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This thesis presents a numerical study of the heat and mass transfer occurring when a cool

liquid is suddenly introduced to a hotter gas at supercritical pressures. Different binary mix-

tures of heavy hydrocarbons and light gases are considered and fluid properties are obtained

using a real-gas equation of state and various high-pressure models. Liquid-gas interface

dynamics and mass and thermal diffusion for different pressures are analyzed. Then, a com-

parison with expected growth rates of the Kelvin-Helmholtz (KH) instability is provided to

learn whether a phase equilibrium is well established before hydrodynamic instabilities can

become important.

Two phases may still appear at supercritical pressures because mixture critical properties

differ considerably from pure species critical properties. The diffusion time scales in both

phases are comparable to the KH instability transient (i.e., 20-100 µs). That is, diffusion

layers of 10 µm thickness in the liquid and 30 µm in the gas are observed for the oxygen/n-

decane mixture, suggesting that variations of fluid properties around the liquid-gas interface

may affect breakup mechanisms. Furthermore, condensation by increasing pressure can be

observed, even at supercritical pressures, while the First and Second Law of thermodynamics

are obeyed.
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Chapter 1

Introduction

Combustion processes are present in many engineering applications where a source of power

is needed. A clear example are the engines of our transportation vehicles, such as cars or

airplanes, where thermal energy is converted into work and/or kinetic energy. In all these

situations, fuel is injected into a gaseous environment (e.g., combustion chamber) where an

oxidizing species is present, usually oxygen, and a combustion chemical reaction can happen.

This combustion reaction occurs when both reacting species are in the gaseous phase.

If fuel is injected in the liquid state, it is necessary to understand how the jet will disrupt

and form droplets. These droplets will vaporize due to the thermodynamic conditions of the

surrounding gas and mix with it, allowing the chemical reaction to take place. This process

is usually referred as atomization or spray formation and it is essential for good mixing of

the reacting species, thus affecting the performance of the combustion processes and our

final application.

Another key factor involved in the efficiency of the combustion process is pressure. It

is well known that higher pressures increase the chemical reaction rate and produce higher

specific energy conversion. Under these circumstances, specific impulse and thrust in many

1



types of engines (rocket engines, gas turbines or diesel engines) are also improved [8]. Conse-

quently, there is a trend to move towards the design of combustion chambers allowing higher

operating pressures. However, increasing the pressure up to supercritical pressures modifies

the thermodynamics and fluid dynamics of the injection phenomena, which should be well

understood to optimize the design of high-pressure combustion chambers.

Theories for liquid jet stream breakup, atomization and spray formation processes have

been proposed for low-pressure flow conditions, where the disruption mechanisms are driven

mainly by capillary forces and hydrodynamic instabilities, depending on the flow properties

(e.g., surface tension, velocity, etc.). However, in high-pressure regimes, where a liquid

stream is injected into a supercritical pressure gaseous domain, diffusion can become the

main driver of the mixing process and a well-defined separation of the liquid and gas phases

cannot easily be determined [9]. In fact, liquid injected into an environment exceeding its

critical properties will experience a transition into a supercritical thermodynamic state. In

this process, the liquid goes through a near-critical state where liquid-like densities and

gas-like diffusivities will be present, with a mist appearance. Consequently, the classical gas-

liquid interface seems to disappear even before supercritical conditions are achieved. This

situation generates a reduced ratio of liquid/gas density, allowing aerodynamic interactions

to become more important in the breakup mechanism [3]. As surface tension and enthalpy of

vaporization approach zero at supercritical pressures, these interactions become even stronger

[3],[8],[10]. Therefore, turbulence will become very important in this regime, even at low jet

injection velocities.

Temperature in this fluid regime can affect the full transition of the liquid to a supercritical

thermodynamic state. That is, chamber temperatures below the critical temperature of the

liquid jet will not heat up the liquid sufficiently; so, a liquid state may still exist depending

on the pressure magnitude. However, for supercritical chamber temperatures, the liquid

temperature will eventually rise above its critical value, resulting in a supercritical fluid

2



state under high-pressure conditions.

The flow field experiences compressibility effects, which must be calculated accounting for

real effects due to the high-pressure conditions; in this situation, no ideal-behavior assump-

tions should be considered. Moreover, solubility becomes relevant under these high-pressure

conditions. Thus, not only the mixing of vaporized fuel and surrounding gas must be ac-

counted for, but also the gas dissolving into the liquid phase. This phenomenon will modify

the fluid properties aroud the liquid-gas interface, as well as the mixture critical properties.

That is, the critical properties of the mixture will differ from those of the pure liquid jet, in-

creasing its critical pressure and modifying the flow field [3]. Therefore, two phases may still

appear even at pressures above the critical pressure of the injected liquid and the assumption

that the liquid simply undergoes a transition from the liquid state to the supercritical state

must be reviewed.
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1.1 Literature review

This literature review is structured as follows: first, an analysis of traditional breakup mech-

anisms for subcritical pressure injection of liquid jets is presented, with the objective to

understand the main concepts involved in the problem (jet stability, disruption structures

formation, etc.). Useful information is found in [2], [11] and [12], where higher pressure

conditions are present through a varying Weber number and gas-to-liquid density ratio. No

real-gas effects nor species mixing are considered in these works though.

Thereafter, the transition from subcritical to supercritical pressure injection is addressed.

To visually identify the main differences explained before, Mayer et al. [3] presents some

experimental results comparing the behavior of the injection of a liquid jet into subcritical

and supercritical pressures. Then, the jet injection into supercritical pressures is discussed

thoroughly. The problem of modeling the supercritical vaporization, mixing and liquid jet

injection is addressed in [10] and [13]. As it can be inferred from the references, supercritical

jet injection involves turbulent mixing, since inertia forces become more dominant than in

subcritical jet injection. Therefore, correspondent turbulence models should be developed to

face this problem if it is desired to avoid dealing with the high computational costs of Direct

Numerical Simulation (DNS). Turbulent mixing models for supercritical jet injection based

on Large Eddy Simulation (LES) are developed in [14], [15], [16] and [17] to be applied to a

study of gas jet injection into a high-pressure gaseous environment [5]. Also [18], [19], [20]

and [21] propose some methodes related to LES application and selective mesh refinement.

Due to the high-pressure conditions, we do not expect the liquid jet injection problem to

behave much differently, as confirmed in [3]. Further studies that consider a liquid jet at

the desired conditions are based on a Reynolds-Averaged Navier Stokes (RANS) turbulence

model [8].

On the other hand, it is also important to study the interface dynamics between the

4



liquid and the gas phase under these high-pressure conditions. Some studies have focused on

analyzing the pressure and temperature effects on the thickness of the liquid-gas interface,

therefore trying to define the transition point between a well-defined liquid-gas interface

and the typical single-phase transition behavior of the high-pressure liquid-gas interface

[6],[9],[22]. Finally, some other works identify the main concerns to take into account to deal

with high-pressure fluid behavior and the interface between the liquid and the gas phases

[23],[24],[25],[26].

1.1.1 Subcritical liquid jet injection

Before proceeding to supercritical liquid jet injection, it is interesting to develop a brief

overview of the same problem but at subcritical pressures. This will allow us to identify

the main driving mechanisms of liquid breakup and how they are modified as the pressure

regime changes.

The liquid breakup process can be divided into three subdomains according to the fluid

mechanical behavior [11]. Upstream, the injector supplies the fluid into the combustion

chamber and the liquid flow through the orifice can be affected by turbulence, cavitation

and other phenomena occurring downstream. The second subdomain is between the orifice

and the point where the disintegration process of the stream begins. In this region, the liquid

is distorted typically in a wavelike motion of the surface. Finally, the third subdomain is from

the early stages of the disintegration process to the final droplets array or spray formation.

Many studies have been done for the liquid stream distortion and some computations have

been performed for the disintegration cascade process [2],[12].

There are four main forces to be considered acting on the liquid: gravity force, inertia

force, surface-tension force and viscous force. From these forces, three dimensionless inde-

pendent groupings can be defined, plus two other groupings that eliminate the dependence

5



on velocity. If periodic disturbances are introduced, it may become useful to also include

the Strouhal number in the analysis (see Table 1.1 and Table 1.2).

Table 1.1: Independent groupings appearing in the liquid breakup phenomena.

Reynolds Re = ρlLV
µl

Froude Fr = V 2

gL

Weber We = ρlLV
2

σ
Strouhal St = ωL

V

Table 1.2: Groupings eliminating velocity dependence in the liquid breakup phenomena.

Ohnesorge Oh = We0.5

Re
= µl

(ρlσL)0.5
Bond Bo = ρlgL

2

σ

As a powerful example, it is interesting to study the round-jet injector case, since it is

one of the most used configurations in combustion problems. According to Sirignano and

Mehring [1], the main breakup mechanism acting on a round jet can be inferred through

the Reynolds number and the Weber number based on the liquid jet (see Figure 1.1). For

low Reynolds and Weber numbers (low-speed flows), the Rayleigh mechanism or capillary

instabilities are the main drivers of liquid breakup. As these numbers increase, aerodynamic

effects also increase and become the main drivers of the problem. In the atomization region,

breakup occurs very close to the orifice. The diameter of the droplets decreases as we move

from the Rayleigh mechanism region to the atomization region.

Figure 1.1: Disintegration modes as a function of the liquid Reynolds and Weber numbers
(source [1]).

The capillary instability is due to the surface-tension force. Because surface tension always

6



acts in minimizing energy (i.e., minimize surface area for a given volume), this effect might

be stabilizing or destabilizing depending on the geometry of the problem. For the round-jet

problem, surface tension is destabilizing. However, for an ideally infinite liquid sheet, it

would be stabilizing, since a planar sheet will always be the minimum possible surface area.

This consideration is seen in Section 4.3.

For high-speed flows, aerodynamic effects become important and the so-called hydrody-

namic instabilities are the main drivers of the breakup mechanism. In this regime, only

at the last stages of the breakup process, capillary effects are important. These hydrody-

namic instabilities are more interesting in the sense that they are the generators of different

disruption structures such as lobes, holes, ligaments and bridges [2],[12]. The main hydro-

dynamic instabilities are the Kelvin-Helmholtz instability (KH), related to a discontinuity

of the velocity component at the liquid-gas interface where a vortex sheet is formed, and the

Rayleigh-Taylor instability (RT), which appears when an acceleration is present normal to

the liquid-gas interface (e.g., gravity).

In a planar 2-D liquid-gas interface, it is proved that KH is always destabilizing, surface

tension is always stabilizing and RT is only destabilizing if the fluid with higher density

is sitting above the interface [11]. When all these effects are taken to a 3-D domain, they

become the generators of non-axisymmetric instabilities which form the disruption structures

that yield to the atomization or generation of droplets.

However, recent works from Jarrahbashi et al. [2],[12], showed that not only density dif-

ferences through the RT instability explain the 3-D instabilities, but also vorticity dynamics

around the generated disruption structures are important. In these works, fine-mesh sim-

ulations were performed for the axisymmetric behavior and fully 3-D behavior of a round

jet, studying a wide range of liquid Weber and Reynolds numbers. These works take into

account high gas density effects by varying the gas-to-liquid density ratio. Thus, some effects

of high-pressure injection environment can be observed, but it does not exceed supercritical
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pressure for the pure liquid and do not include species diffusion. What is explained in [2]

and [12] is the evolution of the disruption cascade process and the role that vorticity dy-

namics play on it. Vorticity dynamics also explain the coherent structures that are formed

and how they depend on the fluid properties through the aforesaid parameters (Re, We and

gas-to-liquid density ratio) (see Figure 1.2).

Figure 1.2: Re = 1,600 and We = 230,000 and gas-to-liquid density ratio 0.5 at different
times (source [2]).

Interesting here is to address the problem of increasing the gas-to-liquid density ratio

(i.e., going to higher pressures) to understand how the cascade of disruption structures is

formed under these circumstances. Jarrahbashi et al. [2] provide some results that show

how the lobe formation is slowed down as the gas density is increased, due to the increased

inertia of the surrounding fluid. Therefore, this delays the disruption cascade occurrence

in favor of the early formation of droplets and an increased growth rate of the two-phase

mixture volume. This is, the vorticity structures concentrate more around the rim of the

lobes, increasing the radially outward velocity allowing a larger liquid detachment from the

main jet core to happen (i.e., radial development of the spray is enhanced). This effect is

also qualitatively explained in [7]. Moreover, the effects of moving to a more aerodynamic-

affected region are shown in Figure 1.3, where a more easily distorted jet is observed as

Reynolds number increases.

Similar studies but for a 3-D planar liquid sheet are shown in Zandian et al. [4]. Again,
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Figure 1.3: Effect of increasing Re number (from 320 on the left to 1,600 on the right) for a
fixed We number (230,000) (source [2]).

this work does not include any species diffusion or real-gas effects.

1.1.2 Transition from subcritical to supercritical state

The understanding of liquid breakup at low pressures has been widely studied over the last

decades. However, practical combustion chambers operate at high pressures, even well above

the critical conditions of the injected liquid fuel. In this scenario, the classical breakup mech-

anisms must be reviewed since the liquid will experience a transition to a supercritical state

and the liquid-gas interface will not be so easily identified. Furthermore, species diffusion

will be present, modifying the fluid properties.

Visual aid is helpful to understand how breakup phenomena drastically change. Mayer

et al. [3] performed some experiments involving injection of cryogenic propellants into a

combustion chamber under high-pressure both in subcritical and supercritical conditions.

With the use of flashlight photography and high-speed cinematography, they could capture

the liquid breakup and atomization at different conditions. Because they provide cold-flow

studies, the visual distortions due to chemical reactions (i.e., combustion) do not appear.

More studies by the team of Chehroudi and Talley show similar results [27],[28],[29]. After

that, both researchers have focused in the effects of acoustic disturbances on the liquid

breakup at sub-, near- and supercritical conditions [30], as they are likely to be present in

combustion chambers.
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The cold-jet studies were divided into two types: full-scale studies, simulating same injec-

tor sizes and flow rates as in real applications, and subscale studies, using smaller elements

and flows. The pressure is kept constant for each case study independently of the injected

mass flow and covering a wide range of injection conditions and injector geometries. In all

cases, temperature of the liquid and gas phase and injection velocity are also kept constant.

Figure 1.4: Liquid nitrogen injection into gaseous nitrogen at 4 MPa (top), 3 MPa (center)
and 2 MPa (bottom) (source [3]).

Figure 1.4 shows the injection of LN2 into GN2 at different pressures. In all cases, the

liquid nitrogen is injected at 105 K and the surronding gaseous nitrogen has a temperature

of 300 K. That is, the nitrogen is injected at a subcritical temperature while the chamber

temperature is supercritical (see Appendix A for different species properties). For subcritical

pressures (i.e., 2.0 MPa), clear disruption structures from classical liquid breakup theories are

present, similar as in [2]. However, as the pressure is increased, the atomization mechanisms

change considerably. First, it is observed that the length scales of breakup decrease as

the fluid is taken to higher pressures (i.e., 3.0 MPa). In this case, ligaments and droplets
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formation can still be seen, but surface tension has been reduced as the critical pressure is

approached and small-scale turbulent structures more easily disturb the liquid-gas interface.

When the pressure exceeds the critical pressure of nitrogen (i.e., 4.0 MPa), no clear liquid-

gas interface can be appreciated anymore and the problem is fully dominated by turbulent

mixing, behaving as a single gas-like phase. In all three cases, the liquid nitrogen is heated

up by the hotter gas and may reach supercritical temperatures at the liquid-gas interface.

Nevertheless, we must be careful when explaining the physical processes that cause these

observations.

Even though the results shown in Figure 1.4 are obtained by just increasing the chamber

pressure maintaining constant all other parameters, it could be possible that what we are

observing here is not related to pressure and temperature effects, but an effect of the increase

of the Weber number (recall it is the ratio of inertia forces to surface tension forces). It

could also be a combination between both. Therefore, justifying the disappearance of the

classical breakup mechanisms because the liquid-gas interface has disappeared after reaching

supercritical conditions might be misleading. This fact is also explained in the works from

Dahms and Oefelein [6], [9] and [22].

What could be happening here is that, as pressure is increased up to supercritical pres-

sures, the density of the gas increases and the surface tension decreases. The trend of these

properties makes the Weber number increase, so the inertia forces become much more im-

portant than the surface tension. As seen in recent works from Jarrahbashi et al. [2] and

Zandian et al. [4], the Weber number defined from the gas properties is one of the main

parameters affecting the breakup mechanisms. As this number increases, the hole formation

(perforation of the liquid stream) rate increases, together with the expansion rate of the

jet. The higher expansion rate of the holes implies the formation of thinner bridges and

ligaments, which break up under capillary instabilities into smaller droplets. Additionally,

the characteristic time of this process is reduced, meaning that the first droplet breaking up
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from the liquid jet appears sooner. The evolution of the ligaments and droplets formation

and size with the Weber number is seen in Figure 1.5.

Figure 1.5: View of the liquid iso-surface for a planar liquid sheet varying We with all other
parameters fixed (source [4]).

The Weber number effects could also correspond to the evolution seen in Figure 1.4, since

small ligaments and droplets could not be easily seen and an expansion of the liquid jet is

observed. Therefore, it is not clear what is really happening in these experimental results.

Since we do not have information of the characteristic time of each possible physical process

(heating up of the liquid jet up to a supercritical gas-like state or the Weber number effect on

the breakup of the liquid jet into small droplets), we cannot conclude with precision what are

the causes of what we are observing. Furthermore, [3] shows the effects of mixing between

species due to diffusion. Figure 1.6 shows the injection of liquid nitrogen at 83 K into gaseous

helium at 292 K and 5.5 MPa (supercritical conditions for nitrogen). In this configuration,

the liquid-gas interface appears and disappears as the local mixture concentrations vary.

Figure 1.6: Image sequence at a fixed position of liquid nitrogen injected into helium at 5.5
MPa (source [3]).

In summary, a combination of different phenomena modifies the atomization process: the

reduction of the surface tension and increase in the gas density allows aerodynamic forces to

12



play a more significant role and the transition from a subcritical to a supercritical state of

the injected liquid is translated into the eventual disappearance of the liquid-gas interface,

showing a gas-like behavior. Furthermore, this problem becomes more complex when several

species are present. Local variations of pressure, temperature and mixture concentrations

will be able to restore the liquid-gas interface. This phenomenon shows that the dissolution

of gaseous species into a pure liquid species will create a mixture whose critical properties

are modified with respect to the pure liquid itself. Precisely, its critical pressure increases,

delaying the transition of the injected liquid to a supercritical fluid behavior. Thus, modeling

the liquid-gas interface behavior close to the transcritical region of the fluid mixture becomes

the real challenge. Some works by Dahms and Oefelein address this issue and are discussed

in the following section [6],[9],[22],[31].

1.1.3 Supercritical liquid jet injection

This section focuses on the topic of this thesis. Here, some works dealing with supercritical

jet injection considering real-gas effects and species mixing are presented.

In 2000, Yang [10] presented an overview of theoretical modeling and numerical simulation

of supercritical behavior of the following topics: droplet gasification and combustion, spray

field dynamics and multi-phase mixing and combustion processes, where the flame behavior

is seen to be different depending on the fluid state (subcritical or supercritical). In Yang’s

work, the effects of thermodynamic non-idealities for supercritical behavior are emphasized,

together with transport properties variations and the effects of high-pressure in the vapor-

liquid equilibrium problem. These thermodynamic behavior changes modify the vaporization

of the liquid. It is suggested to use an appropriate equation of state (EoS) to compute the

thermodynamic properties (e.g., density, enthalpy, entropy and fugacity coefficients) and the

phase equilibrium accounting for real-gas effects. Typical used EoS are of the cubic form,
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but other more complex and accurate EoS also exist (e.g., Benedict-Webb-Rubin, BWR EoS

[32],[33]). A more detailed review about cubic EoS is presented in Section 2.3.1.

Another important conclusion of this work is the influence of phase equilibrium in the

shape and evolution of the liquid-gas interface before the critical conditions are achieved.

One immediate result is that critical temperature of the mixture decreases as pressure is

increased. This fact shows again the complexity of dealing with mixtures, since the definition

of the liquid-gas interface will not only depend on the ambient pressure and temperature,

but also on the changing mixture composition due to enhanced mass diffusion.

Similarly, Bellan presented the same year a critical review of investigations regarding

subcritical and supercritical fluid behavior up to the date of her work [13]. One of the

main things discussed in there is the computation of fluid properties. Clearly, the use of

a real-gas EoS is needed (as explained in [10]), either by using a cubic EoS or any other

approximation. For instance, some earlier models [34] tried to mix simpler EoS with some

elaborated models for computing transport properties and solubilities at high pressures. This

approximation is wrong since the fluid behavior computed through a simple EoS may not

be in accordance with that of the elaborated model. Transport properties models (e.g., for

computing thermal conductivity) must ensure that the low-pressure solution based on kinetic

theory is recovered in the limit of low pressures. Furthermore, mass diffusivity becomes

important and plays a dominant role in determining the supercritical behavior of the fluid.

It is proved that mass diffusivity must be null at the critical point, thus the calculation

of the mass diffusion coefficients must be done properly. For instance, Oefelein and Yang

[35] used a weighted interpolation method between the gas and liquid regimes to determine

the mass diffusion coefficients, but without guaranteeing a null value at the critical point.

Another important phenomenon usually neglected in species formulation of the governing

equations is the inclusion of the Soret and Dufour effects, which explain the mass flux due to

temperature (e.g., energy) gradients and the energy flux due to mass concentration gradients,
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respectively. However, Bellan suggests the inclusion of these terms if a better representation

of the fluid behavior is desired, since it is not always clear if these effects can be neglected.

Another important conclusion discussed in [13] is the need of defining turbulence models.

Supercritical liquid injection is seen to be dominated by aerodynamic forces in a turbulent

mixing phenomena. Therefore, the definition of turbulence models to reduce the computa-

tional costs of simulating this problem is needed. This fact is more related to recent works

of Bellan’s research group in JPL, which have tried to develop LES models specialized for

the injection phenomena from self-obtained DNS results [14],[15],[16],[17]. With this numer-

ical progress, in 2017 Gnanaskandan and Bellan [5] have developed reliable DNS and LES

numerical simulations of the round-jet injection problem into high-pressure conditions con-

sidering species mixing. The main objective is to test and validate the developed DNS and

LES model. However, this work has only been done for gas jet injection, but the mechanics

of the problem can be qualitatively extrapolated to the supercritical liquid injection case.

In [5], real-gas effects are considered through the Peng-Robinson equation of state (PR-

EoS). Since PR-EoS is inaccurate when dealing with non-hydrocarbons species, a correction

is introudced using the volum shift factor to enhance its accuracy. Soret and Dufour effects

are also considered and all transport properties (viscosity, thermal conductivity, thermal

diffusion coefficients and mass diffusion coefficients) are computed using multi-component

mixing rules developed by Harstad and Bellan [36], valid for high pressures. The binary

mass diffusion coefficients used in that work are also obtained from gas-valid correlations

also developed by Harstad and Bellan [37]. With all these considerations, the governing

equations, which include continuity, momentum, species continuity and total energy, together

with the EoS, are solved using DNS and LES techniques. Some results of this work are shown

in Figure 1.7.
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Figure 1.7: Results for nitrogen injected into carbon dioxide showing isocontours of different
properties (source [5]).

Other works related to the numerical treatment of the problem are those of Huo and Yang

[21], where another LES method is presented for supercritical combustion of a hydrogen gas

jet being injected into gaseous oxygen. In Chen et al. [18] and Chen and Yang [19] some

mesh-refinement techniques for multi-phase flow simulations are also presented to be able

to capture the small scales of the problem. However, the most interesting work is that

of Mak et al. [20], where an emulation technique is proposed based on a data bank from

LES simulations that may help to reduce considerably the computational costs of future

simulations in design problems.

Researchers such as Sierra-Pallares et al. [8] propose the introduction of RANS methods

to solve the supercritical jet injection problem, so the computational costs of DNS or LES
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do not appear. However, this kind of approach will not be able to capture the small scales

and structures formed during the liquid atomization process and much work is still needed

to be done to improve its performance.

The last works to comment in this section are those from Dahms and Oefelein ([6], [9],

[22] and [31]) and Professor Ghoniem’s research group from MIT ([23], [24], [25] and [26]).

In [22], the dynamics of the liquid-gas interface for high-pressure liquid injection is stud-

ied. The model uses non-equilibrium mean-field thermodynamics to show that the classical

interpretation of the disappearance of the liquid-gas interface due to simply the vanishing of

surface tension must be reviewed. It is suggested that the disappearance of the interface and

the development of the dense-fluid mixing layer is initiated because the interface experiences

a transition from molecular dynamics to a continuum regime. This is, the interface becomes

much wider than the free molecular path. In this scenario, surface tension approaches zero

value.

This fact contradicts the traditional theory that the interface disappears due to the heat-

ing up of the liquid to a supercritical state. This is further corroborated by experimental

data [31] showing ligaments and droplets in liquid injection into supercritical pressures but

at subcritical temperatures. The intention of [9] is to describe different regimes of liquid

injection at high pressures and different mixture and flow conditions using the information

provided by [6] and [22]. A dependence on the reduced temperature for the thickness of the

interface is shown, proving that multi-phase interface structures vary for different mixture

and flow conditions.

For high enough temperatures, a continuum length scale can be achieved and the inter-

face behaves as a single-phase mixture. In this regime, it is stated that phase equilibrium

assumptions and two-phase theory do not apply anymore. Especially important is the fact

that the temperatures are not equal on each side of the interface. If temperature is still
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low, two phases can still be identified and liquid breakup mechanisms are observed, even at

supercritical pressures. To determine when this change in behavior occurs, the Knudsen-

number criterion is used (Kn = λ/l), where λ is the mean free pathway of the molecules and

l is the interface thickness. If Kn < 0.1, it is considered that we have entered a continuum

region (see Figure 1.8).

Figure 1.8: Interfacial density profiles and thicknesses for the low-temperature (left) and
high-temperature (right) interface states of the n-dodecane/nitrogen mixture (source [6]).

It is important to state that this criterion yields into the predicted range of temperatures

under classical phase equilibrium conditions. This is why, for temperatures close to the

predicted critical point of the mixture, phase equilibrium predictions may be wrong according

to Dahms and Oefelein. These results are important when modeling the interface behavior

in the transcritical region of our fluid mixture.

However, this continuum length is reported to be less than 10 nm. In practical situations,

the interface could be still treated as a discontinuity between the liquid and the gas phase

even in this high-temperature regime. This is similar to the discontinuity associated to a

shock wave, where in reality we are dealing with a continuous transition with large gradients

if we look into the small scale. Furthermore, the effects showed in these works if the interface

is treated as a continuum, such as the non-equality of temperatures on each side of the inter-

face, are expected to be dissipated fast enough so we can still consider equal temperatures
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when imposing equilibrium conditions at the interface. Nevertheless, the results reported by

Dahms and Oefelein should be kept in mind for further works if we deal with high interface

temperatures.

Finally, works by Ghoniem’s research group in MIT have focused in the considerations

to be taken into account when dealing with high-pressure multi-phase and multi-component

flow. Especially interesting are He et al. [24] where the effects of non-ideal diffusion are

analyzed and compared with ideal diffusion laws to find that the non-ideal model may predict

slower diffusion processes due to the appearance of a diffusion barrier that the ideal model

may not capture. Furthermore, in He and Ghoniem [23], a numerical model is presented to

deal with the presence of a liquid-gas interface in our domain accounting for multi-component

mass transfer. This last work becomes very interesting since it is related to the topic of this

thesis.
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1.2 Objectives

The literature review from the previous pages has shown us that supercritical liquid injec-

tion becomes a different problem than subcritical liquid injection. Therefore, it must be

understood properly in order to improve the efficiency of future engineering applications.

It has been seen that at supercritical pressures, two phases may still exist under certain

conditions. Therefore, experimental observations of supercritical liquid injection cannot be

explained only as a fluid transition from liquid state to a supercritical state. Species mixing

due to mass diffusion becomes an important phenomenon which changes the fluid properties

across our domain, thus modifying the way the breakup of the liquid occurs. Furthermore,

fluid conditions cannot be considered ideal and appropriate equations of state and models

have to be used to compute fluid properties at high-pressure or high-density domains. Finally,

turbulence plays an important role under these conditions and different numerical techniques

may have to be considered to solve more efficiently the governing equations.

However, many of the recent simulations have only dealt with the gas jet injection prob-

lem at supercritical pressures and few studies have been done to account for a liquid jet.

Therefore, the future interest lies in creating a powerful tool to solve the problem of liquid

injection into high-pressure chambers.

With all this information, it is possible to create a clear list of objectives to achieve with

this thesis:

• Develop a methodology to reproduce high-pressure or supercritical-pressure fluid be-

havior. That is, define which equation of state and which set of models are going to be

used to compute real-fluid behavior. Also, define the equations to be solved and how

the liquid-gas interface, if existing, has to be treated.

• Show where two phases can still exist at supercritical pressures. Using the selected
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methodology, show that phase equilibrium conditions enhance mass diffusion at super-

critical pressures modifying considerably the critical properties of the liquid mixture

with respect to the pure liquid. Specifically, is the critical pressure of the liquid phase

higher than the chamber pressure?

• Obtain characteristic times of the diffusive process. How fast does it occur? Does

it modify considerably the fluid properties around the liquid-gas interface? What

implications does it have?

• Compare the diffusion time scale to that of the breakup mechanism, especially of the

hydrodynamic instabilities. That is, will these time scales be of the same order? Or

is one process faster than the other? It could be estimated if the liquid breakup will

occur before the existing mass diffusion has affected the fluid properties enough.
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Chapter 2

Problem Statement and Governing

Equations

2.1 Definition of the problem

The studied problem consists in analyzing the liquid-gas interface behavior of a liquid sud-

denly introduced into a high-pressure gaseous environment. The pure liquid species can be

called “species B” and the pure gas species is called “species A”. The pressure is going to

be supercritical for the pure liquid species being injected. Close to the interface, a binary

mixture of species A and B exists due to equilibrium conditions at the interface and the cor-

responding species diffusion. Studying this diffusion layer around the interface is of special

interest.

The domain is set as seen in Figure 2.1, where the liquid is sitting on the left side of

the interface and the gas falls on the right side. At x =∞+, only pure gas species A exist,

while at x = ∞− only pure liquid species B is present. Temperature will be higher on the

gas side than on the liquid side, but always remaining under the critical temperature of
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Figure 2.1: Sketch of the interface problem.

the pure liquid. In this situation, we expect to still have a compressed liquid phase for the

pure liquid species. This difference in temperature will drive the vaporization of the liquid

mixture across the interface.

Moreover, the interface will move in time. Therefore, it becomes critical to decide which

frame of reference will be used. For simplicity, and under the assumption that momentum

variations due to velocity are small compared to the constant high pressure throughout the

domain, it is possible to work with a frame of reference fixed at the interface. In this case, it

behaves as if U = 0, with U being the interface velocity. Physically, we will expect the liquid

to flow into the interface, while gas will be flowing out of it, as the vaporization phenomenon

occurs (if there is, indeed, vaporization). Otherwise, under certain conditions we could have

a condensation where gas would be flowing into the interface and liquid would be flowing

out.

2.2 Governing equations

The problem is mainly driven by diffusion forces, which relate to slow motion of the particles

through the domain. Therefore, we expect small changes to occur as time marches. It can also

23



be assumed that fluid velocity will be small, so the momentum flux is going to be negligible

compared to pressure. This fact, together with the assumption of constant pressure in the

whole domain, makes it unnecessary to solve for the momentum equation. In this case, only

the continuity equation, the species continuity equations and the energy equation become

relevant. Their formulations for 1-D Cartesian coordinates are shown in the following lines.

The global continuity must be applied in both the gas and the liquid domains. For the

gas phase, the differential form of the continuity equation becomes

∂ρg
∂t

+
∂

∂x
(ρgug) = 0 (2.1)

and for the liquid phase

∂ρl
∂t

+
∂

∂x
(ρlul) = 0 (2.2)

Furthermore, species continuity must also be satisfied. Chemical reaction is not considered

in this development. The conservative form of the species continuity equation is

∂

∂t
(ρYi) +

∂

∂x
(ρuYi) +

∂

∂x
(Ji) = 0 (2.3)

After combining with Eq. 2.1 and Eq. 2.2, we obtain the non-conservative form of the

equation for both phases and each species,

ρg
∂Ygi
∂t

+ ρgug
∂Ygi
∂x

+
∂

∂x
(Jgi) = 0 (2.4)

and
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ρl
∂Yli
∂t

+ ρlul
∂Yli
∂x

+
∂

∂x
(Jli) = 0 (2.5)

where Jgi and Jli represent the diffusion mass flux of each species i in each phase. These

mass fluxes are computed using the generalized Maxwell-Stefan equations (Eq. 2.50), which

provide an effective procedure to include non-idealities in the diffusion process [23],[24].

Using the fact that
∑N

i=1 Yi = 1, Eq. 2.1 is related to Eq. 2.4 and Eq. 2.2 to Eq. 2.5.

Thus, from the N + 1 equations we have, only N equations are needed to be solved.

The momentum equation, although it is not used in this work as stated before, would

present the following non-conservative form, where gravity terms have been neglected and

no specific form for the deviatoric stress tensor, ¯̄τ , is given as

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂p

∂x
+
∂τxx
∂x

(2.6)

applicable to both phases, liquid and gas.

Under Newtonian fluid assumptions [38], the deviatoric stress tensor becomes

¯̄τ = 2µ¯̄ε+ λ(∇ · ū) ¯̄I = µ(∇ū+ (∇ū)T ) + λ(∇ · ū) ¯̄I (2.7)

For the 1-D case, it becomes ∂τxx
∂x

= (2µ + λ)∂
2u
∂x2

. Assuming Stokes’ hypothesis, where

λ ≈ −2
3
µ, the stress component becomes ∂τxx

∂x
= 4

3
µ∂

2u
∂x2

.

Finally, an equation for energy is also needed. Recall it has been derived under assump-

tions of low-speed flow, where the viscous dissipation terms and the total derivative with

respect to time of pressure have been neglected. Considering energy transport due to mass
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diffusion and combining it with global continuity (Eq. 2.1 and Eq. 2.2) and species continuity

(Eq. 2.4 and Eq. 2.5), we get, for the gas phase,

ρg
∂hg
∂t

+ρgug
∂hg
∂x
−ρg

N∑
i=1

hgi
∂Ygi
∂t
−ρgug

N∑
i=1

hgi
∂Ygi
∂x
− ∂

∂x

(
λg
∂T

∂x

)
+

N∑
i=1

Jgi
∂hgi
∂x

= 0 (2.8)

and, for the liquid phase,

ρl
∂hl
∂t

+ ρlul
∂hl
∂x
− ρl

N∑
i=1

hli
∂Yli
∂t
− ρlul

N∑
i=1

hli
∂Yli
∂x
− ∂

∂x

(
λl
∂T

∂x

)
+

N∑
i=1

Jli
∂hli
∂x

= 0 (2.9)

Refer to Appendix C for the full development of the two previous expressions.

The previous equations require some fluid properties which need to be computed using

a correspondent model or an equation of state. The discussion of how these parameters are

obtained is shown in Section 2.3.

2.3 Thermodynamic relations

This section presents the necessary thermodynamic relations to compute the fluid properties

of interest: density, enthalpy, fugacity, enthalpy of vaporization, entropy, diffusion mass flux,

viscosity, thermal conductivity and surface tension.

26



2.3.1 The equation of state

The equations in Section 2.2 require the evaluation of some properties in order to be solved.

Density ρ, enthalpy h, partial molar enthalpy h̄i and fugacity coefficients Φ can be evaluated

using an equation of state. An EoS mainly establishes a relation between the following

parameters: pressure p, molar volume v and temperature T of the fluid.

The simplest equation of state we could think of is the ideal gas EoS (Eq. 2.10). However,

this approach does not include any real effects and would totally fail to predict reasonable

results in the range of temperatures and pressures we are looking at. Furthermore, it cannot

predict liquid state properties.

pv = RuT (2.10)

The first modification to this ideal-gas equation is the “ideal” Van der Waals equation

of state (VdW-EoS) (Eq.2.11), a simpler approach to account for high-density effects, but

which allows us to explain better how the real-gas considerations are included [39].

p =
RuT

v − b
− a

v2
(2.11)

As it can be seen, two new parameters are included: the attractive parameter a and

the repulsive parameter b. The latter corresponds to the first correction that can be done

to the ideal gas EoS (Eq. 2.10), which is related to the volume occupied by the molecules

themselves. Since we are considering high-density fluids, the volume of the molecules may not

be negligible and should be subtracted from the physical volume that the fluid is occupying

(v∗ = v − b). On the other hand, a second correction needs to be done and it is related to

the existing forces between the molecules. That is, the intermolecular attraction force can’t
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be neglected anymore due to the high-density consideration. In this situation, the actual

force that the fluid exerts to the walls of the vessel containing it (i.e., pressure) is reduced

by a certain amount related to the attractive parameter of the molecules (a/v2).

However, the VdW-EoS considers the attractive and repulsive parameters to be constant

under any thermodynamic state and are only fitted to provide good predictions in the gas

state. Reasonably, it is expected that other parameters, such as the temperature or the

acentric factor, will modify them and provide more accuracy to all range of fluid states.

Therefore, it is needed to use an equation that predicts better real-gas effects in high-density

fluids.

First, Redlich and Kwong [40] introduced a modification to the VdW-EoS, call it RK-EoS

(Eq. 2.12), by saying that the attractive term depended on the square root of temperature.

They also introduced some modification by adding the repulsive parameter to the denomi-

nator of the attractive parameter term.

p =
RuT

v − b
− a/T 0.5

v(v + b)
(2.12)

Some years later, Soave [41] modified the original RK-EoS and proposed a more general

temperature-dependent term a(T ), SRK-EoS (Eq. 2.13).

p =
RuT

v − b
− a(T )

v(v + b)
(2.13)

In this work, the Soave-Redlich-Kwong EoS has been chosen due to its good performance

in a wide range of fluid states, including sub-critical, near-critical and super-critical regions

[42],[43]. Thus, it may represent both gas and liquid phase.

The three previous EoS (Eq. 2.11, Eq. 2.12 and Eq. 2.13) belong to the family of cubic
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equations of state. Rearranging the SRK-EoS into a cubic form using the molar volume as

the variable to solve for, we get

Z3 − Z2 + (A−B −B2)Z − AB = 0 (2.14)

In the previous equation, the compressibility factor Z and the parameters A and B are

given by

Z =
pv

RuT
; A =

ap

(RuT )2
; B =

bp

RuT
(2.15)

where the terms a and b are computed according to the quadratic mixing rules of the SRK-

EoS, accounting for the pure species attractive and repulsive parameters ai and bi, respec-

tively, as

a =
N∑
i=1

N∑
j=1

XiXj(aiaj)
0.5(1− kij) ; b =

N∑
i=1

Xibi (2.16)

where kij are the so-called binary interaction coefficients, which are derived from exper-

imental data in order to fit the results provided by the EoS. For hydrocarbon mixtures,

assuming kij = 0 can be a good approximation [41],[44]. Nevertheless, the inclusion of these

parameters for other types of mixtures, such as mixtures containing hydrogen, can become

important.

The attractive and repulsive parameters for the pure species are obtained from the critical

point of each species, assuming that the first and second derivative of pressure with respect

to volume must be zero. They depend on the critical temperature, Tci, critical pressure, pci,

and reduced temperature, Tri = T/Tci. In this case, it is obtained that
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ai = 0.42748
(RuTci)

2

pci
αi ; bi = 0.08664

RuTci
pci

(2.17)

where αi is defined as

αi = [1 + Si(1− T 0.5
ri )]2 (2.18)

being Si a parameter depending on the acentric factors of each species, ωi, originally defined

by Soave as

Si = 0.480 + 1.574ωi − 0.176ω2
i (2.19)

If we solve for the molar volume v, then it is possible to obtain the density of the mixture

as ρ = MWmix/v. The equation is applicable for each phase, gas or liquid.

A simplification that can be taken into account for this EoS comes from assuming a case

where A and B are much smaller than 1 (A << 1 and B << 1). That is, the gas phase is

close to ideal gas behavior. In this situation, if Eq. 2.14 is rearranged as

Z − 1 =
B

Z −B
− A

Z +B
(2.20)

it can be simplified using Taylor series expansion to find that

Z ≈ 1 +B − A (2.21)

where the compressibility factor becomes of order 1 (Z ' 1).
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In gaseous regions where these assumptions are satisfied, it may become computationally

more efficient to solve the EoS by using Eq. 2.21.

Improvements to the SRK-EoS

The SRK-EoS, as said before, is a well-balanced equation of state that can be implemented in

problems that require of the evaluation of real-gas properties. It presents a good performance

in the range of pressures and temperatures of interest. Furthermore, the fact that we are

dealing with a cubic equation makes it easier and more efficient to be solved, since analytical

solutions for cubic equations exist [45] or an iterative solver can be easily implemented.

However, this model may present some disadvantages. It usually predicts lower densities

for the liquid phase and it may be strongly dependent on the binary interaction coefficients

kij when working with mixtures to predict phase equilibrium compositions. Therefore, the

representation of the critical point of the mixture may not be always accurate. Some results

comparing the performance of this EoS with the reference program REFPROP from the

National Institute of Standards and Technology (NIST) are shown in Appendix E.

Correcting the mismatch in liquid densities is left for further studies related to this work.

At this point, testing the performance of the SRK-EoS in this issue could become tedious,

since it will depend on the species being considered. Some works suggest that the Peng-

Robinson equation of state (PR-EoS, [46]), also of cubic form but more complex than SRK-

EoS, presents better performance in this issue [5],[14],[15],[23],[24],[47].

On the other hand, the influence of the interaction coefficients can be improved if enough

information is known about them. The following lines address this subject with the objective

to be able to implement values for kij. If these coefficients are unknown for any mixture we

deal with, they are set to be equal to zero.
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Graboski and Daubert introduced some modifications to the SRK-EoS for systems con-

taining only hydrocarbons [44], systems containing CO2, H2S , N2 and CO [48] and systems

containing H2 [49].

The hypothesis taken by Soave assuming that binary interaction coefficients are not rel-

evant for hydrocarbon mixtures is confirmed in [44], but a modification to the Si term is

introduced for this type of mixtures based on an extended data bank. It is rewritten as

Si = 0.48508 + 1.55171ωi − 0.15613ω2
i (2.22)

For systems containing hydrogen sulfide, nitrogen, carbon monoxide and carbon dioxide,

interaction coefficients are introduced [48] to fit better the SRK-EoS to experimental data.

In this case, the expression for Si of Eq. 2.22 is also considered.

Finally, a modification to the α function of the SRK-EoS is presented for systems con-

taining hydrogen [49]. Due to the extremely supercritical state of hydrogen, Eq. 2.18 can-

not predict properly its behavior and the need of specific interaction coefficients for each

hydrogen-containing mixture becomes critical to obtain good calculations using the original

SRK-EoS. Assuming kij = 0, a new expression for α is found for hydrogen, as a function

of its reduced temperature Tr,H2 = T/Tc,H2 , which can better reproduce experimental data

without the need of interaction coefficients It is given by

αH2 = 1.202e−0.30228Tr,H2 (2.23)

Furthermore, this work presents a conversion from general binary interaction coefficients

obtained using an α parameter for hydrogen as in Eq. 2.18 to the binary interaction coeffi-

cients that would be obtained using the new α function found in Eq. 2.23. Although the new

32



function is obtained from fitting experimental results with zero-value interaction coefficients,

this conversion can improve the obtained results.

Other authors proposed further modifications to the α function [50] with the objective

to reduce the need of interaction coefficients. This new function, Eq. 2.24, depends on the

critical properties of the species and three coefficients: L, M and N. These coefficients are

determined for each species from regression of pure-component vapor pressure. It can also

be applied to hydrogen-containing mixtures and presents more accurate results than those

using Eq. 2.23.

αi = T
N(M−1)
ri eL(1−TNM

ri ) (2.24)

As it can be seen, the values of kij are crucial to obtain better matching between experi-

mental data and the results predicted by the EoS. These values can usually be held constant

independently of temperature and pressure. However, for many mixtures of interest, espe-

cially those containing hydrogen, values for the interaction coefficients are usually obtained

for specific pressure and temperature ranges.

Pressure dependency is usually neglected. However, it would be interesting to obtain

a general temperature-dependent function to obtain values for kij to obtain more precise

coefficients. Soave et al. [51] presented general correlations for specific mixture groups to

find the binary interaction coefficients as a function of temperature and the mixture species.

The method obtains the kij by comparing the fugacity coefficient equation (Eq. 2.43)

obtained using the classical quadratic mixing rules of the SRK-EoS model with the fugacity

coefficient equation obtained using Huron-Vidal mixing rules. Without loss of generality,

these equations are compared for a binary system of component 1 at infinite dilution in

component 2 to obtain that
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(
2(1− k12)

√
a1

a2

− b1

b2

)
a2

RuTb2

=

(
a1

RuTb1

−
ln γ∞1(2)

ln 2

)
(2.25)

where the activity coefficient γ∞1(2) is predicted by group contributions (Eq. 2.26 and Eq.

2.27).

ln γ∞i = bi

( N∑
j

ϕjσij −
1

2

N∑
j

N∑
k

ϕjϕkσjk

)
(2.26)

ϕi =
Xibi∑N
j=1Xjbj

(2.27)

The new interaction coefficients σij must follow some rules, as explained in [51]. The

dependence of these coefficients with temperature are shown in Eq. 2.28 and Eq. 2.29, which

present the particular correlation for nitrogen/alkanes mixtures and carbon dioxide/alkanes

mixtures, respectively.

σ

(
bar

K

)[
N2

alkane

]
=

(
57

T (K)

)1.4

(2.28)

σ

(
bar

K

)[
CO2

alkane

]
=

(
118

T (K)

)1.6

(2.29)

Once the activity coefficient is known, it is possible to obtain kij by imposing the equality

in Eq. 2.25. Some values for these coefficients are shown in Table 2.1.
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Table 2.1: Binary interaction coefficients for the SRK-EoS obtained with Soave et al. model.

CO2/C3H8 N2/C10H22

T (K) kij T (K) kij

250 0.13518 250 0.08329
300 0.14073 300 0.07696
350 0.14846 350 0.06978
400 0.15801 400 0.06116
450 0.16920 450 0.05039
500 0.18203 500 0.03659

2.3.2 An equation for enthalpy

As stated before, enthalpy, h, can be predicted from the EoS. In the high-pressure regimes

we are working in, the enthalpy will differ from that predicted by the ideal gas law by the

addition of a departure function [52], given by

H −H∗ = RuT (Z − 1) +

∫ v

∞

[
T

(
∂p

∂T

)∣∣∣∣
v

− p
]
dv (2.30)

where H∗ is the enthalpy of the mixture under ideal gas law behavior.

In terms of the compressibility factor, the departure function becomes

H −H∗ = RuT (Z − 1) +RuT

∫ v

∞

[
T

(
∂Z

∂T

)∣∣∣∣
v

]
dv

v
(2.31)

Z =
v

v − b
−

a(T )
RuT

v

v(v + b)
(2.32)

Introducing the SRK-EoS, expressed as Z(v,T) (see Eq. 2.32), in Eq. 2.31 and rewriting

it in terms of specific enthalpy, we obtain the following expression, applicable both for the

gas and the liquid phase,
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h = h∗(T ) +
1

MWmix

(
RuT (Z − 1) +

T (∂a/∂T )|p,Xi
− a

b
ln

[
Z +B

Z

])
(2.33)

where h∗(T ) states for a more general temperature-dependent function for the ideal gas

specific enthalpy, computed using Passut and Danner correlations [53]. In this work, a fifth-

order polynomial to describe enthalpy behavior is considered (see Appendix D). Ideal gas

enthalpy for a mixture can be computed as

h∗(T ) =
N∑
i=1

Yih
∗
i (T ) (2.34)

with h∗i (T ) being the ideal gas enthalpy for the pure species i.

The partial molar enthalpy h̄i can be derived taking the partial derivative of the mixture

molar enthalpy h̄ with respect to Xi at constant p, T and Xj 6=i as

h̄i =

(
∂h̄

∂Xi

)
p,T,Xj 6=i

(2.35)

which is the common shortcut taken in many works instead of applying the rigorous definition

of partial molar enthalpy as

h̄i =

(
∂H̄

∂ni

)
p,T,nj 6=i

(2.36)

Two things must be noticed before proceeding. Here, we are deriving the mixture molar

enthalpy, while Eq. 2.33 provides the specific enthalpy per unit of mass. Therefore, to recover

the enthalpy per unit mole we need to multiply the specific enthalpy by the molecular weight

of the mixture (h̄ = MWmixh). Furthermore, when taking this derivative, the RuT term is,
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actually, RuT
∑N

i=1Xi, as seen in [25].

Applying Eq. 2.35 and rearranging terms, we get the partial molar enthalpy to be

h̄i = h̄∗i (T ) + p
∂v

∂Xi

∣∣∣∣
p,T,Xj 6=i

−RuT +
A1

v + b

[
A2 −

(∂v/∂Xi)|p,T,Xj 6=i

v

]
+ ln

[
v + b

v

](
1

b

)[
T

(
∂2a

∂Xi∂T

∣∣∣∣
p,Xj 6=i

− ∂a

∂Xi

∣∣∣∣
p,T,Xj 6=i

)
− A1A2

] (2.37)

where the coefficients A1 and A2 are

A1 = T (∂a/∂T )|p,Xi
− a (2.38)

A2 =
(∂b/∂Xi)|p,T,Xj 6=i

b
(2.39)

Then, to recover the partial specific enthalpy per unit mass, it is only needed to divide

the partial molar enthalpy by the molecular weight of each particular species,

hi =
h̄i

MWi

(2.40)

The previous equations require the evaluation of some partial derivatives of a, b and v

terms, which are found in Appendix B.
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2.3.3 An equation for fugacity

The SRK-EoS can also be used to compute the fugacity coefficients. The fugacity coefficient

is defined as the ratio between fugacity and pressure, which for each species in a mixture

equals, using the definition of partial pressure,

Φi =
fi
pi

=
fi
pXi

(2.41)

Thus, fugacity acts as a partial pressure, but related to an accurate computation of

the chemical equilibrium constant instead of the classical mechanical partial pressure. For

an ideal gas, fugacity for each species will tend to be equal to their corresponding partial

pressure.

The general thermodynamic relation for the fugacity of a component in a mixture [41] is

ln[Φi] =

∫ v

∞

[
1

v
− 1

RuT

(
dp

dni

)
T,p,nj

]
dv − lnZ (2.42)

which can be rewritten introducing the SRK-EoS as

ln[Φi] =
bi
b

(Z − 1)− ln[Z −B]− A

B

[
2

(
ai
a

)0.5

− bi
b

]
ln

[
1 +

B

Z

]
(2.43)
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2.3.4 The enthalpy of vaporization

The enthalpy of vaporization or latent heat of vaporization represents the necessary energy

that requires the liquid phase to vaporize (i.e., evolve from liquid to gas phase) and is defined

as

∆Hv = Hg −Hl (2.44)

which in general will depend on temperature, pressure and mixture composition.

As seen in Eq. 2.69 in Section 2.4, knowing the enthalpy on both sides of the interface, it is

possible to compute the enthalpy of vaporization of the mixture. However, sometimes we are

interested in the enthalpy of vaporization associated to a specific species. In this case, eval-

uating the difference in partial enthalpy could be useful, but using the Clausius-Clapeyron

equation (Eq. 2.45) provides an analytic procedure to estimate the heat of vaporization [54].

dPsat

Psat

=
∆hv
Ru

dTsat

T 2
sat

(2.45)

The Clausius-Clapeyron equation can be evaluated in terms of the fugacity coefficients

[55],[56] to obtain an expression for the enthalpy of vaporization for each component in the

mixture as

∆h̄v,i = h̄g,i − h̄l,i = −RuT
2 ∂

∂T

[
ln

Φg,i

Φl,i

]
= −RuT

2

(
∂ ln Φg,i

∂T
− ∂ ln Φl,i

∂T

)
(2.46)

provided in J/mol. Dividing by the molecular weight of each species, we can get the enthalpy
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of vaporization in J/kg, as ∆hv,i = ∆h̄v,i/MWi. However, the quantity to be reported is the

enthalpy of the mixture. Thus, the enthalpy of vaporization should be obtained using Eq.

2.44.

The partial derivatives shown in Eq. 2.46 are found in Appendix B.

2.3.5 An equation for entropy

The SRK-EoS can also be used to obtain the entropy of our mixture in a similar manner

to how enthalpy is obtained (see Section 2.3.2). The entropy will differ from the ideal gas

entropy by a departure function [52], given in terms of Z as

S − S∗ = Ru ln(Z) +Ru

∫ v

∞

[
T

(
∂Z

∂T

)∣∣∣∣
v

− 1 + Z

]
dv

v
(2.47)

Applying the expression for the SRK-EoS of Eq. 2.32, and rewriting in terms of specific

entropy, we get

s = s∗(T ) +
1

MWmix

(
1

b

(
∂a

∂T

)∣∣∣∣
p,Xi

ln

(
Z +B

Z

)
+Ru ln(Z −B)

)
(2.48)

where s∗(T ) is the ideal gas entropy computed using Passut and Danner correlations [53]

(refer to Appendix D for more details).

As it is done for enthalpy, the entropy of an ideal mixture can also be computed as

s∗(T ) =
N∑
i=1

Yis
∗
i (T ) (2.49)
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2.3.6 Diffusion mass flux

The problem we are studying includes mass diffusion due to the variation of species concen-

tration along our domain. That is why the terms Jgi and Jli appear in our equations, which

represent the mass flux due to diffusion. As stated in [23], [24] and [47], using the gener-

alized Maxwell-Stefan equations (Eq. 2.50) to compute these fluxes allows us to introduce

non-idealities to the diffusion process. In this equation, Dij represent the Maxwell-Stefan

binary diffusion coefficients, generally different from the Fickian diffusion coefficients, and

DT
i are the generalized thermal diffusion coefficients. The term c refers to the molar density

of the mixture.

As a matter of clarification, in our governing equations we deal with mass fluxes, J or

Jm, to emphasize the mass-based behavior of these fluxes. In the following development,

clear distinction between mass fluxes, Jm, and molar fluxes, JM , is necessary.

∑
j 6=i

XiXj

Dij

(
JMj
cXj

− JMi
cXi

)
= di −

∑
j 6=i

XiXj

Dij

(
DT
j

ρYj
− DT

i

ρYi

)
∇ lnT (2.50)

The thermal diffusion term in Eq. 2.50, is neglected since temperature gradients are not

large in our problem. Thus, the only driving force (i.e., di) for the diffusion process to occur

is directly related to concentration gradients.

Under ideal mixture hypothesis, the driving force for component i is directly the gradient

in molar concentration of that component (di = ∇Xi). However, our problem conditions are

far from being considered ideal. Thus, non-idealities must be included using the fugacity

coefficient (Eq. 2.51). Note, if the mixture is ideal, Φ = 1 and we recover the expression for

the driving force under ideal assumptions.
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di = ∇Xi +Xi

N∑
j=1

∂ ln Φi

∂Xj

∣∣∣∣
p,T

∇Xj (2.51)

Developing Eq. 2.51 for a 1-D Cartesian problem, we obtain

di =
∂Xi

∂x
+Xi

N∑
j=1

∂ ln Φi

∂Xj

∣∣∣∣
p,T

∂Xj

∂x
(2.52)

The summation of the driving forces is zero (
∑N

i di = 0). Therefore, the summation of the

diffusion fluxes must be zero (
∑N

i J
M
i = 0) in order to solve the Maxwell-Stefan equations.

Knowing this, we can present a general procedure to compute the mass fluxes Jmi .

For a binary mixture, (N = 2), Eq. 2.50 can be easily simplified. Introducing the

thermodynamic factor term, Γ12, which provides a measure of the non-ideality of the mixture,

we get

Γ12 = 1 +X1

(
∂ ln Φ1

∂X1

∣∣∣∣
p,T

− ∂ ln Φ1

∂X2

∣∣∣∣
p,T

)
(2.53)

1

c

X1X2

D12

(
JM2
X2

− JM1
X1

)
= Γ12

∂X1

∂x
(2.54)

which can be further simplified by knowing that JM2 = −JM1 under the mole-based frame of

reference (that is, working with mole fraction gradients), to obtain

JM1 = −c Γ12

1
D12

(X1 +X2)

∂X1

∂x
= −cDM ∂X1

∂x
(2.55)

However, we are interested in mass diffusion fluxes relative to the mass-averaged velocity.
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Using Fick’s law [57], for a binary mixture,

Jm1 = −ρDm∂Y1

∂x
(2.56)

being ρ the mixture density.

From the previous equations we obtain that the mole-based and the mass-based Fickian

diffusion coefficients, DM and Dm, are equal for a binary mixture [47].

Dm = DM =
Γ12D12

X1 +X2

= Γ12D12 (2.57)

Solving for Jm1 in Eq. 2.56 we can then obtain Jm2 = −Jm1 under the new frame of

reference. For mixtures of N > 2 the previous equations cannot be rearranged in that

simpler way and have to be worked out differently [47],[57].

As a matter of clarification, we could have solved for the mass fluxes by expressing Eq.

2.54 in terms of Jm1 and Jm2 , but in that case, we would be solving for the mass fluxes

relative to the molar-averaged velocity, instead of the mass-averaged velocity using mass

fraction gradients. To solve Eq. 2.53 we also need to find the binary diffusion coefficient

D12. Notice that Dij = Dji holds always true, so reversing the problem and solving for J2

would give us the same results.

Since our fluid phenomena is mainly diffusive, being able to compute the diffusion coeffi-

cients for high-pressure conditions becomes crucial and necessary. Literature in this topic is

broad, but few is said about the computation of these coefficients in the desired conditions.

Mainly, some models and correlations have been developed from experimental data. Their

accuracy is based on the available experiments up to date, but still they provide a reasonable

value for those coefficients. It is expected that as the studied topic here is further investi-
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gated in the following years, more studies about how the diffusive process behaves and how

to compute these coefficients will appear.

One of the most easy-to-use models to compute diffusion coefficients is that of Riazi

and Whitson [58], which presents a correlation based on the pseudocritical properties of the

mixture, the low-pressure diffusion coefficient and the viscosity of the mixture to obtain the

diffusion coefficient under high-density or high-pressure conditions. However, the correlations

used to define this model are based on a small data bank, so it may fail to predict reasonable

results for mixtures other than those used in their work. Another comment about Riazi and

Whitson work is that they directly compute mass-based binary Fickian diffusion coefficients.

Ghoniem et al. ([23], [24], [25] and [26]) propose to use the Tracer Liu-Silva-Macedo

model [59] to compute tracer diffusion coefficients together with Wesselingh and Krishna

model [60]. However, those works are relatively old and somewhat difficult to implement.

In the present work, it has been chosen to implement the work done by Leahy-Dios and

Firoozabadi [47], which presents a more extended data bank and is directly related to the

implementation of Maxwell-Stefan equations. One of the weaknesses of this model, though, is

its high dependence on the other models being used in the present work. The thermodynamic

factor and density will depend on the SRK-EoS and, as it has already been explained, the

SRK-EoS is not always precise when computing liquid density and its results depend on the

binary interaction coefficients. Furthermore, viscosity (i.e., the viscosity model chosen) will

also influence the diffusion model. Nevertheless, many of the models computing diffusion

coefficients depend on some measure to the viscosity model used in their correlations. Details

on the formulation of this model are provided in Appendix B and Appendix D, and comments

about its performance are made in Appendix E.
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2.3.7 Viscosity and thermal conductivity

The energy equations (Eq. 2.8 and Eq. 2.9) require the evaluation of the thermal conductiv-

ity, λ, of the mixture, both in the gas phase and in the liquid phase. If we need to solve the

momentum equation, we would also need to compute the viscosity of the mixture, µ, again

for both phases.

To compute these properties, the general correlation method proposed by Chung et al.

[61] is used. It has been obtained from an extended data bank including experimental

data from dense fluids (i.e., at high pressures) and provides reasonably accurate results

for mixtures. Moreover, only the critical properties and the acentric factors are needed to

compute viscosity and thermal conductivity if the mixture is only composed by nonpolar

fluids. For polar and associating fluids, it is needed to use also the dipole moment and an

association parameter. Therefore, for our mixtures of interest, the correlation presented by

Chung et al. becomes simple to use.

Details on the formulation of this model are found in Appendix D.

2.3.8 Surface tension

One of the objectives of this work is to obtain estimates of some instability parameters, such

as growth rate and oscillation frequency for the Kelvin-Helmholtz instability. For this, we

need to compute the surface tension of the liquid mixture in contact with the gas mixture

(i.e., the surface tension at the liquid-gas interface). As recommended by Poling et al. [52],

the Macleod-Sugden correlation (Eq. 2.58) is used to estimate the surface tension.

σm =

(
[PLm]ρLm − [PGm]ρGm

)n
(2.58)
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In the previous equation, surface tension of the mixture, σm, is provided in dyn/cm or

mN/m, ρLm and ρGm are the liquid mixture density and the gas mixture density in mol/cm3,

respectively, and [PLm] and [PGm] are the parachor of the liquid mixture and the parachor

of the gas mixture. The exponent n is usually taken to be 4, but some sources recommend

using 3.6 for some specific mixtures instead. In the present work, the more general value of

n = 4 has been chosen.

The parachor of the mixtures are computed accordingly to,

[PLm] =
N∑
i

N∑
j

XliXlj[Pij] (2.59)

[PGm] =
N∑
i

N∑
j

XgiXgj[Pij] (2.60)

where Xgi and Xli are the mole fractions of component i in the gas mixture and the liquid

mixture. [Pij] is computed as,

[Pij] = λij
[Pi] + [Pj]

2
(2.61)

In Eq. 2.61, λij is a binary interaction coefficient, usually set to 1 if no experimental data

is available to obtain a more reliable value. [Pi] is the parachor of the pure component i.

A methodology to compute the values of the parachor of each pure component is shown in

Appendix D.
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2.4 Matching conditions

To ensure the physical consistency of the model, some matching conditions must be satisfied

at the interface between the liquid and the gas phase. These conditions are related to mass

and energy balances (i.e., flux coming in from one side of the interface must equal the exiting

flux) and thermodynamic equilibrium requirements.

At the interface, phase equilibrium laws prevail, which means that pressure, p, temper-

ature, T , and chemical potential of each species, µci, must be equal on each side of the

interface [52],[55]. The chemical potential equality can be rearranged in terms of fugacity,

and the three equilibrium conditions become,

pl = pg (2.62)

Tl = Tg (2.63)

fli = fgi (2.64)

In this case, there is no interface curvature and capillary pressure. Therefore, the condition

from Eq. 2.62 is automatically satisfied under our hypothesis of constant pressure throughout

the domain. However, this statement must be verified in the simulations. On the other hand,

the condition of Eq. 2.63 will impose a relation between temperature gradients on each side

of the interface. Finally, the condition in Eq. 2.64 can be rewritten using the mole fractions

of each species and the fugacity coefficient (Eq. 2.65), a parameter obtainable from the

selected equation of state, as it has been shown before. Recall that the fugacity coefficient,
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Φ, is a function of pressure, temperature and mole fractions of all species composing the

mixture (Eq. 2.43).

XliΦli = XgiΦgi (2.65)

Another condition to be satisfied at the interface is a mass balance for each species, since

continuity of mass flux must be guaranteed. For each species we have,

ρgYgi(ug − U) + Jgi = ρlYli(ul − U) + Jli (2.66)

where U is the interface velocity, which becomes an eigenvalue of the problem. That is, for

any interface velocity, we obtain a different, but consistent, velocity field. In the present

work, it is set to zero as discussed earlier.

Summation of Eq. 2.66 over all species provides an expression for the global mass balance

(Eq. 2.67).

ρg(ug − U) = ρl(ul − U) (2.67)

Finally, energy flux across the interface must also be balanced.

ρlulhl − λl
∂T

∂x
+

N∑
i=1

Jlihli − ρlUhl = ρgughg − λg
∂T

∂x
+

N∑
i=1

Jgihgi − ρgUhg (2.68)

Eq. 2.68 can be rewritten as,
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ρl(ul − U)(hl − hg)− λl
∂T

∂x
+

N∑
i=1

Jlihli = −λg
∂T

∂x
+

N∑
i=1

Jgihgi (2.69)

where the term (hl − hg) provides the energy of vaporization of the liquid.

The following Figure 2.2 shows an schematic of all the balances across the interface that

must be taken into account.

Figure 2.2: Mass and energy balances across the interface.
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2.5 Methodology comparison

This section presents a comparison of the methodology applied by different researchers when

solving high pressure or supercritical pressure conditions. That is, it identifies which equa-

tions of state are used, what fluid properties models, etc. Specifically, it is shown if the

liquid phase is considered, what equation of state is implemented, which models are used

for computing ideal gas properties, viscosity and thermal conductivity and if the diffusion

model takes into account non-idealities (i.e., includes the evaluation of the thermodynamic

factor) and what model is used to compute the diffusion coefficients.

Table 2.2: Methodology comparison between different works.

Work Liquid EoS Ideal gas µ λ Diffusion Dij

This work Yes SRK Passut [53] Chung [61] Chung [61] Non-ideal Leahy [47]
Bellan [5] No PR - Poling [52] Poling [52] Non-ideal Harstad [37]
Dahms [6] Yes BWR CHEMKIN Ely [62] Ely [63] - Takahashi [64]

He [23] Yes PR Yaws [65] Chung [61] Chung [61] Non-ideal TLSM [59]
Huo [42] No SRK - Chung [61] Chung [61] Ideal Takahashi [64]

Jorda [43] No SRK CHEMKIN Chung [61] Chung [61] Ideal Turns [54]

The reasons for selecting the methodology applied to the present work have been explained

throughout the text, but summarizing them here is of special interest.

First, supercritical injection is crucial for liquid-based fuel injectors. Therefore, including

this two-phase model was a requirement of this thesis. Then, the modeling of fluid prop-

erties has to take into account two main factors, which are accuracy and manageability of

the implemented models. Because of this, the use of a cubic equation of state is prefer-

able. It may not provide the same accuracy as other methods, but it becomes easy and

efficient to implement in a numerical code and some modifications can be made to improve

its performance.

Using further correlations to compute ideal gas properties, viscosity and thermal conduc-

tivity is also easy to implement in a code and the available methods provide enough accuracy
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in the thermodynamic space of our simulations. Linking the code with other software, such

as CHEMKIN, to obtain these properties may become tedious. Finally, due to our high-

pressure conditions, the diffusion model had to be computed assuming non-idealities. In this

model, the selected correlations to compute diffusion coefficients has been chosen accord-

ing to accuracy provided and date of publication, since diffusion models improve as more

experimental data becomes available.
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Chapter 3

Numerical Method

3.1 Discretization of the equations

The governing equations are discretized using finite volume techniques or the finite-volume

method (FVM), keeping in mind further modifications to work with 2-D and 3-D domains.

For a 1-D domain, the control volumes are defined as seen in Figure 3.1, where the node of

interest i (referred as P) is related to its neighbors i+ 1 (east, E) and i− 1 (west, W). The

definition of the cell width ∆x and distances between nodes dxe and dxw is also defined in

the same figure. It is important to note that the mesh does not need to be uniform, so the

developed code could work for non-uniform meshes.

Another feature of the selected discretization is that the code works with a staggered mesh.

This is, velocities are stored at the cell faces e and w, while all other variables (temperature,

density, etc.) are stored in the nodes of each control volume. The diffusion mass flux is also

computed at the cell faces, since it could be also related to a diffusion velocity term.

Moreover, when dealing with the interface, since its location is prescribed without neces-
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Figure 3.1: Control volume discretization of the 1-D domain.

sarily falling on a node, it will be treated as a face between the nodes on each side of it, IL

and IR. As specified by the matching conditions, a discontinuity will exist for the following

variables at the interface: species concentration, density and velocity.

Although it would be better to use the conservative forms of the governing equations if

the finite-volume method is implemented; it can still be developed from the non-conservative

equations. For further improvements of this work, especially once we move to 2-D or 3-D

configurations, it may be necessary to rearrange the governing equations in conservative form

and use the classical procedures of FVM.

Following FVM discretization techniques [66], the discretization of the governing equa-

tions from Section 2.2 is shown in the following lines. The temporal integration has been

taken to be explicit first order approximation, which is shown to be enough for other works

similar to this [23]. Explicit time integration allows us to treat the discretization of the

equations in a simpler way, since the coupling of different terms could complicate things,

especially in the energy equation (Eq. 2.8 and Eq. 2.9). The inclusion of explicit approaches

with higher orders (Runge-Kutta methods) would ease the restrictions on the time step that

explicit methods impose (in any case, more restrictive than implicit methods). However,

since we are interested in the early stages of temporal evolution, at this point having a small

time step is necessary.
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The global continuity equation for each phase (Eq. 2.1 and Eq. 2.2) is discretized implic-

itly. It becomes

ρn+1
P − ρnP

∆t
VP + [(ρu)n+1

e − (ρu)n+1
w ]∆y∆z = 0 (3.1)

The species continuity equation for each phase and species (Eq. 2.4 and Eq. 2.5) becomes

ρnP
Y n+1
P,i − Y n

P,i

∆t
VP + (ρPuP )n[Y n

e,i − Y n
w,i]∆y∆z + [Jne,i − Jnw,i]∆y∆z = 0 (3.2)

and the energy equation for each phase (Eq. 2.8 and Eq. 2.9) is discretized as

ρnP
hn+1
P − hnP

∆t
VP + (ρPuP )n[hne − hnw]∆y∆z − ρnP

N∑
i=1

hnP,i
Y n+1
P,i − Y n

P,i

∆t
VP

− (ρPuP )n
N∑
i=1

hnP,i[Y
n
e,i − Y n

w,i]∆y∆z −
[(
λ
∂T

∂x

)n
e

−
(
λ
∂T

∂x

)n
w

]
∆y∆z

+
N∑
i=1

JnP,i[h
n
e,i − hnw,i]∆y∆z = 0

(3.3)

In the previous equations, the subscript P refers to the node we are solving for, while the

subscripts e and w refer to the faces of the cell associated to that node. The superscripts

n+ 1 and n refer to the new time step and the old time step, respectively. Thus, we can see

the explicit nature of the discretized equations.

The grid parameters VP and ∆y refer to the volume of the cell and the cell size in the

y-direction, respectively. Since we are discussing a 1-D problem, ∆y = 1 to make it non-

dependent in that direction and VP = ∆x∆y∆z = ∆x.
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There are some clarifications to be made in this section. Recall that velocity and diffusion

mass fluxes are evaluated at the cell faces and in Eq. 3.2 and Eq. 3.3 these variables are

needed at the center of the cell. However, the center of the cell corresponds to the face of the

staggered cells. That is, computing uP can be done using the same procedure to compute

Ye,i. Since we are discussing a problem mainly driven by diffusion, velocities are small and,

thus, we can use central differences to evaluate the different variables at the corresponding

cell face, which is a second order scheme. Therefore, velocity and diffusion mass flux are

evaluated at P as,

uP =
1

2
(ue + uw) (3.4)

JP,i =
1

2
(Je,i + Jw,i) (3.5)

and variables such as enthalpy or mass fractions are evaluated at the cell faces as,

Yw,i =
1

2
(YP,i + YW,i) (3.6)

Ye,i =
1

2
(YP,i + YE,i) (3.7)

Finally, the temperature gradients evaluated at the cell faces is computed as,

(
∂T

∂x

)
e

=
TE − TP

dxe
(3.8)
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(
∂T

∂x

)
w

=
TP − TW

dxw
(3.9)

where dxe and dxw are the distances between nodes as defined in Figure 3.1.

3.2 Algorithm

The partial differential equations (PDE) from Section 2.2 are solved using the discretization

techniques shown in Section 3.1. The temporal integration is done using a time-marching

explicit method [67] as said before. However, some disadvantages of using this method exist.

That is, the time step becomes bounded by the Courant-Friedrichs-Lewy (CFL) conditions

[68],[69] (Eq. 3.10 and Eq. 3.11) to ensure numerical stability. In this case, reaching a

desired time in the simulation can require many time steps, increasing the computational

costs. In principle, this issue is not important for us, since at the early times a small time

step is required, possibly smaller than that required under the CFL conditions.

∆t

(
|ui|
∆xi

)
max

≤ Cconv (3.10)

∆t

(
ν

∆x2
i

)
max

≤ Cvisc (3.11)

The CFL condition from Eq. 3.11 can be applied to any diffusive process, not just viscosity

(ν) as it was originally referred to. Generally, the values of the Courant numbers (Cconv and

Cvisc) that ensure stability will need to be adjusted. Nevertheless, some recommendations

for these values are available in the literature [68],[70]. What must always be satisfied is for

the Courant number to be equal or less than unity, since it expresses a ratio of the time that
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a particle takes to cross a cell of the discretized domain.

In our problem, we do not have viscous diffusion since we are not working with the

momentum equation. Thus, Eq. 3.11 is not necessary to be implemented at this stage.

However, we do have two other diffusive processes: mass diffusion (Eq. 3.12) and thermal

diffusion (Eq. 3.13), which can be accounted as seen in He and Ghoniem [23]. In their work,

some other recommendation for the value of the Courant numbers are suggested. Recall that

the mass diffusion coefficient is Djk and the thermal diffusion coefficient is α = λ/(ρCP ).

∆t

(
Djk,i

∆x2
i

)
max

≤ Cdiff (3.12)

∆t

(
λi

∆x2
i ρiCp,i

)
max

≤ Cthermal (3.13)

The algorithm of the code works as follows. First, the initial conditions of our equations

are set. Then, the solution algorithm will first solve explicitly the species continuity equation

and the energy equation, obtaining mass fractions and temperature at the new step (n+1)

from the available information of step (n), as seen in Figure 3.2. To solve any variable for

the node P at (n+1), the code requires information of that variable on the node P, E and

W at (n). If the node P is a neighboring node of the interface, it uses previously computed

values of the matching conditions at the interface.

It is easy to realize that the interface acts as a face or boundary of our domain, imposing

certain conditions to be satisfied (i.e., the matching conditions). Therefore, the solution of

the equations is taken in two separate domains: the liquid phase and the gas phase. Each

one of them presents boundary conditions defined at the interface and at “infinity”. A full

detailed description of the boundary conditions is shown in Section 3.4.
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Once the mass fractions and temperature have been computed throughout the domain,

matching conditions at the interface are solved using the new computed values for the mass

and mole fractions and temperature on the neighboring nodes of the interface. Therefore,

this solution is taken implicitly using the values of the variables at the new time step. It

allows us to obtain the temperature at the interface, mass and mole fractions and relative

velocities of the fluid on each side of it for the new time step, too. The procedure explaining

how to solve the matching conditions is explained in Section 3.3.

Figure 3.2: Sketch of the proposed time integration.

Figure 3.3: Flow diagram of the solution algorithm.
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When working with a fixed interface location in time, the interface velocity U becomes

zero and the relative velocities ûl and ûg become the actual fluid velocities at the interface.

Thus, a simple numerical integration of Eq. 2.1 and Eq. 2.2 from each side to the interface

to “infinity” allows us to obtain the velocity field for both the liquid and gas phases. Since

in this frame of reference the liquid will be flowing into the interface, we can identify the

velocity the interface would have if the liquid was sitting on a wall and vaporizing under the

studied conditions. This velocity, which gives us an idea of how fast the interface is moving,

is given by the velocity at x→ −∞.

For this approach to be done, we would need to balance momentum at the ends of our

domain, where a velocity different than zero is present. Otherwise, the interface would be

moving. However, working with high pressures allows us to discuss that momentum terms

such as ρu2 are far less important than pressure terms, so they can be neglected and no

balance is needed as a first approximation. When checking this issue, it is only seen that

at the very first time steps neglecting the momentum balance may be a wrong assumption,

but rapidly becoming admissible. As pressure is reduced, this assumption may become even

wrong at large simulation times; so, care is needed.

At this point, all variables have been evaluated for a particular time step and we can

proceed to the following step and repeat the aforementioned procedure. For a more schematic

view, Figure 3.3 presents the algorithm as a flow diagram.

3.3 Solution method for the matching conditions

The matching conditions shown in Section 2.4 become a closed system of equations when

working with the relative velocities of the liquid phase and the gas phase with respect to the

interface velocity U ,
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ûg = ug − U (3.14)

ûl = ul − U (3.15)

For a mixture of N species, we have a system of 2N+7 equations for 2N+6 variables

to be solved. There is no need to count an equation for pressure matching since under

our assumptions pressure is constant throughout the domain. Nevertheless, the matching

conditions for global continuity and species continuity are related through the summation

over all species of the species mass balances, so the system actually becomes 2N+6 equations.

Multi-component phase equilibrium algorithms are shown in different works [23], [43], [55],

[56], each one under certain conditions to be met. However, this work currently focuses on

binary mixtures.

For a binary mixture (N=2), where we have species A and B, the phase equilibrium

solution provides two points in the thermodynamic space; so it is decoupled from the diffusion

mass fluxes. If mixtures with N > 2 are considered, the phase equilibrium compositions must

be compatible with the mass fluxes across the interface. For the binary mixture, the system

of equations becomes

ρgûg = ρlûl (3.16)

ρgYgAûg + JgA = ρlYlAûl + JlA (3.17)

ρgYgBûg + JgB = ρlYlBûl + JlB (3.18)
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XgAΦgA = XlAΦlA (3.19)

XgBΦgB = XlBΦlB (3.20)

XgA +XgB = 1 (3.21)

XlA +XlB = 1 (3.22)

ρlûl(hl − hg)− λl
(
∂T

∂x

)
l

+
2∑
i=1

Jlihli = −λg
(
∂T

∂x

)
g

+
2∑
i=1

Jgihgi (3.23)

Tl,int = Tg,int (3.24)

(
∂T

∂x

)
l

= f(Tl,int, T, x) (3.25)

(
∂T

∂x

)
g

= f(Tg,int, T, x) (3.26)

Summarizing, from Eq. 3.16, Eq. 3.17 and Eq. 3.18, which provide matching conditions

for mass flux, only two of them are needed to be solved. Eq. 3.23 provides information

for the energy flux balance. Finally, Eq. 3.19, Eq. 3.20 and Eq. 3.24 become the phase

equilibrium requirements.
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Additionally, Eq. 3.21 and Eq. 3.22 relate mole fractions of each species in each phase

and Eq. 3.25 and Eq. 3.26 provide information on the temperature gradient on each side of

the interface in terms of the interface temperature and the temperature and location of each

node surrounding it. A full analysis on how to compute these gradients is shown in Section

3.3.1.

This system of equations can be simplified to one equation depending only on the interface

temperature Tint. Then, it can be solved with any root-finding algorithm, such as the Secant

Method. The derivative of the objective function cannot be easily obtained in order to use

the Newton-Raphson method [45],[54].

Recognizing that all terms in Eq. 3.23 can ultimately depend on temperature for a given

pressure, the final problem consists in finding the root of f(Tint), being it

f(Tint) = ρlûl(hl − hg)− λl
(
∂T

∂x

)
l

+
2∑
i=1

Jlihli + λg

(
∂T

∂x

)
g

−
2∑
i=1

Jgihgi (3.27)

Given a value for Tint, Eq. 3.19, Eq. 3.20, Eq. 3.21 and Eq. 3.22 form a decoupled

closed system to solve for the mole fractions of each species on each side of the interface. A

simply iterative procedure can be used to solve these equations: from guessed values for the

mole fractions, the fugacity coefficients are obtained using the SRK-EoS and, rearranging

the equations, the new computed values for the mole fractions become
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XgB =
1− ΦgA/ΦlA

ΦgB/ΦlB − ΦgA/ΦlA

(3.28)

XlB = XgB
ΦgB

ΦlB

(3.29)

XgA = 1−XgB (3.30)

XlA = 1−XlB (3.31)

and an iterative procedure is done until the desired convergence is achieved.

Once mole fractions are known, mass fractions, density, enthalpy, diffusion mass fluxes and

thermal conductivity on each side of the interface are readily known for a given temperature,

either by using the EoS or the corresponding model.

Temperature gradients can be obtained using Eq. 3.25 and Eq. 3.26 and, after some

rearranging of the mass balance equations, the relative velocities ûl and ûg can be expressed

as

ûg =
ρl
ρg
ûl (3.32)

ûl =
JlA − JgA

ρl(YgA − YlA)
(3.33)

With all these considerations, it is possible to solve for the root of Eq. 3.27 and obtain a

converged solution for the interface temperature that satisfies the matching conditions.
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3.3.1 Computation of gradients at the interface

At the interface, we know information of our variables by approaching only from one side of

the interface (i.e., left side for the liquid phase and right side for the gas phase). Therefore,

using central differences to compute the gradient at the interface is not valid. To compute

it, an approach considering the gradient at the interface to be the same as the gradient

computed as (∂T/∂x)l = (Tl,int − T (IL))/∆x could be done. However, we are only using

one known value of the temperature field close to the interface and the computed gradient

could be wrong. To solve this issue, the temperature gradient is computed using more known

points based on a second-order Taylor series expansion at the interface (Eq. 3.34).

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +O(x3) (3.34)

From the Taylor series expansion, we can determine any value around the interface. The

point a becomes the location of the interface and f(a) the value of the variable of interest

at the interface (e.g., temperature). Implementing the expansion to two points (at IL and

IL − 1 or at IR and IR + 1) we can solve for the first derivative of the variable at the

interface (i.e., the gradient). Solving the system, we get

(
∂T

∂x

)
g

=
T (IR + 1)− Tint + Tint−T (IR)

(∆x1,g)2

(
∆x1,g + ∆x2,g

)2[
(∆x1,g + ∆x2,g)− 1

∆x1,g
(∆x1,g + ∆x2,g)2

] (3.35)

(
∂T

∂x

)
l

=
T (IL− 1)− Tint + Tint−T (IL)

(∆x1,l)2

(
−∆x1,l −∆x2,l

)2[
− (∆x1,l + ∆x2,l) + 1

∆x1,l
(−∆x1,l −∆x2,l)2

] (3.36)

The same approach can be done to compute the gradients of the mass fractions at the

interface, since they are needed to find the diffusion mass fluxes. The parameters from Eq.
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3.35 and Eq. 3.36 are defined in Figure 3.4.

Figure 3.4: Approach to compute gradients at the interface.

3.4 Boundary conditions and initial conditions

The solution of the governing equations will be determined by the boundary conditions and

the initial conditions we impose in our domain. As said in the previous lines, the numerical

domain is divided in two sections: the liquid phase and the gas phase.

Each domain will have its boundary conditions, imposed at the “infinite” location and

at the interface. To solve the energy equation and the species continuity equations, which

are second-order PDEs, we need two boundary conditions. We want the pure liquid and

the pure gas to come from a fixed temperature reservoir, different for each phase. Under

these conditions, temperature and mass fractions are imposed at the “infinite” locations. On

the other hand, the matching conditions at the interface will impose temperature and mass

fractions at the interface location. Thus, we are implementing Dirichlet boundary conditions

to both the energy equation and the species continuity equation.

To solve continuity, only one boundary condition is needed since it is a first-order PDE.

In this case, matching conditions will determine the velocity of each phase at the interface,

assuming the interface to be fixed (i.e., U = 0). Again, these velocities become a Dirichlet

65



boundary condition for the continuity equation.

Finally, we need to discuss the initial conditions implemented in the simulations. Since

we want to estimate the initial behavior of a liquid suddenly introduced into a gaseous

environment, the liquid phase is set to be composed only by the pure liquid species and at

the reservoir temperature while the gas phase is set to be composed by the pure gas species

at the respective reservoir temperature.

3.5 Grid independence study

The validity of the code is checked by doing a grid independence study for a test case.

Precisely, it has been chosen as a test case the problem composed by liquid n-decane (C10H22)

in contact with gaseous oxygen (O2). The pure liquid temperature at the left end of our

domain is set to 450 K and the pure gas temperature at the right end of the domain is set

to 550 K. Pressure is kept constant at Pr = 2 → P = 4.206 MPa, that is, twice the critical

pressure of pure n-decane (Pc = 2.103 MPa). Table 3.1 shows the 9 test cases, refining both

the mesh size, ∆x, and the time step size, ∆t.

Table 3.1: Test cases for the grid independence study (a).

∆t 400 nm 200 nm 100 nm

50 ns C1 C2 C3
5 ns C4 C5 C6

0.5 ns C7 C8 C9

Since our domain is set large enough to be considered “infinite” for our physical phenom-

ena around the interface, we expect the interface to reach steady-state values for the velocity,

the temperature, etc. Therefore, it seems reasonable to compare steady-state solutions for

these interface properties as reference values to check our grid independence. In this case,

the interface temperature, Tint, and the interface densities, ρl,int and ρg,int, have been selected
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for comparison purposes. Another feature to check is if the domain has actually been set

large enough so its size does not affect the obtained result. For the test cases, the length of

the domain is 400 µm, with the interface located at 100 µm (liquid on its left side and gas

on its right side).

The total simulation time is 100 µs, and the value of our fluid properties at that time is

chosen as the reference value to compare with. Furthermore, different profiles of the fluid

properties (i.e., temperature, density, etc.) are shown.

The analysis of the study cases shown in Table 3.1 proves the consistency of the code.

The following Table 3.2, Table 3.3 and Table 3.4 show results for the obtained interface

temperature, gas density and liquid density, respectively. These results are compared to

those obtained with case C9, established as the test case with more mesh refinement, both

in the spatial domain and the temporal domain. Cases C2, C3 and C6 showed no stable

solution, where the CFL conditions are not satisfied.

Table 3.2: Grid independence study: Interface temperature and absolute error compared
with C9.

Interface temperature (K)

∆t 400 nm 200 nm 100 nm

50 ns 456.65418 (225.069 %) - -
5 ns 458.89911 (0.576 %) 458.89732 (0.756 %) -

0.5 ns 458.90312 (0.176 %) 458.90493 (0.006 %) 458.90487 (0 %)

Table 3.3: Grid independence study: Interface gas density and absolute error compared with
C9.

Interface gas density (kg/m3)

∆t 400 nm 200 nm 100 nm

50 ns 40.86633 (10.367 %) - -
5 ns 40.96972 (0.028 %) 40.96963 (0.037 %) -

0.5 ns 40.96991 (0.009 %) 40.97000 (0 %) 40.97000 (0 %)

One of the main requirements when it comes to decide what mesh is going to be used is

the computational costs associated to it. That is, the time it takes the simulation to finish.
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Table 3.4: Grid independence study: Interface liquid density and absolute error compared
with C9.

Interface liquid density (kg/m3)

∆t 400 nm 200 nm 100 nm

50 ns 499.82259 (203.225 %) - -
5 ns 497.79557 (0.523 %) 497.79721 (0.687 %) -

0.5 ns 497.79194 (0.160 %) 497.79029 (0.005 %) 497.79034 (0 %)

Although a clock has not been set to measure exactly the simulation time, the test cases

C1 to C9 had a running time ranging from a few minutes to some hours, respectively. In

this sense, using the mesh size and the time step of the test case C5 seems reasonable. Its

computational cost can be assumed and the absolute deviation with respect to the more

refined mesh case is less than 1 % for the variables of interest.

However, only interface properties have been presented so far. There are other issues to

be taken into account, such the capacity of the mesh to represent accurately temperature

or density distribution around the interface for the early times or the independence of their

profiles along the x-axis. It is clear that case C5 seems to provide enough accuracy. Therefore,

it is going to be compared with more accurate cases (i.e., cases C8 and C9), to see if there is

any appreciable difference between them. The results are shown in Figure 3.5, from which

it can be inferred that the cheapest mesh arrangement, C5, is sufficient for our purposes. In

this figure, the properties are given at t = 10 µs and the interface is located at x = 100 µm

and is represented by a dashed line.

Therefore, the final mesh conditions for the simulations performed in this thesis can be

set to ∆x = 200 nm and ∆t = 5 ns. Using a finer mesh would rise considerably the

computational costs. The only disadvantage of using this spatial discretization is that for

early times (i.e., t ≤ 1µs) the resolution of the diffusion layer may becomes under-resolved

depending on the diffusivity of the species in the studied mixture, especially affecting the

liquid phase. For some low-pressure cases it may be necessary to redefine the mesh.
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Figure 3.5: Grid independence study: Variable profiles for test cases C5, C8 and C9.

Finally, it is only left to see if the dimensions of the numerical domain are large enough for

the interface to behave as if the domain was infinitely large. Taking the mesh discretizations

of case C5, it is studied the effects of changing the domain length on the reference variables
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at the interface. Table 3.5 summarizes the new test cases.

Table 3.5: Test cases for the grid independence study (b).

Domain length Cases

200 µm C5.a
400 µm C5.b
600 µm C5.c

The results obtained with these new test cases at t = 100 µs are shown in Table 3.6,

where it can be seen that the domain size is sufficiently large for the infinite conditions to

be valid in any of the cases. This holds true when we only want to simulate up to 100 µs of

physical time where diffusion processes occur in a narrowed area around the interface. Value

changes are observed to happen in the fifth or sixth decimal.

Table 3.6: Grid independence study: Domain length influence.

Cases Tint (K) ρg,int (kg/m3) ρl,int (kg/m3)

C5.a 458.89732 40.96963 497.79720
C5.b 458.89732 40.96963 497.79721
C5.c 458.89731 40.96963 497.79721

After this grid independence study, it is decided to use a domain length of 400 µm with

the interface located at x = 100 µm. The grid size is set to ∆x = 200 nm and the time step

to ∆t = 5 ns, as in the test case C5.

70



Chapter 4

Results

4.1 Phase equilibrium at high pressures

The first question to be addressed in this thesis is the existence of a liquid phase in ther-

modynamic states well above the critical pressure of the pure liquid being injected. At the

interface, the equilibrium conditions between the liquid and the gas phase shown in Section

2.4 (Eq. 2.62, Eq. 2.63 and Eq. 2.64) have to be satisfied.

Contrary to the wrong belief that the liquid fuel cannot exist anymore in that state

and transitions to a supercritical state, it is proved that phase equilibrium conditions allow

mixing to occur at the interface. When this happens, the mixture critical properties may

differ considerably from those of the pure liquid species, thus allowing the liquid phase to

be present. This fact is corroborated from other works, such in Jorda-Juanos and Sirignano

[55], where the RK-EoS (Eq. 2.12) is used instead of the SRK-EoS (Eq. 2.13) used in the

present work. In the Master’s Project done by Zembal [56], other equations of state are

tested with similar results. Figure 4.1 shows the phase equilibrium results for different pairs

of species: oxygen (O2) and nitrogen (N2) represent the pure gas species and are combined
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with heavy hydrocarbons injected in the liquid state, such as n-octane (C8H18), n-decane

(C10H22) and n-dodecane (C12H26).

Figure 4.1: Phase equilibrium results for different pairs of species.

The plots show different curves for different reduced pressures expressed in terms of the

liquid or fuel species critical pressure, pr = p/pc,fuel. For pr = 1, we are at the critical

point of the pure liquid and the critical temperature (i.e., where phase equilibrium cannot

be satisfied anymore) corresponds to the critical temperature of the pure liquid too. Values

for these critical properties are shown in Appendix A.

For pressures below pc,fuel, the liquid phase is almost entirely composed by the fuel species,

with mole fractions close to unity. That is, almost no diffusion occurs in the liquid phase

since solubility of gaseous species is negligible. However, as pressure increases above pc,fuel,

72



this mole fraction is reduced, meaning that gas species is dissolved into the liquid phase more

easily to satisfy the equilibrium conditions at the interface. When this happens, mixing of

species due to diffusion is enhanced, modifying the critical properties of the new formed

mixture. It is observed that for pressures well above pc,fuel two distinguished phases still

exist, thus the critical pressure of the mixture is much higher than the critical pressure of

the injected fuel.

4.2 The diffusion process: oxygen/n-decane mixture

This section presents results of the diffusive process around the liquid-gas interface for liquid

n-decane injected into a gaseous environment composed by oxygen. Results for the pressure

effects on our fluid and for the temporal evolution at some specific pressures are shown.

Recall that in all cases the interface is located at x = 100 µm and is represented by a dashed

line. Moreover, it is helpful to clarify again that the liquid phase is sitting on the left side

of the interface while the gas yields on the right side. Similar results are shown for liquid

n-octane injected into gaseous nitrogen in Appendix F.

4.2.1 Pressure effects

The interface problem for a fluid composed by n-decane and oxygen has been studied for 4

different pressures: one subcritical case at 10 bar and three supercritical cases at 50, 100

and 150 bar, respectively. The critical pressure for n-decane, which defines the subcritical

and the supercritical range, is 21.03 bar. As we have seen in Section 4.1, two phases coexist

and form the interface we study here, even at supercritical pressures.

The immediate effects on our variables of increasing pressure are shown in Figure 4.2 and

Figure 4.3. Plots for the mass fraction of oxygen, density and velocity are shown for both
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the liquid and the gas phase. The temperature profile is also given.

From Figure 4.2, it can be identified one of the main changes that occur at supercritical

pressures. For the subcritical case (10 bar), almost no gas species has been dissolved into the

liquid phase, thus remaining close to the pure liquid that has been injected. For even lower

pressures (e.g., 1 bar), this effect would be stronger. This fact reflects the change in behavior

of the phase equilibrium results shown in Figure 4.1. Then, as pressure is increased, more

gas species is dissolved into the liquid at the interface, allowing diffusion to become more

important in the liquid phase.

Another immediate effect of increasing pressure is the increase in density on both phases.

That is, the fluid is being compressed as pressure becomes higher. The density profiles for

each pressure also show variations due to species diffusion occurring within each phase. The

increase in density also relates to a decrease in species diffusion (i.e., high densities oppose

the diffusion process). This effect is clearly seen in the penetration of n-decane into the

gas phase, where the mass diffusion layer is reduced as pressure increases. The change in

composition of the interface as pressure increases may also affect it. However, the liquid

phase shows an opposite behavior. As pressure increases, diffusivity may be reduced but

more gas species is being dissolved. In this case, we can observe that the diffusion layer on

the liquid side can increase, slightly, as pressure increases.

In Figure 4.3, the velocity profiles and the temperature profiles are shown. Far-field

velocity is seen to decrease in the gas phase and increase in the liquid phase as pressure

increases. That is, enhanced mixing in the liquid phase produces higher density variations

which induce higher velocity variations. Furthermore, for a fixed interface, the liquid goes

from flowing into the interface to flowing out of it as pressure is increased (the opposite

happens for the gas). This is, the change in thermodynamic behavior of our fluid may cause

that a clear vaporization problem at low pressures changes to a condensation problem at

higher pressures. This result is further analyzed in Section 4.2.4. Finally, the thermal layer

74



Figure 4.2: Oxygen mass fraction and fluid density on each side of the interface for the
oxygen/n-decane mixture.

shows a similar behavior as the diffusion layer, where the increase of pressure translates to

a decrease in the layer thickness in the gas phase.

It is also interesting to show how much our fluid deviates from the ideal behavior as

pressure is increased. Figure 4.4 shows plots of the normalized enthalpy departure function

and entropy departure function with the ideal gas enthalpy, H∗, and the ideal gas entropy,

S∗, respectively, computed with the composition of each point in our domain ((H∗−H)/H∗

and (S∗ − S)/S∗). Also, showing how the compressibility factor, Z, changes is interesting,

keeping in mind that for an ideal case, Z = 1 for a gas and Z → 0 for a liquid.

On the liquid side it is seen that both enthalpy and entropy deviate from the ideal gas
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Figure 4.3: Fluid velocity and temperature distribution for the oxygen/n-decane mixture.

values considerably. First of all, this is logical since we are dealing with a liquid phase and

not a gas phase. But what becomes interesting is the fact that the deviations become smaller

as pressure is increased. This can be explained because the liquid and the gas phase will

become very similar close to the critical point of the mixture and the deviations with respect

to the ideal gas will tend to be similar. On the gas side, these deviations become larger as

pressure increases.

The compressibility factor presents the expected behavior. The gas side becomes more

compressed than an ideal gas, thus having Z > 1. For the 10 bar case, Z looks very close to

1 as we would expect, since deviations form ideal behavior are small at that pressure. On

the liquid side, Z is close to 0. As pressure increases, the compressibility factor of the liquid
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increases drastically to values above 1 in the 150 bar case. For the gas phase, as the fluid is

highly compressed, the molar volume is reduced. This fact makes the product Pv to become

nearly the same in any fluid state, without taking into account v variations due to diffusion.

This is why deviations from Z = 1 are small. However, compressibility effects are not that

strong in the liquid phase and molar volume variations are small and mainly only related to

mass diffusion. Therefore, as pressure increases, the product Pv also increases and Z may

have values equivalent to those typical of gases.

Finally, some results for the variation of interface properties with pressure are presented.

First, Figure 4.5 shows what was said in the grid independence study (Section 3.5), which is

that for the treatment of our problem with fixed interface and infinite domain considerations,

it is expected that the values for temperature, velocity, density, etc. at the interface will

tend to a value.

Then, Figure 4.6 shows how temperature, gas density, liquid density and interface velocity

change with pressure. The properties are evaluated at t = 100 µs. The interface velocity

is computed as if the liquid was sitting on a wall (i.e., u = 0 at x = 0). Phase equilibrium

imposes higher temperatures at the interface as pressure is increased. Also, since pressure

increases, the gas density is also increased, but enhanced solubility of light gas species in

the liquid phase makes the liquid density decrease with pressure. Lastly, it is observed

that the behavior of the interface changes drastically with pressure. For low pressures, the

liquid phase is contracting, but as pressure is increased, it reverses its behavior and starts

expanding as lighter species are being dissolved more easily.
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Figure 4.4: Deviations from the ideal case for the oxygen/n-decane mixutre.

Figure 4.5: Temperature and liquid velocity at the interface for the oxygen/n-decane mixture.
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Figure 4.6: Variation of interface properties with pressure for the oxygen/n-decane mixture.

4.2.2 Temporal evolution

This section aims to analyze how fast the diffusion process occurs at high pressures, in order

to infer if the changes in the fluid properties due to mass diffusion will be able to affect

the breakup mechanisms of liquid injection. For this, the cases at 50 bar and 150 bar are

studied.

The temporal evolution of the fluid properties at p = 50 bar is shown in Figure 4.7 and

the p = 150 bar case is shown in Figure 4.8. From these results it is observed that both the

thermal layer and the density profile present a similar temporal evolution in their thickness.

However, as seen in Figure 4.2, the species diffusion layer is thinner.
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Figure 4.7: Temporal evolution of the temperature distribution and the fluid density for the
oxygen/n-decane mixture at p = 50 bar.

The disruption process of a liquid jet usually begins in the temporal range of 20-100

µs [2],[12]. In this time, the fluid properties are seen to change considerably up to 10 µm

penetration in the liquid phase and 30 µm in the gas phase. Thus, it is expected that

this layer where the fluid properties vary from the pure liquid properties to the pure gas

properties will influence the breakup mechanisms, their evolution in time and how they

disrupt the liquid structure.
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Figure 4.8: Temporal evolution of the temperature distribution and the fluid density for the
oxygen/n-decane mixture at p = 150 bar.

4.2.3 Analysis of the equation terms

Up to this point, only the overall results have been discussed. However, it is useful to

gain some insight on the physical phenomena by analyzing the influence of each term in

our equations. To better understand the diffusion process, both mass diffusion and thermal

diffusion, Figure 4.9 presents the profiles of the total derivatives and the local derivatives of

mass fraction and enthalpy at t = 100 µs. Remember that,

DYi
Dt

= −1

ρ

∂

∂x
(Ji) (4.1)
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Figure 4.9: Total and local derivatives of the species continuity equation and the energy
equation for the oxygen/n-decane mixture.
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The species continuity plot shows the equation terms on the left side of the interface

related to the n-decane continuity equation and, on the right side of the interface, it shows

the terms related to the oxygen continuity equation. It is observed that a sink in mass

concentration is generated due to the gradient of diffusion mass fluxes (i.e., gradient in

species concentration). This sink travels out of the interface and its magnitude decreases

with time. For the case at p = 150 bar, sinks are present in both fluid phases, since phase

equilibrium conditions dissolve oxygen into the liquid phase. However, at p = 50 bar, the

sink in n-decane mass fraction is very small because little oxygen has been dissolved into

the liquid. The convective terms affect more the low-pressure case, as it would be expected

since Figure 4.3 showed that fluid velocities were higher at lower pressures.

When looking at the energy equation, the high-pressure case presents again a sink in

energy in the gas phase and a source in energy in the liquid phase, almost not dependent on

the convective terms. On the other hand, the low-pressure situation shows a small source of

energy in the liquid phase and a traveling source and sink in the gas phase, looking like the

sink has been generated first. To look into more detail to try to understand this change in

behavior, Figure 4.10 presents the profiles of each term of the energy equation at t = 100 µs

for the cases at p = 10 bar and p = 150 bar.

Figure 4.10: Analysis of the terms of the energy equation for the oxygen/n-decane mixture.
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For the high-pressure situation, the dominant term driving the energy equation is the heat

flux associated to heat conduction. This term overcomes all other terms, clearly defining

the energy source and sink observed in Figure 4.9. However, for the case at p = 10 bar,

the situation becomes more complex in the gas phase. Again in the liquid phase, the heat

conductivity becomes dominant over all other terms, generating an energy source. But in

the gas phase, this term does not present a clear dominance. When first the liquid and the

gas enter in contact, heat conductivity generates a sink in energy traveling to the right of the

interface. However, as n-decane is evaporated and mixed with oxygen, this “generation” of

n-decane mass fraction or dissolution brings an associated higher enthalpy or energy to the

mixture compared to that of the pure oxygen, thus creating a source in energy to our fluid.

This source is capable to overcome the sink introduced due to conductivity. In conclusion,

thermal conductivity is larger as pressure increases. This is why the wavy shape for p = 10

bar is observed in Figure 4.9.

4.2.4 Phase change analysis

An interesting result obtained from the simulations of the oxygen/n-decane mixture is seen

in Figure 4.3. As pressure is increased, interface dynamics change from a vaporization to a

condensation phenomenon. That is, the velocity behavior is reversed: from liquid flowing

into the interface and gas flowing outwards to gas flowing into the interface and liquid exiting

it. For the nitrogen/n-octane mixture shown in Appendix F, this behavior is not observed

though. However, it is plausible that higher pressures will cause condensation to occur (see

Figure F.2).

The effect of this condensation is also observed in Figure 4.6, where the velocity of the

interface computed as if the liquid was sitting on a wall is shown. A transition from a

reduction to an increase of the liquid phase volume is observed as pressure is increased. For
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low pressures, vaporization reduces the volume of liquid. However, as pressure increases the

dissolution of lighter species increases the volume of the liquid phase while it still vaporizes.

Later, the volume keeps increasing as the condensation phenomenon occurs.

In this scenario, condensation through the increase of pressure is achieved even though we

are dealing with a supercritical pressure environment. Mixing of species due to the diffusion

process allow this phenomenon to occur. Furthermore, this condensation is achieved while

heat is still being conducted from the hotter gas to the colder liquid. For the low pressure

cases (10-50 bar), the energy flux summed from heat conduction and energy transport by

mass diffusion decreases from the gas to the liquid phase across the interface, thus causing

vaporization. However, for higher pressures (100-150 bar), this energy flux increases across

the interface and condensation occurs. Although gas enthalpy is always higher than liquid

enthalpy at the interface, the internal energy of the liquid phase exceeds the internal energy

of the gas phase for high-pressure situations. For the nearly-ideal 10-bar case, gas-mixture

internal energy is higher than the liquid-solution internal energy.

At this point, it becomes important to check that basic thermodynamic laws are obeyed

to determine if the physical phenomena observed in the simulations can take place. For this,

the First Law and the Second Law of thermodynamics are analyzed tracking a fixed mass

element containing all diffusion layers. In this system, the enclosed mass remains constant

and heat transferred across its boundaries is zero, as well as species diffusion. Then, the

integrated First Law becomes

∆U = W =

∫ f

i

p(ul,−∞ − ug,+∞)dt (4.5)

where the work done on the mass element is computed as the time-integral of pressure, p,

times the velocity of each respective boundary, ul,−∞ for the liquid phase and ug,+∞ for the

gas phase.
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Assuming quasi-static processes, the mass-based First Law can be written as follows,

together with the definition of enthalpy h = u+ pv = u+ p/ρ,

du = Tds− pdv = dh− pdv − vdp (4.6)

where the specific internal energy, u, should not be confused with the velocity of the fluid,

which also appears in the work, W , term.

For a constant-pressure process, the previous equation provides a relation for entropy

variation of the system,

dh = Tds (4.7)

Integrating Eq. 4.7, it is obtained that the integrated product of temperature and entropy

of the mass element must balance with time, since ∆H = Q|p = 0 for a constant-pressure

process containing all diffusion layers.

∆H =

∫
Tds = 0 (4.8)

Enthalpy and entropy are computed according to Sections 2.3.2 and 2.3.5 and internal

energy is computed using the definition of enthalpy shown in the previous lines as u =

h−p/ρ. Figure 4.11 provides an analysis of the First Law for the different studied pressures.

Integrated results for the mass element are provided per unit area because of the 1-D behavior

of the domain. The computed work on the mass element equals the increase of internal energy

of the enclosed mass, but small numerical errors may show a slight variation between the

computed ∆U and W .
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Figure 4.11: First Law results for the oxygen/n-decane mixture at different pressures.

To analyze these numerical errors, a mesh refinement study using the configurations of

Table 3.1 shows some expected effects (see Figure 4.12). The first conclusion is that Eq. 4.8

is better satisfied as the mesh is refined, both in ∆x and ∆t, where the absolute variation

of enthalpy tends to zero as it is expected. Then, because of the difficulty of evaluating the

integral of Tds in Eq. 4.8, a local evaluation of the error in Eq. 4.7 is computed at each time

step at each node and then integrated over the mass element. On one hand, the integrated

error decreases with time as the gradients to which the flow field is subjected decrease in

magnitude. On the other hand, only refining the mesh in the temporal scale has a significant

impact in the reduction of these errors.

Therefore, it is possible to conclude that basic thermodynamic laws are being satisfied in
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Figure 4.12: Mesh refinement effects on thermodynamic laws for the oxygen/n-decane mix-
ture.

our simulations. It is important to notice that variations in the thermodynamic properties

are independent of the selected mass element, as long as it includes all diffusion layers.

To understand better how the First Law and the Second Law are obeyed, the following

Figure 4.13 and Figure 4.14 show the temporal evolution of the specific enthalpy and the

specific entropy on each side of the interface. In Figure 4.13, the evolution of the specific

enthalpy agrees with the results from Eq. 4.8. For 50-150 bar, enthalpy rises in the liquid

phase and decreases in the gas phase. Thus, the expected balance to give ∆H = 0 can occur.

For the 10-bar case, since enthalpy does not change considerably in the liquid phase, the gas

phase presents an enthalpy distribution with a minimum which again allows for Eq. 4.8 to
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be satisfied. This distribution is a consequence of the effects of the different terms in the

energy equation (see Section 4.2.3), where the diffusion of n-decane into the gas phase acts

as a source of energy overcoming the initial sink caused by heat conduction.

Figure 4.13: Temporal evolution of enthalpy for the oxygen/n-decane mixture at different
pressures.

Figure 4.14 shows that specific entropy is increased in the liquid phase and is decreased

in the gas phase. However, as the 10-bar case suggests, the integrated variation of entropy

in the element of mass is negative: entropy decreases. This is corroborated in Figure 4.15,

showing the variation of the integrated entropy for different pressures. This overall decrease

in entropy, once integrated accounting for the temperature evolution, must satisfy Eq. 4.8.
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Figure 4.14: Temporal evolution of entropy for the oxygen/n-decane mixture at different
pressures.

Figure 4.15: Temporal evolution of integrated entropy for the oxygen/n-decane mixture at
different pressures.
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4.3 Instability analysis: Kelvin-Helmholtz

One of the most common instabilities that generate liquid disruption is the Kelvin-Helmholtz

(KH) instability and it is related to the interface behavior between two fluids flowing parallel

to each other. Perturbations in the flow will affect the interface and, depending on the wave-

length associated to this perturbations, the interface will grow and start curving, yielding to

a break up of the liquid stream. An schematic of the problem is seen in Figure 4.16.

The KH instability is usually studied linearizing the equations that govern the interface

and fluid behavior. For uniform properties (that is, uniform velocity, density, etc. on each

fluid), a discontinuity in velocity appears at the interface, where a vortex sheet is present.

The perturbation at the interface can be represented by assuming that its vertical oscillation

follows [68],[71],

η(x, t) = η̂ecteikx (4.9)

where k = 2π/λ is the wave number. Perturbations in the fluid would follow a similar

expression.

Figure 4.16: Sketch of the Kelvin-Helmholtz instability (source [7]).
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From Eq. 4.9, what becomes determinant to identify if the perturbation is stable or

unstable is the sign of the real part of the growth rate c. For cR < 0, the perturbation

becomes stable; for cR = 0, it is neutral stability; and for cR > 0 it becomes unstable and

the perturbation will grow in time. Analyzing the linearized equations and the problem, an

expression for c is found to be [71],

c =− ik(ρgug + ρlul)

ρg + ρl
− k2µg + µl

ρg + ρl
±
[
ρgρlk

2(ug − ul)2

(ρg + ρl)2
− (ρl − ρg)gk

ρg + ρl

− σk3

ρg + ρl
+
k4(µg + µl)

2

(ρg + ρl)2
+ 2ik3 (ρgµl − ρlµg)(ug − ul)

(ρg + ρl)2

]1/2 (4.10)

From this expression, it is inferred that viscosity and surface tension will induce stability

to the perturbations. In this model, viscous potential flow has been considered. Thus, no

vorticity or shear stress exists. Only normal viscous stress is considered. The gravity term

will become stable or unstable depending on what fluid is on top. For the dense fluid on

top, the term would become unstable. Velocity difference across the interface will always

induce instabilities. Here, it is important to remark that the surface-tension term induces

stability since we are analyzing a plane interface. For a round liquid jet, surface tension

induces instabilities too.

The oxygen/n-decane mixture has been chosen to study this instability and get an esti-

mate of its behavior at p = 10 bar and p = 150 bar. The properties at the interface are

computed from the densities and compositions at t = 50 µs using the models explained in

Chapter 2. Then, different injection velocities for the liquid are considered (10 and 100 m/s),

the gas being at rest (see Table 4.1 for definition of the analyzed cases). Table 4.2 shows the

obtained results for the different fluid properties at the interface. It can be observed that

as pressure increases, density and viscosity become more similar in both phases and surface

tension is reduced.
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Table 4.1: Analyzed cases for the Kelvin-Helmholtz instability.

Case Pressure (bar) Injection velocity (m/s)

A 10 10
B 10 100
C 150 10
D 150 100

Table 4.2: Fluid properties at the interface.

Oxygen / n-Decane

Pressure (bar) 10 150
Temperature (K) 451.99 468.53

Xg,oxy 0.8705 0.9650
Xg,dec 0.1295 0.0350
Xl,oxy 0.0259 0.3635
Xl,dec 0.9741 0.6365

Gas density (kg/m3) 12.431 133.583
Liquid density (kg/m3) 503.991 487.599
Surface tension (mN/m) 5.031 1.931
Gas viscosity (kg/(m·s)) 1.948×10−5 2.771×10−5

Liquid viscosity (kg/(m·s)) 1.001×10−4 5.619×10−5

The results for the analyzed cases are shown in Figure 4.17, Figure 4.18, Figure 4.19

and Figure 4.20. Then, Table 4.3 presents values for the most unstable wavelength, λ, the

corresponding growth rate, cR, the characteristic time, τ , for the perturbation to grow by

a factor of e, the angular frequency, Ω, and the frequency, f , of the perturbations for each

studied case considering viscosity and surface tension.
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Figure 4.17: Kelvin-Helmholtz instability for oxygen/n-decane mixture at p = 10 bar and
injection velocity 10 m/s (Case A).

Figure 4.18: Kelvin-Helmholtz instability for oxygen/n-decane mixture at p = 10 bar and
injection velocity 100 m/s (Case B).
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Figure 4.19: Kelvin-Helmholtz instability for oxygen/n-decane mixture at p = 150 bar and
injection velocity 10 m/s (Case C).

Figure 4.20: Kelvin-Helmholtz instability for oxygen/n-decane mixture at p = 150 bar and
injection velocity 100 m/s (Case D).
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Table 4.3: Results of Kelvin-Helmholtz instability for the oxygen/n-decane mixture.

Case λ (µm) cR (1/s) τ (µs) Ω (rad/s) f (1/s)

A 40 1.368×105 7.310 1.524×106 2.423×105

B 0.39 1.128×108 8.865×10−3 1.492×109 2.375×108

C 1.95 7.175×106 0.139 2.469×107 3.930×106

D 0.032 3.196×109 3.129×10−4 1.420×1010 2.260×109

As seen in the figures, the low-pressure case presents higher wavelengths for the unstable

waves than the high-pressure case. This is mainly caused by the reduction in surface tension

in our liquid-gas interface. Moreover, increasing the injection velocity shows that viscous

damping of the perturbations becomes stronger, displacing the most unstable waves to higher

wavelengths.

When analyzing numerical results for the growth rate including viscosity and surface

tension (see Table 4.3), it is observed that as pressure and injection velocity are increased,

the interface perturbations will grow faster. At the characteristic times of our diffusion

process (see Section 4.2), the perturbations would have affected considerably the interface

shape, maybe even causing liquid breakup.

These results are not surprising. At typical injection velocities, closer to the 100 m/s

case, and high pressures, the liquid will be more affected by the hydrodynamic instabilities,

thus causing a faster breakup cascade induced by perturbation wavelengths much smaller

than those of low-pressure and/or low injection velocity situations. This result seems to be

in accordance with the experimental observations [3] and numerical simulations [2],[4],[12].

However, the wavelengths and the characteristic times that are being discussed in this

section may be too small. In reality, and as it is found in simulations, the most unstable

waves will tend to have wavelengths between 1-100 µm and the characteristic times that will

take the instabilities to grow sufficiently are closer to 20-100 µs [4]. This fact is caused by

the assumptions done in the theory being applied in this work.

96



Recall that fluid properties where assumed to be constant and that a velocity discontinuity

at the interface was considered. In reality, a viscous layer will be formed between the two

fluids, which will tend to damp the perturbation growth rate and will move the most unstable

waves to higher wavelengths. Furthermore, under the considerations of this thesis, a mass

diffusion layer will also be present, modifying the whole phenomena. Possibly, characteristic

times for the instabilities to grow sufficiently in high-pressure situations will become closer

to the characteristic diffusion times observed here. At this stage, presenting reliable results

about this issue becomes extremely difficult. Therefore, more realistic simulations are going

to be needed.
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Chapter 5

Conclusions

5.1 Discussion

This thesis has developed a methodology to compute supercritical pressure fluid behavior

by analyzing the existing literature and identifying the main issues to be considered. Den-

sity, enthalpy and entropy are computed using a real-gas equation of state in conjunction

with ideal gas properties and valid thermodynamic relations. Transport properties, such as

viscosity, thermal conductivity and mass diffusion coefficients, have been computed using

up-to-date high-density valid correlations and models.

The liquid-gas interface has been treated with matching conditions which include phase

equilibrium relations. It has been proven that at pressures higher than the critical pressure

of the pure liquid species, two phases exist if the resulting critical pressure of the mixture is

higher than the chamber pressure. Therefore, liquid breakup mechanisms are still present in

supercritical liquid injection and must be studied to optimize and improve the performance

of related engineering applications.
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It has been observed that the new phase-equilibrium conditions enhance mixing of species.

That is, the gas species are more easily dissolved into the liquid phase. Therefore, character-

istic times of this diffusive process have been obtained to estimate where the fluid properties,

such as density, vary considerably. It has been seen that, for typical instability development

times (20-100 µs), the mass diffusion layer and the thermal diffusion layer present thicknesses

of the order of 10 µm in the liquid phase and 30 µm in the gas phase at high pressures. For

lower pressures, the liquid solution is almost not affected by diffusion processes, while the

gas phase presents a larger diffusion layer thickness.

The Kelvin-Helmholtz instability has been analyzed including surface tension and viscos-

ity, but under the assumptions of constant velocity and density profiles and no shear stress.

The results confirm that under high-pressure conditions, where liquid and gas properties be-

come more alike, liquid disruption occurs earlier and affects easily smaller scales. Thus, the

liquid breakup will be dominated by aerodynamic forces and will resemble the injection of a

gas. However, two main issues arise here: calculations did not include the effects of the for-

mation of a viscous layer between the liquid and the gas and the effects that a diffusion layer

around the interface may have on the disruption cascade. Only for high-pressure situations,

the liquid phase shows a sufficiently large well-established diffusion layer such that its effects

should be studied. On the other hand, the gas phase presents this well-formed diffusion layer

in all the studied cases. Therefore, to obtain more reliable results, it is needed to solve the

Navier-Stokes equations including all the real-fluid behavior defined in this thesis.

Finally, it has been shown that as pressure increases, a clear vaporization problem can

turn into a condensation problem. That is, pressure can act as a liquefying agent, even

at supercritial pressures, due to heat and mass transfer associated to species diffusion. To

ratify it, the First and Second Law of thermodynamics have been analyzed to prove that

no basic physical law is being violated. Studying a fixed-mass element, which includes all

diffusion layers, it has been proven that the increase in internal energy is related to the
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work done on the boundaries of this mass element. Furthermore, the global variation of

enthalpy is zero while entropy decreases, with the relation between these two properties

being satisfied. In overall, the effects of this transition from vaporization to condensation

translate to a transition of the interface relative movement. That is, the liquid phase will

change its behavior and instead of contracting, as it does for low-pressure situations, it will

expand.

5.2 Further research

The following points summarize improvements that should be implemented in the method-

ology and some guidelines for further research in this topic:

• Improve the performance of the SRK-EoS: Correct the density mismatch in the liquid

phase and find more information about the binary interaction coefficients. Then, the

performance of some transport properties models and phase equilibrium results can be

improved.

• Keep track of the available mass diffusion models and see how they can be fitted better

with the equation of state and other models used in this methodology.

• Implement multi-component mass diffusion. That is, generate a methodology able to

work with mixtures composed by more than two species.

• Implement this methodology to a Navier-Stokes solver to be able to obtain reliable

results in actual fluid configurations (e.g., round jet).

• With 2-D and 3-D simulations, analyze the disruption cascade of the liquid jet at

supercritical pressures. This is, study the effects of mixing and high-density phenomena

in the liquid breakup.
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Appendix A

Physical Properties

Table A.1: Physical properties of different species obtained from REFPROP, NIST.

Species MW (kg/mol) Tc (K) Pc (MPa) ρc (kg/m3) ω
Oxygen 0.031999 154.58 5.043 436.14 0.0222
Nitrogen 0.028013 126.19 3.3958 313.3 0.0372

Carbon dioxide 0.04401 304.13 7.3773 467.6 0.22394
Methane 0.016043 190.56 4.5992 162.66 0.01142
Propane 0.044096 369.89 4.2512 220.48 0.1521
n-Octane 0.11423 569.32 2.497 234.9 0.395
n-Decane 0.14228 617.7 2.103 233.34 0.4884

n-Dodecane 0.17033 658.10 1.817 226.55 0.574
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Appendix B

SRK-EoS Derivatives

This appendix includes the needed partial derivatives of different terms associated to the

Soave-Redlich-Kwong equation of state,

p =
RuT

v − b
− a(T )

v(v + b)
(B.1)

or in the cubic form in terms of the compressibility factor, Z,

Z3 − Z2 + (A−B −B2)Z − AB = 0 (B.2)

When using this EoS to compute different fluid properties (e.g., enthalpy), the following

derivatives appear and must be computed in terms of the parameters of the SRK-EoS.
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Appendix C

Development of the Energy Equation

This appendix shows the development of the energy equation used in this work (Eq. 2.8 and

Eq. 2.9) starting from a more general version of the 1-D enthalpy conservation equation,

Eq. C.1. The only reasonable assumption taken in this equation is expressing the heat flux

using Fourier’s law.

∂

∂t
(ρh) +

∂

∂x
(ρuh) =

∂

∂x

(
λ
∂T

∂x

)
−
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∂x
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Dt
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∂u

∂x
(C.1)

Expanding out the RHS of Eq. C.1 and applying continuity equation (Eq. 2.1), we get

∂
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The term
∑N

i=1
∂
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(Jihi) can also be expanded as
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and applying species continuity (Eq. 2.4), it becomes
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Substituting Eq. C.2 and Eq. C.4 into Eq. C.1, we get
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Assuming the hypothesis of this work, viscous dissipation and pressure variations are

neglected. Then, we recover the energy equations Eq. 2.8 and Eq. 2.9.

ρ
∂h

∂t
+ ρu

∂h

∂x
=

∂

∂x

(
λ
∂T

∂x

)
−

N∑
i=1

Ji
∂hi
∂x

+
N∑
i=1

hi

[
ρ
∂Yi
∂t

+ ρu
∂Yi
∂x

]
(C.6)

ρ
∂h

∂t
+ ρu

∂h

∂x
− ρ

N∑
i=1

hi
∂Yi
∂t
− ρu

N∑
i=1

hi
∂Yi
∂x
− ∂

∂x

(
λ
∂T

∂x

)
+

N∑
i=1

Ji
∂hi
∂x

= 0 (C.7)

The energy equation could also be developed in terms of temperature, but in this work

solving for the conservation equation of enthalpy has been chosen to be the best option,

finding the temperature afterwards by applying a root-finding algorithm to the enthalpy

equation Eq. 2.33.
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Appendix D

Fluid Properties Models

Ideal gas enthalpy

The model used to compute the ideal gas enthalpy is that of Passut and Danner [53]. This

work presents a reliable correlation to compute the ideal gas enthalpy, heat capacity at

constant pressure and entropy for a wide range of temperatures.

The ideal gas enthalpy is correlated as

h∗ = A+BT + CT 2 +DT 3 + ET 4 + FT 5 (D.1)

where A, B, C, D, E and F are the coefficients that fit the correlation to experimental data,

providing the enthalpy in btu/lb and using temperature in oR.

Their correlation can also be used to compute the ideal gas heat capacity at constant

pressure, C∗p , and the ideal gas entropy, s∗, as

C∗p = B + 2CT + 3DT 2 + 4ET 4 + 5FT 4 (D.2)
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s∗ = B lnT + 2CT +
3

2
DT 2 +

4

3
ET 3 +

5

4
FT 4 +G (D.3)

where Cp is given in btu/(lb·oR) and s∗ is also given in btu/(lb·oR).

To convert from temperature in Kelvin degrees (K) to temperature in Rankine degrees

(oR), the following conversion is used,

T [oR] =
9

5
· T [K] (D.4)

To convert from enthalpy in btu/lb to J/kg, the following conversion is used,

h∗[J/kg] = 2326.0 · h∗[btu/lb] (D.5)

Similar conversions can be established for C∗p and s∗.

The data bases are 0 btu/lb at 0 oR for the enthalpy and 0 btu/(lb·oR) at 0 oR at 1 atm

pressure for the entropy. Recall that entropy must satisfy s∗ = 0 at T = 0.

The following Table D.1 and Table D.2 provide some values for the constants to be used

in this correlation for different species used in this work.

114



Table D.1: Correlation constants for Passut and Danner ideal gas model (a) (source [53]).

Species A B C (103)
Oxygen -0.98176 0.227486 -0.037305
Nitrogen -0.68925 0.253664 -0.014549

Carbon dioxide 4.77805 0.114433 0.101132
Methane -5.58114 0.564834 -0.282973
Propane -1.22301 0.179733 0.066458
n-Octane 29.50114 -0.022402 0.459712
n-Decane 28.48990 -0.023837 0.461164

n-Dodecane 26.21126 -0.018522 0.453893

Table D.2: Correlation constants for Passut and Danner ideal gas model (b) (source [53]).

Species D (106) E (1010) F (1014) G
Oxygen 0.048302 -0.185243 0.247488 0.124314
Nitrogen 0.012544 -0.017106 -0.008239 0.050052

Carbon dioxide -0.026494 0.034706 -0.013140 0.343357
Methane 0.417399 -1.525576 1.958857 -0.623373
Propane 0.250998 -1.247461 1.893509 0.178189
n-Octane -0.098062 0.104754 -0.031355 0.664632
n-Decane -0.099786 0.108353 -0.033074 0.611062

n-Dodecane -0.096464 0.101393 -0.029665 0.542807

Viscosity and thermal conductivity

The correlations from Chung et al. [61] have been used to obtain the values of viscosity and

thermal conductivity of our mixture.

The model first computes the dilute gas viscosity, η0, and the thermal conductivity, λ0,

using the Chapman-Enskog theory.

The dilute gas viscosity becomes

η0 = (4.0785× 10−5)
(MT )0.5

V
2/3
c Ω∗

Fc (D.6)

where η0 is given in P (Poise), M is the molecular weight in g/mol, T is the temperature
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in K and Vc is the critical volume in cm3/mol. The parameter Ω∗ is the reduced collision

integral, computed as

Ω∗ =
A

T̂B
+

C

exp(DT̂ )
+

E

exp(FT̂ )
+GT̂B sin(ST̂W −H) (D.7)

In Eq. D.7, the dimensionless temperature, T̂ , is related to the potential energy parame-

ter, ε, and the Boltzmann’s constant, k, by the equation

T̂ =
T

ε/k
(D.8)

where ε/k is found to be

ε/k = Tc/1.2593 (D.9)

being Tc the critical temperature in K.

The constants from Eq. D.7 are A = 1.16145, B = 0.14874, C = 0.52487, D = 0.77320,

E = 2.16178, F = 2.43787, G = −6.435 × 10−4, H = 7.27371, S = 18.0323 and W =

−0.76830.

The factor Fc is found to be

Fc = 1− 0.2756ω + 0.059035µ4
r + κ (D.10)

where ω is the acentric factor, κ is a correction factor related to the hydrogen-bonding effect

and µr is a dimensionless dipole moment. The last two parameters appear when dealing
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with polar fluids.

The dimensionless dipole moment, if needed, can be computed as

µr = 131.3µ/(VcTc)
1/2 (D.11)

where µ is the dipole moment of the fluid.

Finally, the dilute gas thermal conductivity can be found from the dilute gas viscosity as

seen in Eq. D.12, where λ0 is given in cal/(cm·s·K).

λ0 = 7.452(η0/M)Ψ (D.12)

Ψ = 1 + α

(
0.215 + 0.28288α− 1.061β + 0.26665Z

0.6366 + βZ + 1.061αβ

)
(D.13)

In Eq. D.13, α = Cv/R − 3/2, being Cv the ideal gas heat capacity at constant volume

in cal/(mol·K) and R the universal gas constant R = 1.987 cal/(mol·K). Moreover, β =

0.7862− 0.7109ω + 1.3168ω2 and Z = 2.0 + 10.5T 2
r , with Tr being the reduced temperature

Tr = T/Tc.

The heat capacity at constant volume, Cv, can be computed from Passut and Danner

correlations too [53], knowing that R = Cp − Cv.

After dilute gas properties have been obtained, the next step is to obtain the viscosity

for dense fluids (in P again) by applying

η = ηκ + ηp (D.14)
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where the following identities apply,

ηκ = η0

(
1

G2

+ A6Y

)
(D.15)

ηp =

(
36.344× 10−6 (MTc)

0.5

V
2/3
c

)
exp

(
A8 +

A9

T̂
+
A10

T̂ 2

)
(D.16)

being Y = ρVc/6 and G1 = (1.0− 0.5Y )/(1− Y )3. Moreover,

G2 =
A1[1− exp(−A4Y )]/Y + A2G1 exp(A5Y ) + A3G1

A1A4 + A2 + A3

(D.17)

The coefficients Ai are given by Ai = a0(i) + a1(i)ω + a2(i)µ4
r + a3(i)κ. The values for

a0(i), a1(i), a2(i) and a3(i) are found in Table D.3.

Similarly, the thermal conductivity for a dense fluid (in cal/(cm·s·K)) is obtained as,

λ = λκ + λp (D.18)

where the following identities apply,

λκ = λ0

(
1

H2

+B6Y

)
(D.19)

λp =

(
3.039× 10−4 (Tc/M)0.5

V
2/3
c

)
B7Y

2H2T
0.5
r (D.20)
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H2 =
B1[1− exp(−B4Y )]/Y +B2G1 exp(B5Y ) +B3G1

B1B4 +B2 +B3

(D.21)

The coefficients Bi are given by Bi = b0(i)+b1(i)ω+b2(i)µ4
r +b3(i)κ. The values for b0(i),

b1(i), b2(i) and b3(i) are found in Table D.4.

Table D.3: Coefficients for Chung et al. model (a) (source [61]).

i a0(i) a1(i) a2(i) a3(i)
1 6.32402 50.41190 -51.68010 1189.02000
2 0.12101×10−2 -0.11536×10−2 -0.62571×10−2 0.37283×10−1

3 5.28346 254.20900 -168.48100 3898.27000
4 6.62263 38.09570 -8.46414 31.41780
5 19.74540 7.63034 -14.35440 31.52670
6 -1.89992 -12.53670 4.98529 -18.15070
7 24.27450 3.44945 -11.29130 69.34660
8 0.79716 1.11764 0.12348×10−1 -4.11661
9 -0.23816 0.67695×10−1 -0.81630 4.02528
10 0.68629×10−1 0.34793 0.59256 -0.72663

Table D.4: Coefficients for Chung et al. model (b) (source [61]).

i b0(i) b1(i) b2(i) b3(i)
1 2.41657 0.74824 -0.91858 121.72100
2 -0.50924 -1.50936 -49.99120 69.98340
3 6.61069 5.62073 64.75990 27.03890
4 14.54250 -8.91387 -5.63794 74.34350
5 0.79274 0.82019 -0.69369 6.31734
6 -5.86340 12.80050 9.58926 -65.52920
7 81.17100 114.15800 -60.84100 466.77500
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Finally, mixture rules have to be implemented to apply this model to mixtures. The

following rules are used to compute mixture parameters,

σ3
m =

N∑
i=1

N∑
j=1

XiXjσ
3
ij (D.22)

εm/k =

∑N
i=1

∑N
j=1 XiXj(εij/k)σ3

ij

σ3
m

(D.23)

Vcm = (σm/0.809)3 (D.24)

Tcm = 1.2593(εm/k) (D.25)

ωm =

∑N
i=1

∑N
j=1 XiXjωijσ

3
ij

σ3
m

(D.26)

Mm =

(∑N
i=1

∑N
j=1XiXj(εij/k)σ2

ijM
0.5
ij

(εm/k)σ2
m

)2

(D.27)

µ4
m =

∑N
i=1

∑N
j=1XiXj(µ

2
iµ

2
j)

(εij/k)σ3
ij

σ3
m(εm/k) (D.28)

κm =
N∑
i=1

N∑
j=1

XiXjκij (D.29)
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µrm = 131.3µm/(VcmTcm)0.5 (D.30)

The binary parameters are given by

σij = ξij(σiσj)
0.5 (D.31)

εij/k = ζij[(εi/k)(εj/k)]0.5 (D.32)

ωij = 0.5(ωi + ωj) (D.33)

Mij = 2MiMj/(Mi +Mj) (D.34)

κij = (κiκj)
0.5 (D.35)

where ξij and ζij are binary interaction parameters taken to be unity for most systems or

when no other information is provided.

To obtain the viscosity and the thermal conductivity in SI units, the following conversions

must be applied,

η[kg/(m·s)] =
1

10
η[P ] (D.36)
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λ[J/(m·s·K)] = λ[W/(m·K)] = 418.4 · λ[cal/(cm·s·K)] (D.37)

Diffusion coefficients

The model from Leahy-Dios and Firoozabadi [47] has been used to compute the diffusion

coefficients required for the evaluation of the mass diffusion fluxes. This model combines a

correlation obtained using an extensive data bank to evaluate the infinite-dilution diffusion

coefficients with the Vignes relation (Eq. D.38) to obtain the binary diffusion coefficients.

Then, these coefficients can be applied in the Maxwell-Stefan relations (Eq. 2.50).

D12 = (D∞12)X2(D∞21)X1 (D.38)

The infinite-dilution diffusion coefficients are evaluated with the following correlation,

given that component 2 is infinitely diluted in component 1,

cD∞21

(cD)0
= A0

(
Tr,1Pr,2
Tr,2Pr,1

)A1
(
µ

µ0

)[A2(ω1,ω2)+A3(Pr,Tr)]

(D.39)

where the constants Ai are given by

A0 = exp(a1) (D.40)

A1 = 10a2 (D.41)
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A2 = a3(1 + 10ω1 − ω2 + 10ω1ω2) (D.42)

A3 = a4(P 3a5
r,1 − 6P a5

r,2 + 6T 10a6
r,1 ) + a7T

−a6
r,2 + a2

(
Tr,1Pr,2
Tr,2Pr,1

)
(D.43)

with a1 = −0.0472, a2 = 0.0103, a3 = −0.0147, a4 = −0.0053, a5 = −0.3370, a6 = −0.1852

and a7 = −0.1914.

In Eq. D.39, c is the molar density in mol/m3, µ is the viscosity in Pa·s or kg/(m·s), ωi

is the acentric factor of component i, Tr,i = T/Tc,i is the reduced temperature of component

i and Pr,i = P/Pc,i is the reduced pressure of component i. Moreover, (cD)0 is the dilute

gas density-diffusion coefficient product in mol/(m·s) and µ0 is the dilute gas viscosity or

low-pressure viscosity in Pa·s or kg/(m·s).

The dense-fluid viscosity, µ, can be obtained from the correlations by Chung et al., but

the proposed methods by Leahy-Dios and Firoozabadi to obtain (cD)0 and µ0 are applied

here.

To compute (cD)0, the Fuller et al. approach is used [52] (Eq. D.44).

(cD)0 = 1.01× 10−2T 0.75

(
1
M1

+ 1
M2

)0.5

R

[
(
∑
ν1)1/3 + (

∑
ν2)1/3

]2 (D.44)

In the previous equation, (cD)0 is given in mol/(m·s), M1 and M2 are the molecular

weights of each component in g/mol, T is the temperature in K and
∑
νi is the diffusion

volume of component i. From Poling et al. [52], Table D.5 shows typical diffusion volume

increments for each atom in the molecule and some diffusion volumes for simple molecules.
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Table D.5: Diffusion volumes obtained from Poling et al. (source [52]).

Component Diffusion volume Component Diffusion volume
C 15.9 O 6.11
N 4.54 H 2.31
O2 16.3 N2 18.5

CO2 26.9 H2 6.12

The low-pressure viscosity is computed according to Stiel and Thodos correlation as

µ0 =
µ0

1M
0.5
1 + µ0

2M
0.5
2

M0.5
1 +M0.5

2

(D.45)

where µ0
i is computed as follows, for Tr,i < 1.5,

µ0
i ξi = 34× 10−8(Tr,i)

0.94 (D.46)

or as follows, for Tr,i > 1.5,

µ0
i ξi = 17.78× 10−8(4.58Tr,i − 1.67)5/8 (D.47)

The following expression is used to compute ξi,

ξi =
T

1/6
c,i

M
1/2
i (0.987× 10−5Pc,i)2/3

(D.48)

Surface tension

To compute the surface tension, it has been used the Macleod-Sugden correlation as suggested

by Poling et al. [52]. The model is explained in Section 2.3.8, but this appendix provides
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information on how to compute the parachor for each component of our mixture.

The empirical method consists in adding structural contributions accounting for each

atom forming the molecule and the type of bonding between them. Table D.6 shows some

of the values taken for each type of contribution.

Table D.6: Parachor contributions obtained from Poling et al. (source [52]).

Element Contribution Element Contribution
C 9.0 O 20.0
N 17.5 H 15.5

Double bond 19.1 Triple bond 40.6
Single bond 0.0 Semipolar bond 0.0

For instance, to compute the parachor of the molecule of n-decane, C10H22, it would be

found to be P = 10 · 9.0 + 22 · 15.5 = 431.
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Appendix E

Validation of the Models

This appendix intends to justify the selected equation of state and fluid properties models by

comparing the results obtained with them with other works or references. The REFPROP

program from NIST is used here as one of the main references to compare with, since

the results they provide are based on an extended experimental data set and high-fidelity

equations of state or models. Usually, it is expected that it will provide better results than

those obtained with the models of this thesis. However, as discussed in the report, working

with cubic equations of state and correlations for the fluid properties represents a significant

competitive advantage when code implementation is considered.

Figure E.1 presents a comparison of the density obtained using the SRK-EoS and the

density that the REFPROP program provides for oxygen and decane. The testing is done

for a low-pressure case and for a high-pressure case. Similarly, Figure E.2 shows the same

kind of results but for different mixtures of oxygen and decane. In overall, it is seen that the

SRK-EoS predicts accurate results for a wide range of fluid states, but it is also shown that

one of its weaknesses becomes the obtainment of the liquid density, which seems to become

more critical as pressure is increased and affecting more the heavier species. This fact will

affect all the other fluid properties models which depend on density as a main correlation
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parameter. Nevertheless, it still is accurate enough for our purposes.

When computing results for enthalpy, a better agreement is observed with the results

provided by REFPROP (see Figure E.3). This fact shows how robust is the procedure of

computing the enthalpy using the departure function concept with the SRK-EoS.

Recall that the cubic behavior of the SRK-EoS can predict metastable solutions which do

not represent the saturation pressure of the P-v diagram. REFPROP results give an idea of

where the saturation conditions lie. Our code is consistent with this issue: where only liquid

or gas should be present, the solution defining that state is taken.
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Figure E.1: Comparison of density results obtained with SRK-EoS and REFPROP (a).
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Figure E.2: Comparison of density results obtained with SRK-EoS and REFPROP (b).
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Figure E.3: Comparison of enthalpy results obtained with SRK-EoS and REFPROP.
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Another feature of the SRK-EoS to be compared with other references is the phase equi-

librium results. For the same test mixture, oxygen and decane, the results provided with

SRK-EoS are compared with those given by REFPROP and those provided by Jorda-Juanos

and Sirignano [55], who used the RK-EoS. In this case, important differences are obtained

between the SRK-EoS and REFPROP, especially close to the critical point of the mixture

(see Figure E.4). Thus, the implementation of binary interaction coefficients is strongly

encouraged, when available, since better results may be obtained. For other mixtures, the

results matched better. Therefore, it could be possible that REFPROP is giving some kind

of error for the oxygen/decane mixture.

Figure E.4: Comparison of phase equilibrium results obtained with SRK-EoS, RK-EoS and
REFPROP.

Viscosity and thermal conductivity are computed using Chung et al. model [61]. The

following Figure E.5 and Figure E.6 show the results obtained with this model, compared

with results from the paper itself and REFPROP. It is seen that the model provides rea-

sonably accurate results, but its strong dependence in density may induce some deviations

when computing these properties for the liquid phase. That is, density inaccuracy in the

liquid phase due to the SRK-EoS will affect the performance of this model for computing

the viscosity and thermal conductivity.
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Figure E.5: Comparison of viscosity and thermal conductivity results obtained with Chung
et al. model and REFPROP (a).
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Figure E.6: Comparison of viscosity and thermal conductivity results obtained with Chung
et al. model and REFPROP (b).

The most controversial model validation is perhaps the model used to compute the binary

diffusion coefficients, Leahy-Dios and Firoozabadi model [47]. Validation results obtained

from their paper prove the good performance of the model when compared to experimental

data and other works (Figure E.7, source [47]).

Figure E.7: Validation plots for the diffusion coefficient model of Leahy-Dios and Firooz-
abadi. Circles represent experimental data and continuous line represent the model.
Methane/propane mixture (left) and methane/decane mixture (right). Methane mole frac-
tion is represented in the x-axis (source [47]).
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Figure E.8: Comparison of diffusion coefficients results obtained with Leahy-Dios and Firooz-
abadi model, Riazi and Whitson model and experimental data (a).

However, application of this model in our code provides different results, but of the same

order of magnitude, as shown in Figure E.8 and Figure E.9. These differences are mainly due

to the facts commented in the report. The model strongly depends on density computation,

which is one of the weaknesses of the SRK-EoS in the liquid phase, and which also affects the

viscosity computation, another parameter involved in the diffusion model. Furthermore, the

non-ideality parameter or thermodynamic factor, Γ, introduced in Eq. 2.53, also depends on

the equation of state being used and the influence of the binary interaction parameters kij.

All these interactions affect the results obtained with the Leahy-Dios and Firoozabadi model

applied to our code. The work done by Leahy-Dios uses high-fidelity equations of state and

correlations to compute the necessary properties when experimental data is not available.
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Thus, refining our models, especially the liquid density computation, would improve the

performance of the diffusion model in our work.

We can see that Riazi and Whitson model performs well for the computations done for

the mixture of methane and propane (Figure E.8). Nevertheless, this model only works well

for some cases since its data bank includes few mixtures. For instance, Figure E.9 proves

that its application to mixtures other than those appearing in its data bank do not show the

expected properties of non-ideal diffusion (i.e., tending to zero as the mixture approaches

the critical point).

Figure E.9: Comparison of diffusion coefficients results obtained with Leahy-Dios and Firooz-
abadi model, Riazi and Whitson model and experimental data (b).

In summary, this model has been selected because of its expected good performance once

the other models of our code are improved. At this stage, it is still capable of providing

accurate and reasonable values for the diffusion coefficients.
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Appendix F

Nitrogen/n-Octane Mixture Results
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Pressure effects

Figure F.1: Oxygen mass fraction and fluid density on each side of the interface for the
nitrogen/n-octane mixture.
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Figure F.2: Fluid velocity and temperature distribution for the nitrogen/n-octane mixture.
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Figure F.3: Deviations from the ideal case for the nitrogen/n-octane mixutre.
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Figure F.5: Temperature and liquid velocity at the interface for the nitrogen/n-octane mix-
ture.

Figure F.5: Variation of interface properties with pressure for the nitrogen/n-octane mixture.
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Temporal evolution

Figure F.6: Temporal evolution of the temperature distribution and the fluid density for the
nitrogen/n-octane mixture at p = 50 bar.

141



Figure F.7: Temporal evolution of the temperature distribution and the fluid density for the
nitrogen/n-octane mixture at p = 150 bar.
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