
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Discovering pathways through ribozyme fitness landscapes using information theoretic 
quantification of epistasis.

Permalink
https://escholarship.org/uc/item/6w20b648

Journal
RNA, 29(11)

Authors
Charest, Nathaniel
Shen, Yuning
Lai, Yei-Chen
et al.

Publication Date
2023-11-01

DOI
10.1261/rna.079541.122

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w20b648
https://escholarship.org/uc/item/6w20b648#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Discovering pathways through ribozyme fitness landscapes
using information theoretic quantification of epistasis

NATHANIEL CHAREST,1 YUNING SHEN,1 YEI-CHEN LAI,2,3 IRENE A. CHEN,1,3 and JOAN-EMMA SHEA1

1Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
2Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
3Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA

ABSTRACT

The identification of catalytic RNAs is typically achieved through primarily experimental means. However, only a small frac-
tion of sequence space can be analyzed evenwith high-throughput techniques.Methods to extrapolate froma limited data
set to predict additional ribozyme sequences, particularly in a human-interpretable fashion, could be useful both for de-
signing new functional RNAs and for generating greater understanding about a ribozyme fitness landscape. Using infor-
mation theory, we express the effects of epistasis (i.e., deviations from additivity) on a ribozyme. This representation was
incorporated into a simple model of the epistatic fitness landscape, which identified potentially exploitable combinations
of mutations. We used this model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme, iden-
tifying potentially active triple and quadruplemutants beyond the experimental data set of single anddoublemutants. The
predictions were validated experimentally, with nine out of nine sequences being accurately predicted to have high activ-
ity. This set of sequences included mutants that form a previously unknown evolutionary “bridge” between two ribozyme
families that share a common motif. Individual steps in the method could be examined, understood, and guided by a hu-
man, combining interpretability and performance in a simple model to predict ribozyme sequences by extrapolation.

Keywords: ribozyme; fitness landscape; epistasis; mutual information; surprisal

INTRODUCTION

Themapping of genotype to phenotype for functional bio-
polymers implicitly captures information about structural
contacts and mechanism. Fitness landscapes are mathe-
matical maps that relate primary sequence to functional
properties, such as catalytic rate enhancement for enzymes
or ribozymes. Understanding these landscapes, particular-
ly for RNA, may yield insights into mechanisms as well as
the molecular evolution of early life (Athavale et al. 2014;
Pressman et al. 2015). The development of quantitative
tools and high-throughput experiments for elucidating
and analyzing fitness landscapes is, therefore, amajor front
in research efforts to understand these systems (Kinney and
McCandlish 2019). High-throughput collection of data
has been used to characterize the fitness landscapes of
RNAs (Pitt and Ferré-D’Amaré 2010; Jiménez et al. 2013;
Puchta et al. 2016). For example, kinetic measurement us-
ing high-throughput sequencing (e.g., k-Seq) is able to

measure the activities of tens of thousands of ribozyme se-
quences (Yokobayashi 2020; Shen et al. 2021).

Nevertheless, even with high-throughput experimental
techniques, only a small fraction of possible sequence
space can be sampled, due to both synthetic and analytical
limitations. For example, a fully randomized 30 nt region in
a ribozyme sequence would yield 1018 different sequenc-
es, far exceeding current high-throughput sequencing ca-
pacity. Therefore, computational methods are required to
predict activities for sequences that were not captured by
the empirically available data. Such data presents compu-
tational challenges for interpretation, and improvedanalyt-
ical techniques are required to quantitatively characterize
fitness landscapes and develop models that advance un-
derstanding of the genotype–phenotype relationship.

In this work, we focus on an activity that would have been
foundational to the genetic code of protein translation, per-
haps the greatest evolutionary invention of an early RNA-
based prototypical life (Pressman et al. 2019). A key activity
of this process is the covalent attachment of amino acids to
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tRNAs (de Duve 1988), which is catalyzed in contemporary
biology by aminoacyl-tRNA protein synthetases. In the pre-
protein world, however, this activity may have been
achieved by self-aminoacylating ribozymes. This hypothesis
is supported by the existence of ribozymes that react with
aminoacyl adenylates or other activated substrates (Illanga-
sekareandYarus1999; Leeetal. 2000;Murakamiet al. 2006;
Chumachenko et al. 2009). Prior work (Pressman et al. 2019)
determined the catalytic activities of thousands of self-ami-
noacylating ribozymes that react with 5(4H)-oxazolones,
considered to be prebiotically relevant substrates (Liu et al.
2016). Here, we develop and validate a computational
method for extracting additional predictive power from
the limited experimental data of the fitness landscape.
Existing methods, such as minimum epistasis interpola-

tions (Zhou andMcCandlish 2020) andGaussian processes
(Romero et al. 2013), show promise for interpolating miss-
ing data on fitness landscapes and “filling in the map” for
regions of sequence space where data is not complete.
However, these methods struggle with sparse sampling
or require prerequisite knowledge, such as structural data
from the Protein Data Bank (Shroff et al. 2020), which are
not always accessible for the novel sequences. While mod-
ernmethods can interpolate fitness landscapes given suffi-
cient sampling, methods for extrapolative predictions
looking beyond the boundaries of sampled space are rela-
tively lacking. For example, using information about dou-
ble mutants of a central sequence to predict activities for
triple or quadruple mutants remains an open problem.
A simple extrapolative technique could be basedon addi-

tivity in thegenotype–phenotypemap, inwhich theeffectsof
singlemutations on the genotypewould be summed to pre-
dict the phenotype of the combination. Chemically speak-
ing, additivity corresponds to a separability of chemical
moieties that do not interact with one another in the reaction
mechanism. For example, a residue that stabilizes the active
foldmight not interact with a residue that exclusively forms a
contact in the transition state.However, additivity isgenerally
not a correct assumption in detail since different residues in-
fluence one another through direct contacts or indirect ef-
fects (epistasis). Epistatic landscapes feature mutations
whose effects are influenced by their genetic context. At-
tempts to model epistasis include using simple nonlinear
functions to capture latent, nonepistatic traits (Kondrashov
and Kondrashov 2015; Starr and Thornton 2016; Sailer and
Harms 2017; Otwinowski et al. 2018), and machine learning
models (Sarkisyan et al. 2016; Yang et al. 2019). The former
techniqueperformswell for relativelysimplesystems inwhich
there is a largely additive landscape subject to random vari-
ation, but not for more complex landscapes. Machine learn-
ing has strong general capability but requires considerable
finesse in parameterization and can pose difficulties with in-
terpretation. In one recent study, in silico evolution was per-
formed on ribozyme variants using empirically determined
fitness values, with a deep learning perceptron model ap-

plied in the final round. While the approach effectively iden-
tified neutral mutants of the ribozyme, the perceptron itself
constituted a “black box” (Rotrattanadumrong and Yoko-
bayashi 2022). Therefore, methods that combine perfor-
mance and interpretability are needed.
One possible approach is to usemathematical language

to construct an articulation of epistatic complexity that re-
mains accessible to human insight. The method described
here applies information theory to identify regions of se-
quence space where noninterfering mutations can be ex-
ploited to extrapolate beyond the boundaries of the
measured space. Instead of fitting a function to the fitness
landscape, this method identifies mutations that are likely
to yield high activity when combined. Epistasis has previ-
ously been analyzed in a probabilistic framework (Ostman
et al. 2012). Here, we relate the epistatic quantity to infor-
mation theory and demonstrate its ability to provide a pair-
wise decomposition of the information contained in the
data set. This pairwise representation can be exploited to
create a predictive model without fitting parameters.
Noting that mutual information has seen success improv-

ingpredictionoutcomeswhen integrated intomodels of the
sequence-activity relationship (Moore et al. 2006; Kinney
et al. 2007; Atwal and Kinney 2016), we use surprisal (see
Equation 1, below) and mutual information to calculate a
quantity termed “epistatic divergence.” We demonstrate
that epistatic divergence can be used to derive insights
fromempiricaldata thatextrapolatebeyond theexplored re-
gions of their fitness landscapes. Using two families of ribo-
zymes forwhich the activity of all possible doublemutants of
a central “seed” sequence had beenmeasured, we predict-
ed and validated points in the sequence space of triple and
quadruplemutantswithahigh likelihoodofactivity. Epistatic
divergence identified an evolutionary connection between
two “islands” of activity within the fitness landscape, which
we validated experimentally. Such extrapolation could be
combined with interpolation algorithms to enable greater
understanding of fitness landscapes.
This studyproposes a representation of interactions in the

sequence-activity landscape, in which qualitative properties
of a system are articulated mathematically. Representations
are an essential part of model development (Bengio and
Lecun 2007; Bengio et al. 2013) that affect the fundamental
ability to observe patterns in the data. This epistatic diver-
gence representation explicitly captures the degree to
which the sequence-ribozyme activity relationship is epistat-
ic, which subsequently enables precise exploitation of non-
interfering mutations for extrapolative predictions.

RESULTS

Epistatic divergence as a measure of epistasis

Weanalyzed a data set of ribozyme variants of a self-amino-
acylating RNA sequence (Pressman et al. 2019), S-1B.1-a,
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also referred to as a “seed” sequence here. We compared
epistatic divergence against a traditional conception of
epistasis, namely the difference from additivity of single
mutations. For the conventional measure of epistasis, the
average difference (µ) of a double mutant’s effect on the
activity from the sum of the constituent single mutants
was calculated for all pairs (m,n) (site pairs) (Fig. 1A). To
determine the effect of a single-site mutation, all double
mutations applying to that site were included in the aver-
aging, reflecting multiple genetic backgrounds present
in the double and single mutant data. The standard devia-
tions (σ) of these values were also calculated, indicating the
spread of the differences from additivity (Fig. 1B). These
measures reflect the difference from additivity when con-
sidering all possible nucleotide combinations across two
sites.

For epistatic divergence, low values indicate a site pair
(m,n) where the effects of the nucleotide combination
were found to be either lacking impact on the activity,
or were explainable by considering each site indepen-
dently, or both. A high value of epistatic divergence indi-
cates a site pair where the combination of nucleotides
was found to be important and impactful upon the activ-

ity. We calculated the epistatic divergence using two pos-
sible values of the classification thresholds θ, namely
classified based on activity less than or greater than (or
equal to) the seed sequence (θ= aseed; Fig. 1C), or activity
above or below the noncatalytic background rate (θ=
aactive; Fig. 1D). The former threshold (aseed) is quite strin-
gent (three out of 63 possible single mutants and
24 out of 1890 possible double mutants [Shen et al.
2021]) because the seed sequence is a ribozyme that
reached high abundance during prior in vitro selection
(Pressman et al. 2019), indicating high relative activity.
This threshold choice was used to focus on sites that
may cause activity enhancements close to or greater
than the seed sequence. The second threshold (aactive),
set at a catalytic rate equal to four times the background
(noncatalytic) reaction rate, captures sites that influence
whether a sequence is catalytically active at all.

Comparison of the epistatic divergence and the conven-
tional measure of epistasis shows that a site of particular in-
terest is position 38, which exhibits high σ despite low µ,
indicative of highly variable epistasis depending on genet-
ic background. Consistent with this, epistatic divergence is
high for site 38, suggesting an important relationship

A EC

B FD

FIGURE 1. Comparison of epistatic divergence and deviation from additivity for ribozyme S-1B.1-a. (A) The ensemble average of double mu-
tants’ difference from the additive sum of single mutants, a conventional measure of statistical epistasis that shows deviation from additivity.
(B) The standard deviations of the calculations from part A. (C ) The epistatic divergence computed using the threshold aseed. The seed sequence
defines the sample population; all mutants in the experimental data are a Hamming distance of 1–2 from the seed. Themedian activity of the seed
was taken as aseed, and any sequencewhosemedian activity was found above aseed wasmarked superior while any whosemedianwas found lower
was marked inferior. Note that sequences with activity close to the seed sequence may be incorrectly classified due to experimental noise (Shen
et al. 2021). (D) The epistatic divergence calculated using the threshold aactive based on the background catalytic rate determined in prior work
(Janzen et al. 2022). (E) The mutual information depicting which sites along the sequence were found to have the greatest relevance to the clas-
sification around aseed. (F ) Themutual information calculated around the classification schemewith aactive. The goal of thesemeasures is to detect
the site significance to the catalytic activity of the ribozyme.
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between activity and the nucleotide identity at this site.
Importantly, epistatic divergence also highlights other re-
gions of the sequence that do not appear unusual based
on the traditional measure of epistasis, particularly when
considering highly active sequences (Fig. 1C vs. 1A,B).
Predictions based on the region highlighted by epistatic
divergence, but not the traditional measure of epistasis,
were tested experimentally (described below). These fea-
tures demonstrate the ability of epistatic divergence to
positively identify regions of interest in the ribozyme.
Conversely, the ability to correctly identify regions that

are not of interest for extrapolative combination is also im-
portant. An advantage of epistatic divergence in this re-
gard can be seen in the blocks of signal associated with
the regions around sites 32–37 along site M and 39–47
on site N (seen as a low signal region in Fig. 1D). The µ val-
ues suggest a consistently large deviation from additivity,
while the spreads (σ) are quite narrow (Fig. 1A,B). These ef-
fects are driven by the fact that these locations are, inde-
pendently, essential to catalytic function. Mutations in
these regions essentially eliminate activity, and so any
double mutation of them will lead to high µ values due
to a saturation effect. However, such patterns cannot be
taken to reflect true interactions (i.e., mechanistic or struc-
tural) in the ribozyme. In contrast, when epistatic diver-
gence is used, these sites are appropriately identified as
lacking interactions. Thus, the epistatic divergence mea-
sure has high specificity in identifying loci with complex
epistatic behavior that might be exploitable, particularly
for predicting active sequences beyond the boundary of
sequence space in the data set.

Identifying hotspots of exploitable complexity

To focus on the potential prediction of high-activity se-
quences, we used the epistatic divergence measure with
θ= aseed to develop a predictive model. The epistatic
divergence highlighted sites where the data showed a par-
ticular dependence on pairwise states when considering
the distribution of activity (Fig. 1C). Such pairwise interac-
tions are expected to be important for high activity of the
ribozyme. At the same time, mutual information (between
a single site and the activity distribution) identifies single
sites that are informative for activity. Combining mutual in-
formation and epistatic divergence should therefore iden-
tify mutations that are likely to interact synergistically in
high-activity sequences. We leverage this fact to produce
a simple model that maximizes the utility of noninterfering
mutations within the landscape.
Specifically, the individual sites 30, 29, 31, and 38 gave

the most information about activity, in ascending order
(Fig. 1E). Epistatic divergence analysis indicated that the
combinations of these loci are synergistic. These observa-
tions suggested extrapolative predictions for highly active
sequences beyond the experimental data.

Extrapolative prediction of active ribozyme
sequences

The epistatic divergence ɛ is the sum of terms describing
each represented state, so the contributions from states
can be decomposed into contributions from each specific
mutant pair and sorted by activity class. We examined the
specific epistatic contributions from states containing a
combination of the top four individually informative sites
(29, 30, 31, and 38) (Fig. 2), showing regions where pair-
wise epistatic effects contained more information than
constituent sites considered alone, for the high-activity
class (using θ= aseed). Four sites were included in the anal-
ysis in order to obtain predictions for quadruple mutants.
In theory, synergistic double mutants might be com-

bined to generate triple and quadruple mutants expected
to have high activity. For example, synergistic effects arise
from the combinations (38A,31G), (38A,29C), and
(31G,29C) (Fig. 2A–F). This observation suggested that
the new triple mutant (G38A, A31G, A29C) may yield a
high-activity variant. The following process was used to
predict new high-activity ribozymes. The epistatic diver-
gence attributed to each site pair (Fig. 2A–F) was examined
to select potentially informative combinations among the
four most highly informative sites (29, 30, 31, and 38). A
strong signal was defined as >4 bits, corresponding to
the amount of information needed to completely specify
an RNA site pair. This list of strong signals was then
searched for compatible combinations that would result
in triple or quadruple mutants (Supplemental Table S1).
Two pairs having a common mutation were considered
compatible with each other if all of the mutation pairs of
the resulting triple mutant were strong signals. For exam-
ple, (29T,38A) is compatible with (38A,31G) because
(29T,31G) is also a strong signal, predicting that the triple
mutant (29T,38A,31G) should have high activity. Similarly,
two pairs of triple mutants, sharing two of three mutations,
were deemed compatible with each other if all pairs of the
resulting quadruple mutant were strong signals. For exam-
ple, (29C,30A,31G), a compatible triple mutant, is compat-
ible with (29C,31G,38A), also a compatible triple mutant,
because (30A,38A) is also a strong signal. This procedure
can be visualized as a network of single mutations, where
nodes (single mutations) are connected if the pair consti-
tutes a strong signal. Compatible triple or quadruple mu-
tants are thus found as completely connected triangles or
quadrilaterals (i.e., in which every node is connected to ev-
ery other node in the subgraph; Fig. 2G). This procedure
yielded 12 triple mutants and three quadruple mutants
that were predicted to have superior activity, assuming
that the double mutation information could be combined
to produce triple and quadruple mutant predictions. Of
these, all of the quadruple mutants were prioritized for ex-
perimental testing, since they represent a greater extrapo-
lation compared to triple mutants. Of the triple mutants,
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half (six) were chosen for experimental testing due to feasi-
bility constraints. The three triple mutants involving the
threemost informative sites (29, 31, and 38)were all chosen
for testing.Of the remainder, triplemutants containing29C
and 38A were prioritized over mutants containing 31G
because sites 38 and 29 showed the highest mutual infor-
mation for θ= aseed or θ= aactive, respectively (Fig. 1E,F).
The sequences selected for testing are given in Table 1.

Experimental testing of the predicted triple mutant
ribozymes

The six triple mutant sequences designed by following the
inference process above (Table 1) were used to search the
previously obtained high-throughput ribozyme assay data
set (Janzen et al. 2022). Although that data set had not
been designed to comprehensively cover triple mutants

A

C

D

E

F

G

B

FIGURE 2. Decomposition of epistatic divergence by sites for ribozyme S-1B.1-a. (A–F ) The matrix components of the epistatic divergence cal-
culations for the indicated site pairs. The decomposition was used to identify potentially compatible mutations, which are genotypes associated
with improved function over the seed ribozyme that can relate to other pairs of loci. The combinations result in triple or quadruplemutants that are
predicted to be likely to exhibit appreciable activity. These predictions extrapolate beyond the mapped fitness landscape. (G) The network of
single mutations, in which strong signals are represented by edges. Compatible triple or quadruple mutations are illustrated as completely con-
nected subgraphs. Quantities given are in bits with accompanying heat maps to aid the eye.
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of the seed sequence, some triple mutants had been syn-
thesized by chance along with the variant pool. The distri-
bution of measured activities is shown for analyzable triple
mutants from those data (Fig. 3A), with an emphasis on tri-
ple mutants found to have high activity (>aseed) (Fig. 3B).
The six predicted triple mutants indeed had outperformed
seed S-1B.1-a, and ranked in the top 30 out of more than
35,000 triple mutants analyzed. Precisions for these mea-

surements are given in Supplemental Figures S1, S2.
Sincemore active sequences aremore likely to have higher
relative abundance in the reacted pool (Supplemental Fig.
S3), this observation is consistent with the expectation of
higher activity level in these triple mutants.
While the epistatic divergence method shows excellent

specificity in identifying high-scoring triple mutants, it
should be noted that other triple mutants with top-scoring
median activities were not detected by the method. The
method identifies pairwise contributions to higher activity
that are likely compatible, resulting in a set of high-order
mutants as candidates for testing. The model relies on an
expectation that compatible double mutations would not
interferewith each other to cause decreased fitness. In oth-
er words, in the case of triple mutants, if mutants AB, BC,
andAC all have high activity, thenmutantABC is predicted
tohavehigh activity. (Forquadruplemutants, ifAB,BC,AC,
AD, BD, and CD all have high activity, then ABCD is pre-
dicted to have high activity.) This expectation is reasonable
if epistatic effects diminish at higher orders beyond pair-
wise interactions (Zhou et al. 2022). Conversely, higher-

TABLE 1. Predicted sequences from data on variants of
ribozyme S-1B.1-a

Predicted triple mutants Predicted quadruple mutants

s-1B-29C30A38A s-1B-29C30T31G38A

s-1B-29C31G38A s-1B-29C30A31G38A

s-1B-29T31G38A s-1B-29C30G31G38A
s-1B-29C30T38A

s-1B-29G31G38A

s-1B-29C30G38A

A

B

FIGURE 3. Experimental activity measurements (k-Seq [Janzen et al. 2022]) for triple mutants of S-1B.1-a. Measurements are shown as median
values with 95% confidence intervals. (A) All analyzable triple mutants in the pool, ranked in terms of median kA values for activity. (B) The top 84
sequences, including seed sequence S-1B.1-a and separate seed sequence, S-1A.1-a (red). The predicted triplemutants (orange) were associated
with improvements over S-1B.1-a’s activity and were generally among the top-ranking activities. See Supplemental Figures S1–S3 for measure-
ment precisions.
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order mutants might be missed if higher-order epistasis is
significant, for example, if the double mutant subsets of a
high-scoring triple combination are not high-scoring, lead-
ing to lowered sensitivity of this method for predicting ac-
tive mutants.

The success of the six predictions suggests this assump-
tion is sometimes appropriate, but violations of this as-
sumption could explain the high-activity triple mutants
that were missed in this process.

Prediction of an evolutionary pathway through
a quadruple mutant ribozyme

We also analyzed the epistatic divergence and mutual in-
formation for a related ribozyme, S-1A.1-a. Sequence S-
1A.1-a and S-1B.1-a are related by a shared motif (Fig. 4)
offset by two sites, but they contain distinct flanking re-
gions and are separated by a total edit distance of six
(Hamming distance=16). Interestingly, some mutations
suggested by the epistatic divergence analysis of variants
of S-1B.1-a were noted to decrease the edit distance to se-
quence S-1A.1-a. Specifically, A29C, C30T, and G38A
would reduce the edit distance between these two ribo-
zyme families. Furthermore, the epistatic divergence anal-
ysis for variants of S-1A.1-a (Fig. 5) indicated that site 29 is
highly informative, and the major signal from epistatic
divergence occurs at the (29G, 27A/T/G) pair. Inspection
of the sequence alignment indicates that a (29G, 27A) dou-
ble mutant of S-1A.1-a would reduce the edit distance to
sequence S-1B.1-a by two (Fig. 4). These considerations in-
dicate a possible connection between the S-1A.1-a and S-
1B.1-a families, suggesting there may be an evolutionary
path of active ribozyme variants between them.

Thus, epistatic divergence analysis predicted that high
activity would occur with mutation of S-1A.1-a to resemble
S1B-29C30T31G38A, and conversely that high activity
would occur with mutation of S-1B.1-a to resemble
S-1A.1-a. This suggested the presence of a specific, high-
activity evolutionary pathway consisting of active mutants

to connect these two ribozyme families. We tested the ac-
tivity of the intermediate mutants (S1A-29G, S1B-
29C30T31G38A, andS1B-29C31G38A) individuallyexper-
imentally. Reaction with the substrate yields a biotinylated
product that can be separated using streptavidin beads
and quantified by RT-qPCR. Measurement of reaction
product over a concentration series allows determination
of the catalyzed rate (Shen et al. 2021). The predicted inter-
mediatemutants indeed exhibited high activity, with some
activities being higher than either seed sequence S-1A.1-a
or S-1B.1-a, validating the existence of the predicted evo-
lutionary connection (Fig. 6).

DISCUSSION

The epistatic divergence description of pairwise interac-
tions within the primary sequence of self-aminoacylating ri-
bozymes enabled the extrapolation of previously unknown
active sequences, atmutational distancesbeyond the train-
ing space. This was accomplishedby considering a data set
of activities measured via k-Seq experiment, for sequences
within two point mutations of a central seed sequence, ap-
plying information theory to describe the information con-
tent of the distribution of activities in terms of pairs of
residue identities, and determining where these pairs pos-
sess noninterfering or synergistic behavior that can be ex-
ploited to predict highly active sequences beyond the
training space. Through this process, the most informative
(i.e., highest surprisal) observations of pairwise mutants
were used. The most informative observations were com-
bined whenever an internally consistent extrapolation
was possible. In other words, epistatic divergence identi-
fied where a measurement of activity in double mutants
most deviated from the expectation of mutual indepen-
dence between sites. To generate an extrapolative predic-
tion of triple or quadruple mutants (which were not in the
training data set), mutations were combined whenever all
of their pairwise interactions were positive (Fig. 2G).

Because of the simplicity of this parameter-free ap-
proach, the results can be readily interpreted with the lan-
guage of information theory while simultaneously offering
a pragmaticmeans to identify regions of activity within a fit-
ness landscape, and potential evolutionary pathways, with
high specificity.

The epistatic divergence can be mathematically cast as
the sum of information contents describing the degree to
which a data point contributes to the knowledge of wheth-
er a pair of residues predicts an active sample or an inactive
sample. Unlike machine learning methods that predict a
distribution of activity over the sequences, this method
mathematically identifies the parts of the sequence that
yield the most information for predicting the activity. This
approach systematizes empiricalmethods that rely onman-
ual curation of significant residues (Miton et al. 2020). Sub-
sequent analysis then allows the constructionofpredictions

FIGURE 4. Sequence comparison of seed sequences andmutants in-
dicated by epistatic divergence analysis. In red is the sharedmotif link-
ing S-1A.1-a and S-1B.1-a families. In green are mutations
characteristic of S-1A.1-a and indicated by epistatic divergence anal-
ysis as improving S-1B.1-a. In blue are shared residues indicated by
epistatic divergence analysis for both S-1A.1-a and S-1B.1-a families.
These predictions suggest a possible evolutionary pathway connect-
ing S-1A.1-a and S-1B.1-a.
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outside the training set, by combining the sequence iden-
tities that were associated with the most informative data
points within the training set. Mutual information has
been previously used for detecting coupled variables in bi-
ological contexts. Examples include analyzing combina-
tions of SNPs in genetic studies (Moore et al. 2006;
Moore and Hu 2015) and predicting contacts between res-
idues in protein (Gloor et al. 2005; Dunn et al. 2008) or RNA
(Chiu and Kolodziejczak 1991; Freyhult et al. 2005) mole-
cules. In this work, we further identify beneficial genotypes
using surprisal and combine compatible genotype pairs to
detect active higher-order mutants.
Recent work on genotype–phenotype mapping by mini-

mizing epistatic interactions develops a model that allows
for maximally locally additive behavior indicated by training
observations (Zhou andMcCandlish 2020). This assumes an
underlying preference for nonepistatic behavior, that is then
qualified by the epistasis present in the observations of the
training pool. Conversely, the epistatic divergence is not a
model in the traditional sense of producing a mathematical
construction that can generate predictions. Rather, epistatic
divergence is a quantitative representation of how informa-
tive a given observation is. In this context, an “observation”
is a phenotype class (“active”or“inactive”) pairedwith age-
notype class (e.g., “A” in position 38 and “G” in position 29)
that is present in the training data set. This defines the sup-
port setof the independentvariablesbeingused todescribe
the system. Epistatic divergence quantifies information con-

tent relative to the rest of the pool, such that the most infor-
mative observations can be used for subsequent prediction
building. In our model, we combine observations that were
identified as both highly informative as well as pertaining to
the active class. Because we explicitly compute over pairs,
we explicitly capture the interactions, epistatic or otherwise,
described by those pairs. This results in predictions that are
combinations of the most informative pieces of information
in the data set.
Understanding genotype–phenotype maps, and pre-

dicting highly active sequences, are important twin goals
in biomolecular engineering. Due to the astronomical
size of sequence space, for which the mass of a pool
containing every possible protein-coding sequence would
readily outstrip the mass of the Earth, computational ex-
trapolation will always be necessary to understand geno-
type–phenotype maps beyond a few dozen residues.
Furthermore, given that the vast majority of sequences
are inactive, and that the majority of mutations are delete-
rious to function, computational methods to make accu-
rate, specific predictions are invaluable for identifying
novel functional sequences. In this work, the analysis re-
sulted in prediction of 12 highly active triple mutants (of
which six were tested experimentally) and three highly ac-
tive quadruple mutants (of which all were tested experi-
mentally). It is notable that nine out of nine predicted
sequences chosen for testing yielded highly active se-
quences. In a previous studymeasuring activities by kinetic

A

C

B

FIGURE 5. Epistatic divergence analysis for variants of ribozyme S-1A.1-a. Epistatic divergence, mutual information and decomposition from
data on single and double mutants of S-1A.1-a. These suggest mutations that bring its sequence closer into alignment with a quadruple mutant
of S-1B.1-a that was predicted to be active (S1B-29C30T31G38A).
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sequencing, ∼5% of all single mutants and 1% of all dou-
ble mutants were found to have high activity. The previous
study using a doped library was not designed to measure
all possible triple or quadruplemutants, butmany were still
measured though at low precision due to a small number
of sequencing reads. Of these triple and quadruple mu-
tants, 0.2% or less were found to have high activity
(Supplemental Table S2; Shen et al. 2021). Therefore,
the epistatic divergencemethod described here compares
favorably in identifying activemutants (9/9) compared with
the very low frequency of active mutants from an unbiased
sample. While the double mutant data, on which this
method is based, was comprehensive (i.e., including all
possible double mutants), no data on triple or quadruple
mutants was used for the predictions. However, the pre-
dictive power of this method is likely to decrease for high-
er-order mutations, since themethod assumes that higher-
order epistatic interaction is relatively small when predict-
ing mutants. Progress in increasing the throughput of syn-
thetic and analytical techniques would be useful for
building larger experimental data sets to validate
predictions.

Furthermore, the pattern of these mutants revealed a
previously unknown neutral evolutionary pathway of highly
active sequences through the fitness landscape, which
joined the two ribozyme families centered on S-1A.1-a
and S-1B.1-a. In particular, while the experimental data
set used for the analysis here described only the local fit-

ness peaks (within a mutational distance of two) around se-
quences S-1A.1-a and S-1B.1-a, the epistatic divergence
specifically illuminatedmultiple high points outside this re-
gion, as well as an evolutionary connection that was previ-
ously unknown. An experimental approach to the same
goal of discovering new fitness peaks and an evolutionary
pathway, while not impossible, would have been signifi-
cantly more laborious.

Machine learning approaches have been applied to the
problem of predicting active sequences by extrapolation
frommutational data. For example, a random forest model
was applied to predict active mutants of a self-cleaving ri-
bozyme (Breiman 2001; Beck et al. 2022). While often suc-
cessful in generating predictions, random forest models
average over many decision trees and thereby create a dif-
ficulty in interpreting the process itself. Deep learning
models, such as multilayer perceptrons or Long-Short
Term Memory networks (Schmidt and Smolke 2021; Beck
et al. 2022; Rotrattanadumrong and Yokobayashi 2022),
improve the representation of the data and extract features
found to be significant to the endpoint being modeled.
However, deep models are complex, requiring many pa-
rameters, and interpretability remains an unsolved prob-
lem (Kirboga et al. 2023). In this context, an advantage of
the analysis presented here is that the statistical quantities
are not based on fitted parameters, but are rather calculat-
ed directly from the data, and the prediction process fol-
lows well-defined steps from the calculation of epistatic
divergence components to the assessment of mutant
combinations.

Thus, in the epistatic divergence analysis presented
here, the steps of the method are directly interpretable
in real terms, and the analysis itself is an interactive process
with the data, allowing insight into the genotype–pheno-
type map. The analysis here shows how epistatic diver-
gence can highlight regions significant to the genotype–
phenotype model, and provides means to reliably predict
their combinatorial nature from simple, meaningful quanti-
ties. This expands the capability to discuss thesemappings
in rigorous terms and complements the application of
more sophisticatedmodelingmethods by offering ameth-
od to expose the underlying statistical behaviors. Such
mixed-approach analyses are crucial for converting large-
scale data sets into specific biochemical knowledge.

In this work, we demonstrated a simple quantity that can
be calculated from a large but limited bulk of sequence-ac-
tivity data to produce a probabilistic representation of the
ribozyme fitness landscape. This representation explicitly
captures the degree to which a given sequence site pos-
sesses epistatic interactions with other sites, enabling pre-
cise exploitation of these differing forms of interaction.

Contemporary machine learning efforts frequently rely
on the application of “shallow learners” (Bengio and
Lecun 2007), algorithms applied directly to biochemical
data with the hope that the sophistication of the algorithm

FIGURE 6. Ribozyme activities along a predicted evolutionary path-
way (median and 95% confidence interval), measured by qPCR assay.
The endpoints on the x-axis are the seed sequences (purple), with in-
termediatemutants as shown (red). Mutant sequences were predicted
by extrapolation from the data by analyzing epistatic divergence.
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is sufficient to overcome the convolutions obscuring the
sequence-activity relationship. However, the choice of
representation for the input data significantly impacts not
just the interpretability of the model but also the perfor-
mance of the model (Bengio et al. 2013). With this in
mind, the epistatic divergence introduced here is a simple
transformation of the data, driven by established informa-
tion theory. The results are used to develop a simple mod-
el that maximizes our extrapolation capabilities, such that
we could predict and experimentally validate new points
in sequence space having high activity. We demonstrated
that epistatic divergence is a sufficient representation to
create experimentally relevant extrapolative models using
a simple analysis workflow. Future integration of epistatic
divergence with sophisticated machine learning algo-
rithms (e.g., Shroff et al. 2020) may further improve predic-
tive models of fitness landscapes.

MATERIALS AND METHODS

Construction of epistatic divergence

We construct epistatic divergence in a similar manner to prior work
(Ostman et al. 2012) to compare the degree to which a pair of nu-
cleotide identities affects the activity state versus the degree to
which an individual constituent site affects the activity state. The
motivation is that a more epistatic nucleotide pair requires the
knowledge of both nucleotides jointly to describe the activity state
likelihood more accurately, while a less epistatic pair would allow
for that description from the individual descriptions of each nucle-
otide identity. We describe the epistatic divergence using informa-
tion content (I ), or surprisal (Shannon 1948). Formally, I(p(x)) is the
information content of event x with probability p(x), where

I(p(x)) = −log(p(x)). (1)
Epistatic divergence is assessed as

DIA,m,n = I(p(A|m))+ I(p(A|n))− I(p(A|m, n)).

Here, we denote a random variable representing the activity of
the ribozyme with A. Lower case m and n specify a genotype at
sites M and N. We term a pair of sites relevant to this calculation
as a “site pair.” Thus, p(A|m) denotes the probability of observing
A conditioned on genotype m, and we have:

I(p A|m( )) + I p A|n( )( )− I p A|m,n( )( )
= log p A|m, n( )( )− log p A|m( )p A|n( )( )

(2)

DIA,m,n = log
p(A|m, n)

p(A|m)p(A|n)
( )

.

This expresses epistatic interaction using information content.
Because we are concerned with pairs of sites (i.e., “site pair,”
such as 29 and 38), we average over a probability distribution
that describes how the various genotypes predict the pheno-
types. Thus we use as our distribution p(A|m,n):

∑
A

p(A|m, n) log
p(A|m, n)

p(A|m)p(A|n)
( )

.

To incorporate information about every possible genotype at a

site pair, we sum over all genotypes that are represented in the
sample (over the support set of the population). Thus we sum
over every combination of activity and genotype states (A, m, n)
that has at least one representative in the sample population, as
follows:

eA(m,n)=
∑
m,n

∑
A

p(A|m,n) log
p(A|m,n)

p(A|m)p(A|n)
( )

=
∑

occupiedstates
(A,m,n)

p(A,m,n)
p(m,n)

log
p(A,m,n)p(m)p(n)

p(A,m)p(A,n)p(m,n)

( )
.

Thus,

eA(m,n)=
∑

occupiedstates

− p(A,m,n)
p(m,n)

( )
logb

p(A,m)p(A,n)p(m,n)
p(m)p(n)p(A,m,n)

( )
,

(3)

eA(m,n)=DKL(p(A |n,m)||p(A|m)p(A|n)), (4)

where DKL is the Kullback–Leibler divergence and eA is the epi-
static divergence. The quantity eA is equal to zero when the inter-
action betweenm and n carries no additional information (i.e., no
epistasis, such that the activity of the combined genotype can be
completely predicted from the activities of the individual
genotypes), or when the sites do not affect activity. We set base
b=2, so that information is given in units of bits.
It should be noted that the use of the DKL is compact notation

and does not relate to the use of DKL to compare two probability
distributions, because p(A|m)p(A|n) is not a well-defined probabil-
ity distribution. Thus, the usage here only results from examining
the difference of information contents between informational
bodies and weighting it to favor relevance to the empirical distri-
bution, p(A|m,n).
Together, the logarithmic terms quantify the degree to which

genotypes are statistically dependent within the context of a giv-
en genotype, and the weight factor then adjusts the signal such
that its intensity depends on the degree to which the genotype
explicitly impacts the phenotype. Detailed discussion of the epi-
static divergence quantity is provided in the Supplemental
Information, Appendices A–C.

Mutual information to describe the effects of single
sites

To assess the single-site effect on polymer activity, we use themu-
tual information, in bits, N(A;m), as follows:

N(A; m) =
∑
A

∑
m

p(A, m)log2
p(A, m)
p(A)p(m)

( )
. (5)

Mutual information is used to interrogate the divergence of the
joint state distribution between activity and single-site identity,
and the distribution associated with statistical independence,
thus quantifying the effect of a given residue on the distribution
of the activity classes. In contrast to epistatic divergence, themutu-
al information assesses single-site contributions rather than interac-
tions between sites with respect to their impact on the activity class.

The activity, A, is a continuous value, which we classify into
discrete classes of activity by a schemaAwith a set of associated
parameters {θi}, where i indexes the parameters that discretize
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the activity space. We used two types of classification. The first,
used for extrapolative prediction of active sequences, divides
sequences into those with activity less than or greater than the
activity of a central reference “seed” sequence. The second,
used for visualizing the pairwise epistasis contributing funda-
mental activity, was found by fitting a Gaussian curve to normal-
ized activity values. This results in a threshold of four times the
baseline activity, that statistically defines whether a sequence
can be considered catalytically active or not (Janzen et al.
2022). Median values from experimental replicates were used
for the activity metric.

We specify the classification scheme A, as follows:

A(a) = 0 if a , u (inactive class)
1 if a ≥ u (active class)

{
, (6)

where a is the continuous value of activity and A is the discrete
class. This representation depends only on a single parameter,
θ; however, alternative classification schemes could be defined
depending on the needs of a given investigation.

Extrapolative prediction of active sequences

To predict regions with high-activity ribozymes, we compute ε,
epistatic divergence, using the classification threshold θ= aseed,
the activity of the seed sequence at the center of the 2-
Hamming distance radius defining the training space. For other
characterization, we set θ= aactive, a value determined by
fitting normal distributions to the measured background
activities of noncatalytic sequences. Ribozyme activities higher
than the threshold value were significantly greater than the back-
ground activity (i.e., >4 times the background rate) (Janzen et al.
2022).

The epistatic divergence values were plotted to determine
which sites were most associated with improvements upon the
base activity of the seed sequence. This process identified pairs
of nucleotides that are associated with the most epistatic im-
provements to the activity. Knowledge of these pairs was then
combined with insight from mutual information calculations re-
garding highly informative sites. This two-step process resulted
in prediction of noninterfering epistatic pairs, whose genotypes
could be combined to extrapolate activity in unexplored regions
of sequence space.

Comparison to established measures of epistasis

We compared the information produced by epistatic divergence
with two conventionalmeasures, derived from the additive formu-
lation of epistasis (Phillips 2008). We use two quantities, termed µ
and σ, which are related to the activity of sequences as follows:

emn = Dmn − Dm0 − D0n, (7a)

m = 1
N

∑
m, n

em,n, (7b)

s = Std({em,n}). (7c)

In µ, the difference between the change inmolecular activity, asso-
ciated with a double mutant (Δmn) and the change described by
summing the individual single mutations (Δm0 and Δ0n) are
averaged over N genotypic backgrounds. σ is the standard devia-
tion (Std) associated with that set, and describes the variance of ef-

fects across different genetic backgrounds. Note that µ and σ (not
ε) are used for denotation of the measures described in Equations
7a–7c.

Experimental data set of ribozyme activities

The data consists of high-throughput (k-Seq) activity measure-
ments on two families of ribozymes originally discovered by in vi-
tro selection starting from a 21-site variable region. Ribozymes
self-aminoacylate by reaction with a tyrosine analog substrate,
biotinyl-Tyr(Me)-oxazolone (BYO). Two families, 1B.1 and 1A.1,
were chosen for this analysis due to a shared motif. Activity mea-
surements were performed for all sequences within Hamming dis-
tance of two from the core seed sequences, providing detailed
mapping of the localized fitness landscapes. Although no evolu-
tionary pathway had been discovered between these families, the
shared motif suggested the possibility of a connection between
the two active families. Data from single- and double-mutant
sets of these two families were used to produce predictions of
high activity within the triple- and quadruple-mutant range of in-
terest, allowing us to explore predictive power beyond the
Hamming range of the training set. Data were normalized by
background activity, consistent with other work on this data set
(Janzen et al. 2022).

Experimental measurement of ribozyme activity
by RT-qPCR

The activities of selected ribozymes were determined by reverse
transcription-qPCR assay (RT-qPCR) as previously described (Lai
et al. 2021).DNA sequenceswere chemically synthesizedandpoly-
acrylamide gel electrophoresis (PAGE)-purified by Integrated DNA
Technologies. The synthesized DNA sequences were 5′-GA
TAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-
N21-TTCACTGCAGACTTGACGAAGCTG-3′, where the nucleo-
tides upstreamof the transcription start site for T7 RNApolymerase
areunderlinedandN21denotes21consecutive nucleotides,which
are varied for different ribozyme sequences. The sequences of the
N21 region of tested ribozymes are: CCACACTTCAAGCAATCG
GTC (S-1B.1-a), CCCCGCTTCAAACAATCGGTC (S1B-29C31G3
8A), CCCTGCTTCAAACAATCGGTC (S1B-29C30T31G38A), CTG
CTTCAAACAATCGGTCTG (S1A-29G), and CTACTTCAAACAAT
CGGTCTG (S-1A.1-a). RNAswere transcribedusingHiScribeT7po-
lymerase (New England Biolabs) and purified by denaturing PAGE
(National Diagnostics). 0.1 µM of RNA samples in the aminoacyla-
tion buffer (100 mM HEPES [pH=7], 100 mM NaCl, 100 mM KCl,
5mMMgCl2, and 5mMCaCl2) were incubated for 90min with var-
ious BYO substrate concentrations (10, 50, 100, 250, 500, and 1000
µM) in the total volume of 100 µL for each sample. The reactions
were stopped by removing unreacted substrate using Bio-Spin
P-30 Tris desalting columns (Bio-Rad). The RNA concentration of
each sample was quantified by Qubit 3.0 Fluorometer (Thermo
Fisher Scientific). To isolate the reacted RNA, streptavidin
MagneSphereparamagneticbeads (Promega)wereadded toall re-
acted RNA samples (20 ng RNA for each sample from the dissolved
reacted RNA stock solutions) with a volume ratio of 1:1. Samples
were incubated for 10 min at room temperature with end-over-
end tumbling, followedby threewashing steps. The aminoacylated
RNAs were eluted with UltraPure DEPC-TreatedWater (Invitrogen)
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incubation at 70°C for 1 min. The amounts of aminoacylated RNAs
werequantifiedusing iTaqSYBRgreenmix (#1725150,Bio-Rad) us-
ing theBio-RadCFX96Touch system.The sampleswereprepared fol-
lowing the manufacturer’s protocol. An amount of 2 µL sample was
mixed in the total 10 µL RT-qPCR reaction volume with 500 nM of
both forward and reverse primers. The forward and reverse primers
sequencewere 5′-GATAATACGACTCACTATAGGGAATGGATCC
ACATCTACGA-3′ and 5′-CAGCTTCGTCAAGTCTGCAGTGAA-3′,
respectively. A calibration standard curve was measured for each
RT-qPCR measurement batch to reduce measurement error. The
standard RNA sequence was 5′-GGGAAUGGAUCCACAUCU
ACGAAUUCAAAAACAAAAACAAAAACAAANUUCACUGCAGA
CUUGACGAAGCUG-3′ which has the same length (i.e., 71 bp)
and primer-complementary regions as the ribozymes used in
this study. The standard curve was determined by adding 2 µL
standard RNA samples with the concentrations of 1000, 100, 10,
1, and 0.1 pg/µL. Triplicates were performed for each sample.
Results were fit to the pseudo-first-order rate equation

F = A(1− e−k[BYO]t ),

where F is the reacted fraction,A is themaximum reacted fraction,
t is the incubation time of 90 min, and k is the effective rate cons-
tant of the aminoacylation reaction. The two fitting parameters A
and k are poorly estimated individually for low-activity sequences
(ca., k<0.5min−1M−1), but due to the inverse correlationbetween
estimatedA and k during curve fitting, the product of the estimat-
ed k and estimated A is more accurate (Shen et al. 2021).
Therefore, the product of the two estimated parameters, kA,
from the pseudo-first-order curve fitting, was used to represent
the catalytic activity of ribozymes in the present study.

DATA DEPOSITION

The Python code used in the calculations is available at
https://github.com/ncharest/epistatic-divergence. The ribo-
zyme data set is publicly available at the Dryad Digital
Repository under DOI 10.25349/D92C9C (https://doi.org/10
.25349/D92C9C).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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Kinney JB, Tkačik G, Callan CG. 2007. Precise physical models of pro-
tein–DNA interaction from high-throughput data. Proc Natl Acad
Sci 104: 501–506. doi:10.1073/pnas.0609908104

Kirboga KK, Abbasi S, Kucuksille EU. 2023. Explainability and white
box in drug discovery. Chem Biol Drug Des 102: 217–233.
doi:10.1111/cbdd.14262

Kondrashov DA, Kondrashov FA. 2015. Topological features of rug-
ged fitness landscapes in sequence space. Trends Genet 31:
24–33. doi:10.1016/j.tig.2014.09.009

Lai YC, Liu Z, Chen IA. 2021. Encapsulation of ribozymes insidemodel
protocells leads to faster evolutionary adaptation. Proc Natl Acad
Sci 118: e2025054118. doi:10.1073/pnas.2025054118

Lee N, Bessho Y, Wei K, Szostak JW, Suga H. 2000. Ribozyme-cata-
lyzed tRNA aminoacylation. Nat Struct Biol 7: 28–33. doi:10
.1038/71225

Liu Z, Rigger L, Rossi JC, Sutherland JD, Pascal R. 2016. Mixed anhy-
dride intermediates in the reaction of 5(4H)-oxazolones with phos-
phate esters and nucleotides. Chemistry (Easton) 22: 14940–
14949. doi:10.1002/chem.201602697

Miton CM, Chen JZ, Ost K, Anderson DW, Tokuriki N. 2020. Statistical
analysis of mutational epistasis to reveal intramolecular interaction
networks in proteins. Methods Enzymol 643: 243–280. doi:10
.1016/bs.mie.2020.07.012

Moore JH, Hu T. 2015. Epistasis analysis using information theory.
Methods Mol Biol 1253: 257–268. doi:10.1007/978-1-4939-
2155-3_13

Moore JH, Gilbert JC, Tsai C-T, Chiang F-T, Holden T, Barney N,
White BC. 2006. A flexible computational framework for detect-
ing, characterizing, and interpreting statistical patterns of epistasis
in genetic studies of human disease susceptibility. J Theor Biol
241: 252–261. doi:10.1016/j.jtbi.2005.11.036

Murakami H, Ohta A, Ashigai H, Suga H. 2006. A highly flexible tRNA
acylation method for non-natural polypeptide synthesis. Nat
Methods 3: 357–359. doi:10.1038/nmeth877

Ostman B, Hintze A, Adami C. 2012. Impact of epistasis and
pleiotropy on evolutionary adaptation. Proc Biol Sci 279: 247–
256.

Otwinowski J, McCandlish DM, Plotkin JB. 2018. Inferring the shape
of global epistasis. Proc Natl Acad Sci 115: E7550–E7558.
doi:10.1073/pnas.1804015115

Phillips PC. 2008. Epistasis—the essential role of gene interactions in
the structure and evolution of genetic systems. Nat Rev Genet 9:
855–867. doi:10.1038/nrg2452

Pitt JN, Ferré-D’Amaré AR. 2010. Rapid construction of empirical RNA
fitness landscapes. Science 330: 376–379. doi:10.1126/science
.1192001

Pressman A, Blanco C, Chen Irene A. 2015. The RNAworld as amodel
system to study the origin of life. Curr Biol 25: R953–R963. doi:10
.1016/j.cub.2015.06.016

Pressman AD, Liu Z, Janzen E, Blanco C, Müller UF, Joyce GF,
Pascal R, Chen IA. 2019. Mapping a systematic ribozyme fitness

landscape reveals a frustrated evolutionary network for self-amino-
acylating RNA. J AmChem Soc 141: 6213–6223. doi:10.1021/jacs
.8b13298

Puchta O, Cseke B, Czaja H, Tollervey D, Sanguinetti G, Kudla G.
2016. Network of epistatic interactions within a yeast snoRNA.
Science 352: 840–844. doi:10.1126/science.aaf0965

Romero PA, Krause A, Arnold FH. 2013. Navigating the protein fitness
landscape with Gaussian processes. Proc Natl Acad Sci 110:
E193–E201. doi:10.1073/pnas.1215251110

Rotrattanadumrong R, Yokobayashi Y. 2022. Experimental exploration
of a ribozyme neutral network using evolutionary algorithm and
deep learning. Nat Commun 13: 4847. doi:10.1038/s41467-022-
32538-z

Sailer ZR, HarmsMJ. 2017. Detecting high-order epistasis in nonlinear
genotype–phenotype maps. Genetics 205: 1079–1088. doi:10
.1534/genetics.116.195214

Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS,
Sharonov GV, Ivankov DN, Bozhanova NG, Baranov MS,
Soylemez O, et al. 2016. Local fitness landscape of the green
fluorescent protein. Nature 533: 397–401. doi:10.1038/
nature17995

Schmidt CM, Smolke CD. 2021. A convolutional neural
network for the prediction and forward design of ribozyme-based
gene-control elements. Elife 10: e59697. doi:10.7554/eLife
.59697

Shannon CE. 1948. A mathematical theory of communication. Bell
Syst Tech J 27: 379–423. doi:10.1002/j.1538-7305.1948
.tb01338.x

Shen Y, Pressman A, Janzen E, Chen IA. 2021. Kinetic sequencing (k-
seq) as a massively parallel assay for ribozyme kinetics: utility and
critical parameters. Nucleic Acids Res 49: e67. doi:10.1093/nar/
gkab199

Shroff R, Cole AW, Diaz DJ, Morrow BR, Donnell I,
Annapareddy A, Gollihar J, Ellington AD, Thyer R. 2020.
Discovery of novel gain-of-function mutations guided by struc-
ture-based deep learning. ACS Synth Biol 9: 2927–2935. doi:10
.1021/acssynbio.0c00345

Starr TN, Thornton JW. 2016. Epistasis in protein evolution. Protein
Sci 25: 1204–1218. doi:10.1002/pro.2897

Yang KK, Wu Z, Arnold FH. 2019. Machine-learning-guided directed
evolution for protein engineering. Nat Methods 16: 687–694.
doi:10.1038/s41592-019-0496-6

Yokobayashi Y. 2020. High-throughput analysis and engineering of ri-
bozymes and deoxyribozymes by sequencing. Acc Chem Res 53:
2903–2912. doi:10.1021/acs.accounts.0c00546

Zhou J, McCandlish DM. 2020. Minimum epistasis interpolation for
sequence–function relationships. Nat Commun 11: 1782. doi:10
.1038/s41467-020-15512-5

Zhou J, Wong MS, Chen WC, Krainer AR, Kinney JB,
McCandlish DM. 2022. Higher-order epistasis and phenotypic
prediction. Proc Natl Acad Sci 119: e2204233119. doi:10.1073/
pnas.2204233119

See the following page forMeet the First Author

Charest et al.

1656 RNA (2023) Vol. 29, No. 11



MEET THE FIRST AUTHOR

Nathaniel Charest

Meet the First Author(s) is an editorial feature within RNA, in
which the first author(s) of research-based papers in each issue
have the opportunity to introduce themselves and their work
to readers of RNA and the RNA research community.
Nathaniel Charest is the first author of this paper, “Discovering
pathways through ribozyme fitness landscapes using informa-
tion theoretic quantification of epistasis.” At the time of this
work, he was a postdoctoral scholar with Joan-Emma Shea at
the University of California Santa Barbara. The main focus of
his research is informatics and using fundamental theories ofma-
chine learning to extract and interpret patterns within chemical
and biochemical data. The emphasis of this particular research is
to demonstrate that first-principles theory has direct implica-
tions on analyzing modern data problems without relying on
black box regression models or elaborate interpretation
schemes.

What are the major results described in your paper and how do
they impact this branch of the field?

The major results of this paper show that simple probability theory
can derive exploitable patterns within RNA sequence data and
pragmatically predict activity within unexplored sequence space.
The impact on this branch of the field is to assist in the character-
ization of RNA sequence landscapes in a manner that does not ob-
scure the data behind intricate optimizations or stochastic
regressionmodels, and to provide first-principles tools for theoret-
ically capturing the relationships between primary sequence and
biochemical activities.

What led you to study RNA or this aspect of RNA science?

RNA is a natural candidate for informatics tools and approaches.
The relative combinatoric straightforwardness of the primary se-
quence results in an enormous but foundationally simple se-
quence space that is amenable to the sort of first-principles
analysis that drives modern machine-learning approaches. My co-
authors in Dr. Chen’s lab provided excellent data for work-up, and
so collaboration on the subject of RNA sequence landscapes was
natural.

During the course of these experiments, were there
any surprising results or particular difficulties that altered
your thinking and subsequent focus?

The benefit of first-principles approaches is that they are remark-
ably reliable in terms of prediction and result, and “debugging”
where things become unexpected is a relatively transparent pro-
cess. I was pleasantly surprised that some equations writable on
a single sheet of paper resulted in robust predictions of height-
ened activity within the sequence space. Ultimately, my thinking
was guided by a desire to test the probability concepts laid out
in Claude Shannon’s seminal writings on information theory as a
proof-of-concept that these older approaches to informatics might
still yield valuable insights in an era dominated by elaborate re-
gression algorithms.

What are some of the landmark moments that provoked your
interest in science or your development as a scientist?

This answer could easily extend back tomymother first purchasing
a 10-yr-old me a cheapmicroscope to look at mold cells; however,
my current interests have been primarily guided by encountering
the writings of Geoffrey Hinton, Yoshua Bengio, and Yann Lecun.
They demystified algorithms I had been taught were opaque by ap-
plying elegant and comprehensive theory, resulting in my fascina-
tion with reconciling the old first-principles paradigm of
informatics with modern technologies.

If you were able to give one piece of advice to your younger
self, what would that be?

I would urge myself to respect the value of taking scientific theory
into praxis and to remember that theory is not particularly “real” to
a vast majority of stakeholders. Learning communication skills to
bridge that gap earlier would have been expedient to my skill as
a professional scientist.

Are there specific individuals or groups who have influenced
your philosophy or approach to science?

My major high-profile influences are Hinton, Leo Breiman, Claude
Shannon, and Bengio. They shaped my philosophy of striving to
maintain some human understanding of our data approaches
and algorithms. I have also found Hinton’s recent words on artifi-
cial intelligence to be highly impactful on my general balancing
of technological optimism and caution.

What are your subsequent near- or long-term career plans?

My short-term goals are to continue developing my expertise and
the practical skills relevant to proficiency with modern software
practices and computational research. My interests are broad
enough that I can foresee myself happy with a number of trajecto-
ries, but all long-term plans involve remaining close with informat-
ics technology and research.

Ribozyme fitness landscapes and information theory

www.rnajournal.org 1657




