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Graphene-Based Hyperbolic Metamaterial  
Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino 
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Irvine, CA, USA 
f.capolino@uci.edu 

 
 Abstract—We introduce a graphene-based composite multilayer 
structure that exhibits hyperbolic-like wavevector dispersion at 
terahertz and mid-infrared frequencies. The multilayer structure 
comprises graphene sheets separated by dielectric layers. We 
formulate the effective permittivity tensor of the multilayer using 
a simple homogenization scheme. In addition, we employ Bloch 
theory for evaluating the wavevector dispersion for a 
propagation mode inside the HM, and show that the 
homogenization scheme is in good agreement with Bloch theory 
in a very wide spatial spectrum. We report the tunability of 
transition from elliptic to hyperbolic iso-frequency wavevector 
dispersion by varying the chemical potential of graphene sheets.  

I. INTRODUCTION  
Hyperbolic metamaterials (HMs) are a subcategory of 

uniaxially anisotropic materials. In general, the isofrequency 
wavevector dispersion in an uniaxially anisotropic medium can 
be elliptic for some polarization (extraordinary waves), and 
under certain conditions it can evolve into a hyperbolic relation 
which leads to many interesting physical properties [1], [2]. In 
case of hyperbolic dispersion, ideally, an infinitely wide spatial 
spectrum of waves can propagate and carry power as opposed 
to a finite propagating spectrum in common media. However, 
realistic HMs allow for the propagation of a finite but still very 
wide spatial spectrum. For this reason, HMs can be employed 
in novel  applications such as enhancing the local density of 
states [3], super absorbing  near-fields at HM surfaces [4], [5], 
and hyperlensing [6]. In order to gain a physical insight into 
wave propagation, we represent a HM as an effective medium 
with a relative effective permittivity tensor  

( )eff ˆ ˆ ˆ ˆ ˆ ˆt zε ε= + +ε xx yy zz  where z is the axis of anisotropy. 
Hyperbolic dispersion arises when 0t zε ε <  [7]. A common 
HM design at optical frequencies is composed of metal-
dielectric multilayers with subwavelength thicknesses, that lead 
to 0tε <  and 0zε >  (the expressions of tε  and zε  can be 
found in [7]) in a wide frequency band thanks to the metals’ 
negative permittivity [4]. 

In this paper we propose a graphene-based HM design for 
terahertz and low mid-infrared frequencies. In our design, 
graphene sheets play a similar role to metal layers in a metal-
dielectric multilayer HM at optical frequencies. Graphene 
supports  plasmonic modes at upper GHz and lower THz range 
[8], [9] and it can be modeled as a low-loss inductive layer. 
Moreover, graphene has an extremely subwavelength lattice 
constant at infrared frequencies, thus spatial dispersion effects 
are not significant for practical conditions. The tunabilty of 

graphene’s sheet conductivity via electrostatic and/or 
magnetostatic bias allows extensive control of the graphene 
response.  

  
Figure 1. Graphene-based multilayer HM topology,     
comprises graphene sheets as inductive surfaces stacked with 
dielectric spacers leading to hyperbolic dispersion at terahertz 
and mid-infrared frequencies. 

II. GRAPHENE-BASED TUNABLE HYPERBOLIC 
METAMATERIAL 

In this paper we investigate the graphene-based HM 
structure shown in Fig. 1(a) whose unit cell is composed of a 
graphene sheet and a dielectric layer with relative permittivity 

dε  and thickness .d  Here we model the graphene sheet using 
the local isotropic sheet conductivity,  ( ), ,c ' j "σ ω μ σ σ= +  as 
a function of  the chemical potential cμ  (tunable with 
electrostatic biasing) and frequency, modeled by the Kubo 
formula [8], assuming a scattering time ( 1−Γ ) of 1 ps, at room 
temperature. The multilayer metamaterial in Fig. 1 is modeled 
via effective medium approximation (EMA),  with relative 
permittivity tensor effε  By averaging the transverse current 
and electric field (assumed constant  over a unit cell), the 
“transverse” permittivity tε  is expressed as 

 
0

( , )
' " .c

t t t dj j
d

σ ω με ε ε ε
ωε

= − = −  (1) 

     On the other hand,  z dε ε=   due to the continuity of normal 
displacement field and the assumption of infinitesimally thin 
graphene sheets. Straightforwardly, when the graphene sheets 
are sufficiently inductive, i.e., when ( ) 0, ,c d dσ ω μ ωε ε′′ < −  
the effective "transverse" permittivity tε becomes negative. 
This gives rise to hyperbolic wavenumber dispersion for 
extraordinary ( TMz ) wave:   2 2 2

0/ /z t z zk k kε ε+ = , where kz 
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and kt are the wavenumbers along the z direction and 
transverse-to-z,  respectively. TMz  waves can propagate in the 
HM with a wide spatial spectrum with 0t dk kε> ,  much 

wider than the propagating spectrum in free space ( 0t dk kε<
). Moreover, graphene sheets are highly inductive with a 
relatively small σ ′ , therefore waves in the graphene-based 
HM can propagate with limited losses. 

 
Figure 2.  Effective “transverse” relative permittivity (a) real 
part tε ′  and (b) imaginary part tε ′′  when  d = 100 nm (solid 
lines) and d = 50 nm (dashed lines), for 0 eVcμ =  (blue lines) 
and 0.4 eVcμ =  (red lines).  

In Fig. 2, we report the effective tε versus frequency 
calculated using (1) for various chemical potential values 

{ }0,0.4 eVcμ = and dielectric thicknesses { }50,100 nm,d =  
assuming 2.2dε = . When 0 eV,cμ =  Fig. 2(a) shows that t'ε  
exhibits different negative values (necessary for obtaining 
hyperbolic dispersion) depending on the choice of d, given that 
the inequality ( ) 0, c d dσ ω μ ωε ε′′ < −  is satisfied. t'ε  changes 

sign at the frequency ( )0/ d dω σ ε ε′′= −  and becomes positive 
thereafter. For a given dielectric thickness, the zero-crossing 
frequency for tε ′  as well as the value of tε ′  can be effectively 
adjusted by varying cμ  as shown in Fig. 2(a). For example 
when d = 100 nm, the zero-crossing of tε ′  occurs at ~6.6 THz 
for 0 eV,cμ =  while it shifts to ~24.5 THz when 0.4 eV.cμ =
As the frequency increases, tε ′  approaches dε  (not shown 
here) because graphene conductivity reaches its universal value 

2 / (2 )e hπ∼  with a negligible reactive part. Note also that tε ′′  
exhibits smaller values as the chemical potential is increased 
(Fig. 2(b)), thus electrostatic biasing also provides tunability of 
losses. It is important to assess the limits of EMA and 
characterization of propagating waves inside the graphene 
multilayer structure. With this aim, we evaluate the wavevector 
dispersion using the more accurate Bloch theory. Thus in Fig. 
3, we use d = 100 nm and report the wavevector dispersion of 
TMz  waves ( z z zk jβ α= −  versus ,tk  solutions with zα  
representing the waves decaying along the + z direction) at 10 
THz for { }0,0.4 eV.cμ =  In Fig. 3(a) we observe that the 
wavevector dispersion is elliptic for cμ = 0 ( i.e., ' 0tε > ),  and 
hyperbolic for cμ = 0.4 eV. (i.e., ' 0tε < ). Recall from Fig. 2 
that, when 100 nm,d = the effective permittivity is ' 1.7tε =   

 
Figure 3. Wavevector dispersion for TMz  waves at 10 THz 
(a) zβ  versus tk , (b) zα  versus tk , where z z zk jβ α= − , 
evaluated via EMA (solid lines) and Bloch theory (dash-dotted 
lines). 
and −11.1 for cμ = 0 and 0.4 eV, respectively, which proves                   
EMA’s effectiveness in interpreting the multilayers transition 
from elliptic to hyperbolic dispersion. Accordingly, we note 
that EMA and Bloch theory are in good agreement for small 

tk  whereas EMA fails to predict the sudden increase of zα  
when zβ approaches the Brillouin zone edge denoted by 

/z dβ π= −  (for a deeper discussion, the reader is referred to  
[4]). In the hyperbolic dispersion case (with cμ = 0.4 eV), zα
in Fig. 3(b) is small for a wide spatial spectrum, in which 
waves can propagate without significant attenuation. In 
summary, we show that graphene sheets can be used for 
designing tunable HMs at far and mid-infrared frequencies. 
The broad spatial spectrum enables the use of the proposed 
structure to efficiently absorb near fields generated at the HM 
surface at terahertz frequencies. Graphene-based  HM can be 
utilized for enhancing the scattered power by particles inside or 
at its  surface, and obtaining tunable decay rate of emitters.  
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