
Lawrence Berkeley National Laboratory
Recent Work

Title
Accelerator Control Software Construction Based on Software Object Components

Permalink
https://escholarship.org/uc/item/6w17q5r7

Author
Timossi, C.

Publication Date
1997

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w17q5r7
https://escholarship.org
http://www.cdlib.org/

LBNL-39810
UC-410

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

Accelerator Control Software
Construction Based on Software
Object Components

C. Timossi and H. Nishimura
Accelerator and Fusion
Research Division

May 1997
Presented at the
Particle Accelerator
cofller.C>£hc~"'~~·, ·•·· ·· ·· · · · ... -...

':!" of; '·

Vancouver, B.C:; Canada,

::0 ,.,
(")0"TI
...... 0 ,.,
;CD;:o
()lnJTI
c z _,zn
wom
r+r+
C1) (")

0
llJ ~ _,
0.---

1.0

r
llJ z
r

(") I
0 w
"0 <.0
'< ())
..... tSI

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain cmTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Accelerator Control Software Construction
Based on Software Object Components

C. Timossi and H. Nishimura

Accelerator and Fusion Research Division
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720

May 1997

LBNL-39810
UC-410

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences,
Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Accelerator Control Software Construction
Based on Software Object Components•

C. Timossi, H. Nishimura, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

We will be presenting the results of a recent effort on the
use of software object components for software
construction for the Advanced Light Source control system
[1]. Components are written for Win32 for low-level access
both to the current control system and to EPICS [2]
Channel Access, and for higher level physics tools. We will
discuss the merit of the component-based approach based
on our experience with several examples.

1 BUILDING ACCELERATOR APPLICATIONS

Much work has been done at the ALS to provide object
oriented class libraries for both control of the machine and
for modeling and simulation of machine behavior [3]. As
new devices are added to the accelerator and the current
control system begins it's migration to EPICS, some
weaknesses of continuing to build applications, especially
new graphical applications, using these libraries has
become apparent.

There is a trend in the industry, both in operating
system and application design, towards component based
architectures such as Microsoft's Component Object Model
[4] and Sun's JavaBeans [5]. We feel that there are clear
benefits in following this trend for the construction of
accelerator applications. As a test, we built new
components and migrated parts of existing class libraries to
components using them to build several applications.

2 COMPONENT SOFTWARE

The goal of using component based software construction
is to enable rapid development of applications, especially
graphical applications, from pre-assembled components
while allowing the developer the broadest choice in
development tools. A component is distinguished from a
subroutine or class library, in the way it makes itself
available to its client (container). A component can make
much more information about itself available at run time in
a language independent way. The exact way that this
information is published is dependent on the component
architecture, but usually involves some process of
registration with the operating system. The type of
information that becomes available to the client is the

component's methods and method signature (parameters),
its attributes, and which types of events it can handle (sink)
and can generate (source). The creation of such a
component is more complicated than the creation of a
subroutine or class library due to the need to conform to the
architecture. What is gained from the effort is the ability to
build applications using a wide variety of existing
development tools that conform to the architecture. The
containing application will have full access to the
component and may also let itself be driven from the
component.

2.1 Win32 components

Though component standards such as Sun's JavaBeans
promise platform independent components, we restrict
ourselves to the Microsoft Win32 platforms (Windows NT
and Windows 95) for two reasons. First, it is the dominant
platform at the ALS and secpnd, there are wide variety of
development tools for building components and containers.

Components on Win32 platforms conform to the
Component Object Model (COM). The process of
component registration follows these steps: a component's
interface is specified using an Object Definition Language
(ODL) in which each interface is tagged with a globally
unique identifier (GUID), then the ODL is compiled to
produce a type library, which, along with the executable for
the component, is registered with the operating system.
Orice registered, a variety of tools can view the
component's interface.

2.2 ActiveX Controls

An ActiveX control is a type of a COM component that
implements a defined set of interfaces. The applications or
development tools that use them are called containers. We
find that these controls are the most useful in application
construction because of the many third-party software
packages that serve as Active X containers. In particular,
we are using Borland's Delphi 2 and Microsoft Visual
BASIC 5 development tools for building applications that
contain our controls.

Controls can ·have rich graphic content, such as the
one developed to display a tune-plot, or they have just be

• This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Material Sciences Division, U.
S. Department of Energy, under Contract No. DE-AC03-76SF00098

invisible helper controls such as the ones implemented to
access accelerator data.

A control has the ability to serve as a 'source' or
'sink' of events, either system events, such as mouse
movement, or user defined events.

3 EPICS CHANNEL ACCESS CONTROL

Since a major source of accelerator data is generated by
control system processors running the EPICS software, a
low level component that handled channel access (CA), the
network protocol for EPICS, was an obvious first choice.

3.1 Channel Access monitors

A channel access client application can ask a server to send
updated data for a particular process variable (PV)
whenever that variable changes by a significant, user
defined, amount. This mechanism is called placing a
monitor on a variable. We wanted a control that would
allow the user to enter a PV name, would monitor the PV,
and would fire events to the container when a new value
was detected.

3.2 Control architecture

The control was built with Visual C++ and the Active X
Template Library (ATL), a Library of C++ templates for
implementing COM objects with minimal overhead. The
control is linked to a Dynamic Link Library, ca.dll, that we
ported for Win32 to handle the channel access protocol.

When the control is placed on the container, a
property sheet is used to enter the name of the PV to be
monitored. When the first PV monitor object is created, a
pend thread is created to listen for monitors and to call the
object's handler when a change occurs in the PV. The
handler then fires a CaFloatMonitorEvent to the container
which will usually handle it by updating some graphic
element. Since ca.dll is not thread-safe, a mutex semaphore
is used to avoid conflicts between the pend thread and other
CA routines.

3.3 Beam Position Monitor application

An application was built using Visual Basic 5 that displays
the digital values of 16 of the BPMs in one section of the
ALS Storage Ring. In addition, a third party control,
Pinnacle Publishing's Graphics Server, was used to display
a line plot of the data. This application illustrates the
usefullness of combining controls from various sources into
a final application.

2

Fig 1. BPM display construction with Visual Basic

4 ACCELERATOR PHYSICS CONTROLS

4.1 Existing Class Libraries

There are two class libraries in wide use at the ALS:
Goemon and TracyLiB for modeling and DMM96 [3] for
online control. These libraries were implemented in both
C++ and Object Pascal/Delphi. Moving their functionality
to an ActiveX Control, written in Microsoft Visual C++,
allows them to be maintained in one language and still be
used by applications written in either language.

4.2 Modeling and Simulation

For the development of TracyV [6], a visual and interactive
machine simulator for the ALS, a version of Goemon,
called TracyLib, was developed in Delphi2 to ease graphic
application development. ActiveX Controls have been
developed to implement the more flexible Goemon and
yield the graphics capability of TracyLib that can be used
in both Delphi2 and Visual C applications.

4.2.1 Tune Diagram and BPM Display Controls

There is a set of graphs, such as tune diagrams, beta and
dispersion function diagrams and dynamic aperature
display, commonly used in modeling and simulation.
ActiveX controls have been implemented for use at the
ALS that show a tune diagram and a BPM display, that can
be used directly in an active X container. Fig. 2 shows an
example of a local bump emulation assembled on a Visual
Basic form.

4.2.2 Smatrix and Local Bump Controls

An Smatrix-based method for orbit control is in use at the
ALS as described in a previous paper [7]. The Smatrix
component encapsulates a sensitivity matrix and its

manipulation routines, that can be used for both orbit
control and machine diagnostics and characterization
studies.

Fig.2. BPM display control showing a local bump
emulation.

The local bump component implements local orbit
bump using three steering magnets. This component is
evolving into a general orbit control component by
implementing other algorithms such as the most-effective
corrector method and the singular-value decomposition
method.

4.3 Machine Control

A subset of the DMM96 library is being supported as a
collection of ActiveX controls built using MFC. Instead of
mirroring the class structure of the existing C++ class
library, components have been implemented that 'wrap' a
group of classes that are used by application programs.

5 CONCLUSIONS

Components, such as ActiveX controls for Win32 systems,
are still difficult to construct even with the new tools
available. Once they are constructed, however, they allow
efficient and rapid graphical application development using
very different environments, such as Delph2 and Visual
Basic 5.

3

REFERENCES

[I] S. Magyary, et al.,"The Advanced Light Source
Control System",Nuclear Instruments and Methods in
Physics Research A293 (1990) p36-43

[2] L.R. Dalesio, et al.,"EPICS Architecture", ICALEPCS
91, KEK Proceedings 92-15, (1992)pp.278-282.,
Dalesio,L., et al. ''The Experimental Physics and
Industrial Control System Architecture,
",ICALEPCS,Berlin, Germany ,Oct.18-22, 1993.

[3] H. Nishimura, "Taking an Object-Oriented View of
Accelerators," IEEE 95PAC, 95CB35843(1996)2162

[4] Microsoft Corporation and Digital Equipment
Corporation, "The Component Object Model
Specification", Draft Version 0.9, October 24, 1995

[5] Sun Microsystems, "JavaBeans 1.0", Dec. 4, 1996
[6] R. Keller, H. Nishimura, et al.,"Orbit Stability of the

ALS Storage Ring", 97PAC
[7] H. Nishimura, L. Schachinger and H. Ogaki, "Orbit

Control at the ALS Based on Sensitivity Matrices",IEE
95PAC, 95CB35843(1996)2247

@!;;J~I§b.-tij' ~ ~-J3~13::1! @):!;;J(;4¥11y5iR'/ ~ ~

®;9::11 ~ ~ ~ @l#I#J3:ii!L@?o ~ ~

