer, drier climates.

In conclusion, insular plant communities off the coast of
southern California have more favorable hydraulic traits that
underlie greater resistance and resilience to seasonal and inter-
annual droughts. This buffering is associated with the finding
that island plants do not appear to have ‘fine-tuned’ their stem
hydraulic traits in response to the higher water availability
in their current insular environment and, therefore, have a

..........................................................................................................................................................

12

https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coz115#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coz115#supplementary-data


..........................................................................................................................................................
Conservation Physiology • Volume 8 2020 Research article

reduced risk of hydraulic failure. This pattern of improved
hydraulic safety in island plants may have contributed to
current biogeographic patterns of endemic island lineages
and may continue to buffer island plants from hotter, drier
conditions associated with anthropogenic climate change in
this or other systems. Furthermore, the identification of high
safety margin taxa or ecotypes using the comparative methods
described here may be a useful approach to guide man-
agement efforts aimed at the detection of climate change
refugia (Keppel et al., 2011; Morelli et al., 2016). The present
study adds to the growing body of literature suggesting that
hydraulic traits and hydraulic safety margins, in particular,
are a valuable set of tools for predicting the impacts of
drought on plant communities and that similar comparisons
of hydraulic traits in other ecosystems may reveal additional
hydrologic refugia important to species persistence in the face
of a warmer, drier future.

Supplementary material
Supplementary material is available at Conservation Physiol-
ogy online
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